Refined Verlinde formulas for moduli spaces of sheaves on surfaces

Lothar Göttsche, partially joint works in progress with Martijn Kool, William

Runako, Don Zagier

Enumeration and Moduli, Oslo 8.12.2018

Verlinde formula: generating formula for the dimension of the spaces of sections (conformal blocks)

$$
H^{0}\left(M_{C}^{H}(r, d), L^{\otimes k}\right)
$$

of line bundles $L^{\otimes k}$ on moduli spaces of rank r degree d vector bundles on a nonsingular projective curve C.
Want to study analogue for algebraic surfaces, and we also want to refine it, $H^{0}(M, L)$ (or $\chi(M, L)$) by finer invariants, like
(1) twisted χ_{y}-genus $\chi_{-y}(M, L)$,
(2) twisted elliptic genus $E \|_{M}(y, q ; L)$.

Let S projective algebraic surface
$S^{[n]}=$ Hilbert scheme of finite subschemes of length n on S
$S^{(n)}=S^{n} / \mathfrak{S}_{n}$ symmetric power
$S^{[n]}$ is smooth projective of dimension $2 n$,
$\pi: S^{[n]} \rightarrow S^{(n)} ; Z \mapsto \operatorname{supp}(Z)$ crepant resolution

Universal subscheme

$$
Z_{n}(S)=\{(x, Z) \mid x \in Z\} \subset S \times S^{[n]}
$$

with projections $p: Z_{n}(S) \rightarrow S^{[n]}, q: Z_{n}(S) \rightarrow S^{[n]}$
Tautological sheaves of rank n : For vector bundle V of rank r on S have $V^{[n]}=p_{*} q^{*}(V)$ or rank $r n$
in part. $\mathcal{O}_{S}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{z}\right)$
Have $\operatorname{Pic}\left(S^{[n]}\right)=\mu(\operatorname{Pic}(S)) \oplus \mathbb{Z} E$, with $E=\operatorname{det}\left(\mathcal{O}_{S}^{[n]}\right)$, and $\mu(L)=\pi^{*} \sigma_{*}\left(\otimes_{i=1}^{n} p r_{i}^{*} L\right)^{\mathfrak{S}_{n}}$, with $\sigma: S^{n} \rightarrow S^{(n)}$ proj.

Important tool for us:

Theorem (Ellingsrud-G-Lehn)

Let $P\left(x_{1}, \ldots, x_{2 n}, y_{1}, \ldots, y_{n}\right)$ polynomial. Put

$$
P\left[S^{[n]}, L\right]:=\int_{S[n]} P\left(c_{1}\left(S^{[n]}\right), \ldots c_{2 n}\left(S^{[n]}\right), c_{1}\left(L^{[n]}\right), \ldots, c_{n}\left(L^{[n]}\right)\right)
$$

There is a polynomial $\widetilde{P}(x, y, z, w)$, such that for all surfaces S, all line bundles L on S we have

$$
P[S, L]=\tilde{P}\left(K_{S}^{2}, \chi\left(\mathcal{O}_{S}\right), L K_{S}, K_{S}^{2}\right) .
$$

Usually have sequence of polynomials $P_{n}\left(x_{1}, \ldots x_{2 n}, y_{1}, \ldots, y_{n}\right), n \geq 0$, "nicely organized", then

$$
\sum_{n \geq 0} P_{n}\left[S^{[n]}, L\right] x^{n}=A_{1}(x)^{L^{2}} A_{2}(x)^{L K_{S}} A_{3}(x)^{K_{S}^{2}} A_{4}(x)^{\chi\left(O_{S}\right)}
$$

for universal power series A_{1}, \ldots, A_{4}

Long time ago used this to prove version of Verlinde formula

Theorem (Ellingsrud-G-Lehn)

