Moduli of rank 2 sheaves

Refined Verlinde formulas for moduli spaces of sheaves on surfaces

Lothar Göttsche, partially joint works in progress with Martijn Kool, William Runako, Don Zagier

Enumeration and Moduli, Oslo 8.12.2018

Verlinde formula: generating formula for the dimension of the spaces of sections (conformal blocks)

$$H^0(M^H_C(r,d),L^{\otimes k})$$

of line bundles $L^{\otimes k}$ on moduli spaces of rank *r* degree *d* vector bundles on a nonsingular projective curve *C*.

Want to study analogue for algebraic surfaces, and we also want to refine it, $H^0(M, L)$ (or $\chi(M, L)$) by finer invariants, like

• twisted χ_y -genus $\chi_{-y}(M, L)$,

2 twisted elliptic genus $Ell_M(y, q; L)$.

Moduli of rank 2 sheaves

Hilbert schemes of points

Let *S* projective algebraic surface $S^{[n]}$ =Hilbert scheme of finite subschemes of length *n* on *S* $S^{(n)} = S^n / \mathfrak{S}_n$ symmetric power $S^{[n]}$ is smooth projective of dimension 2*n*, $\pi : S^{[n]} \to S^{(n)}; Z \mapsto supp(Z)$ crepant resolution **Universal subscheme** $Z_n(S) = \{(x, Z) \mid x \in Z\} \subset S \times S^{[n]}$

with projections $p : Z_n(S) \to S^{[n]}$, $q : Z_n(S) \to S^{[n]}$ **Tautological sheaves** of rank *n*: For vector bundle *V* of rank *r* on *S* have $V^{[n]} = p_*q^*(V)$ or rank *rn* in part. $\mathcal{O}_S^{[n]}(Z) = H^0(\mathcal{O}_Z)$ Have $\operatorname{Pic}(S^{[n]}) = \mu(\operatorname{Pic}(S)) \oplus \mathbb{Z}E$, with $E = \det(\mathcal{O}_S^{[n]})$, and $\mu(L) = \pi^*\sigma_*(\otimes_{i=1}^n pr_i^*L)^{\mathfrak{S}_n}$, with $\sigma : S^n \to S^{(n)}$ proj.

Important tool for us:

Theorem (Ellingsrud-G-Lehn)

Let $P(x_1, \ldots, x_{2n}, y_1, \ldots, y_n)$ polynomial. Put

$$P[S^{[n]}, L] := \int_{S^{[n]}} P(c_1(S^{[n]}), \dots c_{2n}(S^{[n]}), c_1(L^{[n]}), \dots, c_n(L^{[n]}))$$

There is a polynomial $\tilde{P}(x, y, z, w)$, such that for all surfaces S, all line bundles L on S we have

$$P[S, L] = \widetilde{P}(K_S^2, \chi(\mathcal{O}_S), LK_S, K_S^2).$$

Usually have sequence of polynomials $P_n(x_1, ..., x_{2n}, y_1, ..., y_n), n \ge 0$, "nicely organized", then

$$\sum_{n\geq 0} P_n[S^{[n]}, L]x^n = A_1(x)^{L^2} A_2(x)^{LK_S} A_3(x)^{K_S^2} A_4(x)^{\chi(O_S)}$$

for universal power series A_1, \ldots, A_4

Long time ago used this to prove version of Verlinde formula

$$\begin{aligned} & \begin{array}{l} \hline \textbf{Theorem (Ellingsrud-G-Lehn)} \\ For \ every \ r \in \mathbb{Z} \ have \ power \ series \ A_r(t), \ B_r(t) \ s.th \\ & \\ & \sum_{n \geq 0} \chi(S^{[n]}, \mu(L) \otimes E^r) x^n = \frac{1}{(1-t)^{\chi(L)}} \left(\frac{1}{(1-t)^{r^2-1}(1+(r^2-1)t)} \right)^{\chi(\mathcal{O}_S)/2} \\ & \quad \cdot A_r(t)^{K_S L} B_r(t)^{K_S^2} \\ & \\ & \text{with } x = \frac{t}{(1-t)^{r^2}}. \ We \ have \ A_r = \frac{B_{-r}}{B_r} \\ & Furthermore \ A_r = B_r = 1 \ for \ r = 0, \pm 1 \\ & \\ & ln \ part. \ \chi(S^{[n]}, \mu(L)) = \binom{\chi(L)+n-1}{n}, \ \chi(S^{[n]}, \mu(L) \otimes E^{\pm 1}) = \binom{\chi(L)}{n} \end{aligned}$$

