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Verlinde formula

Verlinde formula: generating formula for the dimension of the
spaces of sections (conformal blocks)

H0(MH
C (r ,d),L⊗k )

of line bundles L⊗k on moduli spaces of rank r degree d vector
bundles on a nonsingular projective curve C.
Want to study analogue for algebraic surfaces, and we also
want to refine it, H0(M,L) (or χ(M,L)) by finer invariants, like

1 twisted χy -genus χ−y (M,L),
2 twisted elliptic genus EllM(y ,q; L).
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Hilbert schemes of points

Let S projective algebraic surface
S[n] =Hilbert scheme of finite subschemes of length n on S
S(n) = Sn/Sn symmetric power
S[n] is smooth projective of dimension 2n,
π : S[n] → S(n); Z 7→ supp(Z ) crepant resolution
Universal subscheme

Zn(S) = {(x ,Z )
∣∣ x ∈ Z} ⊂ S × S[n]

with projections p : Zn(S)→ S[n] , q : Zn(S)→ S[n]

Tautological sheaves of rank n: For vector bundle V of rank r
on S have V [n] = p∗q∗(V ) or rank rn
in part. O[n]

S (Z ) = H0(OZ )

Have Pic(S[n]) = µ(Pic(S))⊕ ZE , with E = det(O[n]
S ), and

µ(L) = π∗σ∗(⊗n
i=1pr∗i L)Sn , with σ : Sn → S(n) proj.
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Cobordism invariance

Important tool for us:

Theorem (Ellingsrud-G-Lehn)
Let P(x1, . . . , x2n, y1, . . . , yn) polynomial. Put

P[S[n],L] :=

∫
S[n]

P(c1(S[n]), ...c2n(S[n]), c1(L[n]), . . . , cn(L[n]))

There is a polynomial P̃(x , y , z,w), such that for all surfaces S,
all line bundles L on S we have

P[S,L] = P̃(K 2
S , χ(OS),LKS,K 2

S).

Usually have sequence of polynomials
Pn(x1, ...x2n, y1, . . . , yn), n ≥ 0, "nicely organized", then∑

n≥0

Pn[S[n],L]xn = A1(x)L2
A2(x)LKS A3(x)K 2

S A4(x)χ(OS)

for universal power series A1, . . . ,A4
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Verlinde formula

Long time ago used this to prove version of Verlinde formula

Theorem (Ellingsrud-G-Lehn)

For every r ∈ Z have power series Ar (t), Br (t) s.th

∑
n≥0

χ(S[n], µ(L)⊗ E r )xn =
1

(1− t)χ(L)

(
1

(1− t)r2−1(1 + (r2 − 1)t)

)χ(OS)/2

· Ar (t)KSLBr (t)K 2
S

with x = t
(1−t)r2 . We have Ar = B−r

Br

Furthermore Ar = Br = 1 for r = 0,±1
In part. χ(S[n], µ(L)) =

(
χ(L)+n−1

n

)
, χ(S[n], µ(L)⊗ E±1) =

(
χ(L)

n

)
With Don-Zagier try to determine the Ar , Br . Until now conjectural
formula for Ar , Br for r = ±2,±3, and for A±4
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Verlinde formula

With Don-Zagier try to determine the Ar , Br . Until now conjectural
formula for Ar , Br for r = ±2,±3, and for A±4
e.g.

B2(t) = 1 + u3, B−2(t) = 1− u2, for t =
u

1− u + u2

(found earlier in different form by Marian-Oprea-Pandharipande in
context of Lehn conjecture)

B−3(t) =
(1 + u2)(1 + u + u2)(1 + 4u + u2)(1− u)2

(1 + u)3

B3(t) =
(1 + 4u + u2)(1 + u2)4

(1 + u)4 , for t =
u(1 + u + u2)

(1 + u)2

Conversely our formula for A±3, B±3 gives conjectural formula for∑
n≥0

∫
S[n]

c2n(V [n])xn, rk(V ) = −2,4
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Refined Verlinde formula

Refinement: Replace χ(L) by finer invariant

χ−y (X ,L) = y− dim(X)/2
dim(X)∑

p=0

(−y)pχ(X ,Ωp ⊗ L)

All we do works for further refinement: twisted elliptic genus
Ell(X ,L)(y , z). Note χ−y (X ) = χ−y (X ,OX ). We know∑

n≥0

χ−y (S[n])xn =

∏
n>0(1− xn)K 2

S(
1− xn)10(1− xny)(1− xn/y)

)χ(OS)

Put g(x , y) :=
∏

n≥1

(
(1−xn)2

(1−xny)(1−xn/y)

)n2

.

