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Flow

Properties of Wall Shear Stress
Fluctuations in a Turbulent Duct

Measurements of wall shear stress fluctuations have been made in a fully developed tur-
bulent duct flow, using a surface heat transfer gauge. Measurements, made over a moder-
ate Reynolds number range, include RMS values, probability density functions, spectra,
and zero-crossing frequencies of the wall shear stress fluctuation. The ratio of RMS of the
fluctuation to the mean value of the wall shear stress is found to be about 0.25. The zero-
crossing frequency computed from the measured spectra using the relation derived by
Rice for a Gaussian process is found to be a good approximation to the measured value,
although the measured probability density function is not Gaussian. The zero crossing
frequency and spectra of wall shear stress fluctuations appear to scale with outer vari-
ables for asymptotically large Reynolds numbers.

1 Introduction

The use of surface heat and mass transfer gauges for the study
of instantaneous heat, momentum, and mass transfer in different
fluids has been well established in the literature, e.g., [1-6].! Since the
surface heat transfer gauge does not interfere with the flow, it is a
convenient device to use for the study of the observed bursting process
in the wall region of turbulent boundary layer and pipe or duct flows.
In the present investigation we measure a few statistical properties,
such as RMS intensities, probability density functions and spectra
of the wall shear stress fluctuations, using a commercial heat flux
gauge inserted at the wall of a fully developed turbulent duct flow.
This particular flow was chosen since the mean wall shear stress,
which is determined accurately from the linear static pressure dis-
tribution over the fully developed part of the flow, can be readily used
for a static calibration of the heat transfer gauge. Measurements of
the wall shear stress fluctuations are made over a moderate Reynolds
number range and are compared, whenever possible, with other
available results.

Some attention is given in Section 5 to the experimental determi-
nation of the zero-crossing frequency of the heat gauge signal. This
part of the investigation was motivated by a recent study by Badri
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Narayanan, et al. [7], who found that the zero-crossing frequency of
the longitudinal velocity fluctuation, as obtained from a hot wire
placed in a turbulent boundary layer, was equal to the frequency as-
sociated with the bursting phenomenon. Ueda and Hinze [8] have
shown that the bursting frequency measured in the viscous sublayer
is approximately one half the value obtained in the “buffer” and the
semilogarithmic parts of the layer. It is therefore useful to compare
zero-crossing frequencies obtained from surface hot-film probes with
those available from hot-wire signals in other parts of the flow. Pos-
sible scaling parameters for the zero-crossing frequencies measured
in the present investigation are discussed in Section 5.

2 Description of Equipment and Experimental
Conditions

The channel used for the present measurements is described in
detail in Churchill [9]. Briefly, it has a width of 1.27 cm, a span of 40.6
cm (aspect ratio 32:1) and a length of 183 cm. Upstream of the test
section is a contraction, a settling chamber and a diffuser connected
via a flexible pipe to a 1 HP motor-fan combination. Three screens,
two on the upstream and one on the downstream end of the settling
chamber, are provided.

Surface shear stress measurements were made with a DISA min-
iature 55A93 probe, which is a quartz-coated nickel film deposited
on the plane end of a quartz rod. The frequency response for this
probe, as quoted by the manufacturer [10] is good up to 30 kHz. The
signal from the probe was fed into a DISA 55M10 constant tempera-
ture anemometer. The anemometer signal was first linearized (DISA
55D10 linearizer) and then passed through a DISA 55D26 signal
conditioner before recording on a Hewlett-Packard 3960A FM re-
corder at a speed of 38.1 cms™; its —3 dB upper frequency cutoff was
6.3 kHz. The root-mean-square values were read out on a DISA 55D35
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RMS meter, and the bridge voltage measured with a 55D30 voltmeter.
The recorded signals were processed on the digital computer ARC-
TURUS (in the School of Electrical Engineering at the University of
Sydney} to obtain probability densities and spectra with the use of

"the hardwired FFT processor, described by Gottlieb and De Lorenzo
[11]. The tape recorder was played back at 2.32 cms™! and the signal
digitized at a sampling frequency of 600 Hz (real time frequency of
9.6 kHz), with appropriate prefiltering to avoid aliasing. The sampling
frequency of 9.6 kHz represents twice the Kolmogorov frequency f,,
estimated to be 4.8 kHz (for the highest Reynolds number used here)
at the “edge” of the thermal layer associated with the hot film. The
number of digital samples used was approximately 5 X 10°, corre-
sponding to a real time duration of approximately 52 s.

