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1. INTRODUCTION

The spread of pollutants, especially from local, concentrated sources, can
be influenced strongly by the distortion resulting from passage between or
around buildings, hills, etc. As a first, illustrative step towards analyzing
such situations, we consider here the effects of certain types of distortion on
nearly plane turbulent wakes. It has recently been shown that such flows can
be successfully treated in terms of relaxation towards certain well-defined
equilibrium states. The present paper describes a simple integral method for
computing such flows and compares the results with measurements on
distorted wakes, with particular emphasis on the effects of extremely rapid
distortion.

2. THE INTEGRAL METHOD

2.1. Previous Work

Various integral methods have been proposed for prediction of turbulent
wake development, utilizing the nearly universal similarity in the defect
velocity profile that is always found to prevail except in the immediate
neighbourhood of the wake generating body. In the work of Hill et al. (1963)
and of Gartshore (1967), the use of an eddy viscosity eliminates the Reynolds
stress as a separate variable, so that (in view of the similarity mentioned
above) only a velocity scale wy, (say the centre-line defect) and length scale 6
(the half width of the wake at the jw, point, see Fig. 1), remain to be
determined. The momentum integral provides one relation between these
quantities. For the second, Hill et al. use the moment of momentum equa-
tion; for shallow wakes (w, < U, the free stream velocity), their results can
be deduced by the more general similarity analysis of Prabhu (1966). Gart-
shore obtains the second relation by integrating the momentum equation up
to y = J; the stress at this point is determined by a semi-empirical relation
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FiG. 1. Sketch defining notation.

between the eddy viscosity and the ratio of longitudinal to transverse strain
rate at the point.

Now recent experiments on wakes subjected to various pressure gradients
(Narasimha and Prabhu, 1972; Prabhu and Narasimha, 1972; referred to
below as I and I, respectively) have shown that the “local” concepts that
form the basis of the above techniques are unsatisfactory unless the pressure
gradient (or strain) imposed on the flow is small. On the other hand, a
relaxation—diffusion model for the stress (Narasimha, 1969), explicitly taking
account of the memory of the flow, was found to be remarkably successful in
describing flow development under a variety of conditions. We construct
here an integral method based on this model.

2.2. The Equations

We assume that the Reynolds number is sufficiently large for the
boundary layer approximation to be valid and for the viscous stresses to be
negligible. We further assume that the normal stresses have no appreciable
effect on the flow. The equations governing the development of a
two-dimensional incompressible wake are then

(1) Ou/0x + dvfoy =0
(2) u ou/dx + vou/dy = U dU/Jdx + d1/Cy,

where u and v are mean velocity components along the x and y axes,

U = U(x) is the free stream velocity, and 7 is the Reynolds shear stress in

kinematic units (i.e, we put density = 1). The additional equation for t

required to have a closed set is assumed here to be (Narasimha, 1969)

(3) uq+v@=Aﬁ—ﬂ+?bjW
oy\ oy
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where A is the reciprocal of a relaxation time, v, is a stress diffusivity, and 7 is
the equilibrium shear stress. 4 and v, can in general depend on position,
velocity, and stress. The boundary conditions on u, v, and 7 are (for a
symmetric wake)

(4) ou/dy =v=0=1t at y=0

andu—»Uandt > 0as y— +co.
To solve these equations, we assume that we can write

(5) U—u=w=wofln), t=14ln). n=y/dx)

where f'and g are similarity functions satisfying the boundary conditions
S0)=f(£o)=g(0)=g(+x)=0, f(O)=1

7o 15 a stress scale. (Primes indicate derivatives with respect to the
argument.) Experiments show that the forms (5) always provide a good
approximation, in equilibrium as well as nonequilibrium flows, with the
additional simplification in the former that 7, can be replaced by wg. In
general we have therefore three unknowns wy, 7, and 0; we propose to get
the required equations by integrating Eqs. (2) and (3), and employing a
centre-line condition that has been found advantageous in studying laminar
wakes (Vasantha and Narasimha, 1970).