For every $r \in \mathbb{Z}$ have power series $A_{r}(t)$, $B_{r}(t)$ s.th

$$
\begin{aligned}
\sum_{n \geq 0} \chi\left(S^{[n]}, \mu(L) \otimes E^{r}\right) x^{n}= & \frac{1}{(1-t)^{\chi(L)}}\left(\frac{1}{(1-t)^{r^{2}-1}\left(1+\left(r^{2}-1\right) t\right)}\right)^{\chi\left(\mathcal{O}_{s}\right) / 2} \\
& \cdot A_{r}(t)^{K_{s} L} B_{r}(t)^{K_{s}^{2}}
\end{aligned}
$$

with $x=\frac{t}{(1-t)^{r^{2}}}$. We have $A_{r}=\frac{B_{-r}}{B_{r}}$
Furthermore $A_{r}=B_{r}=1$ for $r=0, \pm 1$
In part. $\chi\left(S^{[n]}, \mu(L)\right)=\binom{\chi(L)+n-1}{n}, \chi\left(S^{[n]}, \mu(L) \otimes E^{ \pm 1}\right)=\binom{\chi(L)}{n}$
With Don-Zagier try to determine the A_{r}, B_{r}. Until now conjectural formula for A_{r}, B_{r} for $r= \pm 2, \pm 3$, and for $A_{ \pm 4}$

With Don-Zagier try to determine the A_{r}, B_{r}. Until now conjectural formula for A_{r}, B_{r} for $r= \pm 2, \pm 3$, and for $A_{ \pm 4}$
e.g.

$$
B_{2}(t)=1+u^{3}, \quad B_{-2}(t)=1-u^{2}, \quad \text { for } t=\frac{u}{1-u+u^{2}}
$$

(found earlier in different form by Marian-Oprea-Pandharipande in context of Lehn conjecture)

$$
\begin{aligned}
B_{-3}(t) & =\frac{\left(1+u^{2}\right)\left(1+u+u^{2}\right)\left(1+4 u+u^{2}\right)(1-u)^{2}}{(1+u)^{3}} \\
B_{3}(t) & =\frac{\left(1+4 u+u^{2}\right)\left(1+u^{2}\right)^{4}}{(1+u)^{4}}, \quad \text { for } t=\frac{u\left(1+u+u^{2}\right)}{(1+u)^{2}}
\end{aligned}
$$

Conversely our formula for $A_{ \pm 3}, B_{ \pm 3}$ gives conjectural formula for

$$
\sum_{n \geq 0} \int_{S^{[n]}} c_{2 n}\left(V^{[n]}\right) x^{n}, \quad r k(V)=-2,4
$$

Refinement: Replace $\chi(L)$ by finer invariant

$$
\chi_{-y}(X, L)=y^{-\operatorname{dim}(X) / 2} \sum_{p=0}^{\operatorname{dim}(X)}(-y)^{p} \chi\left(X, \Omega^{p} \otimes L\right)
$$

All we do works for further refinement: twisted elliptic genus
$E \|_{(X, L)}(y, z)$. Note $\chi_{-y}(X)=\chi_{-y}\left(X, \mathcal{O}_{X}\right)$. We know

$$
\sum_{n \geq 0} \chi_{-y}\left(S^{[n]}\right) x^{n}=\frac{\prod_{n>0}\left(1-x^{n}\right)^{K_{s}^{2}}}{\left.\left(1-x^{n}\right)^{10}\left(1-x^{n} y\right)\left(1-x^{n} / y\right)\right)^{\chi\left(\mathcal{O}_{s}\right)}}
$$

Put $g(x, y):=\prod_{n \geq 1}\left(\frac{\left(1-x^{n}\right)^{2}}{\left(1-x^{n} y\right)\left(1-x^{n} / y\right)}\right)^{n^{2}}$.