With Don-Zagier try to determine the A_r , B_r . Until now conjectural formula for A_r , B_r for $r = \pm 2, \pm 3$, and for $A_{\pm 4}$

With Don-Zagier try to determine the A_r , B_r . Until now conjectural formula for A_r , B_r for $r = \pm 2, \pm 3$, and for $A_{\pm 4}$ e.g.

$$B_2(t) = 1 + u^3$$
, $B_{-2}(t) = 1 - u^2$, for $t = \frac{u}{1 - u + u^2}$

(found earlier in different form by Marian-Oprea-Pandharipande in context of Lehn conjecture)

$$B_{-3}(t) = \frac{(1+u^2)(1+u+u^2)(1+4u+u^2)(1-u)^2}{(1+u)^3}$$
$$B_3(t) = \frac{(1+4u+u^2)(1+u^2)^4}{(1+u)^4}, \quad \text{for } t = \frac{u(1+u+u^2)}{(1+u)^2}$$

Conversely our formula for $A_{\pm 3}$, $B_{\pm 3}$ gives conjectural formula for

$$\sum_{n\geq 0} \int_{S^{[n]}} c_{2n}(V^{[n]}) x^n, \quad rk(V) = -2, 4$$

Refinement: Replace $\chi(L)$ by finer invariant

$$\chi_{-y}(X,L) = y^{-\dim(X)/2} \sum_{p=0}^{\dim(X)} (-y)^p \chi(X,\Omega^p \otimes L)$$

All we do works for further refinement: twisted elliptic genus $Ell_{(X,L)}(y,z)$. Note $\chi_{-y}(X) = \chi_{-y}(X, \mathcal{O}_X)$. We know

$$\sum_{n\geq 0} \chi_{-y}(\mathcal{S}^{[n]}) x^n = \frac{\prod_{n>0} (1-x^n)^{K_s^2}}{(1-x^n)^{10} (1-x^n y)(1-x^n/y))^{\chi(\mathcal{O}_s)}}$$

Put $g(x,y) := \prod_{n\geq 1} \left(\frac{(1-x^n)^2}{(1-x^n y)(1-x^n/y)} \right)^{n^2}$.

Theorem

$$\sum_{n\geq 0} \chi_{-y}(S^{[n]}, L_n) x^n = g(x, y)^{L^2/2} \prod_{n\geq 1} \left(\left(\frac{1 - x^n/y}{1 - x^n y} \right)^n \right)^{LK_S/2} \cdot \sum_{n\geq 0} \chi_{-y}(S^{[n]}) x^n.$$

Introduction O	Hilbert schemes of points	Moduli of rank 2 sheaves	Check of conjectures
Refined Verlinde for	rmula		

$$g(x,y) := \prod_{n\geq 1} \left(\frac{(1-x^n)^2}{(1-x^n y)(1-x^n/y)} \right)^{n^2}.$$

Theorem

If
$$K_S^2 = LK_S = 0$$
, then putting $x := tg(t, y)^{r^2}$, we have

$$\sum_{n\geq 0} \chi_{-y}(S^{[n]}, L_n \otimes E^r) x^n = g(t, y)^{L^2/2} \left(\frac{g(t, y)^{r^2}}{1 + r^2 \frac{t\frac{d}{dt}g(t, y)}{g(t, y)}} \right)^{\chi(\mathcal{O}_S)/2} \cdot \sum_{n\geq 0} \chi_{-y}(S^{[n]}) t^n$$

Similar formulas for twisted elliptic genus generalizing the DMVV formla

In Borisov-Libgober proof of DMVV formula for ell. gen. $Ell(S^{[n]})$, they introduce orbifold elliptic class $ELL_{orb}(X/G) \in H^*(X)$ for the group *G* acting on *X*, and the elliptic class $ELL(Y) \in H^*(Y)$ for nonsingular *Y*, such that

$$II(Y) = \int_Y ELL(Y),$$

2 if $\pi : X \to X/G$ quotient, $\eta : Y \to X/G$ crepant resolution, then $\eta_* ELL(Y) = \pi_* ELL_{orb}(X, G)$.