The momentum integral: The integration of Eq. (2) from —oc to +oc
with respect to y gives the specialization to the wake of the well-known
Karman momentum integral equation,

(6) db/dx + (H + 2)(6/U) dUjdx = 0

where 0 is the momentum thickness and H is the shape factor. A useful
rearrangement of this equation is

(7) d In(0U?)/dx = (1 — H)U'/U.
From their usual definitions 6 and H can be written in terms of wy, 6, and U
for given f{(n):
(8) 0 = (wod/Uby(1 = D). H=1/(1 = D)
where D = (b,/b, )}(wo/U),
+ Lt
9) b, =j fdn and b, = } 2 dy.
Using (8) and (9) in (6) we get
(10) (Wo/wo)(1 — 2D)/(1 — D) + &'/6 + QU'/U)/(1 — D) = 0.
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The shear stress integral:  Substituting for v from the continuity equation
(1), introducing the defect w and integrating the stress equation (3) from
y=0to y= oo, we get

* ot © 0t YU —w)
— w2 gy — RS A S v
1 -[0 w W)éxdy .[0 dy@y.’-o 0x Y
* ot
=| A{T —1)dy + v,(0) —
J, 4@ = a0y

Using the similarity assumptions (5) in the above equation and simplifying
we get
(12)  [6(Uto) + Utgd'lby — [6(woTo) + WoTod'lbs
= Adbs(To — 7o) — v:(0)bs70/0
where

<0 o

(13) bs=[ gdn bo=[ fyd  bi=g(0)

The centre-line equation: Taking the momentum equation (2) at the
centre line and substituting for w and 7, we get

(14) '—5(UW’O)I/TO + 5W0 W/()/TO = b5 .

Equations (10), (12), and (14) give three first-order ordinary simultaneous
differential equations for wg, 1,, and § which can be solved given
appropriate initial conditions. If the wake defects are small, higher order
terms in w,y/U can be ignored, and the three equations simplify to

(15) wodU? = M = constant,
(16) (Uto) + Utod'/6 = A(W2 — 10) — v.(0)bs10/b3 6%
(17) {Uwo) [ro = —bs
(remembering that 7, = wd).
We now assume, following I, that
(18) A = alU/s, v.(0) = k, UO = kqw,9;
eliminating ¢’/ from Eq. (16) we get the following equations for wy and 7o:
(19) wo = —bstowo U/M — wy U'/U,
and
(20) To = ;Z;] (W — 7o) — bs (jwfo(::w% + To)-
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The constants b;, i = 1 to 5, depend on the velocity and stress profiles
adopted, and have been evaluated here by assuming f () = exp(—#* In 2)
and g(n) = 2ko(In 2)yf; use of the available measured similarity profiles
would affect the results only by a few per cent. Thus we get

(21) b, = (n/In2)"? = 2b,, by = ko,
by = ko/2, bs = 2k In 2.

Unless otherwise stated, values of a and k, are taken as!

(22) =82 x 1074 ko = 0.066.

In the experiments it is usually necessary to apply convergence corrections if
the flow is not strictly two dimensional; applying them on the lines
suggested in 11, the only modification required in Egs. (15), (19), and (20) is
that M, instead of being a constant, should be now taken as a function of x
as given by the experiments.

Equation (19) can in fact be integrated directly to obtain w in terms of 7,
(see IT). However, it is just as convenient to solve both Egs. (19) and (20)
numerically, starting with given initial values (at x = x, say) of w, and 7,
and the distributions of U(x) and M(x). We have used for this purpose a
Runge-Kutta-Gill procedure with a step size of Ax = d(x,). d(x) is then
computed from Eq. (15).

It should be noted here that if the wake is in equilibrium (ie., U" ~ Oand
7o = wi), Egs. (19) and (20) are identical and their solution gives the usual
equilibrium development (wy ~ x~ /2 of the wake.

2.3. Results

To illustrate the accuracy of the proposed method, we show in Fig. 2 the
results of calculations for what is perhaps the most severe test case available,
namely flow M1 of I1. Measurements as well as the exact numerical solution
of Egs. (2) and (3) are also shown in Fig. 2; there is excellent agreement
among the data and the predictions.