Theorem

$$
\begin{aligned}
\sum_{n \geq 0} \chi_{-y}\left(S^{[n]}, L_{n}\right) x^{n}= & g(x, y)^{L^{2} / 2} \prod_{n \geq 1}\left(\left(\frac{1-x^{n} / y}{1-x^{n} y}\right)^{n}\right)^{L K_{S} / 2} \\
& \cdot \sum_{n \geq 0} \chi_{-y}\left(S^{[n]}\right) x^{n}
\end{aligned}
$$

$$
g(x, y):=\prod_{n \geq 1}\left(\frac{\left(1-x^{n}\right)^{2}}{\left(1-x^{n} y\right)\left(1-x^{n} / y\right)}\right)^{n^{2}}
$$

Theorem

If $K_{S}^{2}=L K_{S}=0$, then putting $x:=\operatorname{tg}(t, y)^{r^{2}}$, we have

$$
\begin{aligned}
\sum_{n \geq 0} \chi_{-y}\left(S^{[n]}, L_{n} \otimes E^{r}\right) x^{n} & =g(t, y)^{L^{2} / 2}\left(\frac{g(t, y)^{r^{2}}}{1+r^{2} \frac{t \frac{d}{d t} g(t, y)}{g(t, y)}}\right)^{\chi\left(\mathcal{O}_{S}\right) / 2} \\
& \cdot \sum_{n \geq 0} \chi_{-y}\left(S^{[n]}\right) t^{n}
\end{aligned}
$$

Similar formulas for twisted elliptic genus generalizing the DMVV formla

In Borisov-Libgober proof of DMVV formula for ell. gen. $E /\left(S^{[n]}\right)$, they introduce orbifold elliptic class $E L L_{\text {orb }}(X / G) \in H^{*}(X)$ for the group G acting on X, and the elliptic class $E L L(Y) \in H^{*}(Y)$ for nonsingular Y, such that
(1) $E I I(Y)=\int_{Y} E L L(Y)$,
(2) if $\pi: X \rightarrow X / G$ quotient, $\eta: Y \rightarrow X / G$ crepant resolution, then $\eta_{*} E L L(Y)=\pi_{*} E L L_{\text {orb }}(X, G)$.
They apply this to $Y=S^{[n]}, X=S^{n}, G=\mathfrak{S}_{n}$. As $\mu(L)$ is a line bundle pulled back from $S^{(n)}$, we can compute

$$
E \|_{\left(S^{[n]}, \mu(L)\right)}=\int_{S^{[n]}} E L L\left(S^{[n]}\right) c h(\mu(L)) .
$$

The second theorem is reduced to the first by restricting to the case of K 3 surfaces and using the Beauville Bogomolov quadratic form. This is a quadratic form q on $H^{2}(X)$ for any hyperkähler manifold X. For any polynomial $p\left(c_{i}(X)\right)$ in the Chern classes of X, $\int_{X} p\left(c_{i}(X)\right) \exp (\alpha)$ is a polynomial (depending on p) in $q(\alpha)$. This implies that the formula for $\mu(L)$ determines the one for $\mu(L) \otimes E^{\otimes r}$
S projective complex surface, H ample line bundle on S

$$
M_{S}^{H}\left(c_{1}, c_{2}\right)=\begin{gathered}
\text { moduli space of rank } 2 H \text {-semistable sheaves } \\
\text { on } S \text { with Chern classes } c_{1}, c_{2}
\end{gathered}
$$

\mathcal{E} semistable $\Longleftrightarrow \forall_{n \gg 0} \frac{h^{0}\left(S, \mathcal{F} \otimes H^{\otimes n}\right)}{r k(\mathcal{F})} \leq \frac{h^{0}\left(S, \mathcal{E} \otimes H^{\otimes n}\right)}{r k(\mathcal{E})}$ for all \mathcal{F} subsheaf of \mathcal{E}.
$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ is usually singular, has expected dimension

$$
v d=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)
$$

$v d$ is the dimension M should have, more about that later
Here write $c_{2}:=\int_{[S]} c_{2} \in \mathbb{Z}, c_{1}^{2}:=\int_{[S]} c_{1}^{2} \in \mathbb{Z}$
We assume always that $p_{g}(S)=h^{0}\left(S, K_{S}\right)>0$, $b_{1}(S)=\operatorname{dim} H^{1}(S)=0$
$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ usually very singular
might have dimension different from $\mathrm{vd}=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{s}\right)$
But M has a perfect obstruction theory of virtual dimension vd Can define virtual analogues of all invariants of smooth projective varieties

