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CHAPTER 1

Groups

In this chapter we introduce one of the most fundamental and important concepts
in algebra and in the whole of mathematics: groups. A group will be a set G such
that we can multiply the elements of G. That is there is an operation

· : G×G→ G, (a, b) 7→ a · b,
which satisfies some axioms. It generalizes many examples that we know from high
school or linear algebra.

(1) (Z,+) the integers with the usual addition,
(2) (Q \ {0}, ·) the nonzero rational numbers with the usual multiplication,
(3) n× n matrices over R with nonzero determinant with matrix multiplication

Groups play an important role in almost all parts of mathematics, and many more
complicated structures (like rings, fields) are build on groups.

1. Definition of a group

Definition 1.1. A nonempty set G together with a binary operation

· : G×G→ G; (a, b) 7→ a · b
(the multiplication or product) is called a group, if the following axioms hold.

(1) (Associativity) for all a, b, c ∈ G we have

(a · b) · c = a · (b · c).
(the left-hand-side means: multiply a and b first, then with c, similar for the
right-hand-side).

(2) (Neutral element) There exists an element e ∈ G, such that e · a = a · e = a
for all a ∈ G. e is called the neutral element of e.

(3) (Inverse) For every a ∈ G there exists an element a−1 ∈ G with a · a−1 =
a−1 · a = e. a−1 is called the inverse of a.

Notation 1.2. (1) In future we will often drop the symbol · for the multi-
plication, i.e. we write ab instead of a · b.

(2) Note also that because of associativity we can drop brackets in the notation,
i.e. we can write abc := (ab)c = a(bc).

As an exercise in the definitions we show the uniqueness of the neutral and the
inverse element.
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2 1. GROUPS

Remark 1.3. (1) The neutral element is unique.
(2) The inverse a−1 of a is unique.
(3) Let b be an element with ba = e, then b = a−1.
(4) (a−1)−1 = a.
(5) (ab)−1 = b−1a−1.

Proof. (1) Let e, e′ be neutral elements of G. Then e′ = ee′ = e.

(2) Let b, b′ be inverses of a. Then b′ = b′e = b′(ab) = (b′a)b = eb = b.

(3) Let b be an element with ba = e, Let c be an element with cb = e. Then

ab = eab = cbab = ceb = cb = e,

thus ab = ba = e, i.e. b = a−1.

(4) a satisfies aa−1 = e, and thus it is the inverse of a−1.

(5) abb−1a−1 = aa−1 = e. �

A useful property of groups is the cancellation property, i.e we can cancel factors
on both sides of an equation in G.

Proposition 1.4. Let G be a group and a, b, c ∈ G.

(1) If ab = ac, then b = c.
(2) If ba = ca, then b = c.

Proof. (1) We multiply ab = ac on both sides with a−1. We get b = a−1ab =
a−1ac = c. (2) is similar. �

I very nice property that many groups have is that the order of multiplication is
not important.

Definition 1.5. A group G is commutative (or abelian) if a · b = b · a for all
a, b ∈ G.

Notation 1.6. Often the group operation in abelian groups is written a + b. In
this case one writes −a instead of a−1 and a− b instead of ab−1.

Examples of groups

(1) The trivial group {1} consists of one element 1 with 1 · 1 = 1.
(2) (Z,+), the integers with the usual addition, form a abelian group. The

neutral element is 0 and the inverse of a is −a.
(3) The nonzero rational numbers Q \ {0} with the usual multiplication

m

n

m′

n′
=
mm′

nn′

form an abelian group. The neutral element is 1 = 1
1

and the inverse of m
n

is
n
m

.
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(4) Similarly the real numbers (R,+) with usual addition form a group, so does
(R\{0}, ·) the nonzero real numbers with the usual multiplication. Both are
abelian groups.

(5) Let k ∈ Z and let Zk := {0, 1, . . . , k − 1}. We define a commutative group
structure on Zk as follows. For an integer n let n ∈ Zk be the rest of n when
divided by k, i.e. we write n = dk + n with d ∈ Z and 0 ≤ n < k. We define
an addition ⊕ on Zk by n⊕m = n+m, where + is the usual addition in Z.,
We can check that this makes Zk into an abelian group.
(a) n+m⊕ l = n+m+ l = n⊕m+ l, thus the addition is associative.
(b) 0⊕ n = 0 + n = n = n, so 0 is the neutral element.
(c) n⊕ (k − n) = k = 0. So k − n is the inverse of n.
(d) Clearly n+m = m+ n, so the group is commutative.

(6) The 2×2 matrices A =

(
a b
c d

)
with real coefficients with det(A) = ad−bc 6=

0 form a group under matrix multiplication(
a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

The neutral element is

(
1 0
0 1

)
and the inverse of

(
a b
c d

)
is(

d
ad−bc − c

ad−bc
− b
ad−bc

a
ad−bc

)
.

This group is not commutative:(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
,(

1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
.

(7) Let M be a set. The group of permutations S(M) of M (or the symmetric
group on M)is the set of bijective maps f : M → M . This is a group with
the composition of maps f · g := f ◦ g as multiplication:
(a) It is well-known that the composition of maps is always associative (f ◦

g) ◦ h = f ◦ (g ◦ h).
(b) the neutral element is the identity idM : M →M ;m 7→ m.
(c) every f ∈ S(M) is bijective, and therefore has an inverse map f−1, and

by definition f−1 ◦ f = f ◦ f−1 = idM . Thus f−1 is the inverse element
of f .

(8) A particularly important case is when M is the set {1, . . . , n}. Then Sn :=
S({1, . . . , n}) is called the symmetric group of degree n. It consist of the
permutations of {1, . . . , n}.
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We introduce the following notation for permutations. If f : {1, . . . , n} →
{1, . . . , n} ∈ Sn is a bijection, we write it as(

1 2 . . . n
f(1) f(2) . . . f(n)

)
.

Thus by definition

e =

(
1 2 . . . n
1 2 . . . n

)
.

is the neutral element of Sn.
In particular we see that S3 consists of the elements

e =

(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
.

We see that S3 is not commutative:(
1 2 3
1 3 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 1 2

)
,(

1 2 3
2 1 3

)(
1 2 3
1 3 2

)
=

(
1 2 3
2 3 1

)
.

Groups were originally introduced as groups of symmetry and were usually
groups of permutations of some set.

(9) Let G,H be groups. The product G × H consists of the pairs g, h, with
g ∈ G, h ∈ H. It is a group. The group operation is componentwise

(g, h) · (g′, h′) = (gg′, hh′).

It is easy to check that with this operation G × H is a group. The neutral
element is (e, e′), where e is the neutral element of G and e′ is the neutral
element of H . The inverse of (g, h) is (g−1, h−1).

An important invariant of a group is the number of elements it contains.

Definition 1.7. Let G be a group. The order of ord(G) of G is the number
of elements of G, we write ord(G) = ∞, if G contains infinitely many elements.
Otherwise we call G a finite group.

Exercise 1.8. Show ord(Sn) = n!.

Notation 1.9. We introduce a shorthand for powers of elements in a group. Let
G be a group and a ∈ G. We define an for n ∈ Z any integer. If n > 0 we write

an = a · a · . . . · a︸ ︷︷ ︸
n times

.

We put a0 = e and a−n = (a−1)n.
If G is an abelian group and we write the group operation as a+ b, then we write

na instead of an for n ∈ Z.
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Exercise 1.10. Show that an · am = an+m for all n,m ∈ Z, and a−n = (an)−1 for
n ∈ Z.

2. Subgroups

Notation 2.1. From now on we usually write 1 for the neutral element of a group.
If the group is commutative and we write the group operation as + we usually write
0 for the neutral element.

We want to consider subsets H of a group G, but only those which somehow
reflect the fact that G is a group. The most natural condition is that H with the
restriction of the multiplication on G itself forms a group.

Definition 2.2. A nonempty subset H of a group G is called a subgroup of G,
if for any two elements a, b ∈ H we have a · b ∈ H, and H with the restriction of ·
forms a group.

Remark 2.3. Obviously if H ⊂ G is a subgroup and L ⊂ H is a subgroup, then
L ⊂ H is a subgroup.

We need a criterion for a subset H ⊂ G to be a subgroup.

Lemma 2.4. A nonempty subset H of a group G is a subgroup of G if and only if

(1) if a, b ∈ H then ab ∈ H,
(2) if a ∈ H, then a−1 ∈ H.

Proof. If H is a subgroup of G, then (1) and (2) must obviously hold.

Conversely let H ⊂ G be a subset satisfying (1) and (2). The associative law
holds for all elements a, b, c ∈ G, in particular it holds in H. Given a in H we have
a−1 ∈ H and thus 1 = aa−1 ∈ H, so H has a neutral element and a has an inverse in
H. �

Examples of subgroups

(1) Let (Z,+) be the group of integers with addition. Let k ∈ Z be an integer.
Then

kZ :=
{
kn
∣∣ n ∈ Z

}
is the set of integers divisible by k. Obviously if n and m are divisible by k,
so is ab and so is −a. Thus kZ is a subgroup of Z.

(2) (R>0, ·) is a subgroup of (R∗, ·).
(3) (Z,+) is a subgroup of (R,+).
(4) Let H1, H2 be subgroups of a group G, then H1 ∩ H2 is a subgroup of G

(exercise).



6 1. GROUPS

(5) Let G be a group, and let a ∈ G be an element. Let

〈a〉 :=
{
an
∣∣ n ∈ Z

}
.

By an · am = an+m, (an)a−n = 1, we see that 〈a〉 is a subgroup of G. It is
also easy to see that 〈a〉 is abelian.
〈a〉 is called the cyclic subgroup of G generated by 〈a〉.
For instance kZ ⊂ Z is the cyclic subgroup generated by k.
(exercise).

Definition 2.5. A group G is called cyclic, if there is an element a ∈ G with
G = 〈a〉.

Example 2.6. Zk is cyclic: It is generated by 1.

Definition 2.7. More generally any subset of a group determines a subgroup.
Let G be a group, U ⊂ G be a subset. The subgroup of G generated by U is the
smallest subgroup of G containing U (technically it is the intersection of all subgroups
containing U , it exists, because G is a subgroup containing U). We denote it by 〈U〉.
If g1, . . . , gr ∈ G, we call 〈g1, . . . , gr〉 := 〈{g1, . . . , gr}〉 the subgroup of G generated
by g1, . . . , gr.

Now we want to see that a subgroup H of a group G determines a decomposition
of G into disjoint smaller subsets.

First I want to review the notion of an equivalence relation.

Review of equivalence relations and equivalence classes
The concept of equivalence relation is very basic and important, and used in every

field of mathematics.

Definition 2.8. Let A be a set. A relation on A is a subset R ⊂ A × A. We
write a ∼ b if (a, b) ∈ R. The relation is called an equivalence relation if the following
axioms hold:

(1) (reflexivity) a ∼ a for all a ∈ A,
(2) (symmetry) if a ∼ b, then b ∼ a.
(3) (transitivity) if a ∼ b and b ∼ c, then a ∼ c.

We say a is equivalent to b if a ∼ b.

In practice when trying to show that a relation is an equivalence relation, usually
reflexivity and symmetry are easy, and transitivity is more subtle to check.

Example 2.9. Let Z be the set of integers, and let k be an integer. For integers
a, b, we say that a ∼ b if a−b is divisible by k. Check hat ∼ is an equivalence relation.

The main reason we consider equivalence relations is that an equivalence relation
on a set A determines a decompostion of A into disjoint subsets, the equivalence
classes.
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Definition 2.10. Let A be a set and let ∼ be an equivalence relation on A. The
equivalence class of a ∈ A is the set

[a] :=
{
b ∈ A

∣∣ a ∼ b
}
.

We write A/ ∼ for the set of equivalence classes.

Example 2.11. Let k ∈ Z>0 and let again ∼ be the equivalence relation on Z
given by a ∼ b, if a − b is divisible by k. Let a ∈ {0, . . . , k − 1} be the rest when
dividing a by k. Check that the equivalence class of [a] of a is the set of all b ∈ Z
with b = a. Thus

Z = [0] ∪ [1] ∪ . . . ∪ [k − 1].

is a decomposition of Z into disjoint equivalence classes.

This example generalizes: an equivalence relation on A determines a decomposi-
tion of A into disjoint equivalence classes.

Proposition 2.12. Let A be a nonempty set, and ∼ an equivalence relation on
A. Then the distinct equivalence classes [a] are a decomposition of A into disjoint
nonempty subsets.

Proof. As a ∼ a, we see that a ∈ [a], so clearly the union of all equivalence
classes is A. We only have to check that for a, b ∈ A, either [a] = [b] or [a] ∩ [b] = ∅.
Thus assume [a] ∩ [b] 6= ∅. So let x ∈ [a] ∩ [b]. Thus we have a ∼ x, and b ∼ x,
thus also x ∼ b. By transitivity this gives a ∼ b. Thus if y ∈ [a], then y ∼ a and by
transitivity and a ∼ b we get y ∼ b, i.e. y ∈ [b]. Thus [a] ⊂ [b]. In the same way we
see [b] ⊂ [a], thus [a] = [b]. �

Definition 2.13. Let A be a nonempty set and ∼ an equivalence relation on A.
Let [a] be the equivalence class of an element a ∈ A (in other words a ∈ [a]). Then
we say a is a representative of [a]. If a′ ∈ [a], also a′ is a representative of [a].

Often one wants to define something for equivalence classes [a] in terms of the
representatives a. This will be a valid definition, if and only if one gets the same
definition for any choice of representative a′ ∈ [a], in other words, if the definition is
independent of the representative.

Example 2.14. Let k be a positive integer. On the integers Z we define an
equivalence relation ≡ mod k by n ≡ m mod k if and only if n − m is divisible
by k. It is easy to see that this is an equivalence relation. We denote by [n] the
equivalence class of n, and by Z/kZ the set of equivalence classes.

We want to make Z/kZ into a group, by defining [n] + [m] = [n+m]. Note that
we have defined the sum in terms of representatives, so the definition makes sense if
and only if it is independent of the representatives, in other words if it is well-defined.
So let [n′] = [n], [m′] = [m]. This means n′ ≡ n mod k, m′ ≡ m mod k. Then we
need to see [n′ +m′] = [n+m], i.e. n′ +m′ ≡ n+m mod k.
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This is trivially true: if n − n′ = dk and m − m′ = ek for integers d, e, then
(n+m)− (n′ +m′) = (d+ e)k. Thus [n′ +m′] = [n+m].

We can easily check that this makes Z/kZ into a group because Z is:

([n] + [m]) + [l] = [n+m] + [l] = [n+m+ l] = [n] + [m+ l] = [n] + ([m] + [l]),

[0] + [m] = [m], [m] + [−m] = [0].

Cosets
Now we want to see that a subgroup H ⊂ G determines an equivalence relation

on G and therefore a decomposition of G into equivence classes called cosets.

Definition 2.15. Let G be a group and let H be a subgroup of G. For elements
a, b ∈ G we say a is congruent to b mod H, written a ≡ b mod H if there is an h in
H with a = bh.

It is very easy to see that conguence mod H is an equivalence relation on G: Let
a, b, c ∈ G.

(1) (reflexivity) a = a1 and 1 ∈ H because H is a subgroup, thus a ≡ a mod H.
(2) (symmetry) Assume a ≡ b mod H, i.e. a = bh ∈ H. Then b = ah−1, and

h−1 ∈ H, thus b ≡ a mod H.
(3) (transitivity) Assume a ≡ b mod H and b ≡ c mod H, i.e. a = bh1, b = ch2,

with h1, h2 ∈ H. Then a = ch2h1 and h2h1 ∈ H, thus a ≡ c mod H.

Thus H determines a decomposition of G into disjoint equivalence classes mod H.
The equivalence classes will be called the cosets.

Definition 2.16. Let H be a subgroup of G. For every a ∈ G the set

aH :=
{
ah
∣∣ h ∈ H}

is called a (left) coset of H in G.
By definition aH is just the equivalence class

[a] =
{
x ∈ G

∣∣ a ≡ x mod H
}
.

Note that by definition H = 1H.
Thus by the above we have a decompostion of G into disjoint cosets aH.

Remark 2.17. Let aH, bH be two cosets of H in G. Then the map

aH → bH; ah 7→ bh

is a bijection.

Proof. Clearly the map is onto, and it is injective because if bh1 = bh2, then by
the cancelation property h1 = h2, thus ah1 = ah2. �

It is now easy to prove a well-known theorem due to Lagrange: the order of a subgroup
of a finite group divides the order of the group.
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Definition 2.18. Let H be a subgroup of a group G. The quotient set G/H is
the set of left cosets of H. The index of H in G is [G : H] = |G/H| the number of
left cosets of H in G, where we put [G : H] =∞ if G/H is infinite.

It can happen that H is an infinite subgroup of an infinite group G with [G : H]
finite.

Example 2.19. Let k be an integer. kZ is a subgroup of Z. The equivalence
relation in Example ?? is just n ≡ m mod k. Thus the set Z/kZ defined in in
Example ?? is just the quotient set Z/kZ. Check that Z/kZ = {[0], [1], . . . , [k − 1]}.
Thus [Z : kZ] = k.

Theorem 2.20 (Lagrange). Let G be a finite group. Then |H| divides |G|. More
precisely |G| = |H| · [G : H].

Proof. By the previous lemma and by H = 1H, we see that G is the disjoint
union of [G : H] different cosets aH with |H| elements each, thus |G| = |H|[G :
H]. �

Although the proof is not difficult, this theorem is very important and very useful,
it will be used many times in the future. For the moment we will illustrate Lagrange’s
theorem by giving a number of corollaries. First we introduce a definition.

Definition 2.21. Let G be a group and a ∈ G. The order of a, denoted ord(a) is
the smallest positive integer n, such that an = 1, if such an n exists, otherwise ord(a)
is defined to be ∞.

For instance in any group ord(1) = 1, and for any n ∈ (Z,+) \ {0}, we have
ord(n) =∞.

Corollary 2.22. If G is a finite group and a ∈ G, then ord(a) divides |G|.

Proof. Consider the cyclic subgroup 〈a〉 of G generated by a. By Lagrange’s
Theorem the Corollary follows immediately from the following

Claim |〈a〉| = ord(a).
Proof of the Claim: As G is finite, also 〈a〉 is finite. We claim that 〈a〉 =

{1, a, a2, . . . , aord(a)}, and these elements are distinct. By definition 〈a〉 = {an |n ∈
Z}. By division with rest in Z, we can write n = ord(a) · d + r with r, d ∈ Z and
0 ≤ r < ord(a).

Then an = aord(a)·d+r = (aord(a))dar = 1dar = ar. Finally we have to see that the
ar with 0 ≤ r < ord(a) are distinct. Assume 0 ≤ r2 < r1 < ord(a) with ar1 = ar2 ,
then ar1−r2 = 1 and 0 < r1 − r2 < ord(a) contradicting the definition of ord(a). �

Corollary 2.23. If G is a finite group and a ∈ G, then a|G| = 1.

Proof. By the previous Corollary ord(a) divides |G|, i.e we can write |G| =
ord(a) · d. Thus a|G| = (aord(a))d = 1d = 1. �
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Corollary 2.24. Let G be a finite group of order a prime number p, then G is
a cyclic group.

Proof. p has 1 and p as the only nonnegative divisors. Note that G has no
subgroups H other then {1} and G, because otherwise |H| would be a divisor of |G|
different from 1 and p. Let a 6= 1 ∈ G. Then 〈a〉 is a subgroup of G different from
{1}. Therefore 〈a〉 = G. �

3. Normal subgroups and quotient groups

If H is a subgroup of a group G, we can form the set of cosets

G/H =
{
aH

∣∣ a ∈ G}.
G is a group, does G/H inherit the group structure from G? There is an obvious
definition for the product in G/H:

(aH)(bH) := abH,

but does it make sense? For this definition to make sense we have to remember that
there can be many different a′ ∈ G, b′ ∈ G with a′H = aH, b′H = bH, but above
we want to define the product of (aH)(bH) in terms of the actual elements ab. This
makes sense precisely when a′b′H = abH whenever a′H = aH, b′H = bH. In other
words we need the product to be independent of the representatives. Or in other
words we need it to be well-defined.

We now want to find a necessary condition for the product to be well defined
(later we will see it is also sufficient). For this we chose a = 1, a′ = h an arbitrary
element of H, b an arbitrary element of G and b′ = b. Thus we want to see under
what circumstances we will always have bH = hbH. This is equivalent to hb = bh′ for
some element h′ ∈ H. Multiplying by b−1 this is equivalent to b−1hb = h′ for some
element h′ ∈ H, i.e. b−1hb ∈ H. As h was an arbitrary element in H, b an arbitrary
element in G, we find that a necessary condition for the multiplication above to be
well-defined is b−1hb ∈ H for all h ∈ H and all b ∈ G.

This is an extra condition on H. Subgroups H fulfilling this condition are called
normal subgroups.

Definition 3.1. Let G be a group, and let H ⊂ G be a subgroup. H is called a
normal subgroup of G if for all g ∈ G, and all h ∈ H we have ghg−1 ∈ H.

Example 3.2. (1) If G us a commutative group, then every subgroup is a
normal subgroup (ghg−1 = h).

(2) Let G be a group. Then {1} and G are normal subgroups of G.
(3) In S3, consider

H :=

{(
1 2 3
1 2 3

)
= e,

(
1 2 3
1 3 2

)}
.
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Note that (
1 2 3
1 3 2

)(
1 2 3
1 3 2

)
=

(
1 2 3
1 2 3

)
= e,

thus H is a subgroup of S3, and

(
1 2 3
1 3 2

)
=

(
1 2 3
1 3 2

)−1
. On the other

hand one computes(
1 2 3
2 1 3

)(
1 2 3
1 3 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
,

therefore H is not a normal subgroup of S3.

Now we want to see that if N is a normal subgroup of G, we get indeed that with
the above definition G/N is a group.

Theorem 3.3. Let G be a group and let H ⊂ G be a normal subgroup. Then
G/H is a group with the product (aH)(bH) = abH.

Proof. We have first show that the product is well-defined. Let a, b, a′, b′ ∈ G
and assume aH = a′H, bH = b′H. We have to see abH = a′b′H. Equivalently
assume a′ ≡ a mod H, b′ ≡ b mod H. We have to see that ab ≡ a′b′ mod H. By
assumption we have a′ = ah1, b

′ = bh2 with h1, h2 ∈ H. Then a′b′ = ah1bh2 =
ab(b−1h1b)h2. As H is a normal subgroup, we have (b−1h1b) ∈ H and therefore also
(b−1h1b)h2 ∈ H. Therefore a′b′ ≡ ab mod H.

The group axioms for this product follow directly from the group axioms for G:
Associativity:

((aH)(bH))cH = ((ab)H)(cH) = (ab)cH = a(bc)H = aH(bcH) = aH((bH)(cH)),

Neutral element: (1H)(aH) = 1aH = aH. Inverse: (aH)(a−1H) = aa−1H = 1H. �

4. Group homomorphisms

An important concept in modern algebra (and in modern mathematics) is the no-
tion of homomorphism. If one has sets G1, G2 with a structure (e.g. they are groups),
a homomorphism will a map f : G1 → G2 which is compatible with the structure.
For groups this means that the map must be compatible with the multiplication.

Definition 4.1. Let G, H be groups and let f : G→ H be a map. f is called a
homomorphism if

f(ab) = f(a)f(b)

for all a, b ∈ G.

Examples of group homomorphisms

(1) Let G be a group, then G → {1}, g 7→ 1 is a group homomorphism to the
trivial group.
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(2) Let k ∈ Z be an integer. Then ·k : Z → Z, n 7→ kn is a group homomor-
phism: k(n+m) = kn+ km.

(3) The exponential map exp : R → R \ {0}; a 7→ ea is a homomorphism from
(R,+) to (R∗, ·): ea+b = eaeb.

(4) The map π : Z→ Zk;n 7→ n, is a group homomorphism (exercise).

Remark 4.2. Let f : G→ H be a group homomorphism.
Let e be the neutral element of G and e′ the neutral element of H. Then f(e) = e′.
f(a−1) = f(a)−1 for all a ∈ G.

Proof. (1) e′f(e) = f(e) = f(ee) = f(e)f(e) by cancelation e′ = f(e). (2)
e′ = f(e) = f(a−1a) = f(a−1)f(a), therefore f(a)−1 = f(a−1). �

The composition of group homomorphisms is a group homomorphism

Remark 4.3. Let f : G → H, g : H → L be group homomorphisms. Then
g ◦ f : G→ L is a group homomorphism.

Proof. We have for all a, b ∈ G: g ◦ f(ab) = g(f(a)f(b)) = g(f(a))g(f(b)). �

Definition 4.4. Let f : G→ H be a group homomorphism. The set

ker(f) :=
{
a ∈ G

∣∣ f(a) = 1
}

is called the kernel of f . The set

Im(f) :=
{
b ∈ H

∣∣ there is an a ∈ G with f(a) = b
}

is called the image of f .

Proposition 4.5. Let f : G→ H be a homomorphism of groups.

(1) The image Im(f) is a subgroup of H.
(2) The kernel ker(f) is a normal subgroup of G.

The second statement will be particularly important.

Proof. (1) is quite obvious: Im(f) ⊂ H and for h1 = f(a), h2 = f(b) ∈ Im(f)
we also have h1h2 = f(a)f(b) = f(ab) ∈ Im(f), furthermore for h = f(a) ∈ f(a) also
h−1 = f(a)−1 = f(a−1) in Im(f).

(2) ker(f) is a subgroup: If a, b ∈ ker(f), then f(a) = f(b) = 1. Thus f(ab) =
f(a)f(b) = 1 · 1 = 1, thus ab ∈ ker(f), and f(a−1) = f(a)−1 = 1−1 = 1, so
a−1 ∈ ker(f).

Finally we show ker(f) is a normal subgroup. Let h ∈ ker(f), a ∈ G. Then
f(a−1ha) = f(a−1)f(h)f(a) = f(a)−1f(a) = 1. thus a−1ha ∈ ker(f). �

Definition 4.6. A homomorphism f : G→ H is called
isomorphism, if f is bijective.

We will call two groups G, H isomorphic, if there is an isomorphism from G to
H. The homomorphisms f : G → G are also called endomorphisms of G, and the
isomorphims f : G→ G are also called automorphisms.
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Example 4.7. (1) For ·k : Z→ Z, n 7→ kn we have ker(·k) = {0}, Im(·k) =
kZ :=

{
kn
∣∣ n ∈ Z}. Thus ·k is injective, but not an isomorphism.

(2) For exp : (R,+)→ (R>0, ·) is an isomorphism.

Remark 4.8. (1) Let f : G → H be a group isomorphism, then also f−1 :
H → G is an isomorphism.

(2) Clearly if ϕ : G → H, ψ : H → L are isomorphisms, then ψ ◦ ϕ : G → L is
an isomorphism.

Proof. (1) Let a′, b′ ∈ H. Then there are unique a, b ∈ G with f(a) = a′,
f(b) = b′. Thus we have

f−1(a′b′) = f−1(f(a)f(b)) = f−1(f(ab)) = ab = f−1(a′)f−1(b′).

Therefore f−1 is a homomorphism, and as it is also bijective it is an isomorphism. �

Definition 4.9. We say that groups G and H are isomorphic (denoted G ' H
if there is an isomorphism ϕ : G→ H.

If is clear that being isomorphic is an equivalence equivalence relation on groups,
i.e.

(1) G ' G,
(2) G ' H implies H ' G,
(3) G ' H and H ' L imply that G ' L.

That G and H are isomorphic means that they have precisely the same properties as
groups, and for most purposes we can identify them.

If f : G→ H is a morphism of groups, then Im(f) is subgroup of H, thus we can
replace f by the surjective group homomorphism f : G→ Im(f).

