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INTRODUCTION

It is convenient {(whenever possible) to be able
to regard turbulence not merely as a characteris-
tic of the flow {which it always is) but as endowing

the fluid with certain new characteristics. When
so viewed, the description of the responsge of

turbulence to a superimposed deformation, in
general similar to that of viscoelastic fluids,
assumes considerable importance in the under-
standing of turbulence structure at large. The
ubiquitous eddy-viscosity theories apply in the
extreme limit of instantaneous relaxation to equi-
librium from a deformed state; in the opposite
limit of suddenly applied strains the viscous and
the inertial relaxation mechanismas caa be expec-
ted to be dominant. We may call this latter Limnit
Urapid distortion", borrowing the phrase from a
study by Batchelor & Proudman [1] (see also
Ribner & Tucker [2]) when the turbulence is
homogeneous and initially isotropic. Fassage of
turbulence through wind tunnel contractions and
shear flows in highly favourable or adverse pres-
sure gradients are examples of fairly rapid dis-
tortion.

It is useful to examine the relevance of the
ideas of rapid distortion theory to shear flows
which are acted upon by the inherent rate of shear
strain [3, 4]. It turns out, however, that there
are some experimental situations in shear {lows
in which rapid distortion theory plays a more
direct role: substantial evidence now exists show-
ing that the outer part of a highly accelerated tur-
bulent boundary layer undergoing relaminariza-
tion [5] and rapidly distorted wakes [6] behave in
a manner essentially dominated by rapid distor-
tion. However, in this more general class, the
turbulence structure is neither jsoiropic nor

homogencous., It is therefore essential to inguire

into the way in which the final results will be
affected if the initial state of turbulence departs
from isotropy and homogeneity. Recent work [7]
on axisymimetrtc turbulence relaxes to some ex-
tent the restriction of isotropy when the departure
from it is small, and it is fo the cornplementary
problem of examining the effect of emall inhomo-
geneities (to be defined more precisely later) that
this note addresses itself. Furthermore, no
theory of homogeneous turbulence throws divect
light on the behaviour of shear strvess during
straining.

FORMULATION

Consider a suddenly accelerated two-dimen-
sional turbulent boundary layer. It can be ana-
lysed [5] by splitting it into an inviscid but rota-
tional outer layer and a viscusity dominated, and
essentially laminar, inner layer, with a matching
velocity Uy ip velccity for the outer layer) het-
ween theam (Fig. 1), Define
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Eg{pandir_xﬂg&’the Reynolds stress components {with
u®, v% w% denoting the normal stresses and T
denoting the shear stress: see, e.g. Townseud
[3] for notation) in powers of A"1, one gets to
order A°

Lu = 202 U (2. 1)
LvZ = 2—;2 1 (2. 2)
Lw? = 0 (2.3)
Lt = o0 (2. 4)

g

‘where L is the opsrator U '5:-', with suffix ¢ indi-
. N = . .

cating the lowest order terfns, and s indicating

distance along a strearnline. Here, we have re-

placed the velocity along a strearnline by its

component along the dlires:tiom of the {ree-gtream.

To the next order A™",

LuZ = -202U' 42 TQ%H (2.5)
s —— y

Lve =  2veuy (2.6)

Lw?= 0 (2.7)

LT = vgg—yq (2.8)

where no suffix is shown in the above equations,
it implies total quantities to order N e. g.

T = Ty + )\'1 Ty, etc. Cleaxly, further order-
relations (e.g. between ‘./8 and M) need to be
postulated tci obtain equations of motion to higher
order in A~ We note that exactly the same
analysis ig valid for accelerated wakes also if we
define N =:U}:;:)8 /wo, witn w
velocity defect (see Fig. 1).

o &8 the maximum

1f ()Ulax » 0, it is seen that to the lowest
order, \1{3 decreases and vé’ increasgsce {the vari-
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ation in each case depanding nonlinr-,;ar]y__gn its
own value). Further, w§, Ty and vg. vy remain
constant along streamlines, thus implying that to
this order the correlation coefficient Ky also re-
mains unaffected. This simple analysis explains
the important observation made of 'stress-
freezing' during rapid straining of shear flow (8l
Comparison with experiments {9, 10] for the
quantity * hase been made in Fig. 2 for sorme typi-
cal streamlines in the outer flow. Fig. 3 gives a
similar comparison for the quantity w® from the
experiments of Blackwelder & Kovasznay [10].

Further, for small total gtrain ratios, it is
possible to replace L by U C?“: , so that Eqns. (2.1)
and (2.2) integrate to

u, = Const. U—Z, v% = Const. U2 (3.1)

These results are in fact identical with those
obtainable by Prandtl's [11] arguments to homo-
geneous two-dimensional flows, and also with
those of the Batchelor-Proudman theory in the
limit of zero wave-number, k == 0. It is there-
fore a reasonable extrapolation to expect that the
actual behaviour of shear {low turbulence will be
quantitatively similar to the 'integrated' result
over zall Fourier componentsg, valid for homogene-
ous turbulence,

Thevefore, it appears logical to use {for vor-

mal stregsses at least) results from the appropriate
complete theory for homogeneous turbulence; e.g.
if initially turbulence is approximately axisym-