Theorem∑
n≥0

χ−y (S[n],Ln)xn =g(x , y)L2/2
∏
n≥1

((
1− xn/y
1− xny

)n)LKS/2

·
∑
n≥0

χ−y (S[n])xn.
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Refined Verlinde formula

g(x , y) :=
∏

n≥1

(
(1−xn)2

(1−xny)(1−xn/y)

)n2

.

Theorem

If K 2
S = LKS = 0, then putting x := tg(t , y)r2

, we have

∑
n≥0

χ−y (S[n],Ln ⊗ E r )xn = g(t , y)L2/2

 g(t , y)r2

1 + r2 t d
dt g(t ,y)
g(t ,y)

χ(OS)/2

·
∑
n≥0

χ−y (S[n])tn

Similar formulas for twisted elliptic genus generalizing the
DMVV formla
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Sketch of proof

In Borisov-Libgober proof of DMVV formula for ell. gen. Ell(S[n]), they
introduce orbifold elliptic class ELLorb(X/G) ∈ H∗(X ) for the group G
acting on X , and the elliptic class ELL(Y ) ∈ H∗(Y ) for nonsingular Y ,
such that

1 Ell(Y ) =
∫

Y ELL(Y ),

2 if π : X → X/G quotient, η : Y → X/G crepant resolution, then
η∗ELL(Y ) = π∗ELLorb(X ,G).

They apply this to Y = S[n], X = Sn, G = Sn. As µ(L) is a line bundle
pulled back from S(n), we can compute

Ell(S[n],µ(L)) =

∫
S[n]

ELL(S[n])ch(µ(L)).

The second theorem is reduced to the first by restricting to the case
of K3 surfaces and using the Beauville Bogomolov quadratic form.
This is a quadratic form q on H2(X ) for any hyperkähler manifold X .
For any polynomial p(ci (X )) in the Chern classes of X ,∫

X p(ci (X )) exp(α) is a polynomial (depending on p) in q(α). This
implies that the formula for µ(L) determines the one for µ(L)⊗ E⊗r
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Moduli space

S projective complex surface, H ample line bundle on S

MH
S (c1, c2) =

moduli space of rank 2 H-semistable sheaves
on S with Chern classes c1, c2

E semistable ⇐⇒ ∀n�0
h0(S,F⊗H⊗n)

rk(F) ≤ h0(S,E⊗H⊗n)
rk(E) for all F subsheaf

of E .
M = MH

S (c1, c2) is usually singular, has expected dimension

vd = 4c2 − c2
1 − 3χ(OS).

vd is the dimension M should have, more about that later
Here write c2 :=

∫
[S]

c2 ∈ Z, c2
1 :=

∫
[S]

c2
1 ∈ Z

We assume always that pg(S) = h0(S,KS) > 0,
b1(S) = dim H1(S) = 0



Introduction Hilbert schemes of points Moduli of rank 2 sheaves Check of conjectures

Virtual invariants

M = MH
S (c1, c2) usually very singular

might have dimension different from vd = 4c2 − c2
1 − 3χ(OS)

But M has a perfect obstruction theory of virtual dimension vd
Can define virtual analogues of all invariants of smooth projective
varieties

At every point [F ] ∈ M, tangent space T[F ] = Ext1(F ,F )0

obstruction space O[F ] = Ext2(F ,F )0

Perfect obstruction theory:
Complex E• = [E0 → E1] of vb on M, s.th. ∀F ∈ M:
T[F ] ' ker(E0(F )→ E1(F )), OF ↪→ coker(E0(F )→ E1(F ))
i.e E• captures tangents and obstructions via vector bundles