We can check whether a surjective morphism is an isomorphism by just looking
at the kernel.

Lemma 4.10. (1) Let f : G → H be a group homomorphism. Then f is
injective if and only if ker(f) = {1}.

(2) In particular a surjective group homomorphism f : G→ H is an isomorphims
if and only if ker(f) = {1}.

Proof. Let e be the neutral element of H.

”=⇒” We know f(1) = e, therefore ker(f) ⊃ {1}. As f is injective f(a) 6= e for
all a 6= 1. Thus ker(f) = {1}.

”⇐=” Assume ker(f) = {1}. Let a, b ∈ G, assume f(a) = f(b). Then f(a−1b) =
f(a−1)f(b) = f(a)−1f(b) = e, thus a−1b ∈ ker(f) = {1}, Therefore a = b. Thus f is
injective. �



14 1. GROUPS

Exercise 4.11. Let f : M → N be a bijection of sets. The map

f ∗ : S(N)→ S(M), σ 7→ f ◦ σ ◦ f−1

is an isomorphism of groups. In particular if M is a finite set with n elements then
S(M) ' Sn.

The following lemma gives us many surjective group homomorphisms. We will
see in a moment that in a suitable way it gives us the most general example of a
surjective group homomorphism.

Lemma 4.12. Let G be a group, and let N be a normal subgroup of G. The natural
map π : G→ G/N ; a→ aN is a surjective group homomorphism, with kernel N .

Proof. By definition for a, b ∈ G we have π(a)π(b) = (aN)(bN) = abN = π(ab),
so π is a group homomorphism. If a ∈ ker(π), then aN = N , in particular a = a1 ∈
N . Conversely if a ∈ N , then π(a) = aN = N = 1N . Thus ker(π) = N . �

If G is a group and N is a normal subgroup, we thus get a surjective homomor-
phism G → G/H with kernel H. We can hope to understand G in terms of H and
G/H which are both smaller, (and therefore maybe simpler). Iterating this process
we end up with groups G which have no normal subgroups except {1} and G

Definition 4.13. A group G is called simple if its only normal subgroups are {1}
and G.

Simple groups can be viewed as the basic building blocks of all groups. One of the
most difficult theorems in mathematics is the classification of all finite simple groups.
That is a list of all finite simple groups up to isomorphism.

Example 4.14. Clearly Z/2Z is simple.

Theorem 4.15. (Homomorphism Theorem) Let ϕ : G→ H be a surjective mor-
phism, with kernel K. Then there is an isomorphism ϕ : G/K → H with

ϕ ◦ π = ϕ.

In particular H is isomorphic to G/ker(ϕ).

Proof. The condition ϕ = ϕ◦π, says that for every a ∈ G we have ϕ(aK) = ϕ(a),
we want to use this as definition for ϕ. We have to see that this is well defined. That
is we have to see that if aK = bK, then ϕ(a) = ϕ(b). But aK = bK means a ≡ b
mod K, i.e. a = bk for some k ∈ K. Then ϕ(a) = ϕ(bk) = ϕ(b)ϕ(k) = ϕ(b)1 =
ϕ(b). Thus ϕ is well-defined. Clearly ϕ is a homomorphism because ϕ((aK)(bK)) =
ϕ(abK) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(aK)ϕ(bK).

To show that ϕ is an isomorphism, we have to show that ker(ϕ) = 1K. By
definition aK ∈ ker(ϕ) if and only if ϕ(a) = 1, i.e. if and only if a ∈ K. And we
know that aK = 1K if and only if a ∈ K. �

Example 4.16. Let k be an integer.
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(1) kZ is a subgroup of (Z,+), and, as Z is commutative, it is a normal sub-
group. Thus we can form the quotient group Z/kZ. Note that this definition
coincides precisely with that of Example ??. We have seen that the map
n 7→ n defines a surjective group homomorphism Z → Zk with kernel kZ,
thus the map [n] 7→ n defines a group isomorphism Z/kZ→ Zk.

(2) Let G be a cyclic group of order k. Then G is isomorphic to Z/kZ. Let a be
generator of G. Then it is easy to see that [n]→ an defines an isomorphism
Z/kZ→ G.

Later we will use the following elementary lemma.

Lemma 4.17. Let G be a finite abelian group of finite order nm, and let H, L be
subgroups with |H| = n. |L| = m and L∩M = {1}. Then G is isomorphic to H ×L.

Proof. We define a homomorphism ψ : H × L → G; (h, l) 7→ hl. This is a
homomorphism because

ψ((h, l)(h′, l′)) = ψ(hh′, ll′) = hh′ll′ = hlh′l′ = ψ(h, l)ψ(h′, l′).

We claim the kernel is {(1, 1)}. Let (h, l) ∈ ker(ψ), then hl = 1, therefore l = h−1.
But as H is a subgroup of G, we have h−1 ∈ H, thus l ∈ H ∩ L, therefore l = 1,
and therefore also h = 1. Thus ψ is an injective group homomorphism. It is bijective
because G and H × L have the same number of elements. �

Automorphisms
An automorphism ϕ of a group G is an isomorphism ϕ : G → G. We denote

by Aut(G) the set of automorphisms of G. We now want to show that Aut(G) is a
group with composition of maps as multiplication. An automorphism is in particular
a bijective map ϕ : G → G, therefore Aut(G) is a subset of the symmetric group
S(G). We know that S(G) is a group with multiplication the composition of maps
ϕ · ψ := ϕ ◦ ψ, the neutral element being the identity map G→ G.

Lemma 4.18. Aut(G) is a subgroup of S(G).

Proof. Let f, g ∈ Aut(G), we have to show that f ◦ g ∈ Aut(G) and that
f−1 ∈ Aut(G). But we know that the composition of isomorphisms is an isomorphism,
and that the inverse of an isomorphism is an isomorphism, so this is clear. �

There is a special class of automorphism of every group, the inner automorphisms.

Definition 4.19. Let G be a group. Then for every a ∈ G the map τa : G →
G, b 7→ aba−1 is an automorphism. (It is clear that this is a homomorphism, because
for g, a, b ∈ G, we have τg(ab) = gabg−1 = (gag−1)(gbg−1) = τg(a)τg(b). Furthermore
they are injective: if a ∈ ker(τg), then gag−1 = 1, thus ga = g and thus a = 1. And
they are surjective: for b ∈ G we find τg(g

−1bg) = b.)
An automorphism of G is called an inner automorphism, if it is of the form τa for

some a ∈ G. We denote by inn(G) the group of inner automorphisms of G.
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If G is an abelian group then all inner automorphisms are equal to the identity
id : G→ G.

Proposition 4.20. Let G be a group. Then inn(G) is a normal subgroup of
Aut(G).

Proof. First we show inn(G) is a subgroup. For this we have to see that for
a, b ∈ G we have τa ◦ τb is an inner automorphism. But by definition for any x ∈ G
we have τa ◦ τb(x) = τa(bxb

−1) = (ab)x(ab)−1 = τab(x). Thus τaτb = τab. Similarly
τaτa−1 = idG, thus (τa)

−1 = τa−1 .
Furthermore let ϕ : G → G be an isomorphism, then for any a, x ∈ G we have

ϕ ◦ τa ◦ ϕ−1(x) = ϕ(aϕ−1(x)a−1) = ϕ(a)xϕ(a−1) = ϕ(a)xϕ(a)−1 = τϕ(a)(x), i.e. we
get ϕ ◦ τa ◦ ϕ−1 = τϕ(a) ∈ inn(G). �

It is actually not difficult to describe inn(G) as a group, it is a quotient group
of G, by its center, the subgroup of all elements of G which commute with all other
elements.

Definition 4.21. Let G be a group. The center of G, denoted Z(G) is the set

Z(G) :=
{
a ∈ G

∣∣ ah = ha, for all h ∈ G
}
.

It is easy to see that Z(G) is a normal subgroup of G: If for all h ∈ G we have
ah = ha and bh = hb, then we have abh = ahb = hab, i.e. if a, b ∈ Z(G), then
ab ∈ Z(G). Similarly, if for all h ∈ G ah = ha, then multiplying on both sides by
a−1 we get ha−1 = a−1h, i.e. a−1 ∈ Z(G). Thus Z(G) is a subgroup of G. Finally
if a ∈ Z(G), and h ∈ G, then hah−1 = ahh−1 = a ∈ Z(G), thus Z(G) is a normal
subgroup.

Proposition 4.22. inn(G) ' G/Z(G).

Proof. We have seen above that τaτb = τab. Therefore the map τ : G →
inn(G), a 7→ τa is a group homomorphism. By definition τ is surjective. We de-
termine its kernel: We have a ∈ ker(τ) if and only if τa = idG. This is equivalent
to τa(x) = x for all x ∈ G, i.e. axa−1 = x. Multiplying by a on the right this is
equivalent to ax = xa for all x ∈ G. In other words ker(τ) = Z(G). So the result
follows by the homomorphism theorem. �

5. Group operations

As we mentioned earlier, groups are related to the concept of symmetry. Intu-
itively a symmetry of an object is a way to move it around with out changing its
form, e.g. a square can be reflected at the lines though the middle of the sides and
at the diagonals, and it can also be turned around by 90 degrees.

Usually this symmetry is given by the operation of a group, which we now want to
explain. Given a set X and a group G, an action of G on X is a way to to ”multiply”
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elements of X with elements of G, i.e. for every g ∈ G and every x ∈ X we have
g · x ∈ X, such that

(1) The neutral element 1 ∈ G acts as identity on X, i.e. 1 ·x = x for all x ∈ X,
(2) the operation is compatible with the group structure on X, i.e. there is an

”associative law” (ab) · x = a · (b · x) for all a, b ∈ G, x ∈ X.

We write this again as a formal definition.

Definition 5.1. Let G be a group, and let X be a set. An operation (also called
action) of G on X is a map

· : G×X → X; (g, x) 7→ g · x,
so that the following axioms are satisfied.

(1) 1 · x = x for all x ∈ X,
(2) (ab) ·x = a ·(b ·x)) for all a, b ∈ G, x ∈ X. (On the left hand side the leftmost

product is the product in G, · always denotes the operation of G on X).

Example 5.2. (1) Let X be a nonempty set, G a group. The trivial opera-
tion of G on X is defined by g · x = x for all g ∈ G, x ∈ X.

(2) Let Sn the symmetric group in n letters. Then Sn acts on {1, . . . , n} by
σ · k := σ(k); (σ is a map of {1, . . . , n} onto itself and we apply it to
k ∈ {1, . . . , n}). Recall that the neutral element e of Sn is the identity map
id : {1, . . . , n} → {1, . . . , n}, Obviously e · k = k. By definition of the
composition of maps we have (στ · k = σ ◦ τ(k) = σ(τ(k)) = σ · (τ · k), so
this is a group operation.

(3) Let G be a group. Then multiplication in G defines an operation l : G×G→
G, (g, h) 7→ gh, the left translation. This is clearly an operation of G on itself.

(4) Let G be a group, the map G×G→ G, (g, h) = ghg−1 is an operation of G
on itself. It is called conjugation.

We find that every element g ∈ G acts as a bijection of X onto itself:

Definition 5.3. Let G be a group operating on a nonempty set X. Let g ∈ G.
The multiplication by g is the map

mg : X → X;x 7→ g · x.
Note that by definition m1 = idX . And we have mg ◦mg−1(x) = (g · g−1) · x = x and
similarly mg−1 ◦mg = idX . Thus for all g ∈ G, mg is a bijection mg ∈ S(X).

Lemma 5.4. Let · : G × X → X be a group operation. Then the map m : G →
S(X), g 7→ mg is a group homomorphism.

Proof. Let g, h ∈ G, x ∈ X, then by definition we get mgh(x) = (gh) · x =
g · (h ·x) = (mg ◦mh)(x). As the multiplication in S(X) is the composition, this says
that m is a group homomorphism. �
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We use this to prove that every finite group is isomorphic to a subgroup of some
symmetric group Sn.

Theorem 5.5. (Cayley’s theorem) Every finite group G is isomorphic to a sub-
group of some symmetric group Sn. More precisely if G has m elements, then G is
isomorphic to a subgroup of Sm.

Proof. Let m = |G|. Recall that the symmetric group S(G) is isomorphic to Sm.
We apply the previous lemma to the multiplication operation · : G×G→ G, (g, h) 7→
gh. Then m : G→ S(G); g 7→ mg is a group homomorphism. We only need to show
that m is injective. Then G is isomorphic to im(m), a subgroup of S(G) ' Sm. Let
g ∈ ker(m), then mg = idG, i.g. gh = h for all h ∈ G. By the cancelation property,
we get g = 1. Thus ker(m) = 1 and m is injective. �

This allows us to describe every finite group up to isomorphism as a group of
permutations. This is indeed used in some computer algebra programs to make
computations in groups. There is however a price: when G has m elements, G is
described as a subgroup of Sm which has m! elements, so this description is not
always the most efficient one.

Example 5.6. (the dihedral group). The dihedral group Dn is the group of
symmetries of a regular n-gon by rotations and reflections. We can view it as a
subgroup of Sn via its action on the n vertices of the n-gon. We number the vertices
cyclically with 1, . . . , n.

Then the rotation by the angle 2π/n will permute the vertices via

σ =

(
1 2 3 . . . n
2 3 4 . . . 1

)
and in case n is odd

τ =

(
1 2 3 . . . n
1 n n− 1 . . . 2

)
is the reflection on the axis through the vertex one and the opposite side, or in case
n is even

τ =

(
1 2 3 . . . n
n n− 1 n− 2 . . . 1

)
is the reflection on the axis orthogonal to the side through 1 and n. In any case the
dihedral group Dn is defined as the subgroup of Sn generated by σ and τ . It is easy
to see that ord(σ) = n, ord(τ) = 2, and that τστ = σ−1. From this is is easy to check
that

Dn =
{
σiτ j

∣∣ 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1
}
.

And in particular |Dn| = 2n.

Definition 5.7. Let G be a group with an operation on a nonempty set X. The
operation is called transitive if, for every x, y in X there is a g ∈ G with gx = y. It
is called simply transitive if, for every x, y in X there is a unique g ∈ G with gx = y.
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Exercise 5.8. Let G be a group acting simply transitively on a set X. Then for
any x ∈ X the map g 7→ g · x is a bijection G→ X.

We now introduce some fundamental notions connected to a group operation. The
orbit of an element and the stabilizer of an element.

The orbit of x ∈ X consists of all elements of X that can be reached by operating
with elements of G on x.

Definition 5.9. Let a group G operate on a nonempty set X. Let x ∈ X. The
orbit of x is

G(x) :=
{
g · x

∣∣ g ∈ G} ⊂ X.

A subset Y ⊂ X is called an orbit of G on X, if it is of the form Y = G(x) for some
x ∈ X.

We see that the action of G on X is transitive if and only if G(x) = X for any
x ∈ X. On the other hand for any action, restricting the action of G to G(x), we get
a transitive action of G on G(x).

The group action of G on X defines an equivalence relation of X whose equivalence
classes are the orbits of G on X.

Definition 5.10. We define an equivalence relation ∼ on X, by x ∼ y, if and
only if there is a g ∈ G with g · x = y. It is easy to see that ∼ is an equivalence
relation, and that the equivalence classes are precisely the orbits.

The set of equivalence classes (which is equal to the set of orbits of the action of
G on X) is called the orbit space and denoted X/G.

The stabilizer of an element x ∈ X is the subgroup of all g ∈ G which fix x, i.e.
g · x = x.

Definition 5.11. Let a group G act on a nonempty set X. The stabilizer of x is

Gx :=
{
g ∈ G

∣∣ g · x = x
}
.

It is obvious that Gx is a subgroup of X.

Lemma 5.12. Let a group G act on a nonempty set X. Let x ∈ X. Then there is
a bijection G/Gx → G(x). In particular if G(x) is finite |G(x)| = [G : Gx].

Proof. The map G/Gx → G(x), gGx → g · x is well-defined: If g′ = gh with
h ∈ Gx, then g′ · x = g · (h · x) = g · x. It is also injective: if g · x = g′ · x, then
(g−1g′) · (x) = g−1 · (g′ · x) = g−1 · g · x = x. Thus h := g−1g′ ∈ Gx and g′ = gh, thus
gGx = g′Gx. The map is surjective by definition, thus it is a bijection. �

Definition 5.13. Let ∼ be an equivalence relation on a set X. A subset R ⊂ X
is called a system of representatives for ∼, if it contains precisely one element from
every equivalence class.
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Theorem 5.14. (Orbit stabilizer theorem) Let a group G act on a nonempty finite
set X. If R is a system of representatives for the orbits, then

|X| =
∑
x∈R

|G(x)| =
∑
x∈R

[G : Gx].

Proof. We know that X is the disjoint union of the orbits G(x), so the first
equality is clear. The second follows by the previous Lemma. �

.

Action by conjugation In this section we will study the action of G on itself
by conjugation, (g, h) 7→ ghg−1.

Definition 5.15. Let G be a group. Let g, h ∈ G. We say g is conjugated to h
if there is an element a ∈ G with aga−1 = h. It is straightforward to see that this is
an equivalence relation.

The equivalence classes [g] of G with respect to conjugation are called the conju-
gacy classes of G.

Definition 5.16. Let G be a group and x ∈ G. The centralizer of x in G is the
set

Z(x) :=
{
g ∈ G

∣∣ gx = xg
}
.

Remark 5.17. (1) It is immediate from the definition that Z(x) is a sub-
group of G.

(2) Also by definition the Center Z(G) of G is a subgroup of Z(x) for any x ∈ G.
(3) Let x ∈ G. By definition x ∈ Z(G) if and only if Z(x) = G.

The conjugacy classes contain important information about the group, and it is
therefore important to study them. We will do this via the action of G on itself by
conjugation.

Definition 5.18. The conjugation action ofG on itself is defined by g·h := ghg−1.
By definition the orbits of the conjugation action are precisely the conjugacy classes,
i.e. G(g) = [g].

An important result is the

Theorem 5.19. (Class equation). Let G be a finite group, let Z(G) be the center
of G and let R be a set such that every element of G \Z(G) is conjugated to precisely
one element of R. Then

|G| = |Z(G)|+
∑
x∈R

[G : Z(x)].
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Proof. Being conjugated is an equivalence relation. Thus if R′ is a set of rep-
resentatives for this equivalence relation we get |G| =

∑
x∈R′ |[x]| =

∑
x∈R′ |G(x)| for

the conjugation action. By definition the stabiliser of x ∈ G under the conjugation
action is Z(x). Thus we get by the orbit stabilizer theorem

|G| =
∑
x∈R′
|[x]| =

∑
x∈R′

[G : Z(x)].

Note that if y ∈ Z(G), then [y] = {y}, thus Z(G) is a subset of R. Put R = R′\Z(G),
and note [G : Z(x)] = 1 for x ∈ Z(G). Then

|G| =
∑

x∈Z(G)

1 +
∑
x∈R

[G : Z(x)],

and the claim follows. �

We first introduce a concept which will be important in the future.

Definition 5.20. Let p be a prime number. A p-group is a group of order a
power pn for n ∈ Z>0.

Let p be a prime number. We know that if G is a finite group with |G| = p, then
G is cyclic, in particular it is abelian. Now we want to show that also groups of order
p2 are abelian.

Proposition 5.21. The center of a p-group has order at least p.

Proof. Let G be a p-group of order pn. Then Z(G) is a subgroup of G, and thus
|Z(G)| divides pn. Therefore it is enough to show that Z(G) contains an element
different from 1. Assume Z(G) = {1}. Then the class equation reads

pn = |G| = 1 +
∑
x∈R

[G : Z(x)],

but as Z(x) is a subgroup of G different from G, we get [G : Z(x)] is a positive power
of p for all x ∈ R. Thus the left hand side of the equation is divisible by p and the
right hand side is not. This is a contradiction. �

Proposition 5.22. Let p be a prime number. Then every group of order p2 is
abelian.

Proof. Let G be a group of order p2. We want to show that for every x ∈ G the
centralizer Z(x) is the whole group G. Then it follows that G is abelian. If x ∈ Z(G),
then by definition Z(x) = G. If x 6∈ Z(G), then Z(x) contains Z(G) and x. Thus it
contains at least p+ 1 elements. As Z(x) is a subgroup of G the number |Z(x)| must
be a divisor of p2, and thus Z(x) = G. �
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6. The symmetric group

We now want to give an explicit description of the symmetric group Sn. We have
seen that every finite group is a subgroup of some Sn.

The elements of Sn are the bijections σ : {1, . . . , n} → {1, . . . , n}. They form
a group under composition στ = σ ◦ τ . We have earlier introduced the following
notation for elements in Sn: we write the permutation σ as a matrix(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
.

We now want to introduce another description of permutations: in terms of a
cycle decomposition.

Definition 6.1. Let a1, . . . , ar be r distinct elements of {1, . . . , n}. The cycle
(a1, . . . , ar) is the permutation σ given by σ(ai) = ai+1 for all i = 1, . . . , r − 1,
σ(ar) = a1 and σ(k) = k if k 6∈ {a1, . . . , ar}. We call r the length of the cycle
(a1, . . . , ar).

Note that the notation is not unique: different r-tuples define the same cycle:
For any l ∈ {1, . . . , r} we have (al, al+1, . . . , ar, a1, . . . , al−1) and (a1, . . . , ar) are the
same cycles. Cycles of length n are called n-cycles. Cycles of length 2 are called
transpositions. Note that any (1)-cycle (k) is just the identity element of Sn.

Two cycles (a1, . . . , ar), (b1, . . . , bs) are called disjoint if the sets {a1, . . . , ar} and
{b1, . . . , bs} are disjoint.

Theorem 6.2. Let n ≥ 2.

(1) Every element σ ∈ Sn is the product σ = σ1 . . . σs or pairwise disjoint cycles
for some s ≥ 0.

(2) Any two disjoint cycles σ, τ commute: στ = τσ.
(3) Every σ ∈ Sn is a finite product of transpositions.

Proof. (1) Let H = 〈σ〉 be cyclic subgroup of Sn generated by σ. The map

· : H × {1, . . . , n} → {1, . . . , n}, (τ, i) 7→ τ · i := τ(i)

is an operation ofH on {1, . . . n}. Choose b1, . . . , br ∈ {1, . . . , n}, so thatH(b1), . . . , H(br)
are the different orbits of H. For each i = 1, . . . , r let mi be min(k ∈ Z>0|σk(bi) = bi).
Then we see that bi, σ(bi), . . . , σ

mi−1(bi) are pairwise distinct, and that H(bi) =
{bi, σ(bi), . . . , σ

mi−1(bi)}. Thus the σi := (bi, σ(bi), . . . , σ
mi−1(bi)) are for i = 1, . . . , r

disjoint cycles. Furthermore we have σ1 ◦ . . . ◦ σr = σ, because each x ∈ {1, . . . , n}
lies precisely in one of the H(ai): Thus for x there is precisely one i ∈ {1, . . . , r} and
one k ∈ {1, . . . ,mi} with x = σk(ai). Then σ(x) = σi(x) and σj(x) = x for all j 6= i.
Thus σ1 . . . σr(x) = σi(x) = σ(x).

(2) is obvious. (3) Note that (a1, . . . , ar) = (a1, ar)(a1, ar−1) . . . (a1, a2), thus (3)
follows from (1). �
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Example 6.3. The cycle decomposition of(
1 2 3 4 5 6
6 2 5 3 4 1

)
is (1, 6)(2)(3, 5, 4).

Remark 6.4. For a cycle (a1, . . . , as) we call {a1, . . . , as} the support of the
cycle. In the above theorem for any element σ ∈ Sn we get a cycle decomposition
σ = σ1 . . . σr, such the the supports of the cycles σi are the orbits of 〈σ〉. In particular
the supports of the σi give a decomposition of {1, . . . , n} in to disjoint sets, but some
of the cycles can be 1-cycles.

Exercise 6.5. Show that the cycle decompostion of an element σ ∈ Sn is unique
up to reordering: Let σ = σ1 . . . σr = σ′1 . . . , σ

′
s be two cycle decompostions such that

the union of the supports of the σi is equal to the union of the supports of the σ′i.
Then r = s and there is a bijection f : {1, . . . , r} → {1, . . . , s} with σi = σ′f(i) for all
i.

Now we want to describe the conjugacy classes in Sn. We will see that the con-
jugacy class can be read off directly from the cycle decomposition of σ. In fact the
conjugacy classes of Sn are parametrized by partitions of n.

Recall that a partition of a positive integer n is a tuple of positive integers
(n1, n2, . . . , nr) with n1 ≥ n2 ≥ n2 ≥ . . . ≥ nr, such that n1 + . . . + nr = n. For
instance the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

Definition 6.6. Let σ ∈ Sn and let σ = σ1 . . . σr be its cycle decomposition.
By reordering the σi we assume that l(σ1) ≥ l(σ2) ≥ . . . ≥ l(σr). Then the tuple
(l(σ1) ≥ l(σ2) ≥ . . . ≥ l(σr)) is called the cycle type of σ. As the supports of the
cycles are the orbits of σ on {1, . . . , n}, we find that

∑r
i=1 l(σi) = n. Thus the cycle

type of σ is a partition of n.

Lemma 6.7. Two permutations σ, τ ∈ Sn are conjugated if and only if they have
the same cycle type.

Proof. Let σ = σ1 . . . σr with σi = (ai1, . . . , a
i
mi

). Let τ ∈ Sn. For all i =
1, . . . , r) and all j = 1, . . . ,mi), we put bij = τ(aij). Then we have

τστ−1(bij) = τσ(aij) =

{
τ(aij+1) = bij+1 j < mi

τ(ai1) = bi1 j = mi

.

Thus τστ−1 = τ1 . . . τr with τi = (bi1, . . . , b
i
mi

). Therefore σ and τστ−1 have the same
cycle type.

Conversely if σ and π have the same cycle type, we can write σ = σ1 . . . σr with
σi = (ai1, . . . , a

i
mi

) and π = π1 . . . πr with σi = (bi1, . . . , b
i
mi

) (the numbers r and mi

are the same). Then we define a bijection τ : {1, . . . , n} → {1, . . . , n} by τ(aij) := bij.

By the argument above τστ−1 = π. �
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Corollary 6.8. The number of conjugacy classes of Sn is equal to the number
of partitions of n.

Proof. The cycle type defines an injective map

c :
{

conjugacy classes of Sn
}
7→
{

partitions of n
}
.

We only have to see that this map is surjective; thus for every partition P of n we
have to find a permutation σ whose cycle type is P . Let P = (n1, . . . , nr), then we
put

σ = (1, . . . , n1)(n1 + 1, . . . , n1 + n2) . . . (n1 + . . . nr−1, . . . , n).

�

For instance we see that S4 has 5 conjugacy classes.
The sign of a permutation
An important invariant of a permutation σ is its sign, which can be defined as

(−1)m, where m is the number of transpositions used to write σ.

Definition 6.9. Let n ≥ 2 be a positive integer. For a permutation σ ∈ Sn, the

sign of σ is ε(σ) :=
∏

i>j
σ(i)−σ(j)

i−j . The product is over all i, j ∈ {1, . . . , n} with i > j.

Lemma 6.10. (1) ε(σ) = (−1)m, where m is the number of pairs (i, j) is with
i > j and π(i) < π(j).

(2) The map ε : Sm → ({1,−1}, ·) is a group homomorphism.
(3) If σ = τ1 . . . τk where the τi are transpositions, then ε(σ) = k.

Proof. (1)∏
i>j

(σ(i)− σ(j)) =
∏
i>j

σ(i)>σ(j)

(σ(i)− σ(j)) ·
∏
i>j

σ(i)<σ(j)

(σ(i)− σ(j))

= (−1)m
∏

σ(i)>σ(j)

(σ(i)− σ(j)) = (−1)m
∏
i>j

(i− j).