They apply this to $Y = S^{[n]}$, $X = S^n$, $G = \mathfrak{S}_n$. As $\mu(L)$ is a line bundle pulled back from $S^{(n)}$, we can compute

$$\textit{Ell}_{(\mathcal{S}^{[n]},\mu(L))} = \int_{\mathcal{S}^{[n]}}\textit{ELL}(\mathcal{S}^{[n]})\textit{ch}(\mu(L)).$$

The second theorem is reduced to the first by restricting to the case of K3 surfaces and using the Beauville Bogomolov quadratic form. This is a quadratic form q on $H^2(X)$ for any hyperkähler manifold X. For any polynomial $p(c_i(X))$ in the Chern classes of X, $\int_X p(c_i(X)) \exp(\alpha)$ is a polynomial (depending on p) in $q(\alpha)$. This

implies that the formula for $\mu(L)$ determines the one for $\mu(L) \otimes E^{\otimes r}$

Introduction o	Hilbert schemes of points	Moduli of rank 2 sheaves ●○○○○○	Check of conjectures
Moduli space			

S projective complex surface, H ample line bundle on S

 $M_S^H(c_1, c_2) = {egin{array}{c} {
m moduli space of rank 2 H-semistable sheaves} \ {
m on S with Chern classes $c_1, c_2} \end{array}$

 $\mathcal{E} \text{ semistable } \iff \forall_{n \gg 0} \ \frac{h^0(S, \mathcal{F} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{F})} \leq \frac{h^0(S, \mathcal{E} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{E})} \text{ for all } \mathcal{F} \text{ subsheaf of } \mathcal{E}.$

 $M = M_S^H(c_1, c_2)$ is usually singular, has expected dimension

$$vd = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S).$$

vd is the dimension *M* should have, more about that later Here write $c_2 := \int_{[S]} c_2 \in \mathbb{Z}$, $c_1^2 := \int_{[S]} c_1^2 \in \mathbb{Z}$ We assume always that $p_g(S) = h^0(S, K_S) > 0$, $b_1(S) = \dim H^1(S) = 0$ $M = M_S^H(c_1, c_2)$ usually very singular might have dimension different from $vd = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$

But M has a perfect obstruction theory of virtual dimension vd Can define virtual analogues of all invariants of smooth projective varieties

At every point $[F] \in M$, tangent space $T_{[F]} = Ext^1(F, F)_0$ obstruction space $O_{[F]} = Ext^2(F, F)_0$

Perfect obstruction theory:

Complex $E_{\bullet} = [E_0 \rightarrow E_1]$ of vb on M, s.th. $\forall F \in M$: $T_{[F]} \simeq ker(E_0(F) \rightarrow E_1(F)), O_F \hookrightarrow coker(E_0(F) \rightarrow E_1(F))$ i.e E_{\bullet} captures tangents and obstructions via vector bundles

Define: $T_M^{\text{vir}} := [E_0] - [E_1] \in K^0(M)$, vd := rk $T_M^{\text{vir}} = \text{rk}(E_0) - \text{rk}(E_1)$ virtual fundamental class $[M]^{\text{vir}} \in H_{2\text{vd}}(M)$ virtual structure sheaf $\mathcal{O}_M^{\text{vir}} \in K_0(M)$ **Virtual holomorphic Euler characteristic** For $V \in K^0(M)$, put $\chi^{\text{vir}}(M, V) := \chi(M, \mathcal{O}_M^{\text{vir}} \otimes V)$

Introduction O	Hilbert schemes of points	Moduli of rank 2 sheaves ○○●○○○	Check of conjectures
Verlinde formula			