Define: T vir
M := [E0]− [E1] ∈ K 0(M),

vd := rk T vir
M = rk(E0)− rk(E1)

virtual fundamental class [M]vir ∈ H2vd(M)
virtual structure sheaf Ovir

M ∈ K0(M)
Virtual holomorphic Euler characteristic For V ∈ K 0(M), put
χvir(M,V ) := χ(M,Ovir

M ⊗ V )

Introduction Hilbert schemes of points Moduli of rank 2 sheaves Check of conjectures

Verlinde formula

Now again S surface with pg(S) = 0, b1(S) = 0
Let L ∈ Pic(S). Assume Lc1 is even
Assume for simplicity ∃ universal sheaf E on S ×MH

S (c1, c2)

Put µ(L) = −ch2(E⊗ det(E)−1/2)/c1(L) ∈ H2(M)
There is a line bundle µ(L) ∈ Pic(S) with c1(µ(L)) = µ(L)
(Donaldson line bundle), χvir(MH

S (c1, c2), µ(L)) are K -theoretic
Donaldson invariants

Conjecture
Assume |KS| contains an irreducible curve. Then

χvir(MH
S (c1, c2), µ(L)) = 23+K 2

S−χ(OS)Coeffxvd

[
(1 + x)KS(L−KS)

(1− x2)χ(L)

]
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Verlinde formula

Again L ∈ Pic(S) with Lc1 is even, E universal sheaf

µ(L) = −ch2(E⊗det(E)−1/2))/c1(L), E = 2ch3(E⊗det(E)−1/2))/1

If L is sufficiently ample on S, then µ(L) + E is ample

Conjecture
Assume |KS| contains an irreducible curve. Then

χvir(MH
S (c1, c2), µ(L) + E) = 23+K 2

S−χ(OS)Coeffxvd

[
(1− x2)χ(L)

(1− x)LKS

]
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Refinement

Twisted Virtual χ−y -genus. Put Ωvir
M := (T vir

M )∨.

χvir
−y (M,L) := y−vd/2

∑
p

(−y)pχvir(M,ΛpΩvir
M ⊗L), χvir

−y (M) = χvir
−y (M, S)

The Vafa-Witten conjecture is a formula for the Euler numbers e(M).
We refine it to a conjecture χvir

−y (M). Keep assuming that |KS|
contains irreducible curve.

θ3(x , y) :=
∑
n∈Z

xn2
yn, η(x) :=

∏
n>0

(1− xn)

ψS(x , y) := 8
(

1
2
∏

n>0(1− x2n)10(1− x2ny)(1− x2n/y)

)χ(OS)

·
(

2η(x4)2

θ3(x , y1/2)

)K 2
S

Conjecture

χvir
−y (MH

S (c1, c2)) = Coeffxvd [ψS(x , y)].
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Refinement

Conjecture
Assume Lc1 is even.

χvir
−y (MH

S (c1, c2), µ(L))

= Coeffxvd

ψS(x , y)

 ∞∏
n=1

(
(1− x2n)2

(1− x2ny)(1− x2ny−1)

)n2
 L2

2


∞∏

n=1

(
1− x2ny−1

1− x2ny

)n ∏
n > 0

odd

(
(1 + xny−

1
2 )(1− xny

1
2 )

(1− xny− 1
2 )(1 + xny 1

2 )

)n


LKS

2

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Mochizuki formula

Main tool: Mochizuki’s formula:
Compute intersection numbers on M = MH

S (c1, c2) in terms of
intersection numbers on Hilbert scheme of points.
On S ×M have E universal sheaf
i.e. if [E ] ∈ M corresponds to a sheaf E on S then E|S×[E ] = E .
For α ∈ Hk (S), put

τi(α) := πM∗(ci(E)π∗S(α)) ∈ H2i−4+k (M)

Let P(E) be any polynomial in the τi(α)
Mochizuki’s formula expresses

∫
[M]vir P(E) in terms of intersec.

numbers on S[n1] × S[n2], and Seiberg-Witten invariants.
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Mochizuki formula

χvir(M, µ(L)), χvir
−y (M, µ(L)) can all be expressed as

∫
[M]vir P(E),

so can reduce computation to Hilbert schemes.