Here the last equality is because the factors on the left hand side are just a permulation
of the factors on the right hand side.

(2) For σ, τ ∈ Sn we have∏
i>j

σ(τ(i))− σ(τ(j))

i− j
=
∏
i>j

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
·
∏
i>j

τ(i)− τ(j)

i− j
,

and ∏
i>j

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
=

∏
τ(i)>τ(j)

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
=
∏
i>j

σ(i)− σ(j)

i− j
.

Here the first equality is because whenever i > j and τ(i) < τ(j), then both numerator
and denominator change sign. The second equality is just because the factors on the
left and on the right hand side are just permutations of each other.
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(3) It is clear that ε((1, 2)) = (−1). Thus, if τ = (i, j), and σ is a permuta-
tion with σ(1) = i, σ(2) = j, then we see that τ(1, 2)τ−1 = (i, j), thus ε((i, j)) =
ε(τ)(−1)ε(τ)−1 = (−1). Thus (3) follows from (2). �

Definition 6.11. A permutations σ ∈ Sn is called even if ε(σ) = 1, and odd if
ε(σ) = −1.

Definition 6.12. The set An of even permutations in Sn is a normal subgroup
(because it is the kernel of the surjective group homomorphism ε : Sn → ({1,−1}).
It is called he alternating group of degree n.

7. Operations on Subsets

Let a group G operate on a set S. Then it also operates on the subsets of S. We
want to make some observations about this action, mostly in case S = G. This will
serve as a preparation for the proof of the Sylow theorems.

Definition 7.1. Let U ⊂ S be a subset. Then for g ∈ G the set

gU :=
{
gu
∣∣ u ∈ U}

is a subset of S. It is easy to see that this defines an operation of G on the set of
subsets of S by g · U := gU .

We can restrict the operation to subsets U of S of a given order |U |. We know
that multiplication by g : U → gU defines a bijection, therefore U and gU have the
same order.

The stabilizer GU of a subset U is the set of all g ∈ G with gU = U . It is clear
the GU is a subgroup of G.

Note that that an element g ∈ G is in the stabilizer GU does not mean that gu = u
for all u ∈ U , but just that gU = U , in other words that gu ∈ U for all u ∈ U .

Proposition 7.2. Let a group G act on a set S, and let U be a subset of S. Then
G = GU if and only if U is a union of G orbits on S.

Proof. G = GU if and only if the orbit G(u) of every u ∈ U is contained in
U . �

We want to consider two cases of this where S is the group G itself: The oper-
ation of G on itself by left translation, and the operation of a subgroup H of G by
conjugation.

Proposition 7.3. Let G act on itself by left translation g · h = gh. Let U be a
subset of G. Then the order |GU | of the stabilizer of U divides the order |U | of U .

Proof. Let H = GU be the stabilizer of U . Then, by the previous proposition,
U is a union of orbits for the operation of H on U . Note that for any x ∈ G the left
multiplicaton H → G, h 7→ hx is injective, with image the orbit H(x). Thus |U | is a
multiple of |H|. �
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Note that |GU | also divides |G|, thus if |U | and |G| have no common factor, then
GU = {1}.

Now we come to the operation by conjugation.

Definition 7.4. Let G be a group, and let H ⊂ G be a subgroup. For any g ∈ G
we have the conjugate subgroup

gHg−1 =
{
ghg−1

∣∣ h ∈ H}.
It is obvious that gHg−1 is a subgroup of G, and the operation by conjugation defines
an operation of G on the set of subgroups of G.

The stabilizer of the subgroup H for the operation of conjugation is called the
normalizer of H, and denoted

N(H) =
{
g ∈ G

∣∣ gHg−1 = H
}
.

Remark 7.5. (1) By definitionN(H) is a subgroup ofG andH is a subgroup
of N(H). Thus by Lagrange’s Theorem |H| divides |N(H)|, and |N(H)|
divides |G|.

(2) By definition the subgroup H ⊂ G is a normal subgroup of G if and only if
gHg−1 = H for all g ∈ G, i.e. if and only if N(H) = G.

(3) Let c be the number of different conjugate subgroups of H. Then the orbit
stabilizer theorem says. |G| = |N(H)|c.

8. The Sylow Theorems

The Sylow theorems describe the subgroups of H ⊂ G of order |H| = pm a prime
power in arbitrary finite groups. We have seen that if H ⊂ G is a subgroup, then |H|
divides |G|. But the converse is in general not true, it is difficult to know for which
divisors d of |G| there exists a subgroup of order d. The first Sylow theorem will give
a very partial converse: if pm is the largest power of a prime p dividing |G| there is
a subgroup H ⊂ G of order pm. Such a group will be called a p-Sylow subgroup of
|G|. The other Sylow theorems give more information about these p-Sylow subgroups.
The Sylow theorems are the most advanced and difficult results we will prove in group
theory, many of the results we proved before are used in this argument.

We will now state the Sylow theorems and give some applications. The proof of
the Sylow theorems is at the end of this section.

In the following let G be a finite group, p a prime number and let always m be
the largest nonnegative integer such that pm divides |G|.

Definition 8.1. A subgroup H ⊂ G is called a p-Sylow subgroup, if |H| = pm.

The first Sylow theorem is that p-Sylow subgroups always exist.

Theorem 8.2. (first Sylow theorem) There is a p-Sylow subgroup H of G.

Corollary 8.3. (Cauchy’s Theorem) If a prime p divides |G|, then G contains
an element of order p.
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Proof. Let H ⊂ G be a p-Sylow subgroup. Let x ∈ H be an element different
from 1. The order of x divides pm, so it is pr for some r with 0 < r ≤ m. Thus xp

r−1

has order p. �

Some applications.
We review the product of groups from an example above and give a criterion for

a group to a product of two groups.

Definition 8.4. Let H, K be groups. The product H ×K of H and K is

H ×K :=
{

(h, k)
∣∣ h ∈ H, k ∈ K},

with multiplication (h1, k1)(h2, k2) = (h1h2, k1k2). The neutral element is (1, 1) and
the inverse of (h, k) is (h−1, k−1).

Theorem 8.5. Let H, K be subgroups of a group G. Assume

(1) G = HK =
{
hk
∣∣ h ∈ H, k ∈ K},

(2) H and K are normal subgroups of G,
(3) H ∩K = {1}

Then G ' H ×K.
Condition (1) can also be replaced by (1’) |H||K| = |G|.

Proof. There is an obvious map θ : H ×K → G; (h, k) 7→ hk. We want to show
that it is an isomorphism. First we show it is a homomorphism: Let h ∈ H, k ∈
K. Then h−1k−1hk = h−1(k−1hk) ∈ H, because H is normal. and h−1k−1hk =
(h−1k−1h)k ∈ K because K is normal. By condition (3) h−1k−1hk, i.e. hk = kh, so
every element of H commutes with every element of K. Now let (h1, k1), (h2, k2) ∈
H ×K. Then

θ((h1, k1), (h2, k2)) = θ((h1h2, k1k2)) = h1h2k1k2 = h1k1h2k2 = θ((h1, k1))θ((h2, k2)),

so θ is a homomorphism.
Now we shoe θ is injective. Let (h, k) ∈ ker(θ), i.e. hk = 1. Then h = k−1 lies in

H ∩K = {1}. Therefore (h, k) = (1, 1).
Finally we show θ is surjective: (1) just says θ is surjective. Under condition (1’)

we have θ is an injective map between two sets with the same number of elements,
so it is surjective. �

We know that any cyclic group of order n is isomorphic to Zn ' Z/nZ.

Corollary 8.6. If n and m are relatively prime, then Znm ' Zn × Zm.

Proof. We know by the Cauchy theorem (or also directly) that Znm has sub-
groups H = 〈m〉 and K = 〈n〉 of orders n and m. These are normail subgroups
because Znm is commutative. Because n and m are relatively prime, we see that
H ∩K = {0}. The result follows from the Theorem. �
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Corollary 8.7. Let p be a prime and G a group of order p2. Then p is either
isomorphic to Zp2 or to Zp × Zp.

Proof. By the previous Corollary G contains an element a of order p. Let
H = 〈a〉. Let b ∈ G \H, and H ′ = 〈b〉.

If H ′ = G, then G is cyclic.
Assume H ′ 6= G. Then |H ′| is a divisor of p2, different from 1, p2, thus |H ′| = p,

and H ′ is cyclic. H ′ ∩ H is a subgroup of H and thus its order is a divisor of p. If
|H ′ ∩H| = p, then H = H ′, which is impossible because b 6∈ H. Thus H ∩H ′ = {1}.
Thus by the theorem G = H ×H ′. �

We recall the definition of the dihedral group from an earlier example. The di-
hedral group D2n is a group of order 2n generated by 2 elements a, b with an = 1,
b2 = 1, bab = a−1. It is easy to see that this determines Dn up to isomorphism, in
fact we can use the relations to give a list of all elements of Dn:

Dn =
{
aibj

∣∣ 0 ≤ i < n, 0 ≤ j < 2
}
.

Theorem 8.8. Let p ≥ 3 be a prime number. Every group of order 2p is cyclic
or dihedral.

Proof. Let G be a group of order 2p. By Cauchy’s theorem G contains an
element a of order n and an element b of order 2. Let H := 〈a〉, K := 〈b〉. Then
[G : H] = 2, so by an exercise H is normal in G. It is clear that G = 〈a, b〉. Therefore
we have bab = bab−1 = ai for some i ∈ Z. Thus

a = b2ab2 = b(bab)b = baib = (bab)i = (ai)i = ai
2

.

In other words ai
2−1 = 1. Thus we get p divides i2− 1, and therefore, as p is a prime,

p divides i− 1 or p divides i+ 1.
If p divides i− 1, then ai−1 = 1, i.e. ai = a. In other words bab = a, ab = ba. As

G is generated by a and b, it follows that G is abelian. So 〈b〉 is also normal in G,
and therefore G = 〈a〉 × 〈b〉 ' Zp × Z2 ' Z2p. Thus G is cyclic.

If p divides i + 1, then ai+1 = 1, i.e. ai = a−1, bab = a−1. Thus G is isomorphic
to Dp. �

The second Sylow theorem says in particular that all p-Sylow subgroups are con-
jugated.

Theorem 8.9. (Second Sylow theorem) Let K be a subgroup of G whose order is
divisible by p, and let H be a p-Sylow subgroup of G. Then there is a conjugate group
H ′ = gHg−1, such that K ∩H ′ is a p-Sylow group of K.

Corollary 8.10. (1) Let K be a subgroup of G which is a p-group, then K
is contained in a Sylow p-subgroup of G,

(2) The Sylow p-subgroups of G are all conjugate.
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Proof. The conjugation H → gHg−1, h 7→ ghg−1 is a bijection, thus a conjugate
of a Sylow subgroup is a Sylow subgroup.

(1) By definition if K is a p-subgroup of G, then K is a Sylow subgroup of itself.
Thus by the Theorem, if H is a Sylow subgroup of G, then there exists a conjugate
H ′ = gHg−1, such that H ′ ∩ K = K, i.e. such that K ⊂ H ′. Thus H ′ is a Sylow
subgroup containing K.

(2) Let H, K be Sylow subgroups. Then there exists a conjugate H ′ of H con-
taining K. As H ′ and K have the same order, they are equal. �

The third Sylow theorem tells us something about how many p-Sylow subgroups
there are.

Theorem 8.11. (Third Sylow Theorem). Let |G| = n = pmr, such that p does
not divide r. Let s be the number of p-Sylow subgroups of G. Then s divides r, and
s is congruent 1 modulo p, i.e. s = ap+ 1 for some integer a ≥ 0.

We give one further application to the classification of finite groups.

Theorem 8.12. Let G be a group of order |G| = pq, where p, q are prime numbers
with p > q and q does not divide p− 1. Then G is cyclic.

Proof. Let Np be the number of p-Sylow subgroups of G. Then, by the third
Sylow theorem, Np ≡ 1 mod p and Np divides q. Therefore we get Np = 1, because
p > q. Let H ⊂ G be the unique p-Sylow subgroup of G, Any conjugate gHg−1 of H
is also a p-Sylow subgroup, therefore gHg−1 = H, i.e. H is a normal subgroup.

Let Nq be the number of q-Sylow subgroups of G. Then Nq ≡ 1 mod q and Nq

divides p. Therefore we have Nq = 1 or Nq = p because p is a prime number. If
Nq = p, we have that p ≡ 1 mod q, so q divide p − 1, a contradiction. Therefore
Nq = 1, and by the same argument as above the unique q-Sylow subgroup K of G
is a normal subgroup. We know H and K are cyclic of orders p and q, so clearly
H ∩K = {1}. Thus the theorem above applies ad G = H ×K = Zp × Zq = Zpq. �

Now we will prove the Sylow theorems.

The proof of the first Sylow theorem is truely remarkable.

Proof. (of the first Sylow theorem)

We start with an elementary lemma.

Lemma 8.13. The number of subsets of order pm of a set with n = pmr elements
(where p does not divide r) is

N :=

(
n

pm

)
=
n(n− 1) · · · (n− k) · · · (n− pm + 1)

pm(pm − 1) · · · (pm − k) · · · 1
.

Furthermore p does not divide N .
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Proof. It is well-known that the number of subsets of order pm is this binomial
coefficient. To see that N is not divisible by p, note that whenever pl divides a factor
(n− k) in the numerator the same factor pl also divides (pm− k). Write k = pis with
p not dividing s, then i < m. Therefore both (n − k) and pm − k are both divisible
by pi and not by pi+1. �

Now let S be the set of all subsets M of G of order pm. We decompose S into
orbits for the left multiplication g ·M = gM . Thus

N = |S| =
∑

orbits O

|O|.

As p does not divide N , there is an orbit O = G(M) whose order is not divisible by
p. By the Proposition ?? the order of the stabilizer GM is a power of p. By the orbit
stabilizer theorem, we have pmr = |G| = |GM | · |G(M)|. As G(M) is not divisible by
p we have |GM | = pm. GM is the required p-Sylow subgroup. �

Proof. (of the second Sylow theorem) Let K be a subgroup of G and H a p-Sylow
subgroup. We have to show that for a conjugate subgroup H ′ to H, the intersection
K ∩H ′ is a Sylow subgroup of K.

Now let S = G/H be the set of left cosets. Recall that G acts transitively on these
cosets and that H is the stabilizer of s = 1H. We see from this that the stabilizer of
as is aHa−1.

Restrict the operation of G on S to K and decompose S into K-orbits. As H is
a p-Sylow group, the order S is prime to p. Therefore there is a K-orbit O = K(as)
on S whose order is prime to p. Let H ′ = aHa−1. This is the stabilizer of as, for the
operation of G. Therefore the stabilizer of the restriction of the operation to K is
H ′ ∩K, and the index [K : H ′ ∩K] is |O|, which is prime to p. Since H ′ is conjugate
to H it is a p-group. Thus H ′ ∩K is a p-group. Thus H ′ ∩K is a Sylow subgroup of
K. �

Proof. (of the third Sylow theorem) By Corollary ??, the Sylow subgroups of G
are all conjugate to one Sylow subgroup H. Thus the number of Sylow subgroups is
s = [G : N ], where N is the normalizer of H. Since H is a subgroup of N we get that
[G : N ] divides [G : H] = r.

To show that s ≡ 1 mod p, decompose the set {H1, . . . , Hs} of Sylow subgroups
into orbits for the operation of conjugation by H = H1. An orbit consists of a single
group Hi if and only if H is contained in the normalizer Ni of Hi.

If this is the case, then H and Hi are both Sylow subgroups of Ni and Hi is normal
in Ni. By Corollary ??, we get H = Hi. Thus there is only one H orbit of order 1,
namely {H}. The other orbits have orders divisible by p because their orders divide
|H|, by the orbit stabilizer theorem. This shows s ≡ 1 mod p. �
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9. Exercises

(1) Find a subgroup H of S3 of order 3, i.e. with |H| = 3.
(2) Let G be a group. The center C(G) of G is

C(G) :=
{
g ∈ G

∣∣ ga = ag, ∀a∈G
}
,

(a) Show C(G) is a subgroup of G,
(b) Show C(G) is commutative.
(c) What is the center of S3.

(3) Prove that every subgroup of a cyclic group is cyclic.
(4) Let G be a finite group. Let K ⊂ H and H ⊂ G be subgroups. Show that

[G : K] = [G : H][H : K].
(5) Let G be a group and H, K normal subgroups. Then H ∩ K is a normal

subgroup of G.
(6) Let G be a group and H a subgroup of index 2. Show H is a normal subgroup

of G.
(7) Let G be a group. Let G′ be the subgroup of G generated by

U =
{
xyx−1y−1

∣∣ x, y ∈ G}.
(a) Show G′ is a normal subgroup of G.
(b) Show G/G′ is abelian.

(8) Let G be a group. Show that inn(G) is a normal subgroup of Aut(G).
(9) Give and example of a group G and subgroups K ⊂ H ⊂ G, such that K is

a normal subgroup of H and H is a normal subgroup of G, but K is not a
normal subgroup of G.

(10) Let H,K be normal subgroups of a group G with H ∩K = {1}. Show that
hk = kh for all h ∈ H, k ∈ K.

(11) Let

σ :=

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8

)
∈ S9.

Find the cycle decomposition of σ, find the cycle type of σ, and write an
element of S9 which is conjugated to σ.

(12) In the following verify if the maps ϕ : G→ G are homomorphisms of groups.
If they are, determine their kernel.
(a) G = (R \ {0}, ·) the nonzero real numbers with multiplication. ϕ(x) =

x2.
(b) G = (R,+) the real numbers with addition. ϕ(x) = x+ 1.
(c) G and abelian group. ϕ(x) = x3.

(13) Let G be a group, let ϕ : G → G be an automorphism, let Z(G) be the
center of G. Show ϕ(Z(G)) ⊂ Z(G).

(14) Let G be a cyclic group of prime order. Determine Aut(G).
(15) Let G be a group, H a subgroup. . If [G : H] = 2, then H is normal in G.
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(16) If G/Z(G) is cyclic, then G is abelian.
(17) An r-cycle is even if and only if r is odd.
(18) Let G be a group of order 30.

(a) Show a 3-Sylow or a 5-Sylow subgroup is normal in G.
(b) Show every 3-Sylow and every 5-Sylow subgroup is normal in G.
(c) Show G has a normal subgroup of order 15.

(19) If G is a group of order 385, show that its 11-Sylow subgroup is normal and
its 7-Sylow subgroup is in the center of G.

(20) Let G be a group of order 231. Show the 11-Sylow subgroup is in the center
of G.

(21) If G is a group of order p2q with p and q primes, show that G has a nontrivial
normal subgroup.

(22) How many elements of order 5 are contained in a group of order 20.
(23) Prove: No group of order pq with p and q prime numbers, is simple.
(24) Let G be a group of order pmr. Show G contains a subgroup of order pe for

every e ≤ m.
(25) Classify the groups of order 33.



CHAPTER 2

Rings

1. Definition of a ring, examples and first properties

From high school and even from earlier, everybody is aware of the integers. Inte-
gers can be added, subtracted and multiplied, and there is the distributive law relating
addition and multiplication. This is formalized in the notion of a ring. Basically the
axioms of a ring will guarantee that in a ring one can compute more or less like with
integers. When dealing with rings we always want to keep the integers in mind as a
basic example.

Definition 1.1. A ring R is a nonempty set R together with two binary opera-
tions

+ :R×R→ R (addition)

· :R×R→ R (multiplication)

and a distinguished element 0 ∈ R, such that

(1) (R,+) is an abelian group with neutral element 0.
(2) · is associative

(a · b) · c = a · (b · c) for all a, b, c ∈ R.
(3) We have the distributive laws

a · (b+ c) = a · b+ a · c,
(b+ c) · a = b · a+ c · a.

We call (R,+) the additive group of R. Usually we write ab for a · b.

Example 1.2. The integers Z are a ring with the usual addition and multiplica-
tion.

Remark 1.3. The distributive laws can also be reformulated as follows: For a ∈ R
let la : R→ R, b 7→ ab the multiplication by a from the left, and let ra : R→ R, b 7→ ba
the multiplication by a on the right. Then the distributive laws say precisely that la
and ra are group homomorphisms (R,+)→ (R,+).

A subset of a ring is a subring if, with the restriction of + and ·, it is itself a ring.

Definition 1.4. Let R be a ring. A subset A ⊂ R is called a subring of R if

33
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(1) A is a subgroup of the additive group of R.
(2) For all a, b ∈ A we have ab ∈ A.

(Equivalently 0 ∈ A and a+ b, −a, ab ∈ A for all a, b ∈ A).

Example 1.5. Let
2Z :=

{
2n
∣∣ n ∈ Z

}
be the set of even integers. Then 2Z is a subring of Z. Note that the set of odd
integers is not a subring of Z.

The integers have some further useful properties:

(1) ab = ba for all a, b ∈ Z,
(2) 1a = a1 = a for all a ∈ Z.

Definition 1.6. A ring R is called commutative if

ab = ba for all a, b ∈ R
i.e. if the multiplication is commutative. (Note that, by the definition of a ring, the
addition is already commutative).

Definition 1.7. An element 1 ∈ R \ {0} is called a unit element of R if

a · 1 = 1 · a = a for all a ∈ R.
Note that we are assuming that 1 6= 0. (Note also that 1 is then unique). If R
contains a unit element, it is called a unital ring or a ring with 1.

In this course we will mostly be interested in commutative rings with 1. After the
first few lectures we will restrict our attention to them.

Example 1.8. (1) The integers Z, the rational numbers Q, the real numbers
R and the complex numbers C with the usual addition and multiplication
are all commutative rings with 1. We briefly recall the complex numbers.
C =

{
a+ ib

∣∣ a, b ∈ R} where the ring structure is given by

(a+ ib) + (c+ id) = a+ c+ i(b+ d),

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc),

i.e. one computes normally, using that i2 = (−1).
(2) Let Z[i] :=

{
n+ im ∈ C

∣∣ n,m ∈ Z
}
. Z[i] is a subring of C. Z[i] is called the

ring of Gaussian integers.
(3) 2Z is a commutative ring (as it is a subring of Z, but it is not a ring with 1).
(4) Let Mn×n(R) be the set of n× n matrices with entries in R, with the usual

addition and multiplication of matrices. Then Mn×n(R) is a ring with 1. The
unit element is the diagonal matrix with 1 on the diagonal. But Mn×n(R)
is not commutative for n ≥ 2. Mn×n(R) is the most common example of
a noncommutative ring. If we have to think of noncommutative rings we
always first look at matrices.
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(5) Let C∞(R) be the set of C∞ functions f : R → R. Then C∞(R) is a
commutative ring with 1 with pointwise addition and multiplication:

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x).

The zero element is the constant function 0 and the unit element is the
constant function 1.

(6) Let k ∈ Z and let Zk be the set of integers mod k. The elements of Zk are
0, 1, . . . , k − 1, and addition and multiplication are defined by

n+m = n+m, nm = nm

where n denotes the rest of n after division by k. Check that Zk is a com-
mutative ring with zero element 0 and unit element 1.

We can do computations in a ring in much the same way as in the integers. The
basic rules carry over.

Remark 1.9. Let R be ring. Then for all a, b ∈ R
(1) a0 = 0a = 0,
(2) (−a)b = a(−b) = −(ab),
(3) (−a)(−b) = ab,
(4) if R is unital, then (−1)a = a(−1) = −a.

Proof. These are straightforward verifications. (1) a0 = a(0+0) = (a0+a0). As
(R,+) is a group, we can subtract a0 from both sides to get a0 = 0. (2) ab+ (−a)b =
(a+(−a))b = 0b = 0. (3) follows by applying (2) twice. (4) (−1)a = −(1a) = −a. �

In future we will write a− b for a+ (−b).
We come to some further properties of rings. In the integers Z we know that the

only way how a product ab can be 0 is that a = 0 or b = 0. This is a very useful
property of the integers. It implies that we can cancel factors: if ab = ac with a 6= 0,
then b = c.

Definition 1.10. Let R be a commutative ring. An element a ∈ R\{0} is called
a zero divisor if there is an element b ∈ R \ {0} with ab = 0. A commutative ring R
with 1, which contains no zero divisors is called an integral domain.

Remark 1.11. (Cancellation) Let R an integral domain, then the cancellation
law is valid, i.e., if ab = ac and a 6= 0, then b = c.

Proof. Let ab = ac and a 6= 0. Then a(b−c) = 0. As R contains no zero divisors
it follows that (b− c) = 0. �

Integral domains are particularly nice rings. Most of the rings we will study are
integral domains.

Example 1.12. (1) Z is an integral domain.
(2) In Z6 we see that 2 3 = 0. Thus Z6 is not an integral domain.
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(3) Let p ∈ Z>0 be a prime number. If n and m are not divisible by p, then also
nm is not divisible by p. Thus Zp is an integral domain.

Definition 1.13. Let R be a ring with 1. An element a ∈ R is called a unit of R
if it has a multiplicative inverse, i.e. if there exists an element b ∈ R with ab = ba = 1.
The set of units in R is denoted by R∗. Check as an exercise that if a is a unit, then
there is a unique element b ∈ R with ab = ba = 1. We write b := a−1.

Example 1.14. (1) Z∗ = {1, (−1)}.
(2) Z[i]∗ = {1, (−1), i,−i}.
(3) Q∗ = Q \ {0}.
(4) The units in Mn×n(R) or Mn×n(C) are the matrices with nonzero determi-

nant.

We see that in each of the above (R∗, ·) is a group. This is always true:

Proposition 1.15. Let R be a ring with 1. Then (R∗, ·) is a group.

Proof. This is easy. We know that the multiplication is associative. We know
that 1 ∈ R∗ is the neutral element for the multiplication, and that for every a ∈ R∗
there is an element b ∈ R∗ with ab = ba = 1, i.e. an inverse element. We only need
to show that for a, b ∈ R∗ also ab ∈ R∗. Let c, d ∈ R with ac = ca = 1, bd = db = 1.
Then (ab)(dc) = ac = 1 and (dc)(ab) = db = 1. Thus R∗ is a group. �

Definition 1.16. (R∗, ·) is called the multiplicative group of R.

Notation 1.17. Let R be a ring, a ∈ R and n ∈ Z>0. Then we write

na := a+ . . .+ a︸ ︷︷ ︸
n times

,

an := a · . . . · a︸ ︷︷ ︸
n times

.

We also write 0a := a and if R is a ring with 1 we write a0 := 1. Finally we write
(−n)a := −(na), and, if a is a unit, a−n := (an)−1. It is easy to check (and left as an
exercise) that the usual rules apply for n,m ∈ Z

(n+m)a = na+ma, (nm)a = n(m(a)),

anam = an+m, (an)m = anm,

whenever both sides of the equation make sense.

Polynomial rings. We come now to the most important examples of rings.
These are the rings R[x] of polynomials with coefficients in a ring R. Already from
high school we are familiar with polynomials f =

∑n
i=0 aix

i with coefficients in the
real numbers R. One learns how they can be added, subtracted and multiplied in the
usual way. We need to give a precise definition.
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Definition 1.18. Let R be a ring with 1. A polynomial f in x with coefficients
in R is a formal expression

f = a0 + a1x
1 + . . .+ anx

n =
n∑
i=0

aix
i

with ai ∈ R and n ∈ Z≥0. We call ai the coefficient of xi of f . Two polynomials
f =

∑n
i=0 aix

i,
∑m

j=0 bjx
j with n ≤ m are considered equal (and we write f = g), if

bj = 0 for j > n and bi = ai for i = 0, . . . , n. Thus if f =
∑n

i=0 aix
i,
∑m

j=0 bjx
j are

two polynomials, we can always assume that n = m. We denote by R[x] the set of
polynomials in x with coefficients in R. The polynomial a0 = a0x

0 is identified with
the element a0 ∈ R. A polynomial of this form is called a constant polynomial. Thus
R is the subset of R[x] of constant polynomials.