Keffer (1965, 1967) has reported results of experiments conducted on
nearly plane wakes subjected to two different types of distortion, involving
respectively lateral stretching with normal compression and vice versa. In
this situation Eq. (15} is of course not obeyed ; however, using the measured

! There is a misprint in the value quoted in I for the parameter #2 x/U?6. Applying certain
small corrections to obtain true asymptotic values and utilizing data {from more recent experi-
ments, the following slightly revised values are now suggested for the characteristic mean flow
parameters of an equilibrium wake:

3/(x0)? ~0.30,  W/U(x/0)'? ~ 1.64,  k, ~ 0.066.
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F1G. 3. Comparison between the measured (hatched areas, points) and calculated (curves)
flow development in the distorted wakes studied by Keffer (1965, 1967). d is the diameter of
the wake generating cylinder; distortion begins at x,. (a) Lateral stretching normal com-
pression (Kefler, 1965): d = 3/16 in., x, = 10 in. (b) Lateral compression, normal stretching
(Keffer, 1967): d = 3 in., xo = 20 in.
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values of M(x), Egs. (19) and (20) may be solved as described above for an
effectively two-dimensional wake with a slight convergence. The results of
such calculations are again in excellent agreement with experiment (Fig. 3);
the discrepancy that may be noticed towards the last few stations in one of
the experiments (Keffer, 1965) is very likely due to the existence of a pressure
gradient (of unknown magnitude) near the downstream end of the distorting
duct.

3. EFFECTS OF SEVERE DISTORTION

When the pressure gradients are sufficiently large certain interesting fea-
tures of the flow development become apparent; it is our intention here to
discuss these, in the light of the results of Section 2.

3.1. Mean Velocity Field

The ratio of the second term on the right-hand side of Eq. {19) to the first
gives us an effective pressure gradient or distortion parameter; taking 7, to
be of order w3, this parameter is seen to be the strain ratio U’'d/w,, called A
in 1. If A is large, the stress term containing 7, in Eq. (19) can be ignored, and
we get the “ideal fluid ” solution requiring Uw, to be independent of x (this
result can be seen also as a consequence of Bernoulli’s law). It follows from
Eq. (15) (or from vorticity conservation) that Uo must also be independent
of x.

Figure 4 shows measurements from flow F4 of 11, in comparison with the
above ideal fluid solutions as well as the more elaborate calculations of
Section 2. The latter agree with experiment throughout the flow, and con-

" verge towards the former beyond A = 1.0. It would appear therefore that, as
the longitudinal strain rate becomes appreciably larger than the shear (it can
be shown that this does not necessarily invalidate the boundary layer
approximation), the Reynolds stresses do not strongly affect the mean flow
development.

3.2. The Reynolds Stresses

It has earlier been suggested (I) that the changes that occur in the tur-
bulence quantities on the imposition of an impulsive pressure gradient are
similar in nature to what might be expected in the limit of extremely rapid
distortion, when both inertia and viscous forces may be neglected. To obtain
a quantitative appreciation of this similarity, we examine here the change in
various turbulence quantities observed in flow F2 of I between a station just
before the commencement of pressure gradient (x = 19 in., denoted by sub-
script a), and another just after its end (x = 37 in,, subscript b), along the
centre-line of the wake. Table T lists ratios of the r.m.s. values &, ¢ of the
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F1G. 4. Comparison of the calculated wake development using integral method and inviscid
solution with the measurements in flow F4 of II. Values of Uw, and UJ at the last station are
used for calculating the inviscid solution.

fluctuating velocity components along x and y, and compares them first with
the values that would be expected in a normal equilibrium wake. It is clear
that the favourable pressure gradient results in an appreciable decrease in i,
a slight increase in 7, and an appreciable increase in 3/i.

These are generally the kind of changes that may be expected in the rapid
distortion limit. Although a complete theory valid for shear flows is not yet
available, the results of Batchelor and Proudman (1954) for homogeneous,
initially isotropic turbulence provide a valuable pointer. This is particularly

TaBLE 1. Changes in turbulence intensities in impulsively accelerated wake

Measured Equilibrium Rapid distortion Corrected

value theory
/0, 0.69 0.75 0.935 0.70
T/ T, 0.77 0.75 1.072 0.80
gt
vk 1.12 1.0 1.15 1.15

b/,
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S0 as a recent extension to a simple but nontrivial case of axisymmetric
turbulence (Sreenivasan, 1972) shows that, unless the total distortion
imposed or the departure from isotropy is extremely large, the isotropic
results provide a good first approximation to the changes in the component
energies.