The zero-crossing frequencies were obtained by first removing the
d-c component of the signal with a Krohn-Hite filter (cut off at 0.02
Hz), and then passing the filtered output through a Digital Electronics
comparator (with the comparator level grounded) and a digital fre-
quency meter, which displayed the frequency directly. Generally,
about 10 readings yielded reasonably steady averages, but about 25
were usually taken. :

The two-dimensionality of the flow was checked in [12] with the
use of a Preston tube, moved to various spanwise locations in the flow.
For a fully developed two-dimensional duct flow, it follows from the
equations of motion that the mean static pressure gradient (dp/dx)
is constant, and is related to the mean wall shear stress 7o through the
relation

7o = D(dp/dx) (1)

where D is half width of the duct. The gradient dp/dx was found
constant over a substantial region of the flow (90 < x/D < 190). The
skin-friction coefficient ¢/ (=270/U.2 where U, is the center-line
velocity) evaluated from equation (1) was in good agreement with the
Preston tube values and the results of Johnston [13] and Dean
[14].

It is necessary to discuss briefly the effect on the measurement of
wall shear stress fluctuation of the physical dimensions of the hot-film
probe, of the overheat ratio at which it is operated and of errors re-
sulting from a possible mismatch between the film surface and the
wall of the duct. Spence and Brown [15] showed that the Nusselt
number Nu for the film is proportional to 7o!/3, provided that

66 Ugl
AP LY
o172 B

where ¢ and v are the fluid Prandtl number and kinematic viscosity,
respectively, Uy is the friction velocity (=7,1/2) and [ is the streamwise
extent of the film. This condition requires that 0.08 mm < ! < 0.5 mm
at the highest Reynolds number considered here and 0.15 mm < I <
1 mm at the lowest Reynolds number. The present probe (DISA
55A93, I = 0.15 mm) meets this criterion for most of the flow condi-
tions encountered.

The heat transfer from the film must be sufficiently small for the
temperature to be considered a passive contaminant of the flow. The
ratio AT/T (where AT is the difference between the film temperature
and the adiabatic tunnel wall surface temperature To) needs therefore
to be as small as can be tolerated by other requirements, such as the
signal/noise ratio. The present film was operated at an overheat ratio
of 1.2, yielding AT = 80°C. Spence and Brown [15] indicated that
even higher values of AT may be tolerable as Nu falls off extremely
rapidly with distance from the surface (the thickness of the thermal
beundary layer is about 1/10). A small mismatch between the film
surface and duct wall was found to have little effect on either mean
or RMS voltages at the output of the anemometer.2

3 RMS Intensity and Probability Density Function
The ratio 7¢'/7o, where 7o' is the RMS of the wall shear stress fluc-
tuation 7¢’ is plotted in Fig. 1 as a function of Reynolds number. No

2 Quantitative measurements due to the effect of mismatch may be found in
Wetzel and Killen [16]. :
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Fig. 1 Root-mean-square wall shear fluctuations as a function of Reynolds
number

definite conclusions can be drawn on the Reynolds number depen-
dence of 7¢//7, partly because the extreme values of this plot are within
the reproducibility of measurement (+ 5 percent), and partly because
the characteristic thermal layer thickness (over which the probe does,
in some sense, average) is itself weakly dependent on Reynolds
number. It seems more appropriate to assume a constant value of
about 0.25 for 7¢'/7, which compares very well with the value of 0.24
obtained by Eckelmann [4]. Mitchell and Hanratty [6] and Fortuna
and Hanratty [17] have obtained slightly higher values for 7o'/ of
0.30 and 0.32, respectively, also independent of Reynolds number.
It may be of interest to mention here that the RMS value of the
Reynolds shear stress fluctuations measured by Antonia [18] and
Gupta and Kaplan [19] in the inner region of the turbulent boundary
layer, is approximately 27, an order of magnitude larger than the level
of wall shear stress fluctuations. The ratio of the RMS value of the
wall pressure fluctuations to the RMS of the wall shear stress fluc-
tuations is about 10 (using, for example, the result of Willmarth and
Roos [20]).
It should be noted (following Eckelmann [4]) that

7o' _ [(du/oy)e?|1/?