At every point $[F] \in M$, tangent space $T_{[F]}=E x t^{1}(F, F)_{0}$
obstruction space $O_{[F]}=E x t^{2}(F, F)_{0}$
Perfect obstruction theory:
Complex $E_{\bullet}=\left[E_{0} \rightarrow E_{1}\right]$ of vb on M, s.th. $\forall F \in M$:
$T_{[F]} \simeq \operatorname{ker}\left(E_{0}(F) \rightarrow E_{1}(F)\right), O_{F} \hookrightarrow \operatorname{coker}\left(E_{0}(F) \rightarrow E_{1}(F)\right)$
i.e $E_{\text {. }}$ captures tangents and obstructions via vector bundles

Define: $T_{M}^{\text {vir }}:=\left[E_{0}\right]-\left[E_{1}\right] \in K^{0}(M)$,
$\mathrm{vd}:=\operatorname{rk} T_{M}^{\mathrm{vir}}=\operatorname{rk}\left(E_{0}\right)-\operatorname{rk}\left(E_{1}\right)$
virtual fundamental class $[M]^{\text {vir }} \in H_{2 v d}(M)$
virtual structure sheaf $\mathcal{O}_{M}^{\text {vir }} \in K_{0}(M)$
Virtual holomorphic Euler characteristic For $V \in K^{0}(M)$, put
$\chi^{\text {vir }}(M, V):=\chi\left(M, \mathcal{O}_{M}^{\text {vir }} \otimes V\right)$

Now again S surface with $p_{g}(S)=0, b_{1}(S)=0$
Let $L \in \operatorname{Pic}(S)$. Assume $L c_{1}$ is even
Assume for simplicity \exists universal sheaf \mathbb{E} on $S \times M_{S}^{H}\left(c_{1}, c_{2}\right)$
Put $\mu(L)=-c h_{2}\left(\mathbb{E} \otimes \operatorname{det}(\mathbb{E})^{-1 / 2}\right) / c_{1}(L) \in H^{2}(M)$
There is a line bundle $\mu(L) \in \operatorname{Pic}(S)$ with $c_{1}(\mu(L))=\mu(L)$
(Donaldson line bundle), $\chi^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right), \mu(L)\right)$ are K-theoretic Donaldson invariants

Conjecture

Assume $\left|K_{S}\right|$ contains an irreducible curve. Then

$$
\chi^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right), \mu(L)\right)=2^{3+K_{S}^{2}-\chi\left(O_{S}\right)} \operatorname{Coeff}_{x^{v d}}\left[\frac{(1+x)^{K_{S}\left(L-K_{S}\right)}}{\left(1-x^{2}\right)^{\chi(L)}}\right]
$$

Again $L \in \operatorname{Pic}(S)$ with $L c_{1}$ is even, \mathbb{E} universal sheaf

$$
\left.\left.\mu(L)=-c h_{2}\left(\mathbb{E} \otimes \operatorname{det}(\mathbb{E})^{-1 / 2}\right)\right) / c_{1}(L), \quad E=2 c h_{3}\left(\mathbb{E} \otimes \operatorname{det}(\mathbb{E})^{-1 / 2}\right)\right) / 1
$$

If L is sufficiently ample on S, then $\mu(L)+E$ is ample

Conjecture

Assume $\left|K_{S}\right|$ contains an irreducible curve. Then

$$
\chi^{\operatorname{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right), \mu(L)+E\right)=2^{3+K_{S}^{2}-\chi\left(O_{S}\right)} \operatorname{Coeff}_{x^{v d}}\left[\frac{\left(1-x^{2}\right)^{\chi(L)}}{(1-x)^{L K_{S}}}\right]
$$

$$
\chi_{-y}^{\mathrm{vir}}(M, L):=y^{-\mathrm{vd} / 2} \sum_{p}(-y)^{p} \chi^{\mathrm{vir}}\left(M, \wedge^{p} \Omega_{M}^{\mathrm{vir}} \otimes L\right), \quad \chi_{-y}^{\mathrm{vir}}(M)=\chi_{-y}^{\mathrm{vir}}(M, s)
$$