Remark 1.19. For a polynomial f =
∑n

i=0 anx
n ∈ R[x] we can define a function

R→ R; b 7→ f(b) =
n∑
i=0

anb
n.

Note however that differently from analysis for us a polynomial is not this function,
but just a formal expression.

Definition 1.20. We define a ring structure on R[x]. If f =
∑n

i=0 aix
i and

g =
∑n

i=0 bix
i then we define

f + g :=
n∑
i=0

(ai + bi)x
i,

fg :=
2n∑
k=0

( ∑
i+j=k

aibj

)
xk.

We see that with this definition the addition is defined as usual by adding the cor-
responding coefficients. The multiplication is as usual given by putting (axi)(bxj) =
abxi+j and formally applying the distributive law.

It is easy to check (and left as an exercise) that with these operations R[x] is
a ring with 1. The zero element is 0 ∈ R and the unit element is 1 ∈ R. If R is
commutative, then also R[x] is commutative. We also see that R is a subring of R[x].
We call R[x] the polynomial ring in x over R.

If some coefficients of a polynomial are zero we usually do not write them. Thus
we write x3 + 2x for 1x3 + 0x2 + 2x+ 0x0.

Definition 1.21. Let R be a commutative ring with 1, and let f ∈ R[x] \ {0}.
Write f =

∑n
i=0 aix

i with an 6= 0. Then n is called the degree of f and denoted by
deg(f). an is called the leading coefficient of f .
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If R is an integral domain, then also R[x] is an integral domain and its units are
just the units of R.

Remark 1.22. Let R be an integral domain, f, g ∈ R[x] \ {0}.
(1) fg 6= 0 and deg(fg) = deg(f) + deg(g).
(2) R[x] is an integral domain.
(3) R[x]∗ = R∗, the units in R[x] are just the units in R.

Proof. (1) Let f =
∑m

i=0 aix
i with am 6= 0, g =

∑n
i=0 bix

i with bn 6= 0, then

fg =
n+m∑
i=0

cix
i, ci =

∑
k+l=i

akbl,

in particular cn+m = ambn 6= 0. Thus fg 6= 0 and deg(fg) = n+m.
(2) follows from (1).
(3) It is clear that every unit of R is a unit of R[x] (take as its inverse just its

inverse in R). Let f ∈ R[x]∗. Then there exists g ∈ R[x] with fg = 1. By (1) this
implies deg(f) + deg(g) = 0, i.e. deg(f) = 0. Thus f ∈ R and thus f ∈ R∗. �

Finally we come to the definition of a division ring and a field. Note that 0 is
never a unit in a ring R (because 0a = a0 = 0 for all a). A ring with 1 in which every
nonzero element is a unit is called a division ring.

Definition 1.23. A ring R with 1 is called a division ring, if every nonzero
element is a unit, i.e. R∗ = R \ {0}.

The most important case are the commutative division rings: the fields.

Definition 1.24. A commutative division ring R is called a field. Explicitly this
means the following. A set R with two binary operations +, · and two distinguished
elements 0 6= 1 is called a field if

(1) (R,+) is a commutative group with neutral element 0,
(2) (R \ {0}, ·) is a commutative group with neutral element 1,
(3) the distributive law holds:

a(b+ c) = ab+ ac for all a, b, c ∈ R.

The concept of field is of fundamental importance. While the notion of a ring
formalizes that one is able to compute like in the integers, the notion of a field
formalizes that one can compute like in the rational numbers. The second half of this
course will be devoted to the theory of fields.

Example 1.25. Q, R, C are fields. In C the inverse to a + bi, a, b ∈ R is
(a− bi)/(a2 + b2).

We want to give one example of a division ring which is not a field, the Quater-
nions.



1. DEFINITION OF A RING, EXAMPLES AND FIRST PROPERTIES 39

Example 1.26. (Quaternions) The most famous example of a noncommutative
division ring are the Quaternions. Recall that in C we have complex conjugation i.e.
for c = a + ib (a, b ∈ R) we have c = a − ib, which fulfils the following properties:
c = c, cc = a2+b2, which is a positive real number unless c = 0, cd = cd, c+ d = c+d.

Let Q :=

{(
a b
−b a

) ∣∣∣∣∣ a, b ∈ C

}
. Q is called the ring of quaternions. It is easy to

check that Q is a subring of M2×2(C). We have det

(
a b
−b a

)
= aa + bb, thus if the

element is nonzero its inverse is given by 1
aa+bb

(
a −b
b a

)
. Thus Q is a division ring.

On the other hand

(
i 0
0 −i

)(
0 1
−1 0

)
=

(
0 i
i 0

)
= −

(
0 1
−1 0

)(
i 0
0 −i

)
. Thus

Q is not a field.

We want to give one less standard example of a field, in particular we want to see
that there are also fields with finitely many elements.

Proposition 1.27. Every finite integral domain is a field.

Proof. By the above we have to show that R∗ = R \ {0}, that is we have to find
an inverse for any nonzero a ∈ R. Recall that the distributive law a(b+ c) = ab+ ac
says that the map

·a : (R,+)→ (R,+), b 7→ ba

of multiplication by a is a group homomorphism. As R has no zero divisors, the
kernel of ·a is 0. Thus ·a is injective. But it is one of the fundamental properties
of finite sets, that an injective map of a finite set onto itself is also bijective. So let
c ∈ R be an element with ·a(c) = 1. Then ac = 1, thus a is a unit. �

Example 1.28. In particular Zp is a field for p a prime number. It is called the
finite field with p elements and denoted Fp. Later we shall see that there are finite
fields Fpn with pn elements for every n > 0.

Exercises

(1) Let R be a ring with 1, and let a ∈ R a unit. Show that there is a unique
b ∈ R with ab = ba = 1.

(2) Show that the units in Z[i] are {1,−1, i,−i}.
(3) Show: The odd integers with usual addition and multiplication are not a

ring.
(4) Let R be a ring and a, b ∈ R. Show (a+ b)2 = a2 + ab+ ba+ b2 (using only

the definitions).
(5) An element a in a ring R is called nilpotent if there is an n ∈ Z>0 with

an = 0. Show: if a is nilpotent, then 1 + a is a unit.
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(6) Show: In a commutative ring R, a + b is nilpotent if a and b are nilpotent.
Show that this may be false if R is not commutative.

(7) Show that a commutative ring R is an integral domain if and only if for all
a, b, c ∈ R with a 6= 0, the relation ab = ac implies b = c.

(8) Let U be a set, and let R be the set of subsets of U . Addition and multipli-
cation on R are defined by

A+B := A ∪B, A ·B := A ∩B.
Prove or disprove: R a ring.

(9) Let U be a set, and let R be the set of subsets of U . Addition and multipli-
cation on R are defined by

A+B := (A \B) ∪ (B \ A), A ·B := A ∩B.
Prove or disprove: R a ring.

(10) Let GL(2,R) :=
{
A ∈ M2×2(R)

∣∣ det(A) 6= 0
}

. Is GL(2,R) a subring of
M2×2(R)?

(11) Let R be a ring with a2 = a for all a ∈ R. Show: R is commutative. Hint:
Show that ab = −ba and that a = −a for all a, b ∈ R.

(12) Determine the group of units in Z12.
(13) Let R be a ring and let Z(R) :=

{
x ∈ R

∣∣ xy = yx for all y ∈ R
}

. Show
that Z(R) is a subring of R. Z(R) is usually called the center of R.

(14) If R is a division ring, show that Z(R) is a field.
(15) Let R be an integral domain and a, b ∈ R. Assume an = bn and am = bm for

two relatively prime integers n,m. Show that a = b.
(16) Let m be an integer which is not divisible by the square of an integer > 1.

(a) Show that Z[
√
m] :=

{
a+ b

√
m
∣∣ a, b ∈ Z

}
is an integral domain.

(b) Find the units in Z[
√
m] for all m < 0.

(17) Show: A finite ring with 1 (not necessarily commutative) is a division ring.
(18) Let R be a commutative ring with 1. Determine the units in R[x].

2. Homomorphisms, Ideals and Quotient Rings

When one studies sets with a structure, like groups and rings, the most important
thing to look at are the maps between them which are compatible with the structure.
For groups G, H these are the group homomorphisms, i.e. the maps ϕ : G → H
which are compatible with the multiplication in the groups ϕ(g1g2) = ϕ(g1)ϕ(g2). For
rings we have two operations + and ·, so a ring homomorphism has to be compatible
with both of them.

Definition 2.1. Let A, B be rings. A map ϕ : A→ B is called a ring homomor-
phism if for all a, b ∈ A

(1) ϕ(a+ b) = ϕ(a) + ϕ(b),
(2) ϕ(ab) = ϕ(a)ϕ(b).
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The image of ϕ is ϕ(A) and the kernel is ker(ϕ) := ϕ−1(0). A bijective ring homo-
morphism ϕ : A→ B is called an isomorphism, in this case we say that A and B are
isomorphic. A ring isomorphism ϕ : A→ A is called an automorphism.

Remark 2.2. (1) The identity map id : R→ R; a 7→ a is a ring isomorphism.
(2) If ϕ : A→ B is a is an isomorphism, then also the inverse map ϕ−1 is a ring

isomorphism.
(3) The composition of ring homomorphisms ϕ : A → B, ψ : B → C is a ring

homomorphism ψ ◦ ϕ : A→ C.

Remark 2.3. A ring homomorphism ϕ : A→ B is in particular a homomorphism
from the additive group of A to that of B. Thus results about group homomorphisms
apply to ring homomorphisms. In particular ϕ is injective if and only of ker(ϕ) = 0.

Example 2.4. The residue map Z → Zm, n 7→ n sending n to the rest after
division by m is a surjective ring homomorphism. The kernel is mZ.

Remark 2.5. Let ϕ : A→ B be a ring homomorphism. Then ϕ(A) is a subring
of B.

Proof. As ϕ is a homomorphism for the additive groups, we know that ϕ(A) is
a subgroup of the additive group of B. If x = ϕ(a), y = ϕ(b) are elements of ϕ(A),
then xy = ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(A). �

The kernel of a homomorphism of groups ϕ : A→ B is not just a subgroup of A,
but has a stronger structure: it is a normal subgroup. Also for homomorphisms of
rings the kernel is not just a subring but something better; it is an ideal.

Definition 2.6. A subset I of a ring R is called an ideal, if I is a subgroup of
the additive group of R and for each a ∈ I and all x ∈ R, we have xa ∈ I and ax ∈ I.
In particular ideals are subrings.

It is easy to see that 0, R are ideals in R and that the intersection of a set of
ideals in R is an ideal in R.

Definition 2.7. Let R be a commutative ring and let a1, . . . , an ∈ R. The ideal
generated by a1, . . . , an is the set

〈a1, . . . , an〉 :=
{
a1r1 + . . .+ anrn

∣∣ r1, . . . , rn ∈ R}.
It is easy to check that this is an ideal. In particular 〈a〉 = aR =

{
ar
∣∣ r ∈ R} for

a ∈ R is called a principal ideal. E.g. 〈n〉 = nZ is an ideal in Z.

Remark 2.8. Let a, b ∈ R, then 〈a〉 = 〈b〉 if and only if there is a unit u with
b = ua.

Proof. If 〈a〉 = 〈b〉, then b = va and a = wb for elements v, w ∈ R. Thus
b = vwb, i.e. vw = 1 and v is a unit. Conversely, if b = ua for a unit u, then b ∈ 〈a〉
and thus 〈b〉 ⊂ 〈a〉. On the other hand a = u−1b ∈ 〈b〉 and thus 〈a〉 ⊂ 〈b〉. �
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Ideals are more important then subrings. We shall soon show that every ideal is
the kernel of some ring homomorphism. Thus the ideals are precisely the kernels of
ring homomorphisms. We know an analogous statement for normal subgroups: the
normal subgroups are precisely the kernels of group homomorphisms. Thus ideals in
rings are the analogues of normal subgroups in groups.

Lemma 2.9. Let ϕ : A→ B be a homomorphism of rings.

(1) ker(ϕ) is an ideal in A. More generally ϕ−1(I) is an ideal in A for any ideal
I ⊂ B.

(2) Assume ϕ : A→ B is surjective.
Then the map J 7→ ϕ−1(J) is a bijection from the set of ideals of B to

the set of ideals of A containing ker(ϕ).

Proof. (1) The first statement follows from the second by putting I = {0}.
As J is a subgroup of the additive group of B, also ϕ−1(J) is a subgroup of

the additive group of A. For each a ∈ ϕ−1(J) and each x ∈ A we have ϕ(a) ∈ J ,
ϕ(xa) = ϕ(x)ϕ(a) ∈ J and ϕ(ax) = ϕ(a)ϕ(x) ∈ J . Thus ax, xa ∈ ϕ−1(J).

(2) (Injectivity) Let J be an ideal inB. Then ϕ−1(J) is an ideal of A, and obviously
ϕ−1(J) contains ϕ−1(0) = ker(ϕ). Furthermore by definition ϕ(ϕ−1(J)) = J . Thus
J 7→ ϕ−1(J) is injective.

(Surjectivity) Let I be an ideal of A containing ker(ϕ). To show that J 7→ ϕ−1(J)
is surjective, we need to find an ideal J ∈ B with ϕ−1(J) = I. Put J := ϕ(I) ⊂ B.
First we have to show that J is an ideal in B. As ϕ is a homomorphism of additive
groups, J = ϕ(I) is a subgroup of the additive group of B. Now let y ∈ J and b ∈ B.
Then we can write y = ϕ(x) with x ∈ I and b = ϕ(a) with a ∈ A. Then, as I
is an ideal, we have xa ∈ I and thus ϕ(x)ϕ(a) = ϕ(xa) ∈ ϕ(I) = J and similarly
ϕ(a)ϕ(x) ∈ J . Thus J is an ideal in B.

We claim that ϕ−1(J) = I. Obviously ϕ−1(J) = ϕ−1(ϕ(I)) ⊃ I. We need to
see the other inclusion. Thus let z ∈ ϕ−1(J). Then ϕ(z) ∈ J = ϕ(I). Thus there
exists y ∈ I with ϕ(z) = ϕ(y), thus ϕ(z − y) = 0. Thus z − y ∈ ker(ϕ) ⊂ I. Thus
z = y + (z − y) ∈ I as sum of two elements of I. �

Remark 2.10. (1) Let I be an ideal in a ring R with 1. If I contains a unit,
then I = R.

(2) The only ideals of a field K are {0} and K.
(3) Let K be a field and ϕ : K → R be a ring homomorphism, then ϕ = 0 or ϕ

is injective.

Proof. This is all very easy. (1) Let a ∈ I ∩R∗. Then there is an element b ∈ R
with ab = 1. Thus 1 ∈ I and for all x ∈ R we have x = x1 ∈ I. (2) follows from (1)
because K∗ = K \ {0}. (3) follows from (2) because ker(ϕ) is an ideal of K. �
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We said before that ideals in rings are analogous to normal subgroups in groups.
If N ⊂ G is a normal subgroup in a group, then one can form the quotient group
G/N . Thus for an ideal I in a ring R we want to form the quotient ring R/I.

Let R be a ring and I ⊂ R an ideal. As the additive group of R is commutative,
I is a normal subgroup in (R,+). Thus we can form the quotient group

R/I :=
{
x+ I

∣∣ x ∈ R}.
Here x + I =

{
x + a

∣∣ a ∈ I}. As R is commutative, R/I is a commutative group
with addition

(x+ I) + (y + I) = (x+ y) + I

and neutral element 0 + I.

We will look at this in a slightly different way. On R we have an equivalence
relation

x ∼ y ⇐⇒ x− y ∈ I.
(Check this is an equivalence relation). The equivalence classes are precisely the x+I,
x ∈ R. Thus R/I is the set of equivalence classes for this equivalence relation. We
will usually write [x] instead of x + I for the equivalence class. We have a canonical
surjective group homomorphism π : R → R/I;x 7→ [x] for the additive group. Now
we want to see that R/I is also in a natural way a ring and π is a surjective ring
homomorphism.

Theorem 2.11. Let R be a ring and let I ⊂ R be an ideal. R/I with the operations

[x] + [y] = [x+ y], [x][y] = [xy]

is a ring and the natural projection π : R → R/I;x 7→ [x] is a surjective ring
homomorphism with kernel I.

Proof. We already know that (R/I,+) is a commutative group, and π a group
homomorphism. We need to show that the product is well defined (i.e. does not
depend on the choice of x and y). If [x] = [x′] and [y] = [y′], then x− x′, y − y′ ∈ I.
Thus

xy − x′y′ = (x− x′)y − x′(y′ − y) ∈ I,
thus [x′y′] = [xy] and the product is well-defined. The associativity and the distribu-
tive law for R/I follow directly from that for R. I check this for the associativity:

[x]([y][z]) = [x][yz] = [xyz] = [xy][z] = ([x][y])[z].

We already know that π is a group homomorphism for the additive groups and we
see π(xy) = [xy] = [x][y] = π(x)π(y). �

Corollary 2.12. There is a bijection{
ideals of R/I} →

{
ideals of R containing I

}
.
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So we have seen that we can quotient out a ring by an ideal. As π : R→ R/I is a
ring homomorphism, this shows that the ideals of R are precisely the kernels of ring
homomorphisms starting from R. So ideals have two important functions: They are
the kernels of ring homomorphisms, and we can take the quotient ring by ideals.

Now we want to show that if we have a homomorphism ϕ : A→ B of rings, and
I an ideal contained in the kernel of ϕ, then we get an induced ring homomorphism
ϕ : A/I → B. We say that ϕ can be factored through A/I. This property in fact
determines A/I up to isomorphism.

Theorem 2.13. (Universal property). Let ϕ : A → B be a ring homomorphism
and let I ⊂ A be an ideal contained in ker(ϕ). Then there exists a unique ring
homomorphism ϕ : A/I → B, so that the diagram

A
ϕ−→ Byπ ↗ ϕ

A/I

commutes. Furthermore ker(ϕ) = ker(ϕ)/I and ϕ(R/I) = ϕ(R).

Proof. Again this is very easy. ϕ = ϕ ◦ π means that ϕ([x]) = ϕ(x) for all
x ∈ R. Thus ϕ is unique. Now we need to show that this formula gives a well-defined
ring homomorphism, which is again a straightforward verification. If [x] = [y], then
x− y ∈ I. Thus ϕ(x− y) = 0 and ϕ(x) = ϕ(y). This shows ϕ is well-defined.

ϕ([x] + [y]) = ϕ([x+ y]) = ϕ(x+ y) = ϕ(x) + ϕ(y) = ϕ([x]) + ϕ([y]),

and similarly ϕ([x][y]) = ϕ([x])ϕ([y]). Thus ϕ is a ring homomorphism. ϕ(R/I) =
ϕ(R) is obvious from the definition and

[x] ∈ ker(ϕ) ⇐⇒ x ∈ ker(ϕ) ⇐⇒ [x] ∈ ker(ϕ)/I.

�

The most important case of this is the Homomorphism Theorem: for a surjective
ring homomorphism ϕ : A→ B, B is isomorphic to A/I.

Corollary 2.14. (Homomorphism Theorem) Let ϕ : A→ B be a surjective ring
homomorphism with kernel I. Then the map

ϕ : A/I → B; [x] 7→ ϕ(x)

is a ring isomorphism.

Proof. By the universal property of the quotient ϕ is a surjective ring homo-
morphism, with kernel I/I = [0]. Thus it is an isomorphism. �

The Homomorphism Theorem is very useful, we will apply it very often.

Exercises.
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(1) Let R be a ring and let I and J be ideals in R. Which of the following are
ideals of R

I + J :=
{
u+ v

∣∣ u ∈ I, v ∈ J},
I ∩ J,
I ∪ J?

Give a proof or a counterexample.
(2) Let R be a noncommutative ring and a ∈ R. Show by example that aR :={

ar
∣∣ r ∈ R} is not always an ideal.

(3) Let R be a ring, I ⊂ R an ideal.
(a) Show that r(I) :=

{
r ∈ R

∣∣ ra = 0 for all a ∈ I
}

is an ideal in R.

(b) Show that [R : I] :=
{
x ∈ R

∣∣ xr ∈ I for all r ∈ R
}

is an ideal in R.
(4) Prove that a subring of an integral domain is an integral domain.
(5) Is there an integral domain with precisely 10 elements?
(6) Let R be a ring such that x3 = x for every x ∈ R. Show that R is a

commutative ring.
(7) Let R be a ring with 1 and let ϕ : R→ S be a surjective homomorphism of

rings. Show that ϕ(1) is the unit element of S.
(8) Let k be a field. Find all automorphisms ϕ of k[x] with the property that

ϕ(a) = a for all a ∈ k.
(9) Prove that every ideal in Z[i] contains a nonzero integer.

(10) Show that the kernel of the homomorphism ϕ : C[x, y]→ C[t] : x 7→ t2, y 7→
t3 is the principal ideal generated by y2 − x3.

(11) Let R be a ring and I an ideal in R. Let
√
I :=

{
x ∈ R

∣∣ xn ∈ I for some n >

0.
}
. Show

(a)
√
I is an ideal in R which contains I.

√
I is usually called the radical of

I.
(b)

√√
I =
√
I.

(12) Let R be a ring and let A,B be ideals in R such that A ∩ B = {0}. Show
that for all a ∈ A, b ∈ B, ab = 0.

(13) Let R be a ring (commutative with 1) and let S be a subring. The conductor
C(S) of S in R is the set of all α ∈ R such that αR ⊂ S.
(a) Prove that C(S) is an ideal of R and also an ideal of S.
(b) Prove that C(S) is the largest ideal of S which is also an ideal of R.
(c) Determine C(S) in the following cases:

(i) R = C[x], S = C[x2, x3].

(ii) R = Z[ω]. ω = −1+
√
−3

2
, S =

Z[
√
−3].

(14) Let I, J be ideals of a ring, such that I + J = R. Prove that IJ = I ∩ J .
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3. Prime Ideals and Maximal Ideals

From now on until the end of the lectures a ring is a commutative ring
with 1 and a homomorphism ϕ : A→ B of rings satisfies ϕ(1) = 1.

We now want to look at the two most important classes of ideals. We have learned
in the last section, that for an ideal I in a ring R a natural thing to do is to form
the quotient ring R/I. The nicest ideals will be those for which the quotient is the
nicest. The nicest rings are the fields, where we can compute like in Q, followed by
the integral domains, where we can compute like in Z. A prime ideal in a ring R will
be an ideal P so that R/P is an integral domain, and a maximal ideal M in R will
be such that R/M is a field.

Definition 3.1. Let R be a ring (remember this means commutative with 1).
An ideal P ( R is called a prime ideal if for all a, b ∈ R with ab ∈ P , we have a ∈ P
or b ∈ P .

Example 3.2. Let m ∈ Z>0. Then 〈m〉 = mZ is a prime ideal in Z if and only if
m is a prime number.

A maximal ideal is a proper ideal that does not fit into any bigger proper ideal.

Definition 3.3. Let R be a ring. An ideal M ( R is called maximal if there is
no ideal I with M ( I ( R.

Theorem 3.4. (1) Let R be a ring. An ideal P ⊂ R is a prime ideal if and
only if R/P is an integral domain.

(2) Let R be a ring. An ideal M ⊂ R is a maximal ideal if and only if R/M is
a field.

Proof. (1) As R is commutative with 1 also R/P is commutative with 1. For
a, b ∈ R, [a] = 0 if and only if a ∈ P ; and 0 = [a][b] = [ab] only if ab ∈ P . Thus [a] is
a zero divisor if and only if a 6∈ P and there is an element b 6∈ P with ab ∈ P .

(2) Suppose first M is an ideal in R such that R/M is a field. As R/M is a field,
the only ideals in R/M are 0 and R/M . By the bijection of ideals in R/M and ideals
in R containing M , the only ideals in R containing M are M and R. Thus M is
a maximal ideal. If on the other hand M is maximal ideal, by the same bijection,
the only ideals in R/M are 0 and R/M . Thus the theorem follows from the next
lemma. �

Lemma 3.5. A commutative ring R with 1 whose only ideals are {0} and R is a
field.

Proof. For every a ∈ R \ {0} we need to find an element b ∈ R with ab = 1.
〈a〉 :=

{
ab
∣∣ b ∈ R} is an ideal in R, thus 〈a〉 = 0 or 〈a〉 = R. Since 0 6= a = 1a ∈ 〈a〉

we see that 〈a〉 = R. Therefore 1 ∈ 〈a〉, i.e. there exists b ∈ R with ab = 1. �

As a field is in particular an integral domain we also get.
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Corollary 3.6. Every maximal ideal is a prime ideal.

Example 3.7. (1) If K is a field, then {0} is a maximal ideal in K.
(2) We have seen that 〈m〉 is a prime ideal in Z if and only if m is a prime

number. But in this case 〈m〉 is even a maximal ideal because Z/〈m〉 is a
field.

Exercises.

(1) Let R be a commutative ring with 1. An element r ∈ R is called nilpotent if
there exists an n ∈ Z>0 with rn = 0. Let

N(R) :=
{
r ∈ R

∣∣ r is nilpotent
}
.

(a) Determine N(Z/4Z).
(b) Show that N(R) is an ideal in R.
(c) Show that N(R) ⊂ P for every prime ideal P ⊂ R.
(d) Show that 0 is the only nilpotent element of R/N(R).

(2) Let k be a field and f ∈ k[x]. Let R := k[x]/〈f〉. Show that N(R) = 0
(see previous exercise) if and only if f is not divisible by the square of a
polynomial.

(3) Determine the maximal ideals of R[x]/(x2) and R[x]/(x2 + x+ 1).
(4) Prove that the ideal 〈x+ y2, y+x2 + 2xy2 + y4〉 in C[x, y] is a maximal ideal.
(5) Let R be a ring, and let I be an ideal of R. Let R := R/I. For an ideal

M ⊂ R containing I let M = M/I. Show that M is maximal in R if and
only if M is maximal in R.

(6) Give an example of a ring in which some prime ideal is not a maximal ideal.
(7) Let R be a commutative ring with 1 and let I be an ideal that is contained

in a finite union p1∪ . . .∪ pn of prime ideals of R. Show that I ⊂ pi for some
i.

(8) Let f : R→ S be a surjective ring homomorphism with kernel K. Show:
(a) If P is a prime ideal of R containing K, then f(P ) is a prime ideal of S.
(b) If Q is a prime ideal of S, then f−1(Q) is a prime ideal of R containing

K.
(9) Let R be a ring with 1, M an ideal in R. Suppose every element of R \M is

a unit in R. Show that M is the unique maximal ideal of R.
(10) Show: The ring 2Z of even integers contains a maximal ideal M , such that

2Z/M is not a field.

4. Polynomial rings over a field

We have already introduced the polynomial rings R[x] in the first section. In this
section we want to study the case of polynomial rings over a field in more detail. In
this section let k be a field. We want to start out by looking at questions of divisibility
in k[x]. So we first define this in general.
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Definition 4.1. Let R be an integral domain. Let a, b ∈ R. We say that a
divides b, denoted a|b, if there exists an element c ∈ R with b = ac. Otherwise we
write a 6 |b.

The relation ”divides” has a number of obvious properties.

Remark 4.2. a|b is equivalent to b ∈ 〈a〉, in particular a|b and b|c implies a|c;
and a|b and a|c implies a|(b± c).

Questions of divisibility of polynomials over k are governed by the algorithm of
division with rest, that works in k[x] in a very similar way as for integers.

Theorem 4.3. (Division with rest) Let f, g ∈ k[x] with g 6= 0. There are unique
q ∈ k[x] and r ∈ k[x] such that

f = qg + r, with deg(r) < deg(g) or r = 0.