To (0U/dy)e
where U and u are the local mean and streamwise fluctuating veloc-
ities of the flow. There is considerable evidence [4, 21, 22] to show that
indeed /U — 0.25 as y ~> 0, independent of Reynolds number.
The result of Yucel and Graf [23] who find that 7¢'/7, decreases from
0.38at UD/r ~ 10510 0.12 at UD/» ~ 6 X 10%, seems to be in doubt.
Py [24] shows that close to wall, 2/U is essentially independent of
Reynolds number, but is strongly affected by the geometry of the
sensor element.

Fig. 2 shows a normalized probability density plot of the linearized
signal; also shown for comparison is a Gaussian distribution. Clearly,
the signal is far from being Gaussian and is skewed positively, con-
sistent with the traces recorded by Eckelmann [4], who however gives
no probability densities. The probability density function appears
to be independent of Reynolds number (at least over the range covered
here). Partial support for this statement is provided by the skewness
and flatness factors listed in Table 1.

The present values of skewness and flatness factors are comparable
with, but distinetly less than, the values by Kreplin and quoted by
Eckelmann [4] (see Table 1). Ignoring this discrepancy for the mo-
ment, it is interesting to note that Kreplin’s measurements show mild
peaks in both S(~1.1) and F(~4.4) of u signals (at y* = yUs/v>15),
and that the corresponding values obtained “at” the wall are sub-
stantially lower. This suggests that a possible explanation for the

~ (ZZ/U))'*-'O;
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Fig.2 Probability density of the wall shear stress fluctuations at two different Reynolds number. @, U, D/v = 6.05 X 10%; x, U.D/v

= 10.34 X 10%; —, Gaussian

Table 1 Skewness (S) and flatness (F) of wall shear stress
fluctuations

U.D/v s F
11.78 X 10° 0.58 3.05
10.34 0.52 3.04
9.14 0.51 3.30
Present 8.21 0.55 3.02
7.04 053 319
6.05 0.53 310
Kreplin
(as given 8.20 X 10° 0.75 3.70
in [4])

difference”® between the present values and Kreplin's values at the
wall is the thicker thermal boundary layer in the latter (y* =~ 2, as
against 1.4 in the present case), because, as mentioned previously, the
surface probe tends to average u over a normal distance of the order
of the thermal boundary layer. However, both the present and Kre-
plin’s measurements are consistent in that the skewness and flatness
factors of du/dy at the wall are significantly lower than the maximum
values attained by the skewness and flatness factors of u in the vicinity
of the wall.

Armistead and Keyes [5] also measured the probability density
using a hot-film gauge, but found that it was more nearly Gaussian.
We find a similar result if the signal is not linearized, and it is not quite
clear whether Armistead and Keyes linearized their signals. In fact,
Comte-Bellot {25] and Frenkiel and Klebanoff [27] find that linear-
ization has considerable effect especially on the skewness of u close
to the wall.

3 Unfortunately the agreement among different workers of the value of
skewness and flatness factors of the longitudinal velocity fluctuation u is not
much better close to the wall. For example, at y* = 2, Kreplin’s values are 0.9
and 3.4 for S and F, respectively, while Comte-Bellot’s [25] corresponding values
are 0.5 and 2.8, respectively. Zaric {26], on the other hand, reports values which
are even higher than Kreplin’s. This departure is even worse when one considers
different flows; the corresponding values obtained by Gupta and Kaplan [19]
are 1.5 and 7, respectively, in a boundary layer.