The Vafa-Witten conjecture is a formula for the Euler numbers $e(M)$. We refine it to a conjecture $\chi_{-y}^{\text {vir }}(M)$. Keep assuming that $\left|K_{S}\right|$ contains irreducible curve.

$$
\begin{gathered}
\theta_{3}(x, y):=\sum_{n \in \mathbb{Z}} x^{n^{2}} y^{n}, \quad \bar{\eta}(x):=\prod_{n>0}\left(1-x^{n}\right) \\
\psi_{S}(x, y):=8\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{10}\left(1-x^{2 n} y\right)\left(1-x^{2 n} / y\right)}\right)^{\chi\left(\mathcal{O}_{s}\right)} \\
\cdot\left(\frac{2 \bar{\eta}\left(x^{4}\right)^{2}}{\theta_{3}\left(x, y^{1 / 2}\right)}\right)^{K_{s}^{2}}
\end{gathered}
$$

Conjecture

$\chi_{-y}^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{X^{v d}}\left[\psi_{S}(x, y)\right]$.

Conjecture

Assume $L c_{1}$ is even.

$$
\begin{aligned}
& \chi_{-y}^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right), \mu(L)\right) \\
& =\operatorname{Coeff}_{x^{v d}}\left[\psi_{S}(x, y)\left(\prod_{n=1}^{\infty}\left(\frac{\left(1-x^{2 n}\right)^{2}}{\left(1-x^{2 n} y\right)\left(1-x^{2 n} y^{-1}\right)}\right)^{n^{2}}\right)^{\frac{L^{2}}{2}}\right. \\
& \left.\left(\prod_{n=1}^{\infty}\left(\frac{1-x^{2 n} y^{-1}}{1-x^{2 n} y}\right)^{n} \prod_{\substack{n>0 \\
\text { odd }}}\left(\frac{\left(1+x^{n} y^{-\frac{1}{2}}\right)\left(1-x^{n} y^{\frac{1}{2}}\right)}{\left(1-x^{n} y^{-\frac{1}{2}}\right)\left(1+x^{n} y^{\frac{1}{2}}\right)}\right)^{n}\right)^{\frac{\left\llcorner K_{S}\right.}{2}}\right]
\end{aligned}
$$

Main tool: Mochizuki's formula:

Compute intersection numbers on $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ in terms of intersection numbers on Hilbert scheme of points.
On $S \times M$ have \mathcal{E} universal sheaf
i.e. if $[E] \in M$ corresponds to a sheaf E on S then $\left.\mathcal{E}\right|_{S \times[E]}=E$.

For $\alpha \in H^{k}(S)$, put

$$
\tau_{i}(\alpha):=\pi_{M_{*}}\left(c_{i}(\mathcal{E}) \pi_{S}^{*}(\alpha)\right) \in H^{2 i-4+k}(M)
$$

Let $P(\mathcal{E})$ be any polynomial in the $\tau_{i}(\alpha)$
Mochizuki's formula expresses $\int_{[M]}{ }^{\text {iir }} P(\mathcal{E})$ in terms of intersec. numbers on $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, and Seiberg-Witten invariants.
$\chi^{\mathrm{vir}}(M, \mu(L)), \chi_{-y}^{\mathrm{vir}}(M, \mu(L))$ can all be expressed as $\int_{[M]_{\mathrm{vir}}} P(\mathcal{E})$, so can reduce computation to Hilbert schemes.

For $\chi^{\mathrm{vir}}(M, L), \chi_{-y}^{\mathrm{vir}}(M, L)$ use virtual Riemann-Roch formula

Theorem (Fantechi-G.)