Now again *S* surface with $p_g(S) = 0$, $b_1(S) = 0$ Let $L \in \text{Pic}(S)$. Assume Lc_1 is even Assume for simplicity \exists universal sheaf \mathbb{E} on $S \times M_S^H(c_1, c_2)$ Put $\mu(L) = -ch_2(\mathbb{E} \otimes \det(\mathbb{E})^{-1/2})/c_1(L) \in H^2(M)$ There is a line bundle $\mu(L) \in \text{Pic}(S)$ with $c_1(\mu(L)) = \mu(L)$ (Donaldson line bundle), $\chi^{\text{vir}}(M_S^H(c_1, c_2), \mu(L))$ are *K*-theoretic Donaldson invariants

Conjecture

Assume $|K_S|$ contains an irreducible curve. Then

$$\chi^{\text{vir}}(M_{S}^{H}(c_{1}, c_{2}), \mu(L)) = 2^{3 + K_{S}^{2} - \chi(O_{S})} \text{Coeff}_{x^{\text{vd}}} \left[\frac{(1+x)^{K_{S}(L-K_{S})}}{(1-x^{2})^{\chi(L)}} \right]$$

Verlinde formula

Again $L \in Pic(S)$ with Lc_1 is even, \mathbb{E} universal sheaf

$$\mu(L) = -\textit{ch}_2(\mathbb{E} \otimes \det(\mathbb{E})^{-1/2}))/\textit{c}_1(L), \quad E = 2\textit{ch}_3(\mathbb{E} \otimes \det(\mathbb{E})^{-1/2}))/1$$

If *L* is sufficiently ample on *S*, then $\mu(L) + E$ is ample

Conjecture Assume $|K_S|$ contains an irreducible curve. Then $\chi^{\text{vir}}(M_S^H(c_1, c_2), \mu(L) + E) = 2^{3 + K_S^2 - \chi(O_S)} \text{Coeff}_{\chi^{\text{vd}}} \left[\frac{(1 - x^2)^{\chi(L)}}{(1 - x)^{LK_S}} \right]$

Introduction o	Hilbert schemes of points	Moduli of rank 2 sheaves ○○○○●○	Check of conjectures
Refinement			

Twisted Virtual χ_{-y} -genus. Put $\Omega_M^{\text{vir}} := (T_M^{\text{vir}})^{\vee}$.

$$\chi_{-y}^{\mathrm{vir}}(\boldsymbol{M},\boldsymbol{L}) := y^{-\mathrm{vd}/2} \sum_{\boldsymbol{\rho}} (-y)^{\boldsymbol{\rho}} \chi^{\mathrm{vir}}(\boldsymbol{M},\Lambda^{\boldsymbol{\rho}} \Omega_{\boldsymbol{M}}^{\mathrm{vir}} \otimes \boldsymbol{L}), \quad \chi_{-y}^{\mathrm{vir}}(\boldsymbol{M}) = \chi_{-y}^{\mathrm{vir}}(\boldsymbol{M},\boldsymbol{s})$$

The Vafa-Witten conjecture is a formula for the Euler numbers e(M). We refine it to a conjecture $\chi_{-y}^{\text{vir}}(M)$. Keep assuming that $|K_S|$ contains irreducible curve.

$$heta_3(x,y) := \sum_{n \in \mathbb{Z}} x^{n^2} y^n, \quad \overline{\eta}(x) := \prod_{n > 0} (1 - x^n)$$

$$\begin{split} \psi_{\mathcal{S}}(x,y) &:= 8 \left(\frac{1}{2 \prod_{n>0} (1-x^{2n})^{10} (1-x^{2n}y) (1-x^{2n}/y)} \right)^{\chi(\mathcal{O}_{\mathcal{S}})} \\ &\cdot \left(\frac{2 \overline{\eta}(x^4)^2}{\theta_3(x,y^{1/2})} \right)^{K_{\mathcal{S}}^2} \end{split}$$

Conjecture

 $\chi_{-v}^{\mathrm{vir}}(M_{\mathcal{S}}^{H}(c_{1},c_{2})) = \mathrm{Coeff}_{x^{\mathrm{vd}}}[\psi_{\mathcal{S}}(x,y)].$

Refinement

Conjecture

Assume Lc₁ is even.