For χvir(M,L), χvir
−y (M,L) use virtual Riemann-Roch formula

Theorem (Fantechi-G.)

For V ∈ K 0(M) have

χvir(M,V ) =

∫
[M]vir

ch(V )td(T vir
M ).

Introduction Hilbert schemes of points Moduli of rank 2 sheaves Check of conjectures

Mochizuki formula

Seiberg-Witten invariants:
differentiable invariants of differentiable 4-manifolds
S projective algebraic surface: H2(S,Z) 3 a 7→ SW (a) ∈ Z
a is called SW class if SW (a) 6= 0.

If b1(S) = 0, pg(S) > 0 and |KS| contains smooth connected
curve, then SW cl. of S are 0,KS with

SW (0) = 1, SW (KS) = (−1)χ(OS)

This is the reason for the simplifying assumption that |KS|
contains smooth connected curve, otherwise the formulas are
more complicated.
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Mochizuki formula

S[n1] × S[n2] = {pairs (Z1,Z2) of subsch. of deg. (n1,n2) on S}

Work on S × S[n1] × S[n2], projection p to S[n1] × S[n2]

Two universal sheaves: Let a ∈ Pic(S)

1 Ii (a) sheaf on S × S[n1] × S[n2] with Ii(a)|S×(Z1,Z2) = IZi ⊗ a
2 Oi(a), vector bundle of rank ni on S[n1] × S[n2], with fibre
Oi(a)(Z1,Z2) = H0(OZi ⊗ a)

For a vector bundle E of rank r and variable s put

ci(E ⊗ s) =
i∑

k=0

(
r − i

k

)
si−kck (E), Eu(E) = cr (E)
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Mochizuki formula

For sheaves E1, E2 on S × S[n1] × S[n2] put

Q(E1, E2) = Eu(−RHomp(E1, E2)− RHomp(E2, E1))

For a1,a2 ∈ Pic(S) put

Ψ(a1,a2,n1,n2, s)=
P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
Eu(O1(a1))Eu(O2(a2)⊗s2)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s) · (2s)n1+n2−χ(OS)

A(a1,a2, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1 ]×S[n2 ]

Ψ(a1,a2,n1,n2, s) ∈ Q[s, s−1]

Theorem (Mochizuki)

Assume χ(E) > 0 for E ∈ MS
H (c1, c2). Then∫

[MH
S (c1,c2)]vir

P(E) =
∑

c1=a1+a2
a1H<a2H

SW (a1)Coeffs0A(a1,a2, c2, s)

i.e. replace simple formula on a space where we cannot
compute anything, by terrible formula on simpler space
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Universality

Universality Take now for P(E) = ch(µ(L))td(T vir
M ) (works the same

for the others). Put

ZS(a1,a2, s,q) =
∑

n1,n2≥0

∫
S[n1 ]×S[n2 ]

A(a1,a2,a1a2 + n1 + n2, s)qn1+n2

Proposition

There exist univ. functions A1(s,q), . . . ,A11(s,q) ∈ Q[s, s−1][[q]]
s.th. ∀S,a1,a2,L

ZS(a1,a2,L, s,q) =F0(a1,a2,L, s)Aa2
1

1 Aa1a2
2 Aa2

2
3 Aa1KS

4 Aa2KS
5 AK 2

S
6 Aχ(OS)

7

· AL2

8 ALKS
9 ALa1

10 ALa2
11 ,

(where F0(a1,a2,L, s) is some explicit elementary function).

Proof: Modification of the cobordism argument for Hilbert schemes of
points
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Reduction to P2 and P1 × P1.