For $V \in K^{0}(M)$ have

$$
\chi^{\mathrm{vir}}(M, V)=\int_{[M]_{\mathrm{ir}}} \operatorname{ch}(V) \operatorname{td}\left(T_{M}^{\mathrm{vir}}\right)
$$

Seiberg-Witten invariants:

differentiable invariants of differentiable 4-manifolds
S projective algebraic surface: $H^{2}(S, \mathbb{Z}) \ni a \mapsto S W(a) \in \mathbb{Z}$ a is called SW class if $S W(a) \neq 0$.

If $b_{1}(S)=0, p_{g}(S)>0$ and $\left|K_{S}\right|$ contains smooth connected curve, then SW cl . of S are $0, K_{S}$ with

$$
S W(0)=1, \quad S W\left(K_{S}\right)=(-1)^{\chi\left(\mathcal{O}_{S}\right)}
$$

This is the reason for the simplifying assumption that $\left|K_{S}\right|$ contains smooth connected curve, otherwise the formulas are more complicated.
$S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}=\left\{\right.$ pairs $\left(Z_{1}, Z_{2}\right)$ of subsch. of deg. $\left(n_{1}, n_{2}\right)$ on $\left.S\right\}$
Work on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, projection p to $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$
Two universal sheaves: Let $a \in \operatorname{Pic}(S)$
(1) $\mathcal{I}_{i}(a)$ sheaf on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$ with $\left.\mathcal{I}_{i}(a)\right|_{S \times\left(Z_{1}, Z_{2}\right)}=I_{Z_{i}} \otimes a$
(2) $\mathcal{O}_{i}(a)$, vector bundle of rank n_{i} on $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, with fibre $\mathcal{O}_{i}(a)\left(Z_{1}, Z_{2}\right)=H^{0}\left(\mathcal{O}_{Z_{i}} \otimes a\right)$

For a vector bundle E of rank r and variable s put

$$
c_{i}(E \otimes s)=\sum_{k=0}^{i}\binom{r-i}{k} s^{i-k} c_{k}(E), \quad E u(E)=c_{r}(E)
$$

For sheaves $\mathcal{E}_{1}, \mathcal{E}_{2}$ on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$ put

$$
Q\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)=E u\left(-R \operatorname{Hom}_{p}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)-R \operatorname{Hom}_{p}\left(\mathcal{E}_{2}, \mathcal{E}_{1}\right)\right)
$$

For $a_{1}, a_{2} \in \operatorname{Pic}(S)$ put
$\Psi\left(a_{1}, a_{2}, n_{1}, n_{2}, s\right)=\frac{P\left(\mathcal{I}_{1}\left(a_{1}\right) \otimes \boldsymbol{s}^{-1} \oplus \mathcal{I}_{2}\left(a_{2}\right) \otimes \boldsymbol{s}\right) E u\left(\mathcal{O}_{1}\left(a_{1}\right)\right) E u\left(\mathcal{O}_{2}\left(a_{2}\right) \otimes \boldsymbol{s}^{2}\right)}{Q\left(\mathcal{I}_{1}\left(a_{1}\right) \otimes \boldsymbol{s}^{-1}, \mathcal{I}_{2}\left(a_{2}\right) \otimes \boldsymbol{s}\right) \cdot(2 s)^{n_{1}+n_{2}-\chi\left(\mathcal{O}_{s}\right)}}$
$A\left(a_{1}, a_{2}, c_{2}, s\right)=\sum_{n_{1}+n_{2}=c_{2}-a_{1} a_{2}} \int_{S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}} \Psi\left(a_{1}, a_{2}, n_{1}, n_{2}, s\right) \in \mathbb{Q}\left[s, s^{-1}\right]$

Theorem (Mochizuki)

Assume $\chi(E)>0$ for $E \in M_{H}^{S}\left(c_{1}, c_{2}\right)$. Then

$$
\int_{\left[M_{S}^{H}\left(c_{1}, c_{2}\right)\right]^{\text {vir }}} P(\mathcal{E})=\sum_{\substack{c_{1}=a_{1}+a_{2} \\ a_{1} H<a_{2} H}} S W\left(a_{1}\right) \operatorname{Coeff}_{s^{0}} A\left(a_{1}, a_{2}, c_{2}, s\right)
$$

i.e. replace simple formula on a space where we cannot compute anything, by terrible formula on simpler space