$$\begin{split} \chi_{-y}^{\text{vir}}(M_{S}^{H}(c_{1},c_{2}),\mu(L)) \\ &= \text{Coeff}_{x^{vd}} \left[\psi_{S}(x,y) \left(\prod_{n=1}^{\infty} \left(\frac{(1-x^{2n})^{2}}{(1-x^{2n}y)(1-x^{2n}y^{-1})} \right)^{n^{2}} \right)^{\frac{L^{2}}{2}} \\ &\left(\prod_{n=1}^{\infty} \left(\frac{1-x^{2n}y^{-1}}{1-x^{2n}y} \right)^{n} \prod_{\substack{n > 0 \\ \text{odd}}} \left(\frac{(1+x^{n}y^{-\frac{1}{2}})(1-x^{n}y^{\frac{1}{2}})}{(1-x^{n}y^{-\frac{1}{2}})(1+x^{n}y^{\frac{1}{2}})} \right)^{n} \right)^{\frac{LK_{S}}{2}} \right] \end{split}$$

Main tool: Mochizuki's formula:

Compute intersection numbers on $M = M_S^H(c_1, c_2)$ in terms of intersection numbers on Hilbert scheme of points.

On $S \times M$ have \mathcal{E} universal sheaf

i.e. if $[E] \in M$ corresponds to a sheaf E on S then $\mathcal{E}|_{S \times [E]} = E$. For $\alpha \in H^k(S)$, put

$$au_i(lpha) := \pi_{M_*}(\mathcal{C}_i(\mathcal{E})\pi^*_{\mathcal{S}}(lpha)) \in H^{2i-4+k}(M)$$

Let $P(\mathcal{E})$ be any polynomial in the $\tau_i(\alpha)$ Mochizuki's formula expresses $\int_{[M]^{\text{vir}}} P(\mathcal{E})$ in terms of intersec. numbers on $S^{[n_1]} \times S^{[n_2]}$, and Seiberg-Witten invariants. Mochizuki formula

 $\chi^{\text{vir}}(M, \mu(L)), \chi^{\text{vir}}_{-y}(M, \mu(L))$ can all be expressed as $\int_{[M]^{\text{vir}}} P(\mathcal{E})$, so can reduce computation to Hilbert schemes.

For $\chi^{\text{vir}}(M, L)$, $\chi^{\text{vir}}_{-y}(M, L)$ use virtual Riemann-Roch formula

Theorem (Fantechi-G.)

For $V \in K^0(M)$ have

$$\chi^{\mathrm{vir}}(\boldsymbol{M}, \boldsymbol{V}) = \int_{[\boldsymbol{M}]^{\mathrm{vir}}} \mathrm{ch}(\boldsymbol{V}) \mathrm{td}(\boldsymbol{T}_{\boldsymbol{M}}^{\mathrm{vir}}).$$

Seiberg-Witten invariants:

differentiable invariants of differentiable 4-manifolds *S* projective algebraic surface: $H^2(S, \mathbb{Z}) \ni a \mapsto SW(a) \in \mathbb{Z}$ *a* is called SW class if $SW(a) \neq 0$.

If $b_1(S) = 0$, $p_g(S) > 0$ and $|K_S|$ contains smooth connected curve, then SW cl. of *S* are 0, K_S with

SW(0) = 1, $SW(K_S) = (-1)^{\chi(\mathcal{O}_S)}$

This is the reason for the simplifying assumption that $|K_S|$ contains smooth connected curve, otherwise the formulas are more complicated.

$$S^{[n_1]} \times S^{[n_2]} = \{ \text{pairs} (Z_1, Z_2) \text{ of subsch. of deg.} (n_1, n_2) \text{ on } S \}$$

Work on $S \times S^{[n_1]} \times S^{[n_2]}$, projection p to $S^{[n_1]} \times S^{[n_2]}$ Two universal sheaves: Let $a \in Pic(S)$

- $\mathcal{I}_i(a)$ sheaf on $S \times S^{[n_1]} \times S^{[n_2]}$ with $\mathcal{I}_i(a)|_{S \times (Z_1, Z_2)} = I_{Z_i} \otimes a$
- 2 $\mathcal{O}_i(a)$, vector bundle of rank n_i on $S^{[n_1]} \times S^{[n_2]}$, with fibre $\mathcal{O}_i(a)(Z_1, Z_2) = H^0(\mathcal{O}_{Z_i} \otimes a)$