Proof. Existence: If f = 0 or deg(f) < deg(g), we can put q = 0 and r = f .
Thus assume that m := deg(f) ≥ deg(g) and make induction on m.

Let a be the leading coefficient of f and b the leading coefficient of g. Then the
coefficient of xm in

f := f − (
a

b
xm−deg(g))g

is a−ab/b = 0, thus f has degree ≤ m−1, and by induction we can write f = q′g+r′

with r′ = 0 or deg(r′) < deg(g). But then we put r := r′ and q = q′ + (a
b
xm−deg(g)),

and the claim is satisfied.

Uniqueness: If qg+ r = q′g+ r′ with the above properties, then (q− q′)g = r− r′.
q 6= q′ would imply

deg(r − r′) = deg(q − q′) + deg(g) ≥ deg(g),

a contradiction to deg(r), deg(r′) < deg(g). Thus q = q′ and thus r = r′. �

Example 4.4. Note that the proof of the Theorem actually gives us an algorithm
for division with rest.

(x3 + 4x2 + x+ 1) = (x+ 3)(x2 + x− 5) + 3x+ 16

x3 + x2 − 5x x

3x2 + 6x+ 1

3x2 + 3x− 15 3

3x+ 16

In Z we can talk about the greatest common divisors. Now we introduce greatest
common divisors in any integral domain R.



4. POLYNOMIAL RINGS OVER A FIELD 49

Definition 4.5. Let R be an integral domain and let a1, . . . , an ∈ R. An element
r ∈ R\{0} is called a common divisor of a1, . . . , an, if r|ai for i = 1, . . . , n. An element
r ∈ R is called a greatest common divisor of a1, . . . , an, if r is a common divisor, and
s|r for any other common divisor. a1, . . . , ar are called relatively prime, if 1 is a
greatest common divisor.

By definition the greatest common divisor of a1, . . . , ar is not unique, but it is
unique up to multiplication by a unit. In k[x] the division algorithm gives an algorithm
to find the greatest common divisor.

Remark 4.6. Let f, g ∈ k[x]. We put r0 := f , r1 := g. Then by the division
algorithm we find f = q1g + r2, g = q2r2 + r3 and inductively

ri−1 = qiri + ri+1, with qi ∈ k[x], ri+1 ∈ k[x], and deg(ri+1) < deg(ri).

The process stops when rn−1 = qnrn and rn 6= 0.

We claim that then rn is a greatest common divisor of f and g: The equation
ri−1 = qiri + ri+1 implies sucessively that rn|rn−1, rn|rn−2, . . . , rn|g, rn|f . Thus rn is
a common divisor of f and g. On the other hand, if t is a common divisor of f and
g, then the same equation implies sucessively that t|r2, t|r3, . . . , t|rn. Thus rn is a
greatest common divisor. This algorithm is called the Euclidean algorithm.

It implies one further result, which we will use in the future (in the proof of the
Theorem of the Primitive Element). If K is another field, so that k ⊂ K is a subring
then we call k a subfield of K. It is straightforward to see that then k[x] is a subring
of K[x].

Corollary 4.7. Let K be a field and k ⊂ K a subfield. Let f, g ∈ k[x]. Let h be
a greatest common divisor of f and g in K[x] and assume that its leading coefficient
is in k. Then h ∈ k[x].

Proof. Let l be the greatest common divisor of f and g computed via the Eu-
clidean algorithm. Then l ∈ k[x] because in the division with rest of two elements
of k[x] both quotient and rest are in k[x] and the Euclidean algorithm is just repeat-
edly applying division with rest. Note the the greatest common divisor in K[x] is
well-defined up to multiplication by a constant a ∈ K. Let h ∈ K[x] be a greatest
common divisor of f, g in K[x]. Let hn be the leading coefficient of h, and assume
that hn ∈ k. We know h = al for some a ∈ K \ {0}. Let ln be the leading coefficient
of l. Then ln ∈ k. Thus a = hn/ln ∈ k. Thus h = al ∈ k[x]. �

A very important property of polynomials is that we can evaluate them at any
element of k and more generally at any element of a field K that contains k as a
subfield, i.e. we can substitute for x any element of k or of K.
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Definition 4.8. let f =
∑n

i=0 aix
i ∈ k[x] and let R be a ring that contains k as

a subring. The value of f in s ∈ R is

f(s) :=
n∑
i=0

ais
i ∈ R.

It is straightforward to check that

(f + g)(s) = f(s) + g(s), fg(s) = f(s)g(s).

Thus we get a ring homomorphism

evs : k[x]→ R, f 7→ f(s).

evs is called the evaluation homomorphism at s. An element s ∈ R is called a zero of
f if f(s) = 0.

Remark 4.9. For the moment the most important case will be that R = k, so
that we can evaluate a polynomial in k[x] at any element of k. But we shall see later
that the general case is important.

Now we want to use the division with rest to study zeros of polynomials in k[x].
If a ∈ k is a zero of f ∈ k[x], then we can divide f by x − a. This is then used to
show that if f has degree n, then it can have at most n zeros in k.

Theorem 4.10. Let f ∈ k[x] and a ∈ k. Then a is a zero of f , if and only if
(x− a)|f , i.e. if f = (x− a)g for some g ∈ k[x].

Proof. If (x− a) divides f , then f = (x− a)g, thus f(a) = (a− a)g(a) = 0. So
a is a zero of f .

Thus assume f(a) = 0. If f = 0, we can put g = 0. Otherwise by division with
rest we can write f = (x− a)g + r with deg(r) = 0 or r = 0. Thus r ∈ k. Evaluating
at a we get

0 = f(a) = (a− a)g(a) + r = r,

i.e. f = (x− a)g. �

Theorem 4.11. Let f ∈ k[x] \ {0}. Then f has at most deg(f) zeros in k.

Proof. We show this by induction on the degree of f . If f has degree 0, then f
is constant, and thus has no zero. Now let f have degree n + 1. If f has no zero in
k, then the claim is trivially true. Otherwise let a ∈ k be a zero of f . Then we can
write f = (x − a)g with deg(g) = n. Thus by induction g has at most n zeros in k.
If b 6= a is a zero of f , then 0 = (b − a)g(b), thus g(b) = 0. So f has at most n + 1
zeros in k. �

Exercises.

(1) Find the greatest common divisors of the following polynomials in Q[x].
(a) x3 − 6x2 + x+ 4 and x5 − 6x+ 1.



5. EUCLIDEAN RINGS AND PRINCIPAL IDEAL DOMAINS 51

(b) x2 + 1 and x6 + x3 + x+ 1.
(2) Let k be a field and let a0, . . . , an ∈ k be distinct elements and let , b0, . . . , bn ∈

k. Show: There is at most one polynomial f ∈ k[x] of degree n with f(ai) = bi
for i = 0, . . . , n.

(3) Let a0, . . . , an−1 ∈ Z and let

f = xn +
n−1∑
i=0

aix
i ∈ Q[x]

(note that the leading coefficient is 1). Let b ∈ Q be a zero of f . Show that
b ∈ Z.

(4) Let f, g ∈ k[x] be polynomials with coefficients in a field k. Assume the
both f and g factor into linear factors i.e. f = (x + a1) · . . . · (x + an),
g = (x+ b1) · . . . · (x+ bm). Then the greatest common divisor is the product
of the common linear factors.

5. Euclidean rings and principal ideal domains

An important property of the integers is that in the integers we can do division
with rest, i.e. if a, b are integers, we can write

a = tb+ r, t, r ∈ Z, 0 ≤ r < b.

r is the rest of the division of a by b. In the last section we have seen that also in
polynomial rings over a field we have division with rest. Now we want to formalize
this. The rest r should in some sense be smaller then b, in general rings we have to
measure this by a function d : R \ {0} → Z>0.

Definition 5.1. An integral domain R is called a Euclidean ring if there is a
function d : R \ {0} → Z≥0 with the following properties.

(1) For all a, b in R \ {0} there exist q, r ∈ R such that a = qb + r with either
r = 0 or d(r) < d(b).

(2) If b ∈ R \ {0} is not a unit, then d(ab) > d(a) for all a ∈ R \ {0}.
Example 5.2. (1) Z with d(n) = |n| is a Euclidean ring.
(2) Let again Z[i] :=

{
n+mi

∣∣ n,m ∈ Z
}
⊂ C be the ring of Gaussian integers.

We claim that Z[i] is a Euclidean ring with d(n + im) = n2 + m2. We can
extend d to C, by d(a + ib) = a2 + b2, d is just the square of the complex
absolute value. In particular d(a + ib) 6= 0 for a + ib 6= 0. We then have
d(zw) = d(z)d(w) for all z, w ∈ C. If z, w ∈ Z[i] \ {0}, let z/w = a + ib be
the quotient in C. Choose n,m ∈ Z such that |a−m| ≤ 1/2, |b− n| ≤ 1/2.
Then

d(z/w − (m+ in)) = (a−m)2 + (b− n)2 ≤ 1/2.

Thus we can put r := z − (m + in)w as the rest of the division, and get
d(r) = d(w)d(z/w − (m+ in)) < d(w).
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(3) The most important example of a Euclidean ring is that of a polynomial ring
over a field. Let k be a field, and for f ∈ k[x] \ {0} put d(f) = deg(f). Then
(k[x], d) is a Euclidean ring. This is just a reformulation of Theorem ??.

Euclidean rings have another nice property. The set of their ideals is very simple:
every ideal I ⊂ R is a principal ideal.

Definition 5.3. Let R be an integral domain. Recall that an ideal of the form
〈a〉 =

{
ar
∣∣ r ∈ R} for an a ∈ R is called a principal ideal. An integral domain R is

called a principal ideal domain (PID), if every ideal I ⊂ R is a principal ideal.

Theorem 5.4. A Euclidean ring is a principal ideal domain.

Proof. Let (R, d) be a Euclidean ring. We have to show that every ideal I ⊂ R
is a principal ideal. The zero ideal {0} = 〈0〉 is principal. Thus let I 6= {0} be an
ideal. Let a ∈ I \ {0} be such that d(a) is the smallest d(b) for b ∈ I \ {0}. We want
to show I = 〈a〉: Otherwise there is an element b ∈ I \ 〈a〉. Then division with rest
gives

b = ta+ r, t, r ∈ R \ {0}, d(r) < d(a).

This is a contradiction to the choice of a, because r = b− ta ∈ I. �

Corollary 5.5. Z, Z[i], and k[x] for a field k are principal ideal domains.

We see in particular that the ideals in Z are precisely the mZ that we already
know and the quotient rings are precisely the Z/mZ.

In general integral domains greatest common divisors do not always need to exist.
However in a PID they do.

Theorem 5.6. Let R be a principal ideal domain. Let a1, . . . , ar ∈ R. Then
there is greatest common divisor d of a1, . . . , ar of the form d = a1x1 + . . .+arxr with
xi ∈ R.

Proof. Choose d ∈ R such that 〈d〉 = 〈a1, . . . , ar〉. Then by definition d =
a1x1 + . . . + arxr with xi ∈ R. We claim that d is a greatest common divisor. By
definition ai ∈ 〈d〉 for all i, thus d|ai. On the other hand if e ∈ R divides all ai, then
e|a1x1 + . . .+ arxr = d. �

Example 5.7. Let a, b ∈ Z, then 〈a, b〉 = 〈gcd(a, b)〉, e.g. 〈4, 6〉 = 〈2〉 and
〈4, 7〉 = Z.

Exercises.

(1) Prove or disprove the following statement: The ring Z[x] is a principal ideal
domain.

(2) If a+ bi ∈ Z[i] is not a unit, show that a2 + b2 > 1.
(3) Show that Z[

√
2] is an Euclidean domain.

(4) Give an example that division with rest need not be unique in a Euclidean
domain.
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(5) Let m,n ∈ Z. Show that their greatest common divisor in Z is the same as
their greatest common divisor in Z[i].

6. Irreducibility of polynomials

An element in an integral domain will be called irreducible, if whenever we can
write it as a product, one of the factors has to be a unit. In Z the prime numbers are
the irreducible elements. In this section with will study questions of irredicibility of
polynomials in Z[x] and Q[x].

We start by introducing irreducible elements in an integral domain R, which are
generalizations of the prime numbers in Z. An irreducible element is one that cannot
in a nontrivial way be written as a product of other elements

Definition 6.1. An element q ∈ R \ {0} is called irreducible if q is not a unit
and for any a, b ∈ R with q = ab either a or b is a unit. An element of R is called
reducible, if it is not irreducible.

Remark 6.2. A prime number p ∈ Z>0 is irreducible in Z. Prime numbers
p ∈ Z>0 have another important property: Let a, b ∈ Z. If p|ab, then p|a or p|b.
Elements in an integral domain with this property are also called prime elements. In
a general integral domain prime elements and irreducible elements are not the same.

Example 6.3. (1) A number q ∈ Z is irreducible if q = ±p for p a prime
number.

(2) A field has no irreducible elements.
(3) If k is a field and a ∈ k \ {0}, b ∈ k, then ax+ b is an irreducible element of

k[x]: If ax+b = fg, then deg(f)+deg(g) = 1, thus deg(f) = 0 or deg(g) = 0,
thus f ∈ k∗ or g ∈ k∗.

(4) The irreducible elements in R[x] are called irreducible polynomials.

Now we want to see that in a principal ideal domain irreducible elements generate
maximal ideals.

Proposition 6.4. Let R be a principal ideal domain and p ∈ R an irreducible
element. Then 〈p〉 is a maximal ideal, and R/〈p〉 is a field

Proof. Let p ∈ R be an irreducible element. We know that every ideal in R is
of the form 〈a〉. Thus let 〈p〉 ⊂ 〈a〉. Then p ∈ 〈a〉, thus p = ab for some b ∈ R. Then,
as p is irreducible, either a is a unit and 〈a〉 = R or b is a unit and 〈a〉 = 〈p〉. Thus
〈p〉 is maximal. �

This gives us a way to construct new fields. We will use this in the chapter on
fields.

Corollary 6.5. Let k be a field and let f in k[x] be an irreducible polynomial.
Then k[x]/〈f〉 is a field containing k as a subfield (if we identify with the image

of the constant polynomials in k[x]/〈f〉).
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We now want to study the irreducibility of polynomials over Z and Q.

Definition 6.6. A polynomial f =
∑n

i=0 aix
i ∈ Z[x] is called primitive if the

coefficients a0, . . . , an are relatively prime.

Lemma 6.7. (Lemma of Gauss) Let f, g ∈ Z[x] be primitive polynomials. Then
also fg is primitive.

Proof. Let f =
∑n

i=0 aix
i, g =

∑m
i=0 bix

i. Suppose that fg is not primitive.
Then there is a prime number p which is a common divisor of the coefficients of fg.
Let ai be the lowest coefficient of f that p does not divide and bj the lowest coefficient
of g that p does not divide. Then in fg the coefficient of xi+j is

ci+j = aibj +
∑
k>i

akbi+j−k +
∑
k<i

akbi+j−k.

Then p divides bi+j−k for k > i and p divides ak for k < i. Thus p divides both sums.
As p does not divide aibj, we get p does not divide ci+j. �

The following theorem is also sometimes called the Gauss Lemma.

Theorem 6.8. (Gauss Lemma) Let f ∈ Z[x] be a non-constant primitive polyno-
mial. Then f is irreducible in Z[x] if and only if it is irreducible in Q[x].

Proof. ”⇐=” If f is reducible in Z[x], then we have f = gh, with g, h both not
units in Z[x]. If deg(g) = 0, then g is a nonunit in Z, which is a common factor of all
the coefficients of fg, contradicting the fact that f is primitive. The same happens
if deg(h) = 0. Thus f = gh with deg(g) > 0, deg(h) > 0. Thus it is also reducible in
Q[x].

”=⇒” Suppose f = gh where g, h ∈ Q[x] are polynomials of positive degree. By
clearing denominators and dividing by the greatest common divisor of the coefficients,
we can write f = a

b
g′h′, where g′, h′ are primitive polynomials in Z[x] and a, b ∈ Z

are relatively prime. Thus bf = ag′h′. But both f and g′h′ are primitive. So on the
left hand side the greatest common divisor of the coefficients is b and on the right
hand side it is a. Thus a = ±b, and thus f = ±g′h′ is reducible in Z[x]. �

Now we give a useful criterion for the irreducibility of polynomials.

Theorem 6.9. (Eisenstein’s criterion) Let f =
∑n

i=0 aix
i be a primitive polyno-

mial in Z[x] of positive degree. Assume there is a prime number p with p|a0, p|a1, . . . , p|an−1
but p 6 |an and p2 6 |a0.

Then f is irreducible over Z, and over Q.

Proof. Assume f = gh with g, h ∈ Z[x]. We have to show g = ±1 or h = ±1.

Let g =
∑k

i=0 bix
i with bk 6= 0 and h =

∑l
i=0 cix

i with cl 6= 0. As a0 = b0c0 and p|a0
and p2 6 |a0, we see that p divides exactly one of b0, c0. Assume p|b0 and p 6 |c0. As
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an = bkcl and p 6 |an we see that p 6 |bk. Thus there exists a maximal j ∈ {1, . . . , k}
such that p|bi for i < j and p 6 |bj. Putting ci := 0 for i > l, we get

aj = bjc0 + bj−1c1 + . . .+ b0cj.

By definition p does not divide bjc0, but it divides each other summand. Therefore
p 6 |aj. Thus j = n and thus k = n. Thus deg(g) = n and therefore h is a constant
polynomial. As f is primitive, we get h = ±1. �

Example 6.10. (1) f := x5 − 9x + 3 is irreducible in Z[x] by Eisenstein’s
criterion with p = 3. Thus by Gauss Lemma it is irreducible in Q[x].

(2) For p a prime number and n ∈ Z>0 the polynomial xn− p is irreducible over
Q.

To later study examples of field extensions it is important to be able to check the
irreducibility of polynomials in k[x]. The most important case is again that of k = Q.
We give a few more methods to check irreducibility.

Remark 6.11. If f ∈ k[x] is a polynomial of degree at most 2 or 3, then f is
irreducible if and only if it has no zero in k (because if f is reducible, then f must
have a factor of degree 1). Let in particular f = xn +

∑n−1
i=0 bix

i ∈ Z[x] be a monic
polynomial. Then it is shown in an exercise that any zero a ∈ Q of f must lie in Z.
It is easy to check (exercise) that then f/(x − a) ∈ Z[x] and that a|bn. So if n ≤ 3
we can check the irreducibility very fast by showing that none of the divisors of bn is
a zero of f .

Another possiblity is to substitute something else for the variable of f .

Remark 6.12. Let f =
∑

i aix
i ∈ k[x], let a ∈ k. Then f is irreducible in

k[x] if and only if f(x + a) :=
∑

i ai(x + a)i is irreducible in k[x]): It obvious that
σa : k[x]→ k[x], g 7→ g(x+ a) is an isomorphism of rings with inverse σ−a. Thus f is
irreducible if and only if f(x+ a) is irreducible.

Example 6.13. Let p be a prime number. Then f = xp−1 + xp−2 + . . .+ x+ 1 is
irreducible in Q[x].

Note that (x − 1)f = xp − 1. Thus xσ1(f) = (x + 1)p − 1 and thus σ1(f) =∑p
i=1

(
p
i

)
xi−1. It is easy to check that p|

(
p
i

)
for 1 ≤ i ≤ p − 1 and p2 6 |

(
p
1

)
= p. Thus

σ1(f) is irreducible by Eisensteins criterion, and thus f is irreducible over Q.

Exercises.

(1) Prove that
(a) x2 + x+ 1 is irreducible in F2[x].
(b) x2 + 1 is irreducible in F7[x].

(2) Let a ∈ Q and assume (x−a)|f for f ∈ Z[x] a monic polynomial. Show that
a ∈ Z.
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(3) Let R be a commutative ring with no nonzero nilpotent elements (i.e. an = 0
implies a = 0). If f =

∑n
i=0 aix

i ∈ R[x] is a zero divisor, show that there is
an element b 6= 0 in R with ba0 = ba1 = . . . ban = 0.

(4) LetR be a commutative ring with 1. Show that a polynomial f =
∑n

i=0 aix
i ∈

R[x] is a unit in R[x] if and only if a0 is a unit in R and a1, . . . , an are nilpo-
tent.

(5) Let k be a field. Show that k[x1, x2] is not a principal ideal domain.
(6) Prove that 1 + x+ x3 + x4 is irreducible in k[x] for any field k.
(7) Prove that x4 + 2x+ 2 is irreducible in Q[x].
(8) Let p be a prime number, c ∈ Q. Show xp − c is irreducible over Q if and

only if it has no zero in Q.
(9) Let k be a field, a, b ∈ k. Show that f ∈ k[x] is irreducible if and only if

f(ax+ b) is irreducible.
(10) Prove that the kernel of the homomorphism Z[x] → R;x 7→ 1 +

√
2 is a

principal ideal and find a generator for this ideal.
(11) Prove that the following polynomials are irreducible in Q[x].

(a) x2 + 27x+ 213.
(b) x3 + 6x+ 12.
(c) x5 − 3x4 + 3.

(12) Factor x5 + 5x+ 5 into irreducible factors in Q[x] and F2[x].
(13) Suppose that a polynomial x4 + bx2 + c ∈ Q[x] is the product of two factors

of degree 2 in Q[x]. What can one say about the coefficients of these factors?
(14) Factor the following polynomials in Q[x] (Hint: Use reduction modulo 2).

(a) x3 + 2x2 + 3x+ 1.
(b) x4 + 2x3 + 3x2 + 2x+ 1.

(15) Let p ∈ Z be a prime number. Let f =
∑2n+1

i=0 aix
i ∈ Z[x] be a polynomial

of odd degree. Suppose p 6 |a2n+1, p
2|a0, . . . , an, p|an+1, . . . , a2n and p3 6 |a0.

Show that f is irreducible in Q[x].



CHAPTER 3

Fields

In this second half of the lecture we want to study fields. We have already said
before that the most important class of rings are the fields. Recall that a field is a
commutative ring with 1 in which every nonzero element is a unit. This means that
we can compute in a field basically like in the rational numbers Q.

Let k be a field and f ∈ k[x] a polynomial. We want to study field extensions
L/k, i.e. L and k are fields and k is a subring of k. Let f ∈ k[x] be a polynomial.
We can also view it as a polynomial in L. It could happen that f has more zeros in
L then in k, e.g.

(1) k = Q, L = R, f = x2 − 2,
(2) k = R, L = C, f = x2 + 1.

Assume f has no zero in k. One leading question is whether we can find an extension
L/k, so that f has a zero in L. Can we even find L, so that f splits into linear factors
over L?

Thus we will be concerned with algebraic extensions of a field k, i.e. we will study
fields L ⊃ k such that every element of L is the zero of a polynomial f ∈ k[x]. It turns
out that to such field extensions one can associate a group, the Galois group. Galois
theory is the study of field extensions in terms of their Galois groups. In particular
we will show the principal theorem of Galois theory, which relates the subgroups of
the Galois group to the intermediate fields k ⊂M ⊂ L of a field extension.

For many centuries mathematicians were interested in finding the zeros of poly-
nomials f ∈ Q[x]. In particular they tried to express the zeros in terms of radicals
n
√

. Already the Babylonians knew how to do this for polynomials of degree 2. In the
16th century formulas were found for polynomials of degrees 3 and 4, and for almost
300 years people tried to find such formulas for degrees 5 and higher. One of the
most striking applications of Galois theory was to show that no such formulas exist
in general for n > 4.

1. Field extensions, degree theorem

Let R be a ring, let a ∈ R and let n ∈ Z>0. Recall that we write n·a = a+ . . .+ a︸ ︷︷ ︸
n times

.

In the field of rational numbers Q we have n · a 6= 0 for all a ∈ Q, n ∈ Z>0. On the
other hand, if p is a prime number, then in the finite field Fp we have p · 1 = p = 0.

57



58 3. FIELDS

Definition 1.1. Let k be a field. The characteristic of k, denoted char(k), is the
smallest n ∈ Z>0 with n · 1 = 0 in k, if such an n exists, and otherwise char(k) = 0.

Example 1.2. (1) char(Q) = char(R) = char(C) = 0.
(2) char(Fp) = p.

Definition 1.3. A subring k ⊂ K of a field K is called a subfield if is is a field.
In this case we call K a field extension of k. We write K/k is a field extension.

Let K/k and L/k be field extensions. A homomorphism ϕ : K → L, with ϕ(a) = a
for all a ∈ k is called a k-homomorphism. If ϕ is in addition an isomorphism, it is
called a k-isomorphism. In this case we say that K and L are k-isomorphic.

Remark 1.4. Let k be a subfield of a field K. Then char(k) = char(K) (because
the 1 of K is also the 1 of k).

If K/k is a field extension, then K is in particular a k-vector space. Its dimension
will be called the degree of the field extension.

Remark 1.5. Let K/k be a field extension. Then (K,+) is an abelian group and
the restriction of the multiplication in K defines a scalar multiplication

k ×K → K; (a, x) 7→ ax

so that the distributive laws (a+b)x = ax+bx, a(x+y) = ax+ay and the associative
law (ab)x = a(bx) hold and furthermore 1x = x. Thus K is a k-vector space.

Definition 1.6. The degree [K : k] of the field extension K/k is the dimension
of K as a k-vector space (with [K : k] = ∞ if this is not a finite dimensional vector
space). The field extension K/k is called finite if [K : k] <∞.

Remark 1.7. [K : k] = 1 if and only if K = k.

Proof. [K : k] = 1 if and only if 1 is a k-basis ofK if and only ifK = k·1 = k. �

The degree of field extensions behaves multiplicatively.

Definition 1.8. Let K/k be a field extension. Then a subfield L ⊂ K with k ⊂ L
is called an intermediate field of K/k.

Theorem 1.9. (Degree theorem) If L is an intermediate field of a field extension
K/k, then

[K : k] = [K : L][L : k].

(This is with the convention n∞ = ∞n = ∞∞ for all n ∈ Z>0.) In particular K/k
is a finite extension if and only if K/L and L/k are finite extensions.
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Proof. If K/L or L/k is not finite, then K/k is trivially not finite.
So assume L/k and K/L are finite field extensions. Let (x1, . . . , xn) be a basis

of L over k and (y1, . . . , ym) be a basis of K over L. We will show that
{
xiyj

∣∣ i =

1, . . . , n, j = 1, . . . ,m
}

is a basis of K over k. They generate: If y ∈ K, then we
can write

y =
m∑
j=1

bjyj, bj ∈ L,

and for all j we can write

bj =
n∑
i=1

aijxi, aij ∈ k.

Thus we get y =
∑

i,j aijxiyj.
They are linearly independent: If∑

i,j

aijxiyj = 0, aij ∈ k,

then for all j we have
∑

i aijxi = 0, because the yj are linearly independent over L,
and thus for all i, j we get aij = 0, because the xi are linearly independent. �

Corollary 1.10. If L is an intermediate field of a finite field extension K/k,
then [L : k] divides [K : k]. In particular if [K : k] is a prime number, the only
intermediate fields are k and K.

Exercises.

(1) Let k be a field. Find all elements a ∈ k with a = a−1.
(2) Let F be a field with precisely 8 elements. Prove or disprove: The charac-

teristic of F is 2.
(3) Let a = 2

1
p ∈ C for a prime number p. Show that [Q(a) : Q] = p and the

only intermediate fields of Q(a)/Q are Q and Q(a).
(4) Let a be a positive rational number, which is not a square in Q. Show that

[Q( 4
√
a) : Q] = 4.

2. Algebraic extensions and simple algebraic extensions

In this section we fix a field extension K/k. We are interested in elements of K
which are zeros of polynomials in k[x].