Journal of Applied Mechanics

4 Power Spectral Density

Fig. 3 shows the normalized spectral density ¢ of 7¢’. It would ap-
pear that when nondimensionalized using the outer variables, namely,
the velocity U, and the duct half width D, all the spectra plot close
to one another over the present Reynolds number range. A repre-
sentative set of data of Kutateladze, et al. [28], agrees with the present
measurements. When nondimensionalized with U, and v, the spectra
do not exhibit any universality. It should be noted that, at a given
Reynolds number, the spectral density of Reynolds shear stress
fluctuations reported by Antonia and Van Atta [29] scale with outer
variables over a large extent of the boundary layer.

Close to the wall, the behavior of u should follow closely that of the
wall shear fluctuations. Eckelmann [4], for example, notes that the
wall shear stress fluctuations and the logitudinal velocity fluctuations
close to the wall (y* = 0.8) are almost identical except for a small
phase difference. It is therefore to be expected that the u spectrum
of Bakewell and Lumley [21] at y* = 1.25, at a Reynolds number of
5450, should agree with the present wall shear stress spectra at a
comparable Reynolds number. This is supported by Fig. 3.

The similarity of wall shear stress spectra when scaled on outer
variables has been noted by several workers, e.g., Mitchell and Han-
ratty [6], Armistead and Keyes [5], Kutateladze, et al [28], and Wetzel
and Killen [16]. However, we suggest that the similarity alluded to
(except possibly for Wetzel and Killen’s data) is only a consequence
of the narrow Reynolds number range covered by each worker cited
in the foregoing, as well as the scatter in the data which, unfortunately,
masks the existing differences. The differences show up clearly when
the data obtained by various investigators are all plotted in the same
figure (Fig. 3). We see that the present spectra which agree with those
of Bakewell and Lumley [21] and Kutateladze, et al. [28], are in fact
obtained for a narrow Reynolds number range (5.45 X 103 < U.D/v
< 11.78 X 103). On the other hand, the spectra of Wetzel and Killen
[16], obtained in the range 1.32 X 105 < UD/» < 2.66 X 10, are clearly
different from those obtained at much lower Reynolds numbers al-
though they are in good agreement among themselves. The wall shear
stress spectra of Mitchell and Hanratty [6], obtained at an interme-
diate Reynolds number (UD/v =~ 2.29 X 10%) and the u spectrum of
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Fig. 3 Nondimensional and normalized power spectral density of 74" at different Reynolds numbers. O, U.D/v
=11.78 X 10% x, U.D/v = 9.14 X 105 @, U.D/v = 8.21 X 103 A, U.D/v = 7.04 X 10% 7, U.D/v = 6.05 X 103,
== - Kutateladze et al. UD/v = 4015; — - - —, Mitchell and Hanratty; UD/y = 2.29 X 10% — - — Wetzel and Killen,
UD/v > 1.32 X 10%; —, Bakewell and Lumley, u spectrum at y* = 1.25, UD/y = 4350; + - - Kiebanoff, u spectrum

at y* o~ 3.13, Ud/v =~ 8 X 10%.

X 10*lie somewhere
n [16]. We

fid only at farge

S~ 8

¢

AR

3 Zero-Crossing Frequency

The number of times a turbulent signal crosses its mean value ap-
pears to be of some importance in relation to the fine structure of the
turbulence (Badri Narayanan, et al. [7], Antonia, et al. [31]). Fig. 4
shows that the positive (or negative) zero-crossing frequency Ny,
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nondimensionalized with either wall or outer variables, is not constant
over the Reynolds number range covered here.

Accurate determination of the zero-crossing frequency is not
forward. It is conceivable that a “noisy” signal will give too