However, the values of the various parameters obtained by an application
of the Batchelor-Proudman results, also listed in Table 1, show that while
the change in the ratio /i is very closely predicted, the individual intensities
are not. This is not unexpected because of the appreciable changes that
occur in an undistorted wake in the normal course of decay. A simple
correction for this can be obtained by superposing the two effects, either
additively (Townsend, 1956) or multiplicatively (Ribner and Tucker, 1953);
in the present case there is no great difference between the two procedures.
Thus we may put

ab/aa = (1 A ﬂ/ﬂa)(l - Azﬁ/aa),

where the changes on the right-hand side are respectively those due to
distortion and normal decay. The last column in Table I shows these cor-
rected numbers, which are in satisfactory agreement with measurements.
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Fi16. 5. Distribution of t/ai across the wake in flow F2b of I.

In these rapid distortion theories the Reynolds shear stress 7 i1s assumed to
be zero, but a rough idea of the likely change in 7 can nevertheless be
obtained by examining the product &it, for measurements show that the
correlation t/it changes much less from the equilibrium value (Fig. 5) than
either i1 or ¥ separately. Figure 6 shows the variation in &7 in a homogeneous
flow subjected to a two-dimensional contraction U(x)/U(x,), for various
values of the parameter

R =}/l
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F1G. 6. Variation of the ratio of the product of r.ms. values of the turbulence intensities
before and after a two-dimensional contraction of ratio U(x)/U(x,), in homogeneous initially
axisymmetric turbulence characterized by the parameter R = #2/02.

which in isotropic turbulence is unity; the details of this calculation will be
published elsewhere. It is seen that for R < 1.69, a fivefold increase in free
stream velocity will not change the product iz by more than 10 9. This
appears to be the most likely explanation for the kind of “stress freezing”
that has been observed in accelerated wakes (I).

In the model equation (3), stress freezing can be accounted for by putting
A =0 [more precisely a = 0 in (18)]. Figure 7 compares the measured
values of t,,,, with calculations using the integral method mentioned earlier
with three different assumptions on the relaxation number a. It is seen from
the figure that calculated values with a =0 for x < 385in. and

1.0
LF2 ]
a=0, x< 38.5 in.
Trnax(®) 8.2x104x>385in,
~===0=20, all x
T (%, a=0,
max —.—a=8.2 107, all x
0.5
Region of *
pressure
gradient =z 0T,mme T ———
2 ! 1 =
(e} 50 100 150
x (in)

F1G. 7. Comparison of measured and calculated value of t,,,, in flow F2b of | with three

different assumptions on the number a.
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a = 8.2 x 10”*for x > 38.5 in. agree with the experiments well,? even in the
region of peak pressure gradient. This indicates that the relaxation number
might depend on the pressure gradient or strain imposed on the flow and
rapidly goes to zero as the strain increases. It may be mentioned that similar
considerations have been found to give meaningful results for the develop-
ment of the outer part of a reverting turbulent boundary during rapid
acceleration (Narasimha and Sreenivasan, 1973), and that further experi-
ments are currently being carried out in wakes subjected to larger pressure
gradients. On the whole it appears that inviscid development of the turbu-
lent quantities is likely to occur earlier in the pressure gradient scale than
does inviscid mean flow development.

4. CONCLUSIONS

The simple integral method described here using the relaxation diffusion
model for the stress is adequate to describe wake flow subjected to various
pressure gradients as well as to constant pressure distortions. In the case of
large pressure gradients or severe distortion, it is likely that the development
of turbulent stresses can be understood in terms of rapid distortion analysis;
eventually even the mean velocity field becomes amenable to an ideal fluid
treatment.

Note added in proof: A detailed, quantitative analysis of stress freezing has been recently
given by K. R. Sreenivasan and R. Narasimha [Rapid distortion of shear flows, Aeronaut.
Soc. India Silver Jubilee Tech. Conf., Bangalore, 1974, Pap. No. 2.3]. For difficulties in using
the experimental data of Hill er al. (1963), sec A. Prabhu [Nonequilibrium wake fAows.
Ph.D. Thesis, Dept. Aeronaut. Eng., Indian Institute of Science, 1971].
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