A1(s,q), . . .A11(s,q) are determ. by value of ZS(a1,a2,L, s,q)
for 11 triples (S,a1,a2,L) (S surface, a1,a2,L ∈ Pic(S)) s.th.
corresponding 11-tuples

(a2
1,a1a2,a2

2,a1KS,a1KS,K 2
S , χ(OS)),L2,LKS,La1,La1)

are linearly independent. We take

(P2,O,O,O), (P1 × P1,O,O,O), (P2,O(1),O,O), (P2,O,O(1),O),

(P2,O(1),O(1),O), (P1 × P1,O(1,0),O,O), (P1 × P1,O,O(1,0),O)

(P2,O,O,O(1)), (P1 × P1,O,O,O(1,0)), (P2,O(1),O,O(1)),

(P2,O,O(1),O(1)),

In this case S is a smooth toric, i.e. have an action of
T = C∗ × C∗ with finitely many fixpoints,
Action of T lifts to action on S[n] still with finitely many fixpoints
described by partitions, compute by equivariant localization.
This computes ZS(a1,a2,L, s,q) in terms of combinatorics of
partitions.
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Equivariant localization

Let X be a smooth projective variety with action of T = C∗ × C∗
with finitely many fixpoints, p1, . . . ,pe
Let E be equivariant vector bundle of rank r on X .

Fibre E(pi ) of X at fixp. pi has basis of eigenvect. for T -action
E(pi ) =

⊕r
k=1 Cvi , with action (t1, t2) · vi = tni

1 tmi
2 vi , ni ,mi ∈ Z

Equivariant chern class of fibre at fixpoint:

cT (E(pi )) = (1+cT
1 (E(pi ))+. . .+cT

r (E(pi )) =
r∏

i=1

(1+niε1+miε2) ∈ Z[ε1, ε2]

Let P(c(E)))polynomial in Chern classes of E , of degree d = dim(X )

Theorem (Bott residue formula)∫
[X ]

P
(
c(E)

)
=

e∑
k=1

P
(
cT (E(pk ))

)
cT

d (TX (pk ))

(does not depend on ε1, ε2)
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Equivariant localization

For simplicity S = P2. T = C∗ × C∗ acts on P2 by

(t1, t2) · (X0 : X1 : X2) = (X0 : t1X1 : t2X2)

Fixpoints are p0 = (1,0,0), p1 = (0,1,0), p2 = (0,0,1).
Local (equivariant) coordinates near p0 are x = X1

X0
, y = X2

X0
,

T action (t1, t2)(x , y) = (t1x , t2y), similar for the p1,p2

Z ∈ (P2)[n] is T -invariant =⇒ Z = Z0 t Z1 t Z2 supp(Zi) = pi .
=⇒ Reduce to case supp(Z ) = pi , e.g. p0

Easy: Z is T -invariant ⇐⇒ IZ ∈ k [x , y ] is gen. by monomials
Can write

IZ = (yn0 , xyn1 , ...., x r ynr , x r+1) (n0, . . . ,nr ) partition of n

Fixpoints on (P2)[n] are in bijections with triples (P0,P1,P2) of
partitions of 3 numbers adding up to n.
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Equivariant localization

Need to compute things like c(O[n])
O[n] vector bundle on (P2)[n] with fibre O[n](Z ) = H0(OZ )

If Z = Z0 t Z1 t Z2, supp(Zi ) = pi , then

O[n](Z ) = O[n0](Z0)⊕O[n1](Z1)⊕O[n2](Z2)

cT (O[n](Z )) = cT (O[n0](Z0))cT (O[n1](Z1))cT (O[n2](Z2))

Let e.g. Z = Z0, IZ = (y4, xy2, x2y , x3)
Then the fibre O[n](Z ) = H0(OZ ) = C[x , y ]/(y4, xy2, x2y , x3)
Thus basis of eigenvectors of fibre for T action is

1 y y2 y3

x xy
x2

with eigenvalues
1 t2 t2

2 t3
2

t1 t1t2
t2
1

Thus

cT (O[n](Z )) = (1 + ε2)(1 + 2ε2)(1 + 3ε2)(1 + ε1)(1 + ε1 + ε2)(1 + 2ε1).
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