a value for Ng. Alternatively, if the high frequency content of a
random signal is filtered off, N can be expected to be much lower.
The effect of the cutoff frequency on Ny is shown in Fig. 5. The upper
part of the figure shows the effect of the low cutoff, f1; it is seen that
there is no significant effect on N below about 1 Hz (for a signal with
anonzero mean, one can however expect a sudden jump in Ngat d-c).
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Fig. 4 Variation with Reynolds number of the nondimensional zero-crossing
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The lower part of the figure shows, for different stream velocities, the
dependence of Ny on the high cutoff frequency, fi. Ng increases with
fr (in a linear fashion for white noise) until, at lower speeds, it levels
off at some f;,; but if the filter is set to higher and higher values of f;,
(i.e., more and more of the electronic noise is allowed to contaminate
the signal), Ny increases sharply again. For lower values of Reynolds
number a reasonable plateau appears to exist in Ny, in which the
precise filter setting is not critical. As U.D/v increases, the plateau
decreases significantly both in definition and extent, and disappears
completely at the highest speed. It is likely that this highest speed at
which there is no clear demarcation between the zero-crossings due
to signal and those due to noise (presumably because the highest
signal containing frequency, typically the Kolmogorov frequency,
overlaps the noise limit of the electronic system) will depend on the
signal/noise of the setup. It would seem that the appropriate filter
setting is the Kolmogorov frequency. This is what was used for the
present determination of Ng.

The figure also shows curves corresponding to the zero-crossing
frequency computed using the relation

ff n? g(n) dn]"
fo o(n)dn |

where ¢(n) is the measured spectral density. It is clear that the cal-
culations are reasonably close to the measurements approximately
up to a filter setting f5 of f,.

Equation (2) is strictly valid [32] only for Gaussian processes but
the present results suggest that it is at least approximately true for
a non-Gaussian signal such as the wall shear stress fluctuation. This
conclusion is consistent with observations by Wetzel and Killen [16]
and Antonia, et al. [31], but in disagreement with the finding by Badri
Narayanan, et al. [7], that in turbulent shear flows, equation (2) ov-
erestimates the measured N by a factor of 3 to 4.

It is of interest to note the variation with distance from the wall of
the zero crossing frequency of the streamwise velocity fluctuation u.
Fig. 6 shows that in the pipe flow of Bakewell and Lumley {21], N,
computed from equation (2) (with f, set to =) is constant for y* <5
(or essentially in the viscous sublayer). This is also true for the
boundary layer as is indicated by calculations of the zero crossing
frequency from the data of Ueda and Hinze [8]. (Here U. is the
free-stream velocity and § is the boundary-layer thickness). This
appears therefore to be a common feature of all wall flows. Because
N, computed anywhere in the sublayer (y* < 5) is constant and, very
close to wall, u(y) = 7¢/, it follows that the zero-crossing frequency of
shear stress fluctuation is equal to that of u(y) for y* < 5. Thus one
can compute the zero-crossing frequency of 7y’ by measuring the
zero-crossing frequency of u (for y* < 5), or alternatively from the
spectral density of u (for y* < 5) by the use of equation (2).

It is interesting to note that the so called “bursting” frequency of
high frequency pulses also shows a similar variation with distance
from the wall [8], which suggests a close relation between this bursting
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frequency and zero-crossing frequency. Badri Narayanan, et al. [7],
found that the ratio of these two frequencies is independent of
Reynolds number and is approximately unity. This, coupled with the
observed outer scaling of the bursting frequency (Rao, et al. [33], Badri
Narayanan, et al. [34], Laufer and Badri Narayanan [35), Ueda and
Hinze [8}), implies that the zero-crossing frequency should also scale
with outer variables. We have however observed earlier that this is
not true, but the uncertainties associated with the determination of
Ny (Fig. 5) and the narrow range of Reynolds number covered, make
this conclusion somewhat uncertain. Data from Wetzel and Killen
and the present experiments (together covering a Reynolds number
of about two decades) are reexamined in Fig. 7, where U,/NyD is
plotted against the Reynolds number U.D/». Also plotted in the figure
are data from Comte-Bellot [25] at intermediate Reynolds numbers
assuming, as discussed above, the validity of equation (2) and that
U./NyD is independent of y* for y* < 5. It appears that U./NoD
might at best asymptotically approach a constant value, which
suggests that the universal scaling of spectra with outer variables is
also asymptotic. The evidence presented here shows that the two
results, namely, the independence on Reynolds number of the ratio
of bursting frequency to zero-crossing frequency and that the scaling
of bursting frequency with outer variables, are not self-consistent. In
fact, Antonia, et al. [31], have found that the ratio of zero-crossing
frequency to the bursting frequency is Reynolds number depen-
dent.