For a vector bundle E of rank r and variable s put

$$c_i(E\otimes s)=\sum_{k=0}^i {r-i \choose k} s^{i-k}c_k(E), \quad Eu(E)=c_r(E)$$

i.e. replace simple formula on a space where we cannot compute anything, by terrible formula on simpler space **Universality** Take now for $P(\mathcal{E}) = ch(\mu(L))td(T_M^{vir})$ (works the same for the others). Put

$$Z_{S}(a_{1}, a_{2}, s, q) = \sum_{n_{1}, n_{2} \geq 0} \int_{S^{[n_{1}]} \times S^{[n_{2}]}} A(a_{1}, a_{2}, a_{1}a_{2} + n_{1} + n_{2}, s)q^{n_{1} + n_{2}}$$

Proposition

There exist univ. functions $A_1(s,q), \ldots, A_{11}(s,q) \in \mathbb{Q}[s,s^{-1}][[q]]$ s.th. $\forall_{S,a_1,a_2,L}$

$$Z_{S}(a_{1}, a_{2}, L, s, q) = F_{0}(a_{1}, a_{2}, L, s)A_{1}^{a_{1}^{2}}A_{2}^{a_{1}a_{2}}A_{3}^{a_{2}^{2}}A_{4}^{a_{1}K_{S}}A_{5}^{a_{2}K_{S}}A_{6}^{K_{S}^{2}}A_{7}^{\chi(\mathcal{O}_{S})}$$
$$\cdot A_{8}^{L^{2}}A_{9}^{LK_{S}}A_{10}^{La_{1}}A_{11}^{La_{2}},$$

(where $F_0(a_1, a_2, L, s)$ is some explicit elementary function).

Proof: Modification of the cobordism argument for Hilbert schemes of points

Introduction O	Hilbert schemes of points	Moduli of rank 2 sheaves	Check of conjectures	
Reduction to \mathbb{P}^2 an	$d \mathbb{P}^1 \times \mathbb{P}^1.$			

 $A_1(s,q), \ldots A_{11}(s,q)$ are determ. by value of $Z_S(a_1, a_2, L, s, q)$ for 11 triples (S, a_1, a_2, L) (S surface, $a_1, a_2, L \in Pic(S)$) s.th. corresponding 11-tuples

 $(a_1^2, a_1a_2, a_2^2, a_1K_S, a_1K_S, K_S^2, \chi(O_S)), L^2, LK_S, La_1, La_1)$ are linearly independent. We take $(\mathbb{P}^2, \mathcal{O}, \mathcal{O}, \mathcal{O}), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}, \mathcal{O}, \mathcal{O}), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}, \mathcal{O}), (\mathbb{P}^2, \mathcal{O}, \mathcal{O}(1), \mathcal{O}), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}, \mathcal{O}(1, 0), \mathcal{O}), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}, \mathcal{O}(1, 0), \mathcal{O}), (\mathbb{P}^2, \mathcal{O}, \mathcal{O}(1)), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}, \mathcal{O}, \mathcal{O}(1, 0)), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}, \mathcal{O}(1)), (\mathbb{P}^2, \mathcal{O}, \mathcal{O}(1), \mathcal{O}, \mathcal{O}(1)), (\mathbb{P}^2, \mathcal{O}, \mathcal{O}(1), \mathcal{O}(1)), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}(1))), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}(1)), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}(1))), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}(1))), (\mathbb{P}^2, \mathcal{O}(1), \mathcal{O}(1)))$

In this case *S* is a smooth toric, i.e. have an action of $T = \mathbb{C}^* \times \mathbb{C}^*$ with finitely many fixpoints,

Action of *T* lifts to action on $S^{[n]}$ still with finitely many fixpoints described by partitions, compute by equivariant localization. This computes $Z_S(a_1, a_2, L, s, q)$ in terms of combinatorics of partitions. Let *X* be a smooth projective variety with action of $T = \mathbb{C}^* \times \mathbb{C}^*$ with finitely many fixpoints, p_1, \ldots, p_e Let *E* be equivariant vector bundle of rank *r* on *X*.