Universality Take now for $P(\mathcal{E})=\operatorname{ch}(\mu(L)) \operatorname{td}\left(T_{M}^{\text {vir }}\right)$ (works the same for the others). Put

$$
Z_{S}\left(a_{1}, a_{2}, s, q\right)=\sum_{n_{1}, n_{2} \geq 0} \int_{S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}} A\left(a_{1}, a_{2}, a_{1} a_{2}+n_{1}+n_{2}, s\right) q^{n_{1}+n_{2}}
$$

Proposition

There exist univ. functions $A_{1}(s, q), \ldots, A_{11}(s, q) \in \mathbb{Q}\left[s, s^{-1}\right][[q]]$ s.th. $\forall s, a_{1}, a_{2}, L$

$$
\begin{aligned}
Z_{S}\left(a_{1}, a_{2}, L, s, q\right)= & F_{0}\left(a_{1}, a_{2}, L, s\right) A_{1}^{a_{1}^{2}} A_{2}^{a_{1} a_{2}} A_{3}^{a_{2}^{2}} A_{4}^{a_{1} K_{s}} A_{5}^{a_{2} K_{s}} A_{6}^{K_{s}^{2}} A_{7}^{\chi\left(\mathcal{O}_{s}\right)} \\
& \cdot A_{8}^{L^{2}} A_{9}^{L K_{s}} A_{10}^{L a_{1}} A_{11}^{L a_{2}},
\end{aligned}
$$

(where $F_{0}\left(a_{1}, a_{2}, L, s\right)$ is some explicit elementary function).
Proof: Modification of the cobordism argument for Hilbert schemes of points
$A_{1}(s, q), \ldots A_{11}(s, q)$ are determ. by value of $Z_{S}\left(a_{1}, a_{2}, L, s, q\right)$ for 11 triples $\left(S, a_{1}, a_{2}, L\right)\left(S\right.$ surface, $\left.a_{1}, a_{2}, L \in \operatorname{Pic}(S)\right)$ s.th. corresponding 11-tuples

$$
\left.\left(a_{1}^{2}, a_{1} a_{2}, a_{2}^{2}, a_{1} K_{S}, a_{1} K_{S}, K_{S}^{2}, \chi\left(O_{S}\right)\right), L^{2}, L K_{S}, L a_{1}, L a_{1}\right)
$$

are linearly independent. We take

$$
\begin{aligned}
& \left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}(1), \mathcal{O}\right) \\
& \left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}(1), \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,0), \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}(1,0), \mathcal{O}\right) \\
& \left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}, \mathcal{O}(1)\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}, \mathcal{O}(1,0)\right),\left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}, \mathcal{O}(1)\right) \\
& \left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}(1), \mathcal{O}(1)\right)
\end{aligned}
$$

In this case S is a smooth toric, i.e. have an action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints,
Action of T lifts to action on $S^{[n]}$ still with finitely many fixpoints described by partitions, compute by equivariant localization.
This computes $Z_{S}\left(a_{1}, a_{2}, L, s, q\right)$ in terms of combinatorics of partitions.

Let X be a smooth projective variety with action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints, p_{1}, \ldots, p_{e} Let E be equivariant vector bundle of rank r on X.
Fibre $E\left(p_{i}\right)$ of X at fixp. p_{i} has basis of eigenvect. for T-action $E\left(p_{i}\right)=\bigoplus_{k=1}^{r} \mathbb{C} v_{i}$, with action $\left(t_{1}, t_{2}\right) \cdot v_{i}=t_{1}^{n_{i}} t_{2}^{m_{i}} v_{i}, n_{i}, m_{i} \in \mathbb{Z}$
Equivariant chern class of fibre at fixpoint:
$c^{T}\left(E\left(p_{i}\right)\right)=\left(1+c_{1}^{T}\left(E\left(p_{i}\right)\right)+\ldots+c_{r}^{T}\left(E\left(p_{i}\right)\right)=\prod_{i=1}^{r}\left(1+n_{i} \epsilon_{1}+m_{i} \epsilon_{2}\right) \in \mathbb{Z}\left[\epsilon_{1}, \epsilon_{2}\right]\right.$
Let $P(c(E))$)polynomial in Chern classes of E, of degree $d=\operatorname{dim}(X)$