6 Conclusion

For the Reynolds number range considered here, the RMS value
of the wall shear stress fluctuation is roughly 0.25 times the mean wall
shear stress, and does not seem to depend significantly on Reynolds
number; the probability density is also independent of Reynolds
number and is skewed positively. The zero-crossing frequency and
spectra of wall shear stress fluctuations may scale with outer variables
for asymptotically large values of the Reynolds number. Further, the
zero-crossing frequency can be computed approximately from Rice’s
result, which is strictly valid only for a Gaussian process.
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Proceedings of NSF-Sponsored
Workshops Now Available

The proceedings of several workshops sponsored recently by the
Fluid and the Solid Mechanics Programs of the National Science
Foundation are now available. Requests for copies should be sent either
to the conference organizers or care of the Fluid or Solid Mechanics
Program (as appropriate), Engineering Division, National Science
Foundation, Washington, D.C. 20550.

Solid Mechanics

(1) Inelastic Constitutive Equations for Metals, Experimentation-
Computation-Representation, Rensselaer Polytechnic Institute, E.
Krempl, July 23-24, 1974.

(2)  Voluntary Human Motion, University of Florida, W. H. Boykin,
April 14-15, 1975.

(3) Approximations and Numerical Methods for the Study of In-
elastic Shells, Georgia Institute of Technology, G. Wempner, May 1-2,
1975.

(4) Design Applications of Mechanical Properties of Solid Food
Materials, Pennsylvania State University, N. N. Mohsenin, August 7-8,
1975.

(5) Applied Thermoviscoplasticity, Northwestern University, S.
Nemat-Nasser, October 13-14, 1975.

(6)  The Mechanics of Hurnan Injury, Stanford University, R. L. Piziali,
D. A. Nagel, April 7-9, 1976.

(7)  Applications of Elastic Waves in Electrical Devices, Norde-
structive Testing, and Seismology, Northwestern University, J. D.
Achenbach, Y. H. Pao, H. F. Tiersten, May 24-26, 1976.

(8) New Directions for Kinematics Research, Stanford University,
B. Roth, August 2-3, 1976.

(9) Characterization of Mechanical Properties of Food Materials,
Rutgers University, Y. Chen, November 21-23, 1976.

Journal of Applied Mechanics

(10)  Applications of Functional Analysis in Mechanics: Existence
Theory in Nonlinear Elasticity, University of Texas at Austin, J. T. Oden,
March 14-15, 1977.

(11)  Nonlinear Waves in Solids (NSF/ARO), University of lllinois
at Chicago Circle, T. C. T. Ting, March 21-23, 1977.

(12)  Mechanics Problems Associated With the Mining and Pro-
cessing of Energy Related Minerals, Asilomar, California, M. M. Carroll,
D. L. Sikarskie, September 14-16, 1977.

(13)  General Constitutive Relations for Wood, Syracuse University,
Minnowbrook Conference Center, R. Perkins, July 1978.

(14) Interactive Workshop on the Mechanics and Structure of
Materials (Ceramics, Metals, Polymers), University of Pittsburgh, M.
L. Williams, 1978.

(Proceedings for Nos. 10-14 will be sent as soon as they be-
come avaiiable.)

Fluid Mechanics

(1) Workshop on Slender-Body Theory (Shallow Water Application),
University of Michigan, T. F. Ogilvie, June 1973.

(2)  Fluid Dynamics Aspects of Arterial Disease, Ohio State Uni-
versity, R. M. Nerem, September 19-20, 1974.

(3) Workshop on Gas Dynamic Isotope Separation, Sandia Labo-
ratories, K. J. Touryan, December 4-5, 1974.

(4) Workshop in Two-Phase Flow, California Institute of Technol-
ogy, M. Plesset, January 6-8, 1976.

(5)  Workshop on Fluid Mechanics, Structure and Function of In-
terfacial Regions, Case Western Reserve University, J. Mann, January
21-23, 1976.
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