Definition 2.1. An element a ∈ K is called algebraic over k if there is a nonzero
polynomial f =

∑n
i=1 bix

i ∈ k[x] with f(a) =
∑

i bia
i = 0. a ∈ K is called transzen-

dental over k if it is not algebraic over k. K is called an algebraic extension of k if all
elements of K are algebraic over k.

Thus an element a ∈ K is transzendental if it is not the root of a nonzero poly-
nomial in k[x]. In this course we will not deal with transzendental elements.
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Example 2.2. (1)
√

2 ∈ R is algebraic over Q because it is a zero of x2 − 2.
(2) i ∈ C is algebraic over Q, because it is a zero of x2 + 1.
(3) It is known that e and π are transzendent over Q.

Definition 2.3. Let a1, . . . , an ∈ K. The extension of k generated by a1, . . . , an
is the intersection of all subfields L of K which contain k and a1, . . . , an. It is denoted
k(a1, . . . , an). By definition k(a1, . . . , an) is obviously a subfield of K containing k
and a1, . . . , an.

Of special importance are the extensions generated by one algebraic element.

Definition 2.4. If a ∈ K is algebraic over k, then k(a) is called a simple algebraic
extension of k.

There are two reasons for the importance of simple algebraic extensions. First
they can be understood very well. Secondly essentially all (in finite characteristic
all) finite algebraic extensions are simple algebraic extensions (see the Theorem of
the Primitive Element below). We start by giving an explicit description of a simple
algebraic extension k(a) in terms of the minimal polynomial of a, which is the unique
irreducible monic polynomial f ∈ k[x] with f(a) = 0.

Definition 2.5. A polynomial f ∈ k[x] is called monic, if its leading coefficient
is 1. Note that for f ∈ k[x]\{0} there is a unique monic polynomial g with 〈f〉 = 〈g〉.
(If b ∈ k∗ is the leading coefficient of f , just put g = f/b).

Let a ∈ K be algebraic over k. Let eva : k[x] → K, g 7→ g(a) be the evaluation
homomorphism. Then, by definition, a is algebraic if and only if ker(eva) 6= 0. As
k[x] is a PID, there is a unique monic polynomial fa ∈ k[x] with ker(eva) = 〈fa〉. fa
is called the minimal polynomial of a over k.

Proposition 2.6. Let a ∈ K be algebraic over k. The minimal polynomial fa of
a over k is the unique irreducible monic polynomial f ∈ k[x] with f(a) = 0.

Proof. We want to show fa is irreducible. Assume fa = gh with g, h ∈ k[x].
We have to show g ∈ k∗ or h ∈ k∗. We have 0 = fa(a) = g(a)h(a), thus g(a) = 0
or h(a) = 0. If, say, g(a) = 0, then g ∈ 〈fa〉, thus g = lfa for some l ∈ k[x]. Thus
fa = gh = falh. Therefore lh = 1 and l ∈ k∗.

On the other hand let g be a monic irreducible polynomial with g(a) = 0. Then
g ∈ 〈fa〉, thus g = lfa for some l ∈ k[x]. As g is irreducible, we get l ∈ k∗. As both g
and fa are monic, this implies l = 1. �

Example 2.7. For each prime number p and all n ∈ Z>1, we know that xn − p
is irreducible in Q[x] by the criterion of Eisenstein. Thus xn − p is the minimal
polynomial for n

√
q over Q.

Now let k(a)/k be a simple algebraic extension. We can give a very explicit
description of k(a) in terms of the minimal polynomial of a over k.
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Theorem 2.8. Let a ∈ K be algebraic over k with minimal polynomial fa, and
m := deg(fa). Then

(1) k(a) ' k[x]/〈fa〉,
(2) [k(a) : k] = m and (1, a, . . . am−1) is a basis of k(a) over k.

Proof. (1) eva : k[x] → k(a); g 7→ g(a) is a ring homomorphism with kernel
〈fa〉. Let L be the image of eva. Then by the homomorphism theorem L ' k[x]/〈fa〉.
As fa is irreducible and k[x] is a PID, we know that 〈fa〉 is a maximal ideal in k[x]
and k[x]/〈fa〉 is a field. Thus L is a subfield of k(a). Furthermore k ⊂ L as the image
of the constant polynomials and a = eva(x) ∈ L. Thus L = k(a).

(2) We have shown in (1) that eva : k[x]→ k(a) is surjective, thus

k(a) =
{
g(a)

∣∣ g ∈ k[x]
}
.

We first show that 1, a, . . . , am−1 generate k(a) over k. Let b ∈ k(a), then b = g(a)
for some g ∈ k[x]. If deg(g) > deg(fa), then division with rest gives

g = qf + r, q, r ∈ k[x], deg(r) < deg(fa).

Then by fa(a) = 0 we get g(a) = r(a). Thus b = r(a) for a polynomial r =
∑m−1

i=0 bix
i,

i.e. 1, a, . . . , am−1 generate k(a). Assume 1, a, . . . , am−1 are not linearly independent,
then we can write 0 =

∑m−1
i=0 bia

i, with bi ∈ k not all 0. Thus h(a) = 0 for h =∑m−1
i=0 bix

i. On the other hand h ∈ ker(eva) = 〈fa〉 implies deg(h) ≥ deg(fa) = m, a
contradiction. �

Remark 2.9. Let k(b)/k be a simple algebraic extension of degree n and let
f =

∑n
i=0 aix

i be the minimal polynomial of b over k. Then by the Theorem k(b) can
be explicitly described as follows:

k(b) =
{ n−1∑

i=0

cib
i
∣∣∣ ci ∈ k}.

Addition and multiplication are the usual ones as if these were polynomials in the
indeterminate b together with the rule that we eliminate any power of b bigger than
n− 1 by bn = −

∑n−1
i=0 aib

i.

Example 2.10. The minimal polynomial of i over R is x2 + 1. Thus C = R(i) ={
a+ bi

∣∣ a, b ∈ R
}

, with addition and multiplication

(a+ bi) + (c+ di) = a+ c+ (b+ d)i,

(a+ bi)(c+ di) = ac+ (ad+ bc)i+ bdi2 = ac− bd+ (ad+ bc)i.

We have seen that a simple algebraic extension is a finite extension. Now we want
to see that conversely finite field extensions are algebraic extensions.

Theorem 2.11. Let K/k be a field extension. K/k is a finite extension if and
only if K/k is algebraic and there are finitely many elements a1, . . . , an ∈ K such
that K = k(a1, . . . , an).
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Proof. ”=⇒” Let m := [K : k]. Then for any a ∈ K the elements 1, a, . . . , am

are linearly dependent. Thus there exists a nonzero polynomial f ∈ k[x] with f(a) =
0. If a1, . . . , an is a basis of K over k, then K = k(a1, . . . , an).

”⇐=” We prove this by induction on n, the case n = 0 being trivial. Assume
that K = k(a1, . . . , an+1) and that for L := k(a1, . . . , an) the degree m := [L : k] is
finite. Let g be the minimal polynomial of an+1 over L. Then [K : L] = deg(f) and
[K : k] = [K : L][L : k] = deg(f)m is finite. �

This result implies that the elements of K which are algebraic over k form an
intermediate field of K/k.

Corollary 2.12. Let L :=
{
a ∈ K

∣∣ a is algebraic over k
}
. Then L is a subfield

of K/k and L/k is an algebraic extension.

Proof. We know k ⊂ L. If a, b ∈ L, then k(a, b)/k is a finite algebraic extension,
and by the previous theorem also a − b, a/b lie in L. Thus L is a field, and by
definition L/k is an algebraic extension. �

Example 2.13. The set Q :=
{
a ∈ C

∣∣ a is algebraic over Q
}

is the field of
algebraic numbers. It is an (infinite) algebraic extension of Q.

We also get that the composition of algebraic extensions is an algebraic extension.

Corollary 2.14. Let K/L and L/k be algebraic field extensions. Then K/k is
an algebraic field extension.

Proof. Let u ∈ K. We need to show that u is algebraic over k. As u is algebraic
over L, g(u) = 0 for a nonzero g =

∑m
i=0 aix

i ∈ L[x]. We put M := k(a0, . . . , am).
Then M/k is a finite extension, and M(u)/M is a finite extension. Thus [M(u) : k] =
[M(u) : M ][M : k] is finite. Therefore u is algebraic over k. �

Extension of field homomorphims. Now we want to show the following: if a, b ∈
K have the same minimal polynomial over k, then k(a) is k-isomorphic to k(b). We
will prove something more general which will be a key ingredient in our development
of Galois theory: If ϕ : k → k′ is a field isomorphism which sends the minimal
polynomial of a ∈ K to that of a′ ∈ K ′, then there is a unique way to extend ϕ to an
isomorphism Φ : k(a)→ k′(a′) with Φ(a) = a′.

Definition 2.15. Let ϕ : k → k′ a field isomorphism and let L/k, L′/k′ be field
extensions. An isomorphism Φ : L→ L′ is called an extension of ϕ, if Φ|k = ϕ.

Remark 2.16. Let ϕ : k → k′ be an isomorphism of fields. Then ϕ defines an
isomorphism

ϕ∗ : k[x]→ k′[x]; f =
∑
i

aix
i 7→

∑
i

ϕ(ai)x
i.
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Theorem 2.17. Let ϕ : k → k′ be a field isomorphism. Let L/k and L′/k′ be field
extensions. Let a ∈ K be algebraic over k with minimal polynomial fa. Let a′ ∈ K ′
be a zero of ϕ∗(fa).

Then there is a unique extension Φ : k(a)→ k′(a′) of ϕ with Φ(a) = a′.

Proof. (Uniqueness). Let Φ : k(a)→ k′(a′) be an extension of ϕ with Φ(a) = a′.
Then k(a) = {g(a)|g ∈ k[x]}, and k′(a′) = {g′(a′)|g′ ∈ k′[x]} and for g =

∑
i bix

i ∈
k[x], Φ is uniquely determined by:

Φ(g(a)) =
∑
i

ϕ(bi)Φ(a)i =
∑
i

ϕ(bi)(a
′)i = ϕ∗(g)(a′).

(Existence) We define Φ : k(a) → k′(a′) by Φ(g(a)) := ϕ∗(g)(a′). Then obviously Φ
is a homomorphism. As ϕ∗ is an isomorphism, we see that Φ is surjective. Finally
assume h(a) ∈ ker(Φ), for h ∈ k[x]. Then ϕ∗(h)(a′) = 0. By definition ϕ∗(fa) is the
minimal polynomial of a′ over k′. Thus ϕ∗(fa) divides ϕ∗(h) and thus f divides h
and therefore h(a) = 0. This shows that Φ is injective, and thus an isomorphism. For
u ∈ k a we get Φ(u) = ϕ∗(u) = ϕ(u). And we get Φ(a) = ϕ∗(x)(a′) = a′. �

For the future the following corollary will be important:

Corollary 2.18. Let K/k be a field extension and let a, a′ ∈ K be algebraic with
the same minimal polynomial.

Then there exists a unique k-isomorphism ϕ : k(a)→ k(a′) with ϕ(a) = a′.

Exercises.

(1) Let K/k be a field extension. Let α ∈ K be a zero of an irreducible polyno-
mial x3 − ax + b ∈ k[x]. Find explicitely the inverse of 1 + α in k(α) in the
form u+ vα + wα2 with u, v, w ∈ k.

(2) Let n ∈ Z≥1. Construct a field extension K ⊂ C of Q with [K : Q] = n.
(3) Let p, q be distinct prime numbers and let K := Q(

√
p,
√
q). Prove the

following:
(a) [K : Q] = 4,
(b) K = Q(

√
p+
√
q),

(c) The minimal polynomial of
√
p+
√
q over Q is

x4 − 2(p+ q)x2 + (p− q)2.

(4) Determine the minimal polynomial of
√

3 +
√

5 over each of the following
fields.
(a) Q.
(b) Q(

√
5).

(c) Q(
√

15).

(5) Let a :=
√

2, b := 3
1
3 ∈ C. Show [Q(a, b) : Q] = 6.

(6) Determine [Q(
√

2 +
√

3) : Q].
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(7) Assume [k(a) : k] = n, [k(b) : k] = m and n,m are relatively prime. Show
that [k(a, b) : k] = nm.

(8) Decide whether or not i is in the field
(a) Q(

√
−2).

(b) Q( 4
√
−2).

(c) Q(α), where α3 + α + 1 = 0.
(9) Let α := e2πi/7, β := e2πi/5. Prove that β 6∈ Q(α).

(10) Let α,β be complex numbers with [Q(α) : Q] = [Q(β) : Q] = 3. Determine
the possiblities for [Q(α, β) : Q].

(11) Let α, β be complex roots of irreducible polynomials f, g ∈ Q[x] respectively.
Let F := Q(α), K := Q(β). Show that f is irreducible in K[x] if and only if
g is irreducible in F [x].

(12) Let a ∈ C be algebraic over Q. We say that a is an algebraic integer if it
satisfies a monic equation an + bn−1a

n−1 + . . . b0 = 0, with b0, . . . , bn−1 ∈ Z.
(a) Let a ∈ C be algebraic over Q. Show there exists a positive integer m

such that ma is an algebraic integer.
(b) If r ∈ Q is an algebraic integer, then r ∈ Z.
(c) Let α be an algebraic integer satisfying α3+α+1 = 0 and β an algebraic

integer satisfying β2 + β− 3 = 0. Show that α+ β and αβ are algebraic
integers.

(13) Let k be a field and assume xn − a is irreducible over K and m|n. Let u be
a zero of xn− a over an extension K/k. Show [k(um) : k] = n/m. Determine
the minimal polynomial of um over k.

(14) Let k be a field, let a, b be algebraic over k with [k(a) : k] = n, [k(b) : k] = m.
Show that [k(a, b) : k] ≤ nm with equality if n and m are relatively prime.

3. Algebraic closure

We will briefly without proofs introduce the algebraic closure of a field. The
results will not be used in the rest of the course. A field K is called algebraically
closed, if every nonconstant f ∈ K[x] has a zero in K. An algebraic closure of a field
k is an algebraically closed field which is an algebraic extension of k.

Definition 3.1. Let K be a field. K is called algebraically closed if the following
equivalent statements hold.

(1) Every nonconstant polynomial f ∈ K[x] has a zero in K.
(2) Every nonconstant polynomial f ∈ K[x] splits into linear factors i.e. there

exist a1, . . . , an, b ∈ K such that

f = b(x− a1) · . . . · (x− an).

It is easy to see that the two statements are equivalent: (2)=⇒(1) is obvious. Now
assume (1). Let a ∈ K be a zero of a nonconstant polynomial f ∈ K[x]. Then we
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can write f = (x− a)g with g ∈ K[x] and deg(g) = deg(f)− 1. The result follows by
induction on deg(f).

Example 3.2. (1) Q is not algebraically closed, e.g. x2 − 2 has no zero in
Q.

(2) R is not algebraically closed, e.g. x2 + 1 has no zero in R.
(3) C is algebraically closed. This is the Fundamental Theorem of Algebra. It is

usually proved in Complex Analysis.
(4) Q is algebraically closed.

Definition 3.3. A field extension K/k is called an algebraic closure of k if K/k
is an algebraic extension and K is algebraically closed.

With the Lemma of Zorn one shows that every field has up to isomorphism a
unique algebraic closure. We will not go into the proof.

Theorem 3.4. (1) Every field k has an algebraic closure.
(2) If K, L are algebraic closures of k, then there exists a k-isomorphism Φ :

K → L.

Example 3.5. (1) The algebraic closure of R is C.
(2) The algebraic closure of Q is Q. Note that C is not an algebraic closure of

Q, because it contains transzendental elements, e.g. e, π.

Exercises.

(1) Show that Q is algebraically closed.

4. Splitting fields

In this section we fix a field k. Given a nonconstant polynomial f ∈ k[x] we want
to find a finite field extension K/k such that k has a zero in K or even such that f
splits into linear factors over K. First we show that for a nonconstant polynomial
f ∈ k[x] we can always find a root of f in a finite extension K of k.

Theorem 4.1. Let f ∈ k[x] be irreducible. There exists a simple algebraic exten-
sion K/k with [K : k] = deg(f), such that f has a zero in K.

Proof. This is a formal, almost tautological construction. We will use f to
construct the field. As f is irreducible and k[x] is a PID, we know that K := k[x]/〈f〉
is field. Let π : k[x]→ K be the canonical projection. π|k is injective and the image
is a subfield of K (which we identify with k). Thus K/k is a field extension. We
claim that f has a zero in K, namely the class [x]: Write f :=

∑n
i=0 aix

i with ai ∈ k.
Then

0 = [f ] =
n∑
i=0

[ai][x
i] =

n∑
i=0

ai[x]i = f([x]).

Thus [x] is a zero of f in K, and K = k([x]).
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Finally we determine [K : k]. By dividing f by its leading coefficient we can
assume that f is monic. So f is an irreducible monic polynomial with f([x]) = 0,
that is f is the minimal polynomial of [x] over k. Thus [K : k] = deg(f). �

Definition 4.2. In the situation of the Theorem we say that K is obtained from
k by formally adjoining a root of f .

Corollary 4.3. Let f ∈ k[x] be a polynomial of degree n > 0. Then there exists
a field extension K/k with [K : k] ≤ n such that f has a zero in K.

Proof. Just apply the previous theorem to any irreducible factor of f . �

Given a polynomial f ∈ k[x] we can adjoin successively more roots until f splits
into linear factors. The smallest such extension of k will be called a splitting field of
f over k. It is uniquely determined up to isomorphism.

Definition 4.4. Let f ∈ k[x] by a polynomial of degree n > 0. A finite extension
K/k is called a splitting field of f over k if

(1) f splits over K into linear factors, i.e. there exist a1, . . . , an, b ∈ K such that
f = b(x− a1) · . . . · (x− an).

(2) f does not split over any intermediate field K ) L ⊃ k.

It is easy to see that splitting fields of polynomials always exist.

Corollary 4.5. Let f ∈ k[x] be monic.

(1) If L/k is an extension of k over which f splits into linear factors x −
a1, . . . , x− an then k(a1, . . . , an) is a splitting field of f over k.

(2) There exists a splitting field K of f over k with [K : k] ≤ n!.
(3) Let K be a splitting field of f over k, and let L be an intermediate field.

Then K is also a splitting field of f over L.

Proof. (1) Let L/k be a field extension, such that over L we have f = (x −
a1) . . . (x − an) with ai ∈ L. We claim that F := k(a1, . . . , an) is a splitting field of
f . Obviously f splits over F into linear factors. Assume L1 ⊂ F is a subfield over
which f factors into linear factors f = (x − c1) . . . (x − cn). Then for all i we have
0 = f(ai) = (ai − c1) . . . (ai − cn). Therefore ai = cj for some j. Thus we see that
ai ∈ L1 for all i, i.e. F := k(a1, . . . , an) ⊂ L1. Therefore F = L1.

(2) By the previous corollary we find an extension K1/k with [K1 : k] ≤ n such
that f has a root a1 ∈ K1. Then f = (x − a1)g with deg(g) ≤ n − 1. By induction
there is a finite field extension K/k of degree ≤ n! such that f splits over K into
linear factors x− a1, . . . , x− an. By (1) k(a1, . . . , an) is a splitting field of f over k.

(3) f splits over K into linear factors, and there is no intermediate field between
L and K where it splits. �

Example 4.6. (1) C is a splitting field of x2 + 1 over R[x] and Q[
√

2] is a
splitting field of x2 − 2 over Q.
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(2) More generally let f ∈ k[x] be an irreducible polynomial of degree 2 and
K/k is an extension of degree 2 such that f has a zero in K. Then K is a
splitting field of f over k.

(3) (Splitting field of x4 + 1 over Q). Let α be a root of x4 + 1 in an extension
of Q. Then also −α, 1

α
and − 1

α
are roots of x4 + 1. These roots are distinct:

α 6= −α because α 6= 0 and if α = ± 1
α

, then α2 = ±1; thus α4 + 1 = 2 6= 0.
Thus over Q(α) we get a splitting

x4 − 1 = (x− α)(x+ α)(x− 1

α
)(x+

1

α
).

Therefore Q(α) is the splitting field of x4 + 1.
(4) (Splitting field of x3 − 2). Over the complex numbers we have

x3 − 2 = (x− 3
√

2)(x− e2πi/3 3
√

2)(x− e4πi/3 3
√

2).

Clearly x3 − 2 splits over Q( 3
√

2, e2πi/3), but it does not split over Q( 3
√

2) or
Q(e2πi/3), because 3

√
2 is real and Q(e2πi/3) does not contain 3

√
2. [Q( 3

√
2) :

Q] = 3 and [Q(e2πi/3) : Q] = 2. Thus [Q( 3
√

2, e2πi/3) : Q] = 6.

Extension of field isomorphisms. The aim of Galois theory will be to un-
derstand field extensions K/k in terms of the k-automorphisms of K. Thus it is
important to study how field isomorphisms extend.

Similarly to the case of simple algebraic extensions, we want to show that a
field isomorphism ϕ : k → k′ can be extended to an isomorphism of splitting fields
Φ : K → K ′ were K is a splitting field of a polynomial f ∈ k[x] and K ′ is a splitting
field of ϕ∗(f). This in particular shows that the splitting field of a polynomial f ∈ k[x]
is uniquely determined up to isomorphism.

Theorem 4.7. Let ϕ : k → k′ be an isomorphism of fields. Let f ∈ k[x] be a

nonzero polynomial and f̂ := ϕ∗(f). Let K be the splitting field of f over k and

K ′ the splitting field of f̂ over k′. Then there is an isomorphism Φ : K → K ′ with
Φ|k = ϕ.

In particular if K, K ′ are splitting fields of f over k then there is a k-isomorphism
Φ : K → K ′.

Proof. We use induction over the degree [K : k]. If [K : k] = 1, then K = k
and K ′ = k′, so there is nothing to show.

If [K : k] > 1, then f contains an irreducible factor g of degree deg(g) > 1 and

similarly ĝ = ϕ∗(g) is an irreducible factor of f̂ of degree > 1. Let a be a zero of g in
K and a′ a zero of ĝ in K ′. Then by the previous theorem there is an isomorphism
ϕ′ : k(a)→ k′(a′) with ϕ′|k = ϕ and [K : k(a)] < [K : k].

On the other hand K is the splitting field of f over k(a) and K ′ is the splitting

field of f̂ over k′(a′). Thus by induction there is an isomorphism Φ : K → K ′ with
Φ|k(a) = ϕ′ and thus Φ|k = ϕ. �
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Remark 4.8. Note that the result that we have proven here is much weaker
than the result that we had earlier for simple algebraic extensions. While in the
case of simple algebraic extensions we had existence and uniqueness of the extension
k(a)→ k′(a′) (for any zero a of the minimal polynomial f of a and a′ of ϕ∗(f)), now
we only have the existence. Thus we do not know how many extensions there are.
This is the main difficulty when doing Galois theory.

Exercises.

(1) Let f = x4 +x2 + 1 ∈ Q[x]. Let ω := −1+
√
3i

2
. Show that Q(ω) is the splitting

field of f over Q and that [Q(ω) : Q] = 2.
(2) Determine the degrees of the splitting fields of the following polynomials over

Q.
(a) x4 + 1.
(b) x6 + 1.
(c) x4 − 2.
(d) x6 + x3 + 1.

(3) Let p be a prime number. Show that the degree of the splitting field of xp−1
over Q is p− 1.

(4) Let f := x3 + ax + b ∈ Q[x]. Find necessary and sufficient conditions on a
and b so that the degree of the splitting field of f over Q is 3.

(5) Let k be a field, and let K/k be a field extension. Let f ∈ k[x] and let ϕ be
an automorphism of K with ϕ|k = idk. Show that ϕ maps a zero of f ∈ K
to a zero of f ∈ K.

(6) Show that Q( 3
√

2) has no automorphism except for the identy.
(7) Let f ∈ R[x]. If α ∈ C is a zero if f , then also the complex conjugate α.
(8) Let k be a field and let f ∈ k[x] be irreducible of degree 6. Let K/k be an

extension of degree 2. Prove or disprove: Either f is irreducible over K or f
is the product of two irreducible polynomials of degree 3 over K.

5. Normal extensions

Now we come to two very important properties of field extensions: normal exten-
sions and separable extensions. If a field extension is both normal and separable, then
it will be called later a Galois extension, and the Galois extensions are those that we
will mostly want to study. Both the definition of normal extension and of separable
extension are not very intuitive, however we will see that the normal extensions are
precisely the splitting fields and in characteristic 0 all field extensions are separable.

Definition 5.1. A field extension K/k is called normal if it is an algebraic ex-
tension and every irreducible polynomial f ∈ k[x] that has a zero in K splits over K
into linear factors.

Example 5.2. In the above example Q( 3
√

2)/Q is not a normal extension, because
x3 − 2 has a root in Q( 3

√
2), but does not split into linear factors.
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Proposition 5.3. A finite extension K/k is normal if and only if K is the split-
ting field of a polynomial in k[x].

Proof. ”⇐=” Let K be a splitting field of a polynomial f ∈ k[x]. Let g ∈ k[x]
be an irreducible polynomial with a zero α ∈ K. We have to show that g splits over
K. Let β be another zero of g in an extension of K. We will show β ∈ K. Then the
result follows by induction.

Since g is irreducible, we know that there is an k-isomorphism ϕ : k(α) → k(β).
K is also a splitting field of f over k(α), and K(β) is a splitting field of f over k(β).
Thus we get an isomorphism Φ : K → K(β) with Φ|k(α) = ϕ and thus Φ|k = id. Thus
[K : k] = [K(β) : k] and therefore [K(β) : K] = 1, which implies K(β) = K. Thus
β ∈ K.

”=⇒” Let K/k be a finite normal extension. We can write K = k(a1, . . . , an)
with e.g. the ai a basis of K over k. Let fi be the minimal polynomial of ai over k.
Then because K/k is normal, each fi splits over k(a1, . . . , an) into linear factors, and
thus f = f1 . . . fn does. As K = k(a1, . . . , an) and a1, . . . , an are the zeros of f , it is
the splitting field of f . �

Example 5.4. (1) Q(
√

2)/Q is a normal extension.
(2) Q( 3

√
2, e2πi/3) is a normal extension.

6. Separable extensions

Let k be a field. Let f ∈ k[x] be a polynomial and let f = b(x − a1) . . . (x − an)
be a splitting of f into linear factors over some extension of L/k. It can happen that
some of the ai coincide (e.g. a1 = a2 = a). We say in this case that a is a multiple
root of f . To avoid problems coming from multiple roots, the concept of separable
extension is introduced. In characteristic zero all algebraic extensions are separable.

Definition 6.1. Let f ∈ k[x] and let

f = b(x− a1)m1 . . . (x− al)ml , mi > 0, a1, . . . , al ∈ K distinct

be the splitting of f into linear factors over an extension K/k. If mi = 1, then ai is
called a simple root in K. If mi > 1, then ai is called a multiple root of order mi.

Definition 6.2. An algebraic field extension K/k is called separable if all irre-
ducible polynomials f ∈ k[x] with a zero in K have only simple roots in their splitting
fields. Equivalently the minimal polynomial of any a ∈ K has only simple roots in its
splitting field. If every algebraic extension K/k is separable over k, then k is called
perfect.

We need a criterion for f ∈ k[x] to have multiple roots in its splitting field. Like
in calculus an element a ∈ K is a multiple root of f if and only if it is both a root of
f and of the derivative f ′. Here the derivative is done by formally applying the rules
that one knows from calculus for polynomials in R[x].
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Definition 6.3. Let f =
∑n

i=0 aix
i ∈ k[x]. The derivative of f is f ′ :=

∑n
i=1 iaix

i−1.