Theorem (Bott residue formula)

$$
\int_{[X]} P(c(E))=\sum_{k=1}^{e} \frac{P\left(c^{T}\left(E\left(p_{k}\right)\right)\right)}{c_{d}^{T}\left(T_{X}\left(p_{k}\right)\right)}
$$

(does not depend on $\epsilon_{1}, \epsilon_{2}$)

For simplicity $S=\mathbb{P}^{2} . T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on \mathbb{P}^{2} by

$$
\left(t_{1}, t_{2}\right) \cdot\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{0}: t_{1} X_{1}: t_{2} X_{2}\right)
$$

Fixpoints are $p_{0}=(1,0,0), p_{1}=(0,1,0), p_{2}=(0,0,1)$.
Local (equivariant) coordinates near p_{0} are $x=\frac{x_{1}}{X_{0}}, y=\frac{x_{2}}{X_{0}}$, T action $\left(t_{1}, t_{2}\right)(x, y)=\left(t_{1} x, t_{2} y\right)$, similar for the p_{1}, p_{2}
$Z \in\left(\mathbb{P}^{2}\right)^{[n]}$ is T-invariant $\Longrightarrow Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2} \quad \operatorname{supp}\left(Z_{i}\right)=p_{i}$.
\Longrightarrow Reduce to case $\operatorname{supp}(Z)=p_{i}$, e.g. p_{0}
Easy: Z is T-invariant $\Longleftrightarrow I_{Z} \in k[x, y]$ is gen. by monomials Can write

$$
I_{z}=\left(y^{n_{0}}, x y^{n_{1}}, \ldots, x^{r} y^{n_{r}}, x^{r+1}\right) \quad\left(n_{0}, \ldots, n_{r}\right) \text { partition of } n
$$

Fixpoints on $\left(\mathbb{P}^{2}\right)^{[n]}$ are in bijections with triples $\left(P_{0}, P_{1}, P_{2}\right)$ of partitions of 3 numbers adding up to n.

Need to compute things like $c\left(\mathcal{O}^{[n]}\right)$
$\mathcal{O}^{[n]}$ vector bundle on $\left(\mathbb{P}^{2}\right)^{[n]}$ with fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{Z}\right)$
If $Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2}, \operatorname{supp}\left(Z_{i}\right)=p_{i}$, then

$$
\begin{aligned}
\mathcal{O}^{[n]}(Z) & =\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right) \oplus \mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right) \oplus \mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right) \\
c^{T}\left(\mathcal{O}^{[n]}(Z)\right) & =c^{T}\left(\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right)\right)
\end{aligned}
$$

Let e.g. $Z=Z_{0}, I_{Z}=\left(y^{4}, x y^{2}, x^{2} y, x^{3}\right)$
Then the fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{z}\right)=\mathbb{C}[x, y] /\left(y^{4}, x y^{2}, x^{2} y, x^{3}\right)$
Thus basis of eigenvectors of fibre for T action is

$$
\begin{array}{ccccccccc}
1 & y & y^{2} & y^{3} & & & 1 & t_{2} & t_{2}^{2} \\
x & x y & & & t_{2}^{3} \\
x^{2} & & & & & \text { with eigenvalues } & t_{1} & t_{1} t_{2} & \\
& t_{1}^{2} & & &
\end{array}
$$

Thus
$c^{T}\left(\mathcal{O}^{[n]}(Z)\right)=\left(1+\epsilon_{2}\right)\left(1+2 \epsilon_{2}\right)\left(1+3 \epsilon_{2}\right)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{1}+\epsilon_{2}\right)\left(1+2 \epsilon_{1}\right)$.