Fibre $E(p_i)$ of X at fixp. p_i has basis of eigenvect. for T-action $E(p_i) = \bigoplus_{k=1}^r \mathbb{C}v_i$, with action $(t_1, t_2) \cdot v_i = t_1^{n_i} t_2^{m_i} v_i$, $n_i, m_i \in \mathbb{Z}$

Equivariant chern class of fibre at fixpoint:

$$c^{\mathsf{T}}(E(p_i)) = (1 + c_1^{\mathsf{T}}(E(p_i)) + \ldots + c_r^{\mathsf{T}}(E(p_i))) = \prod_{i=1}^{\mathsf{T}} (1 + n_i \epsilon_1 + m_i \epsilon_2) \in \mathbb{Z}[\epsilon_1, \epsilon_2]$$

Let P(c(E)))polynomial in Chern classes of E, of degree $d = \dim(X)$

Theorem (Bott residue formula)

$$\int_{[X]} P(c(E)) = \sum_{k=1}^{e} \frac{P(c^{T}(E(p_k)))}{c_d^{T}(T_X(p_k))}$$

(does not depend on ϵ_1, ϵ_2)

Introduction	Hilbert schemes of points	Moduli of rank 2 sheaves	Check of conjectures
Equivariant localization	n		

For simplicity $S = \mathbb{P}^2$. $T = \mathbb{C}^* \times \mathbb{C}^*$ acts on \mathbb{P}^2 by

$$(t_1, t_2) \cdot (X_0 : X_1 : X_2) = (X_0 : t_1 X_1 : t_2 X_2)$$

Fixpoints are $p_0 = (1, 0, 0)$, $p_1 = (0, 1, 0)$, $p_2 = (0, 0, 1)$. Local (equivariant) coordinates near p_0 are $x = \frac{X_1}{X_0}$, $y = \frac{X_2}{X_0}$, T action $(t_1, t_2)(x, y) = (t_1 x, t_2 y)$, similar for the p_1, p_2 $Z \in (\mathbb{P}^2)^{[n]}$ is *T*-invariant $\Longrightarrow Z = Z_0 \sqcup Z_1 \sqcup Z_2 \quad supp(Z_i) = p_i$. \Longrightarrow Reduce to case $supp(Z) = p_i$, e.g. p_0 Easy: *Z* is *T*-invariant $\iff I_Z \in k[x, y]$ is gen. by monomials Can write

$$I_Z = (y^{n_0}, xy^{n_1}, ..., x^r y^{n_r}, x^{r+1})$$
 $(n_0, ..., n_r)$ partition of *n*

Fixpoints on $(\mathbb{P}^2)^{[n]}$ are in bijections with triples (P_0, P_1, P_2) of partitions of 3 numbers adding up to *n*.

Need to compute things like $c(\mathcal{O}^{[n]})$ $\mathcal{O}^{[n]}$ vector bundle on $(\mathbb{P}^2)^{[n]}$ with fibre $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z)$ If $Z = Z_0 \sqcup Z_1 \sqcup Z_2$, $supp(Z_i) = p_i$, then $\mathcal{O}^{[n]}(Z) = \mathcal{O}^{[n_0]}(Z_0) \oplus \mathcal{O}^{[n_1]}(Z_1) \oplus \mathcal{O}^{[n_2]}(Z_2)$ $c^T(\mathcal{O}^{[n]}(Z)) = c^T(\mathcal{O}^{[n_0]}(Z_0))c^T(\mathcal{O}^{[n_1]}(Z_1))c^T(\mathcal{O}^{[n_2]}(Z_2))$

Let e.g. $Z = Z_0$, $I_Z = (y^4, xy^2, x^2y, x^3)$ Then the fibre $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z) = \mathbb{C}[x, y]/(y^4, xy^2, x^2y, x^3)$ Thus basis of eigenvectors of fibre for *T* action is

1	У	y ²	У ³		1	<i>t</i> 2	t_{2}^{2}	t_2^3
X	ху			with eigenvalues	<i>t</i> 1	$t_1 t_2$		_
<i>x</i> ²					t_{1}^{2}			

Thus

$$\boldsymbol{c}^{T}(\mathcal{O}^{[n]}(\boldsymbol{Z})) = (1+\epsilon_2)(1+2\epsilon_2)(1+3\epsilon_2)(1+\epsilon_1)(1+\epsilon_1+\epsilon_2)(1+2\epsilon_1).$$