Remark 6.4. It is straightforward to check and left as an exercise that the usual
rules for differentiation hold:

(1) (af + bg)′ = af ′ + bg′ for a, b ∈ k
(2) (fg)′ = f ′g + fg′.

Lemma 6.5. Let f ∈ k[x] be a nonconstant polynomial and let K/k be a splitting
field of f , let a ∈ K be a zero of f . Then a is a multiple root of f if and only if
f ′(a) = 0.

Proof. Let r ≥ 1 be the multiplicity of the root a. Then we can write f =
(x− a)rg with g ∈ K[x] and g(a) 6= 0 and we get

f ′ = r(x− a)r−1g + (x− a)rg′

and the claim follows. �

Theorem 6.6. Let f ∈ k[x] be an irreducible polynomial. f has no multiple roots
in its splitting field over k if and only if f ′ 6= 0.

Proof. Let K/k be the splitting field of f . If f ′ = 0, then by the above every
root of f is a multiple root. Let a ∈ K be a multiple root of f . Then f(a) = f ′(a) = 0.
As f is irreducible, it is up to a constant multiple the minimal polynomial of a. Thus
f ′ is divisible by f . If f ′ 6= 0, then deg(f ′) < deg(f), so we get a contradiction. �

In calculus we know that a polynomial f ∈ R[x] can only have 0 derivative if it is
constant, in particular irreducible polynomials f ∈ R[x] can never have derivative 0.
It is easy to see that the same holds if the characteristic of k is 0. Thus we obtain:

Corollary 6.7. Every field of characteristic 0 is perfect.

Proof. It follows from the definition that for a nonconstant polynomial f ∈ k[x]
over a field k of characteristic 0 the derivative f ′ is not 0. �

We finish this section with a proof of the important theorem of the primitive
element. It says that every finite separable extension is a simple extension. In partic-
ular in characteristic 0 all finite extensions are simple extensions. This is very useful
because we understand simple extensions much better.

Theorem 6.8. (Theorem of the primitive element). Let K be a finite separable
field extension of k. Then there exists an element a ∈ K with K = k(a).

Proof. In the proof we assume for simplicity that k is infinite. (This is for
instance true of k has characteristic 0. The theorem also holds for finite fields, but
one needs some additional arguments.) The proof is slightly subtle.

Since [K : k] is finite, we have K = k(a1, . . . , an) for some ai ∈ K. We make
induction on n. If n > 2, then by induction we have k(a1, . . . , an−1) = k(a) for some
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a ∈ K and K = k(a, an). Thus we can assume n = 2 and write K = k(a, b). We will
show that K = k(c) for a general linear combination c = a+ zb with z ∈ k.

Let f and g be the minimal polynomials of a and b over k respectively. Let L/K
be a field where f and g split into linear factors. Let

a = x1, x2, . . . , xn roots of f ;

b = y1, y2, . . . , ym roots of g.

Then, as K/k is separable, b 6= yj for all j 6= 1. It follows that for i = 1, . . . , n,
j = 2, . . . ,m, the element zij := xi−a

b−yj is the only element of L with a+zijb = xi+zijyj.

Since k is infinite, we can choose an element z ∈ k, different from all zij, thus
a+ zb 6= xi + zyj unless i = j = 1.

Put c = a + zb. Then obviously k(c) ⊂ k(a, b). We want to show k(a, b) ⊂ k(c).
We define h ∈ k(c)[x] by h(x) := f(c− zx). Then

h(b) = f(c− zb) = f(a) = 0.

As b is a zero of g in L we get that (x − b) is a common factor of h and g in L[x].
We want to show that x − b is a greatest common divisor of h and g in L[x]. As g
splits over L into linear factors, the greatest common divisor must be a product of
some linear factors of g. For yj 6= b another root of g, we get h(yj) = f(c− zyj) 6= 0
because by our choice of z, c − zyj 6= ai for all roots ai of f . Thus (x − yj) is not a
factor of h. Thus (x− b) is the greatest common divisor of h and g in L[x].

However by the Euclidean algorithm a monic greatest common divisor of h, g
lies in k(c)[x], thus x − b ∈ k(c)[x], i.e. b ∈ k(c) and a = c + zb ∈ k(c). Thus
k(a, b) ⊂ k(c). �

Exercises.

(1) Find a primitive element for the extension Q( 3
√

2, e2πi/3)/Q.
(2) Let k be a field of characteristic p 6= 0 and let f ∈ k[x] with f ′ = 0. Show

that f = g(xp) for some polynomial g ∈ k[x].
(3) Let K/L/k be field extensions. Show that if K is normal over L and

L is normal over k then K need not be normal over k. (Hint: consider
Q( 4
√

2)/Q(
√

2)/Q).
(4) Let K/k be a field extension with [K : k] = 2. Show that K/k is normal.
(5) Let k be a field of characteristic 0. Let f ∈ k[x]. Let g ∈ k[x] be an

irreducible polynomial that divides f and f ′. Show g2 divides f .
(6) For which fields and which primes p does xp − x have a multiple root?

7. Finite fields

Before going on with the general theory we briefly want to study finite fields. For
a prime number p we already know the finite field Fp = Z/pZ with p elements. One
might think that these are the only finite fields, but this is not true: For every prime
power q = pn there is up to isomorphism a unique field with q elements, the splitting
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field of xq − x over Fp. First we show that for any prime power q = pn there is a
field with q elements. For the rest of this section we fix a prime number p, a positive
integer n and put q = pn.

Lemma 7.1. Let F be a field of characteristic p. Then xq−x ∈ F [x] has precisely
q simple roots in its splitting field.

Proof. Let a ∈ F be a multiple root. Then a is a zero of xq−x and of (xq−x)′ =
qxq−1 − 1 = −1, which is impossible. �

Proposition 7.2. There exists a field with q elements.

Proof. Let K be the splitting field of xq − x over Fp. Let

F := {a ∈ K
∣∣ (aq − a) = 0},

be the set of roots of (xq−x). By the previous lemma F has q elements. We claim that
F is a field. If a, b ∈ F , then (ab)q = aqbq = ab, thus ab ∈ F , (1/a)q = 1/aq = 1/a, so
1/a ∈ F and (a± b)q = aq ± bq = (a± b). Thus a± b ∈ F . Thus F is a field with q
elements. �

The argument below will show that indeed F = K. Now we want to show that
these are up to isomorphism all finite fields.

Remark 7.3. Let F be a finite field of characteristic p. Then F contains {n·1|n ∈
Z} ' Fp. Thus F is a finite extension of Fp. Putting n = [F : Fp], then F has pn

elements.

Proposition 7.4. If F is a field with q := pn elements, then F is a splitting field
of the polynomial xq − x over Fp.

Proof. First we want to see that every element a ∈ F satisfies aq − a = 0. If
a = 0, this is obvious. (F \ {0}, ·) is a group of order q − 1. By a well known result
in group theory (small theorem of Fermat) for every element g in a finite group G of
order k we have gk = e where e is the neutral element of G. Thus we get aq−1 = 1
and thus aq − a = 0.

As xq − x has degree q it can have at most q roots in F ; on the other hand the
elements of F are q distinct roots. Thus xq − x splits over F into linear factors. F is
the splitting field of xq − x, because it consists only of roots of xq − x. �

Putting these two proposition together and recalling that the splitting field of a
polynomial over a given field is unique up to isomorphism we get a complete classifi-
cation of the finite fields.

Theorem 7.5. A finite field with n elements exists only if n is a prime power. For
each prime power q = pm there is up to isomorphism a unique field with q elements:
the splitting field of xq − x over Fp.

Exercises.



8. GALOIS GROUPS 73

(1) Identify the additive group of F4.
(2) Determine the number of irreducible polynomials of degree 3 over F2.
(3) Determine all polynomials f ∈ Fq[x] such that f(α) = 0 for all α ∈ Fq.
(4) Prove that every element in Fp has exactly one p-th root.

8. Galois groups

The aim of Galois theory is to study fields via their automorphism groups. More
precisely one studies finite field extensions K/k via the Galois group Gal(K/k) of
k-automorphisms of K. Very much information about the field extension is encoded
in the Galois group. It has been said that modern number theory is nothing else then
the study of Gal(Q/Q).

Definition 8.1. Let K/k be a field extension. The Galois group Gal(K/k) of K
over k is the set of k-automorphisms ϕ : K → K. Obviously the composition of two
k automorphisms is a k-automorphism, and we see that Gal(K/k) is a group.

Example 8.2. Complex conjugation ι : C→ C, a+ bi 7→ a− bi, is an element of
Gal(C/R). We will see that Gal(C/R) = {id, ι}.

At first look the Galois group looks like something very abstract that is very
difficult to understand. However for a simple algebraic extension k(a)/k, we can
identify Gal(k(a)/k) with a subgroup of the group of permutations of the roots of the
minimal polynomial of a.

Notation 8.3. For a finite set M we denote by S(M) :=
{
σ : M →M bijection}

the set of permutations of M . Then S(M) is isomorphic to the symmetric group Sn
where n = |M | is the number of elements of M .

Recall that an action of a group G on a set M is simply transitive if for all
m1,m2 ∈M there is a unique g ∈ G with g(m1) = m2. Then obviously |G| = |M |.

Theorem 8.4. Let k(a)/k be a simple algebraic extension of degree n. Let f be
the minimal polynomial of a over k and let R :=

{
b ∈ k(a)

∣∣ f(b) = 0
}

be the set of
its roots.

Then Gal(k(a)/k) acts simply transitively on R. Thus Gal(k(a)/k) is isomorphic
to a subgroup of S(R) of order |R| ≤ n.

Proof. Let ϕ ∈ Gal(k(a)/k). If g =
∑

i aix
i ∈ k[x] and b ∈ k(a), then

ϕ(g(b)) =
∑
i

aiϕ(b)i = g(ϕ(b)).

Thus if b is a root of f , then 0 = f(b) = ϕ(f(b)) = f(ϕ(b)), thus ϕ(b) is also a root
of f . (This elementary argument will be used very often in the future). So we see
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that ϕ|R maps R into itself. As ϕ is injective, also ϕ|R is injective, and as R is finite
it follows that ϕ|R is a bijection of R to itself. Thus we get a map

resR : Gal(k(a)/k)→ S(R), ϕ 7→ ϕ|R.

Obviously (ϕ ◦ ψ)|R = ϕ|R ◦ ψ|R, i.e. resR : Gal(k(a)/k) → S(R) is a group homo-
morphism.

We have seen that given any two roots b1, b2 of f , there exists a unique element
ϕ ∈ Gal(k(a)/k) with ϕ(b1) = b2. Thus Gal(k(a)/k) acts simply transitively on R,
in particular resR is injective. Therefore Gal(k(a)/k) is isomorphic to a subgroup
of S(R). As the action is simply transitive we get |Gal(k(a)/k)| = |R|. Finally
|R| ≤ deg(f) = n. �

Example 8.5. (1) Gal(Q(
√

2)/Q) consists of the two elements id and a +
b
√

2 7→ a −
√

2: The minimal polynomial of
√

2 over Q is x2 − 2 which has
the two roots ±

√
2.

(2) Gal(Q( 3
√

2)/Q) = id: The minimal polynomial of 3
√

2 over Q is x3 − 2,
which has 3

√
2 as only root in Q( 3

√
2). Thus Gal(Q( 3

√
2)/Q) contains only

one element.

The subject of Galois theory are Galois extensions, which are finite separable
normal extensions.

Definition 8.6. A finite field extension K/k is called a Galois extension if it is
separated and normal. (Note that in characteristic 0 separatedness is automatic).

Corollary 8.7. Let K/k be a Galois extension of degree n. Then Gal(K/k) is
isomorphic to a subgroup of Sn which acts simply transitively and |Gal(K/k)| = n.

Proof. By the Theorem of the Primitive Element K = k(a) for some a ∈ K,
and as K/k is separated and normal the minimal polynomial of f has n distinct roots
in K. �

Proposition 8.8. Let K/k be a Galois extension and a, b ∈ K. There exists an
element ϕ ∈ Gal(K/k) with ϕ(a) = b if and only if a and b have the same minimal
polynomial over k.

Proof. If a, b have the same minimal polynomial, then there is a unique k-
isomorphism ψ : k(a) → k(b) with ψ(a) = b. K is the splitting field of a polynomial
f ∈ k[x] over k and thus also over k(a). Thus by the extension of isomorphisms to
splitting fields ψ can be extended to an element ϕ ∈ Gal(K/k).

For the converse let b = ϕ(a), with a, b ∈ K, ϕ ∈ Gal(K/k). Let f and g be the
minimal polynomials of a, b over k. Then 0 = ϕ(f(a)) = f(ϕ(a)) = f(b), thus g
divides f , as g is the minimal polynomial of b. Similarly f |g. Therefore we get f = g,
as f, g are monic. �
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We will see the power of this result in the proof of the next theorem. A very
important result for Galois theory is that k is precisely the set of elements of a Galois
extension K/k fixed by all elements of Gal(K/k). This is half of the proof of the Main
Theorem of Galois theory, which relates subgroups of Gal(K/k) to intermediate fields
K/L/k

Theorem 8.9. Let K/k be a Galois extension. Then k =
{
a ∈ K

∣∣ ϕ(a) =

a for all ϕ ∈ Gal(K/k)
}
.

Proof. ”⊂” is trivial. ”⊃” Assume ϕ(a) = a for all ϕ ∈ Gal(K/k). Let f be the
minimal polynomial of a over k. Since K/k is normal, f splits over K. Let b be a root
of f . Then there exists ϕ ∈ Gal(K/k) with ϕ(a) = b. Thus a = b by our assumption,
i.e all the roots of f are equal. But f does not have multiple roots because K/k is
separable. Thus f = x− a ∈ k[x] and thus a ∈ k. �

We will usually study field extensions given as the splitting field of some polyno-
mial. Thus we define the Galois group of a polynomial f ∈ k[x] as the Galois group
of its splitting field K over k. In this case Gal(f) can be identified with a subgroup
of the permutations of the roots of f in K, and this is usually also the best way to
look at it.

Definition 8.10. Let f ∈ k[x] be a nonconstant polynomial. Let K be the
splitting field of f over K (unique up to isomorphism which is the identity on k).
The Galois group of f is Gal(f) := Gal(K/k).

Proposition 8.11. Let f ∈ k[x] be a nonconstant polynomial of degree n. Let R
be the set of roots of f in the splitting field K of f .

(1) Then Gal(f) is isomorphic to a subgroup of S(R) and |Gal(f)| divides n!.
(2) If all roots of f in K are simple, then f is irreducible if and only if Gal(f)

acts transitively on R.

Proof. (1) We have Gal(f) = Gal(K/k). If a is a root of f in K, then
f(ϕ(a)) = ϕ(f(a)) = 0 for all ϕ ∈ Gal(K/k). Thus restriction to R defines a group
homomorphism Gal(K/k) → S(R). If ϕ|R = id, then ϕ = id, because K = k(R).
Hence Gal(f) is isomorphic to a subgroup of S(R). As |R| ≤ n, we get that |Gal(f)|
divides |R|! which divides n!.

(2) Now assume that f has only simple roots in K. Let f be irreducible, a, b ∈ R.
Then f is the minimal polynomial of a and b over k. There exists an k-isomorphism
ψ : k(a)→ k(b) with ψ(a) = b. K is the splitting field of f both over k(a) and k(b).
Thus by the extension of isomorphisms to splitting fields there exists an extension
ϕ ∈ Gal(K/k) of ψ. Thus Gal(f) acts transitively on R.

Conversely assume Gal(f) acts transitively on R, but f is reducible. Let g1, g2 ∈
k[x] be two different irreducible factors of f . Let a1, a2 be roots of g1, g2 in K respec-
tively. As Gal(K/k) acts transitively, there exists ϕ ∈ Gal(f) with ϕ(a1) = a2 But
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we have
0 = ϕ(g1(a1)) = g1(ϕ(a1)) = g1(a2).

Thus g2, which is the minimal polynomial of a2 divides g1. By irreducibility g1 = g2
(up to constant factors). Thus g21|f and thus f cannot have only simple roots. �

Remark 8.12. There is one point that you may find confusing: Let K/k be a
Galois extension, which is the splitting field of a polynomial f ∈ k[x] of degree n. Let
N := [K : k]. Then we know that Gal(f) = Gal(K/k) has N elements. Gal(f) is in
two different ways a subgroup of a symmetric group:

(1) As we just saw, if R is the set of roots of f in K, then Gal(f) is via ϕ 7→ ϕ|R
a subgroup of S(R), the group of permutations of R. This is how one should
always view Gal(f). Note that |R| = n.

(2) As K/k is a finite algebraic extension there is a primitive element a ∈ K,
with K = k(a). Let g be the minimal polynomial of a over k. Then g has
degree N . Let Σ be the set of roots of g in K. Thus also |Σ| = N . Then
Gal(f) = Gal(K/k) is subgroup acting simply transitively of S(Σ). This
second viewpoint is useful for some proofs, but it is not the way to look at
the Galois group Gal(f) in examples, because usually we do not know how
to find the primitive element a.

Example 8.13. (1) Let f = x3 − 2 ∈ Q[x]. We claim that Gal(f) = S3.
f is irreducible. Let K/Q be the splitting field, which is a Galois exten-

sion. Then K = Q[2
1
3 , e2πi/3], and [K : Q] = 6. Thus |Gal(f)| = 6. On the

other hand Gal(f) is a subgroup of S3, thus Gal(f) = S3.
(2) Let f = x4 − 1 ∈ Q[x]. We claim that Gal(f) is F ∗3 which is also the cyclic

group with 3 elements.
Let a = e2πi/4. Then the roots of f ∈ C are 1, a, a2, a3, thus the splitting

field of f is Q(a). We have f = (x − 1)(1 + x + x2 + x3) and the second
factor is irreducible. Thus the minimal polynomial of a is 1 + x + x2 + x3.
Therefore |Gal(f)| = [Q(a) : Q] = 3. We define a group homomorphism
θ : F ∗3 → Gal(f), i 7→ θ(i), where θ(i) is the element of Gal(f) defined by
θ(i)(a) = ai. Obviously θ is injective. As both groups have the same number
of elements, they are isomorphic.

(3) Let f = x4 + 1 ∈ Q[x]. We claim that Gal(f) = Z/2Z⊕ Z/2Z.
If α = e2πi/8 is a root of f , then we have seen f = (x − α)(x + α)(x −

1/α)(x + 1/α) over Q(α), thus Q(α) is the splitting field of f . As Q(α)/Q
is a simple extension, we also know that |Gal(f)| ≤ 4. On the other hand
α 7→ −α, α 7→ 1/α are obviously two commuting elements of Gal(f) which
generate a group isomorphic to Z/2Z⊕ Z/2Z.

Exercises.

(1) Give an example of a simple algebraic extension K/k, such that Gal(K/k) =
{1}, but K 6= k.
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(2) Find the Galois group of x3 − 2x+ 4 over Q.

9. The fundamental theorem of Galois theory

Now we will prove the famous fundamental theorem of Galois theory. It relates the
intermediate fields L of a Galois extension K/k to the subgroups of the Galois group
Gal(K/k). The importance is that it relates questions in field theory to questions in
group theory and in this way often makes it possible to solve them. The proof is not
very long, because we already did a large portion of the work.

Definition 9.1. Let K/k be a field extension. For any subgroup H ⊂ Gal(K/k)
the fixed field of H is

Fix(H) :=
{
a ∈ K

∣∣ ϕ(a) = a for all ϕ ∈ H
}
.

Remark 9.2. (1) Fix(H) is a subfield of K because, if ϕ(a) = a, ϕ(b) = b,
then ϕ(a± b) = ϕ(a)± ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), ϕ(1/a) = 1/ϕ(a).

(2) If K/k is a Galois extension, then Fix(Gal(K/k)) = k.
(3) If L is an intermediate field of K/k, then

Gal(K/L) =
{
ϕ ∈ Gal(K/k)

∣∣ ϕ|L = id
}

is a subgroup of Gal(K/k).

Theorem 9.3. (Fundamental theorem of Galois theory) Let K/k be a Galois
extension with Galois group G.

(1) The mappings H 7→ Fix(H), L 7→ Gal(K/L) are mutually inverse inclusion
reversing bijections{

subgroups of G
}
←→

{
intermediate fields of K/k

}
,

i.e. Fix(Gal(L/k)) = L, Gal(K/Fix(H)) = H.
(2) [K : Fix(H)] = |H| and [Fix(H) : k] = [G : H] for subgroups H ⊂ G.
(3) [K : L] = |Gal(K/L)| and [L : k] = [G : Gal(K/L)] for intermediate fields

k ⊂ L ⊂ K.

Proof. The main part is (1). (2) and (3) are easy consequences. (1) Let L be an
intermediate field of K/k. Then K/L is a Galois extension. (It is a splitting field of
a polynomial over k and thus over L, thus K/L is a normal extension. Let f be the
minimal polynomial of an element a of K over L and let g be the minimal polynomial
of a over k. As K/k is separated g has no multiple roots in its splitting field. On the
other hand f is a factor of g. Thus as g has no multiple roots in its splitting field.
Thus K/L is separated.)

Therefore Fix(Gal(K/L)) = L by the last remark. Let H be a subgroup of G.
We put F := Fix(H). We need to show Gal(K/F ) = H. By the theorem of the
primitive element K = k(a) for some a ∈ K. Define

f :=
∏
h∈H

(x− h(a)) ∈ k(a)[x], deg(f) = |H|.
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All roots of f are distinct: h1(a) = h2(a) implies h1 = h2, because k(a)/k is a simple
extension. We write f =

∑
i bix

i with bi ∈ k(a). We want to see that bi ∈ F , i.e.
f ∈ F [x]. For l ∈ H we put l∗(f) =

∑
i l(bi)x

i =
∏

h∈H(x− l(h(a))). Then obviously
l∗f =

∏
h∈H(x − h(a)) = f . Thus we see that bi ∈ F [x] for all i, i.e. f ∈ F [x].

We have f(a) = 0, therefore the minimal polynomial g of a over F divides f . Since
k(a) = F (a), we see

|Gal(K/F )| = [K : F ] = deg(g) ≤ deg(f) = |H|.
But obviously H is a subgroup of Gal(K/F ), so H = Gal(K/F ).

(2) Let again F = Fix(H). Since K is Galois over F we have [K : F ] =
|Gal(K/F )| = |H|. The second statement follows because [K : F ][F : k] = [K :
k] = |G|.

(3) The first statement is obvious because K/L is Galois. The second statement
follows because [K : L][L : k] = [K : k] = |G|. �

Let K/k be a Galois extensions. The intermediate fields L/k correspond to the
subgroups Gal(K/L) of Gal(K/k). Assume L/k is normal, does Gal(K/L) have a
special property?

With some thought we can guess what will happen: As L/k is normal we have
the Galois group Gal(L/k). We should be able to express it in terms of Gal(K/k) its
subgroup Gal(L/k). The most natural choice is Gal(L/k) = Gal(K/k)/Gal(K/L).
As we know that Gal(L/k) is a group, this would mean that Gal(K/L) is a normal
subgroup of Gal(K/k).

It turns out that all this is true: L/k is normal if and only if Gal(K/L) is a normal
subgroup of Gal(K/k) and in this case Gal(L/k) = Gal(K/k)/Gal(K/L). This is
the second part of the fundamental theorem of Galois theory.

Notation 9.4. Let L be an intermediate field of K/k, and let α ∈ G. We write
α(L) :=

{
α(a)

∣∣ a ∈ L}. This is clearly an intermediate field of K/k.

Lemma 9.5. Let L be an intermediate field of K/k and α ∈ G. Then Gal(K/α(L)) =
αGal(K/L)α−1.

Proof. Let ϕ ∈ G. Then ϕ ∈ Gal(K/α(L)) if and only if for all a ∈ L we
have ϕ(α(a)) = α(a), i.e. α−1ϕα ∈ Gal(K/L), i.e. ϕ ∈ Gal(K/α(L)) if and only
ϕ ∈ αGal(K/L)α−1. �

No we can show the relation between normal subgroups and normal extensions.

Theorem 9.6. Let K/k be a Galois extension and let L be an intermediate field.
The following are equivalent:

(1) L/k is normal,
(2) α(L) = L for all α ∈ Gal(K/k)
(3) Gal(K/L) is a normal subgroup of Gal(K/k).
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Proof. ”(1)=⇒(2)” Let a ∈ L and let f be the minimal polynomial of a over k.
Since L is normal over k, all roots of f lie in L. Let α ∈ Gal(K/k), then α(a) is also
a root of f because f(α(a)) = α(f(a)) = 0. Therefore α(a) ∈ L and α(L) ⊂ L. The
same argument shows α−1(L) ⊂ L, i.e. L ⊂ α(L).

”(2)=⇒(3)” Let α ∈ Gal(K/k). Then

αGal(K/L)α−1 = Gal(K/α(L)) = Gal(K/L).

Thus Gal(K/L) is a normal subgroup of Gal(K/k).
”(3)=⇒(1)” We have Gal(K/L) is a normal subgroup of Gal(K/k). Let α ∈

Gal(K/k). Then

Gal(K/L) = αGal(K/L)α−1 = Gal(K/α(L)).

By the fundamental theorem of Galois theory we get L = α(L). Let f ∈ k[x] be
irreducible with a root a in L, and let b be another root of f in K. Because both a
and b have f as a minimal polynomial over k, we get that there is an α ∈ Gal(K/k)
with α(a) = b. Therefore b ∈ α(L) = L. Thus L is normal over k. �

Corollary 9.7. Let K/k be a Galois extension. Let L/k be an intermediate field
which is Galois over k. Then

Gal(L/k) ' Gal(K/k)/Gal(K/L).

Proof. Let α ∈ Gal(K/k). Then α(L) = L, thus α|L is an element of Gal(L/k).
The restriction map Gal(K/k) → Gal(L/k);α 7→ α|S is a homomorphism of groups
with kernel Gal(K/L). Thus by the first isomorphism theorem Gal(K/k)/Gal(K/L)
is isomorphic to a subgroup of Gal(L/k). On the other hand

|Gal(K/k)/Gal(K/L)| = [K : k]/[K : L] = [L : k] = |Gal(L/k)|
because L/k is a Galois extension. Therefore Gal(L/k) = Gal(K/k)/Gal(K/L). �

Example 9.8. (1) Let Q(a, w) with a = 21/3, w = e2πi/3 be the splitting
field of x3− 2 ∈ Q[x]. We have seen that G := Gal(Q(a, w)/Q) = S3. G has
precisely 6 subgroups. Below we have on the left the diagram of subgroups
H of G (a line indicates the upper group is a subgroup of the lower one) and
on the right the corresponding diagram of intermediate fields Fix(H) (a line
indicates that the upper field is an extension of the lower one).

1

〈β〉 〈α〉 〈γ〉 〈δ〉

G

Q(a, w)

Q(a) Q(w) Q(w2a) Q(wa)

Q
Here α(a) = wa, α(w) = w, β(a) = a, β(w) = w2, γ(a) = wa, γ(w) = w2,
δ(a) = w2a, γ(w) = w2. The normal subgroups of G are 1, 〈α〉 and G
corresponding to the normal extensions K, Q(w) and Q.
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(2) Let f = x4 + 1 ∈ Q[x]. Let α be a root of f , we know that over Q(α)
f = (x−α)(x+α)(x−1/α)(x−1/α), and that G := Gal(f) = Z/2Z⊕Z/2Z,
with the four elements 1, µ : α 7→ −α, δ : α 7→ 1/α, δµ : α 7→ −1/α. Thus
we get the diagrams

1

〈µ〉 〈δ〉 〈µδ〉

G

Q(α)

Q(α2) Q(α + 1/α) Q(α− 1/α)

Q

Example 9.9. Let f ∈ Q[x] and let K ⊂ C be its splitting field. Let ι : C →
C; a + ib 7→ a+ ib := a − ib be complex conjugation. Denote by the same letter the
restriction of ι to K. We claim that ι maps K to itself: As ι∗f = f it follows that if α
is a root of f in K, then ι(α) is a root of f . Thus ι(α) ∈ K. As K/k is generated by
the roots of f , it follows that ι(K) ⊂ K. Therefore ι|K : K → K is a k-isomorphism,
as a restriction of a k-isomorphism. Thus we find that complex conjugation ι is an
element of Gal(K/k). Note that K ⊂ R, if and only if ι = idK .