Z \12/\/‘)3i, it

metric with a given value for R {
follows [7] that

VEis) & (1-R/4) ¢ V2 (sy), (3.2)

where e; = U(s;)/U(s;v‘), and the suffix 1 on s indi-
catés the initial station on a given streamline.
"
Using Eqn. {3.2), tit is easy to integrate Eqn.
(2.8) to give \ ’

1-R/4) g2 F
wlo) = wto) AN s, [ e
= T (s;) + (1-R/4) L (5-55) (3.3)
, . ? ou (3.
with C{i E (mé’ "5;:)551 (3.4)

following the result that the mean vorticity is

convected without change along a s smline in

&11((: outer layer [b} Here af = vg v
Fig, 2 shows typical compavisonsg with

mental result of Blaockwelder & Kovaseznay [10]
YL

Again, using Egun. (3.2), one gets
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Eqgns. {3.3) and (3.5) can be looked upon as a two
term_Taylor expausion for the quantities T and
(ué. v2), A similar expansion for the square of
the correlation coefficient can be shown to be
R 2
BN & L
K2=Kg[l+_z.~(i,_(gm).. 8) a; (s-59)] {3.6)
i

for small relative increments in T

In the outer part of a relaminavizing boundary
layer, further details regarding the comparison
with experiment of the behaviour of the normal
stresses, as predicted by the complete rapid
distortion theory, can be found elsewhere [5].

REFERENCES
1. Batchelor, G.K. & Proudman, 1., "The Effect
of Rapid Distortion of a Fluid in Turbulent
Motion", Quarterly J. Mech. & Appl. Maths.,
Vol.8, Pt. 1, 1954, p.83.

2. Ribner, H.S. & Tucker, M., "Spectrum of
Turbulence in a Contracting Stream®, NACA
TR 1113, 1953,

3. Townsend, A.A., "The Structure of Turbulent
Shear Flow" Cambridge University Press,
1956,

4, Townsend, A.A., "The Mechanism of Entrain-
ment in Free Turbulent Flows", Journal of
Fluid Mech., Vol. 26, Pt. 4, 1966, p. 689,

5. Narasimha, R. & Sresnivasan, K.R., "Relami-
narization in Highly Accelerated Turbulent
Boundary Layer®, To appear in J. Fluid Mech.

6. Prabhu, A., Narasimha, R. & Sreenivasan,
K.R., ®Distorted Wakes", Paper presented
at the Second IUTAM-IUGG Symposium on
Turbulent Diffusion in Environmental Pollu-
tion, Charlottesville, USA, April 1973.

7. Sreenivasan, K.R., "Rapid Distortion of Axi-
symmetric Turbulence", Report 72 FM 7,
Department of Aeronautical Engineering,
Indian Institute of Science, Bangalore, 1972.

8. Narasimha, R. & Prabhu, A.,, "Equilibrium
and Relaxation in Turbulent Wakes", J. Fluid
Mech., Vol. 54, Pt. 1, 1973, p. 1.

9. Launder, B.E., "Laminarization of the Tur-
bulent Boundary Layer by Acceleration®, Gas
Turbine Lab.,, MIT, Rep. 77, 1964,

10. Blackwelder, R.¥. & Kovasznay, 1..5.G.,
“l.arge-scale Motion of a Turbulent Boundaxy
Layer During Relaminarization®™, J. Fluid
Mech., Vol. 53, PPt.1, 1972, p.61.

Prandtl, 1., "Attaining a Steady Air Stream

in Wind Tunnels®, NACA TM 726,

1933,



X, in
1% 20 24
_ Jrauncer seay T T '
Wkl yga078
“1 /
“ov | 5//’”//
P e v ®
e @
1.04- " °
) BEACKWELDER ~
SZNAY (157
O 2| xOvasZHAY (1972)
2.0 N 2
Wl 2 15x30 "
.47 10 '«
20l VI8 : ) 155
o B = [
~URAL, o ey
20+ /;5” +41.0
,./ L
Y1, »20x10° (Y =6.05)
1o n»-—“/ z \ .
25 10.0 0.5
X, m

Fla. 2. VARMTPO?:! OF REYNQOLDS SHEAR STRESS
ALONG STREAMUNES DURING RELAMINAR-
ISATION. FULL LINES ARE THEORY.

U fx)
HIGHLY ACCELERATED
BOUNDARY ~ LAYER

X

QUTER LAYER

"gw.
- G = et = o g = e X
N le
£16. 1. FLOW CONFIGURATION AND NOTATION
15 ° ° o
°
°
x
X
x
10} x t0x
&
tcmis) e ® ° o
a s
@ 8
St rs BLACKWELDER &
KOVASENAY(ETR)
[+ ()%_.%2,0
x .32
a ’ [ 4.7
ol , Y 605
9.5 100 10.4
x, m

- g
FI3. 3. VARIATION OF (wﬁ)’€3 ALONG STREAMUINGS
THEORY PREDICTS CONSTARNT .



pPe2etle Col.l, 11, 14=1% should resd:

"o ceev.mechanisms can be expected not to be

dominant ., ... "
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and (b) y/86 = 0,75 in the inset.
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The ordinate should be muv/U0 .