Let α be a zero of f in K \ R. Then α = ι(α) 6= α is also a zero of f in K \ R.
Furthermore ι(ι(α)) = α. Thus we see that the nonreal zeros of f come in pairs α,
α, in particular the number of zeros of f in K \ R is even.

Exercises.

(1) Determine the Galois group of x4 − 5 over Q. Determine the diagram of all
subgroups and the diagram of all intermedate fields like in example 10.8.

(2) (a) Let a ∈ Z. Prove that x3 + ax − 1 is irreducible in Q[x] if and only if
a 6= 0 and a 6= −2.

(b) Let s be a zero of x3− 3x− 1 in C. Show that −(1 + s)−1 is also a zero
of x3 − 3x− 1.

(c) Let s as in part (b). Show that Q(s)/Q is a Galois extension with Galois
group isomorphic to Z/3Z.

(3) Determine the minimal polynomial for i+
√

2 over Q.
(4) Determine the intermediate fields between Q and Q(

√
2,
√

3).
(5) Let 4

√
2 be the positive real fourth root of 2. Factor the polynomial x4 − 2

into irreducible factors over each of the fields Q, Q(
√

2), Q(
√

2, i), Q( 4
√

2),
Q( 4
√

2, i).
(6) Let k be a field, let K := k(α) be a field extension of k with α2 = a ∈ k.

Determine all elements of K whose squares are in k.
(7) Let K = Q(

√
2,
√

3,
√

5). Determine [K : Q], prove that K/Q is a Galois
extension and determine its Galois group.

(8) Prove or disprove: Let f ∈ Q[x] be an irreducible polynomial of degree 3,
with one real 0. The other roots are a pair β, β of complex conjugates, so
that L = Q(β) has an automorphism, which exchanges β and β.
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(9) Let K/k be a Galois extension. Let f ∈ k[x] be an irreducible polynomial.
Show: All irreducible factors of f in K[x] have the same degree.

(10) Let f := x4 + x3 + x2 + x+ 1, ω = e2πi/5. Put K := Q(ω).
(a) Using the Eisenstein criterion show that f is irreducible over Q and thus

[K : Q] = 4.
(b) Show that K/Q is a Galois extension.
(c) Show that an element of Gal(K/Q) is determined by its value on ω.
(d) Show that Gal(K/Q) is a cyclic group of 4 elements
(e) Determine all the intermediate fields of K/Q.

(11) Let f = xn − 1 ∈ Q[x]. Show that the Galois group of f over Q is abelian.
(12) (a) Prove that the Galois group of x3− 2 over Q is S3 the symmetric group

in 3 letters.
(b) Find the splitting field of x3 − 2 over Q.
(c) Write the diagram of subgroups of the Galois group and the correpond-

ing diagram of intermediate fields of the splitting field of x3 − 2 over
Q.

(13) Determine the Galois group of the following polynomials over Q.
(a) x4 − 10x2 + 5.
(b) x4 − x2 − 6.

(14) Let p be a prime number, ω = e2πi/5. Determine the Galois group of Q( 5
√
p, ω)

over Q.
(15) What are the degrees of the following fields over Q?

(a) Q(
√

2,
√

3).
(b) Q(

√
2,
√
−2).

(c) Q( 3
√

2,
√

3).
(d) Q( 3

√
2−
√

3).
(16) Which of the extensions of Q in the previous exercise are Galois extensions?
(17) Determine the Galois group of the splitting field over Q of (x3 − 2)(x3 + 3).
(18) Let α be a complex root of the polynomial x3 + x + 1 over Q and let K be

the splitting field of this polynomial over Q.
(a) Is

√
−3 in Q(α)? Is it is K?

(b) Prove that Q(α) has no automorphism over Q except the identity.
(19) Let K = Q(α), where α is a root of x3 + 2x+ 1 and let g = x3 + x+ 1. Does

g have a root in K?
(20) Let f ∈ k[x] be a polynomial of degree n, and let K be a splitting field for f

over k. Prove that [K : k] divides n!.
(21) Let G be a finite group. Prove that there exists a field k and a Galois

extension K of k whose Galois group is G.
(22) Let K/L/k be fields. Prove or disprove:

(a) If K/k is Galois, then K/L is Galois.
(b) If K/k is Galois, then L/k is Galois.



82 3. FIELDS

(c) If L/k and K/L are Galois, then K/k is Galois.
(23) Let K/k be a Galois extension whose Galois group is the symmmetric group

S3. Is it true that K is the splitting field of an irreducible cubic polynomial
over k?

(24) Let K/k be a Galois extension with Galois group G. Prove that there exists
an element β ∈ K whose stabilizer is H.

(25) Let K be a subfield of C which is a Galois extension of Q. Prove of disprove:
Complex conjugation carries K to itself, and thus it defines an automorphism
of K.

10. Quadratic, biquadratic and Cubic polynomials

We illustrate the Main Theorem of Galois theory by analyzing the simplest classes
of Galois extensions of a field k of characteristic 0, the splitting fields of quadratic,
biquadratic and cubic polynomials.

Quadratic extensions.

The case of quadratic polynomials is quite obvious. Let f = x2 + px + q ∈ k[x]

be an irreducible polynomial. We can write f = (x + p
2
)2 − (p

2

4
− q). Thus the

roots of f are −p
2

+
√

p2

4
− q, −p

2
−
√

p2

4
− q. Put α =

√
p2

4
− q. Then k(α)/k is a

Galois extension, [k(α) : k] = 2 and the Galois group is Z/2Z generated be α 7→ −α.
Obviously there is no intermediate field between k(α) and k.

Biquadratic extensions.

Biquadratic extensions are not much for difficult. Let α be the zero of an irre-
ducible monic polynomial f ∈ k[x] and let β be the zero of an irreducible monic
polynomial g ∈ k[x], which is also irreducible over k(α). Then [k(α, β) : k(α)] = 2 =
[k(α) : k]. Note that this implies that also [k(α, β) : k(β)] = 2. We see that k(α, β)
is the splitting field of fg over k, thus k(α, β)/k is a Galois extension. Let α′ be
the other zero of f in k(α) and β′ be the other zero of g ∈ k(β). Put a := α − α′,
b := β − β′. Then k(a) = k(α), k(b) = k(β) and k(a, b) = k(α, β).

Because k(α, β)/k(β) is a simple extension, there is a unique automorphism ϕ of
k(α, β) over k(β) sending α to α′, i.e. a to −a. Obviously ϕ2 = id. In the same
way there is a is a unique automorphism ψ of k(a, b) over k(a) sending b to −b and
ψ2 = id. It is clear that ϕψ = ψϕ. Thus the Galois group of k(α, β)/k is isomorphic
to Z/2Z × Z/2Z. Thus there are 3 proper subgroups: H1 = {1, ϕ}, H2 = {1, ψ}
and H3 = {1, ψϕ}, and we see immediately that the corresponding fixed fields are
L1 = k(a), L2 = k(b), L3 = k(ab).

Cubic extensions.

Finally we want to study the splitting fields of cubic equations. The explicit
formulas for the roots of cubic equations in terms of cube roots and square roots were
found in the sixteen century by Cardano and Tartaglia. We start by giving their
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solution. Let f : Y 3 + a2Y
2 + a1Y + a0 ∈ k[Y ]. By the substitution Y = x− a2/3 we

can assume that the quadratic term vanishes, i.e.

f = x3 + px+ q, p, q ∈ k.
The trick is to substitute x = U−V . This does not look like a good idea: the equation
only becomes more complicated, however we shall see in a moment why it helps. We
get

f(U − V ) = U3 − V 3 − (3UV − p)(U − V ) + q.

The point of this substitution is that we can split the equation appart. Obviously a
sufficient condition for f(U − V ) = 0 is that both equations

U3 − V 3 + q = 0,

3UV − p = 0

hold. The second equation gives V = p/(3U), which we substitute into the first
equation. This gives

33U6 − p3 + 33U3q = 0.

Now something very nice has happened: This equation is quadratic in U3, so we can
solve it: put Y := U3, then the equation is 33Y 2 + 33qY − p3 = 0, which we can solve
by the quadratic case: one solution is

Y = −q
2

+

√(q
2

)2
+
(p

3

)3
.

Thus one solution for U is just U = 3
√
Y and V = 3

√
U3 + q. Putting this together

we get the famous formula of Cardano:
One solution is

x =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
− 3

√
q

2
+

√(q
2

)2
+
(p

3

)3
.

Putting this into the equation one can check that this is indeed a solution.
Now we study the Galois theory for the irreducible cubic f = x3 + px+ q over k.

Let K be a splitting field of f over k. Thus we can write f = (x−α1)(x−α2)(x−α3),
which gives

α1 + α2 + α3 = 0,

α1α2 + α2α3 + α1α3 = p,

α1α2α3 = −q.
The first equation gives that α3 ∈ k(α1, α2). Thus we have a chain of fields

k ⊂ L := k(α1) ⊂ k(α1, α2) = K.

There are two possibilities, either L = K or L ( K.
We want to find out when these two cases happen. For this we have to check how

f factors in L[x]. As f is irreducible over k we see that [L : k] = 3. In L[x] we can
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write f = (x− α1)g with g = (x− α1)(x− α2) ∈ K[x]. Thus if g is not irreducible in
L[x], then L = K and [K : k] = 3, otherwise [K : L] = 2 and thus [K : k] = 6.

(1) If K = L, then K/k is a simple algebraic extensions, thus Gal(K/k) is
a subgroup of S3 which acts simply transitively on α1, α2, α3. The only
such subgroup is the set of cyclic permutations of α1, α2, α3. As this has no
nontrivial subgroup, there are no intermediate fields between K and k.

(2) If K 6= L, then Gal(K/k) is the symmetric group S3 acting as group of
permutations of α1, α2, α3.

We can decide which of the two happens in terms of the discriminant. We will
introduce this for polynomials of arbitrary degree.

Definition 10.1. Let f ∈ k[x] be an irreducible polynomial of degree n. Let K
be its splitting field over k, let α1, . . . , αn be its roots in K.

D :=
∏

1≤i<j≤n

(αi − αj)2.

We put δ :=
√
D =

∏
1≤i<j≤n(αi − αj). Note that D is invariant under all permuta-

tions of α1, . . . , αn. Thus D is fixed by Gal(K/k), thus D ∈ k. In case f = x3+px+q
we can compute directly that D = −4p3 − 27q2.

The discriminant now tells us whether Gal(K/k) only consists of even permuta-
tions of the αi.

Proposition 10.2. Gal(K/k) ⊂ An if and only if D is a square in k (or equiva-
lently δ ∈ k).

Proof. Let σ ∈ Sn. Then σ(δ) is (−1)kδ, where k is the number of pairs i < j
with σ(i) > σ(j), i.e. σ(δ) = sign(σ)δ, where sign(σ) is the sign of the permutation.
Thus δ is fixed by all σ ∈ Gal(K/k) if and only if Gal(K/k) is a subgroup of the
permutations of sign 1, i.e. An. �

Now we go back to the case that f = x3 + px + q is an irreducible cubic with
Gal(f) = S3. We analyse the subgroups and intermediate fields. S3 has 3 conjugate
subgroups of order 2 (generated by one transposition) and one subgroup A3 (the set
of cyclic permutations) of order 3. The intermediate fields k(α1), k(α2), k(α3) are the
fixed fields of the transpositions α2 7→ α3, α1 7→ α3, α1 7→ α2, and k(δ) is the fixed
field of the set of cyclic permutations.

Exercises.

(1) Prove that the discriminant of a cubic f ∈ R[x] is positive if all the roots are
real and negative if not.

(2) Determine the Galois groups of the following polynomials over Q.
(a) x3 + 27x− 4.
(b) x3 + x+ 1.
(c) x3 + x2 − 2x+ 1.
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(d) x3 + x2 − 2x− 1.
(3) Let f be an irreducible cubic polynomial over k and let δ be the square root

of the discriminant. Show that f remains irreducible over k(δ).
(4) Let f ∈ Q[x] be an irreducible cubic polynomials which has precisely one real

root, and let K be the splitting field of f over Q. Show that [K : Q] = 6.
(5) Prove that the discriminant of the cubic x3 + px+ q is −4p3 − 27q2.

11. Solvability by radicals

In this whole section let k be a field of characteristic 0.

The main problem that motivated the development of Galois theory was the ques-
tion of solvability of polynomials by radicals. Given a polynomial

f = xn +
n−1∑
i=0

aix
i ∈ Q[x],

one wants to find a formula for the roots of f in C, in terms of the ai. Here the
operations in the formula are just +, −, ·, / and r

√
. This problem has been studied

over the centuries by many people. For n = 2 we have the classical formula for the

roots of x2 + ax+ b by −a
2
±
√

a2

4
− b. For n = 3 and n = 4 the formulas were found

in the 16th century. For n ≥ 5 the problem remained open, until Galois theory was
invented. We start by giving a precise mathematical formulation of the problem.

Definition 11.1. A field extension K/k is called a radical extension if there is a
chain

K = Lm ⊃ Lm−1 ⊃ . . . ⊃ L0 = k

of intermediate fields, so that Li+1 = Li(bi) for all i, where bi is a root of a polynomial
xmi − ai with ai ∈ Li (thus bi is the mth

i root of an element of Li).

We want to express the roots of f ∈ k[x] in terms of the usual operations of a
field and by taking ith roots. Thus we say that f is solvable by radicals if it splits
into linear factors over a radical extension of k.

Definition 11.2. A polynomial f ∈ k[x] is solvable by radicals if there is a radical
extension K/k such that K/k is a Galois extension and f splits over K into linear
factors.

Remark 11.3. The condition that K/k is a Galois extension is not natural, we
make it because it simplifies our proofs. One can show that, if K/k is radical exten-
sion, then there is a radical extension F/k with K ⊂ F , such that F/k is a Galois
extension. This is an exercise to this section. Thus it follows that in the definition
above we can drop the condition that K/k is Galois.
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This question whether f is solvable by radicals is closely related to the structure
of the Galois group of f . Therefore we will need to develop a little bit more of group
theory.

Definition 11.4. A group G is called solvable if there is a chain

G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {1}
of subgroups of G such that Gi+1 is a normal subgroup in Gi for all i and the factor
group Gi/Gi+1 is abelian. (in particular abelian groups are solvable).

Solvable groups play an important role in the theory of groups. One could say
that being solvable is a generalization of abelian. The name solvable comes from its
relation to solvability by radicals.

Example 11.5. One can show that Sn is solvable for n ≤ 4, but not solvable for
n ≥ 5.

We need a criterion for the solvablity of a group. For this we introduce the
commutator subgroup of a group.

Definition 11.6. Let G be a group, and let a, b ∈ G. The commutator of a, b
is [a, b] = a−1b−1ab. Note that [a, b] = 0 if and only if ab = ba. The commutator
subgroup G′ of G is the subgroup of G generated by

{
[a, b]

∣∣ a, b ∈ G}.
It is clear that G is abelian if and only if G′ = {1}.

The following Lemma will help us find a relation between solvability of a group
and commutator subgroups.

Lemma 11.7. (1) G′ is a normal subgroup of G.
(2) G/G′ is abelian
(3) If H is a subgroup of G with G/H abelian, then G′ ⊂ H.

Proof. (1) Note that

g−1[a, b]g = g−1a−1gg−1b−1gg−1agg−1bg = [g−1ag, g−1bg].

Note that [a, b]−1 = [b, a]. Thus the elements of G′ are just products of commutators
of elements of G. Thus let h = [a1, b1][a2, b2] . . . [an, bn] ∈ G′. Let g ∈ G. Then

g−1hg = g−1[a1, b1]g . . . g
−1[an, bn]g = [g−1a1g, g

−1b1g] . . . [g−1ang, g
−1bng] ∈ G′.

Thus G′ is a normal subgroup of G. (2) Let a, b ∈ G. Then aG′ · bG′ = abG′ =
ba[a, b]G′ = baG′ = bG′ · aG′. (3) Assume aH · bH = bH · aH for all a, b ∈ G. Then
baH = abH = ba[a, b]H. Thus [a, b] ∈ H. Thus [a, b] ∈ H for all a, b ∈ G. As G′ is
the subgroup generated by all [a, b], it follows that G′ ⊂ H. �

We can iterate taking the commutor:

Definition 11.8. Let G(0) = G, G(1) = G′ and inductively G(n+1) = (G(n))′. Note
that G(n+1) is a normal subgroup in G(n) and G(n)/G(n+1) is abelian for all n.
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This gives a criterion for a group to be solvable:

Lemma 11.9. G is solvable if and only if G(n) = {1} for some n.

Proof. Assume G(n) = {1}. Then we have a chain of subgroups

G = G(0) ⊃ G(1) ⊃ . . . ⊃ G(n) = {1}
and by the previous lemma we have G(i+1) is a normal subgroup in G(i) and G(i)/G(i+1)

is abelian. Thus G is solvable.
Conversely assume G is solvable. Then there is a chain

G = H0 ⊃ H1 ⊃ . . . ⊃ Hn = {1}
of subgroups of G with Hi+1 a normal subgroup of Hi and Hi/Hi+1 abelian. But then
by the previous lemma H ′i ⊃ Hi+1. Thus H1 ⊃ H ′0 = G′, H2 ⊃ H ′1 ⊃ G′′ = G(2) and
inductively we get {1} = Hn ⊃ G(n), i.e. G(n) = {1}. �

Corollary 11.10. Let G be a solvable group and ϕ : G→ H a surjective group
homomorphism. Then H is solvable.

Proof. Obviously ϕ([a, b]) = [ϕ(a), ϕ(b)]. It follows that ϕ(G′) = H ′, and in-
ductively ϕ(G(i)) = H(i) for all i. Since G(n) = {1} for some n it follows that
H(n) = ϕ({1}) = {1}. �

Now we want to study the solvability of a polynomial f ∈ k[x] by radicals. As a
first step we have to deal with roots of unity.

Definition 11.11. Let n ∈ Z>0. Let K be a field. An element ζ ∈ K is called an
n-th root of unity if ζn = 1. It is called a primitive n-th root of unity if ζn = 1 and
ζm 6= 1 for all 0 < m < n. (If K = C a primitive n-th root of unity is for instance
e2πi/n).

Lemma 11.12. Let n ∈ Z>0. Let k be a field. Let ζ (in some extension of k) be
a primitive n-th root of unity. Then k(ζ)/k is a Galois extension and Gal(k(ζ)/k) is
abelian.

Proof. Over k(ζ) the polynomial Xn − 1 splits into linear factors: the ζr, r =
0, . . . n−1 are all distinct zeros of Xn−1 in k(ζ). If ζ i = ζj, with 0 ≤ i < j < n, then
ζj−i = 1, a contradiction to ζ being primitive. It follows that k(ζ) is the splitting
field of Xn − 1 over k, thus k(ζ)/k is a Galois extension.

Let G = Gal(k(ζ)/k). If σ ∈ G, then σ(ζ) must be a root of Xn−1, thus σ(ζ) = ζs

for some s. We know that G is a subgroup of the permutations of {ζ0, . . . , ζn−1}. It
follows that two elements σ, τ ∈ G are equal if σ(ζ) = τ(ζ).

Let σ, τ ∈ G. Then σ(ζ) = ζs, τ(ζ) = ζt for some s, t, and

στ(ζ) = σ(ζt) = σ(ζ)t = ζst = τσ(ζ).

Thus στ = τσ. �
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Theorem 11.13. Let n be a positive integer. Let k be a field that contains a
primitive n-th root of unity. Let a ∈ k \ {0}. Let K be the splitting field of xn − a
over k.

(1) K = k(α) where α is any root of xn − a in K.
(2) Gal(K/k) is abelian.

Proof. (1) Let α be a root of xn − a in K, then α, ζα, . . . , ζn−1α are all the
roots of xn − a: Obviously they are roots of xn − a. Thus it is enough that they are
distinct. If ζ iα = ζjα with 0 ≤ i < j < n, then (ζ i − ζj)α = 0, thus ζ i = ζj i.e.
ζj−i = 1, which is impossible. Thus we see that all roots of xn − a are in k(α), i.e.
K = k(α).

(2) Let σ, τ ∈ Gal(K/k). Then σ(α) and τ(α) are roots of xn−a, thus σ(α) = ζ iα,
τ(α) = ζjα for some i, j. Thus

στ(α) = σ(ζjα) = ζjσ(α) = ζjζ iα = ζ i+jα,

similarly τσ(α) = ζ i+jα. Thus στ and τσ agree on α and on k, and therefore on
K = k(α). Thus στ = τσ; thus the Galois group is abelian. �

This theorem tells us, that if the field k contains enough roots of unity, then for
each a ∈ k the Galois group of xn − a over k is abelian.

Theorem 11.14. (Galois) Let k be a field of characteristic 0. Let f ∈ k[x] and
assume f is solvable by radicals over k.

Then the Galois group Gal(f) over k is solvable.

Remark 11.15. Conversely one can show that f is solvable by radicals over k if
Gal(f) is solvable.

Proof. Let K be the splitting field of f over K. Then Gal(f) = Gal(K/k) and
we have to show that Gal(K/k) is solvable. Since f is solvable by radicals, there
exists a sequence

k = k1 ⊂ k2 = k(α2) ⊂ k3 = k2(α3) ⊂ . . . ⊂ kn = kn−1(αn),

such that for each i there exists an ri > 0 with ai := αrii ∈ ki−1 and f splits over kn
into linear factors, i.e. K ⊂ kn. Furthermore kn/k is a Galois extension.

Let m be the greatest common multiple of the ri. Let ζ be a primitive m-th
root of unity, and let F := k(ζ). Then ζm/ri is a primitive ri-th root of unity, thus F
contains primitive ri-th roots of unity for all i. We put F0 = k, F1 = F , Fi = Fi−1(αi)
for all i. Thus we get a chain

F = F0 ⊂ F1 ⊂ . . . ⊂ Fn,

such that Gal(Fi/Fi−1) is abelian and K ⊂ Fn. kn is a splitting field of some poly-
nomial g over k and Fn is the splitting field of (Xm − 1)g. Thus Fn/k is a Galois
extension.
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Therefore Fn/Fi is also a Galois extension for all i = 0, . . . , n. F1 and therefore
also all Fi−1 with i > 1 contain all ri-th roots of unity. By the previous theorem
Fi = Fi−1(αi) is the splitting field of xri − ai over Fi−1 and thus Fi/Fi−1 is a Galois
extension. We also know F1/F0 is a Galois extension. By the second part of the
fundamental Theorem of Galois theory we know thatGal(Fn/Fi) is a normal subgroup
of Gal(Fn/Fi−1), and Gal(Fn/Fi−1)/Gal(Fn/Fi) = Gal(Fi/Fi−1), which is abelian.
Therefore the chain

G(Fn/k) ⊃ G(Fn/F1) ⊃ . . . ⊃ G(Fn/Fn−1)

shows that G(Fn/k) is solvable! We have that K is a subfield of Fn, and K/k is
a normal extension, because K is a splitting field of a polynomial over k. Thus
again by the second part of the principal theorem of Galois theory we get Gal(K/k)
is isomorphic to Gal(Fn/k)/Gal(Fn/K). Thus there is a surjective homomorphism
Gal(Fn/k) → Gal(K/k). By a lemma we proved before, Gal(f) = Gal(K/k) is also
solvable. This proves the theorem. �

This result does not look very useful if we want to find out whether a given
polynomial is solvable or not. How are we ever going to find out whether the Galois
group is solvable or not? Now we want to give a simple criterion that for many
polynomials shows that they are not solvable. In fact we will give a simple way to
check via elementary calculus for many polynomials f ∈ Q[x] of prime degree p that
they have Galois group Sp. As Sp is not solvable for p ≥ 5, this implies that f is not
solvable.

Theorem 11.16. Let p be a prime number and f ∈ Q[x] an irreducible polynomial
of degree p. Assume f has precisely p− 2 roots over R. Then Gal(f) = Sp.

Proof. Let Σ = {a1, . . . , ap} be the set of roots of f , with a3, . . . , ap ∈ R. Write
L for the splitting field of f . We know that Gal(f) is a subgroup of S(Σ), which we
identify with Sp. Furthermore Gal(f) acts transitively on Σ. As f is irreducible of
degree p, we have [Q(a1) : Q] = p and thus |Gal(f)| = [L : Q] = [L : Q(a1)][Q(a1) : Q]
is divisible by p. By Cauchy’s Theorem there exists an element ρ ∈ Gal(f) of order p.
The only elements of Sp of order p are the cyclic permutations. Thus Gal(f) contains
all cyclic permutations ρk. Replace ρ by a suitable power, so that ρ(a1) = a2. By
reordering the other roots we can assume that ρ(ak−1) = ak for all k. For the complex
conjugation τ ∈ Gal(f) we have τ(a1) = a2, τ(a2) = a1 and τ(ak) = ak for k 6= 1, 2.
Thus for 2 ≤ j ≤ p we have that ρj−1τρ1−j ∈ Gal(f), and

ρj−1τρ1−j(ai) = ρj−1τai+1−j = ρj−1ai+1−j = ai,

if i+ 1− j 6= 1, 2, i.e. i 6∈ {j, j + 1}. On the other hand

ρj−1τρ1−j(aj) = ρj−1τa1 = ρj−1a2 = aj+1,

ρj−1τρ1−j(aj+1) = ρj−1τa2 = ρj−1a1 = aj.
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Thus Gal(f) contains for all j the transposition (j, j + 1). These elements obviously
generate Sp, thus Gal(f) = Sp. �

Example 11.17. By elementary calculus it is easy to check e.g. for many poly-
nomials of degree 5 that they have 3 real roots. For example:

(1) f = 2x5 − 10x + 5. By the Eisenstein criterion f is irreducible over Q.
One checks by elementary calculus that f has a minimum at x = 1, with
f(1) = −3 < 0, a maximum at x = −1 with f(−1) = 3 > 0 and no other
extremal values. Obviously f(x) tends to +∞ for x → +∞ and f(x) tends
to −∞ for x → −∞. It follows by the intermediate value theorem that f
has precisely 3 real roots, One somewhere in (−∞,−1), one somewhere in
(−1, 1) and one in (1,∞).

(2) f = x5 − 6x + 3 is not solvable by radicals. (Check as an exercise that f is
irreducible over Q and has 3 real roots).

Exercise 11.18. (1) Let k be a field of characteristic 0.
(a) Let k(α1, . . . , αn)/k be a finite field extension. Let L/K be a field

extension, such that L/k is a finite Galois extension (e.g. let L be the
splitting field of the product of the minimal polynomials of the αi).
Assume K/k is not normal. We put

K ′ = k
(
g(αi)

∣∣ i = 1, . . . , n, g ∈ Gal(L/k)
)
.

Show that K ′/k is a normal extension. (Hint: Note that K ′ being a
normal extension is equivalent to g(K ′) = K ′ for all g ∈ Gal(L/k)), and
this is essentially obvious.)

(b) Now assume that each αi satisfies an equation Xri − ai = 0 with
ai ∈ k(α1, . . . , αi−1). Then we have for all g ∈ Gal(L/k) that g(αi) sat-
isfies the equation Xri − g(ai) = 0, with g(ai) ∈ k(g(α1), . . . , g(αi−1)).
Conclude that K ′/k is a radical Galois extension.


