Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces

Sections of line bundles on moduli spaces of sheaves on surfaces and strange duality

Lothar Göttsche based on (1) joint work with H.Nakajima, K.Yoshioka, (2) help by D.Zagier

Vancouver, Feb. 2, 2009

Introduction ●○○○	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Moduli spaces				

Introduction ●○○○	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Moduli spaces				

$$M:=M^H_X(c_1,c_2)$$

= moduli space of *H*-semistable rk 2 torsion-free sheaves on *X*

Introduction ●○○○	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Moduli spaces				

$$M:=M_X^H(c_1,c_2)$$

= moduli space of *H*-semistable rk 2 torsion-free sheaves on *X*

 $\begin{array}{l} \text{H-semistable: } \frac{\chi(\mathcal{F}\otimes H^{\otimes n})}{\text{rk}(\mathcal{F})} \leq \frac{\chi(\mathcal{E}\otimes H^{\otimes n})}{\text{rk}(\mathcal{E})} \text{ for all } 0 \neq \mathcal{F} \subset \mathcal{E}, \, n \gg 0 \\ \text{H-slope stable: } \frac{c_1(\mathcal{F})H}{\text{rk}(\mathcal{F})} < \frac{c_1(\mathcal{E})H}{\text{rk}(\mathcal{E})} \end{array}$

Introduction ●○○○	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Moduli spaces				

$$M:=M_X^H(c_1,c_2)$$

= moduli space of *H*-semistable rk 2 torsion-free sheaves on *X*

 $\begin{array}{l} \text{H-semistable: } \frac{\chi(\mathcal{F}\otimes H^{\otimes n})}{\text{rk}(\mathcal{F})} \leq \frac{\chi(\mathcal{E}\otimes H^{\otimes n})}{\text{rk}(\mathcal{E})} \text{ for all } 0 \neq \mathcal{F} \subset \mathcal{E}, \, n \gg 0 \\ \text{H-slope stable: } \frac{c_1(\mathcal{F})H}{\text{rk}(\mathcal{F})} < \frac{c_1(\mathcal{E})H}{\text{rk}(\mathcal{E})} \end{array}$

For simplicity assume universal sheaf \mathcal{E} on $X \times M$ i.e. $\mathcal{E}|_{X \times [E]} = E$ for all $[E] \in M$

Introduction ••••	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Determinant bundles				
	=Grothendie $K^0(X)$ class	ck group of vector by of $E \in M$. $X \stackrel{q}{\longleftarrow} X \times M \stackrel{p}{\longrightarrow} M$		

Introduction ••••	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Determinant bund	les			
$K^0(X)$) :=Grothend	ieck group of vector b	oundles	
	$\stackrel{'}{\in} K^0(X)$ clas			
		$X \stackrel{q}{\longleftarrow} X \times M \stackrel{p}{\longrightarrow} N$	1	
Defin	ition			
Denn				
Let v	$\in K^0(X)$ with	$\chi(X, \boldsymbol{c}\otimes \boldsymbol{v})=0$ (write	te $oldsymbol{v}\inoldsymbol{c}^{\perp}$)	

The determinant bundle for v is

$$\lambda(\mathbf{v}) := \det(Rp_*(\mathcal{E} \otimes q^*(\mathbf{v}))^{-1} \in Pic(M))$$

 $\lambda : c^{\perp} \rightarrow Pic(M)$ is homomorphism.

Determinant bundles $K^0(X) :=$ Grothendieck group of vector bundles	nal surfaces
Let $c \in K^0(X)$ class of $E \in M$.	
$X \xleftarrow{q} X imes M \xrightarrow{p} M$	
Definition	
Let $v \in K^0(X)$ with $\chi(X, c \otimes v) = 0$ (write $v \in c^{\perp}$)	

The determinant bundle for v is

$$\lambda(\mathbf{v}) := \det(Rp_*(\mathcal{E} \otimes q^*(\mathbf{v}))^{-1} \in Pic(M))$$

 $\lambda : c^{\perp} \rightarrow Pic(M)$ is homomorphism.

Let $L \in Pic(X)$. Assume Lc_1 even. Put

$$v(L) := \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt} \in c^{\perp}$$

The Donaldson line bundle for *L* is $\widetilde{L} := \lambda(v(L))$.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Determinant bundles				

Definition

The *K*-theoretic Donaldson invariant for *L* is $\chi(M, \tilde{L})$.

Generating function:

$$\sum_{c_2} \chi \big(M_X^H(c_1, c_2), \widetilde{L} \big) \Lambda^d \in \mathbb{Z}[[\Lambda]].$$

 $d = 4c_2 - c_1^2 - 3 = expdim(M)$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Determinant bundles				

Definition

The *K*-theoretic Donaldson invariant for *L* is $\chi(M, \tilde{L})$.

Generating function:

$$\sum_{c_2} \chi(M_X^H(c_1,c_2),\widetilde{L}) \Lambda^d \in \mathbb{Z}[[\Lambda]].$$

 $d = 4c_2 - c_1^2 - 3 = expdim(M)$

Standard Donaldson invariant

$$\int_{M} c_{1}(\widetilde{L})^{d} = \lim_{n \to \infty} \frac{d!}{n^{d}} \chi(M, \widetilde{nL})$$

by Riemann-Roch (K-th Don. invariants are refinement of standard Don. inv.).

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Main results				

There are walls (hyperplanes) in $H^2(X, \mathbb{R})$.

 $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Introduction ○○○●	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Main results				

There are walls (hyperplanes) in $H^2(X, \mathbb{R})$.

 $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Aims:

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Main results				

There are walls (hyperplanes) in $H^2(X, \mathbb{R})$.

 $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Aims:

• Review wallcrossing formula for $\chi(M_X^H(c_1, c_2), \tilde{L})$ proved with Nakajima, Yoshioka

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Main results				

There are walls (hyperplanes) in $H^2(X, \mathbb{R})$.

 $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Aims:

- Review wallcrossing formula for $\chi(M_X^H(c_1, c_2), \tilde{L})$ proved with Nakajima, Yoshioka
- For X rational surface, want to prove generating function is rational function, and compute it in many cases

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Main results				

There are walls (hyperplanes) in $H^2(X, \mathbb{R})$.

 $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Aims:

- Review wallcrossing formula for $\chi(M_X^H(c_1, c_2), \tilde{L})$ proved with Nakajima, Yoshioka
- For X rational surface, want to prove generating function is rational function, and compute it in many cases
- Relate result to Le Potier's strange duality conjecture

Introduction	Wallcrossing ●○○○	Nekrasov partition function	Strange duality	Rational surfaces
Walls				

Let (X, H) simply conn. polarized surface with $p_g(X) = 0$ $M_X^H(c_1, c_2)$ and invariants depend on H, via system of walls and chambers.

Introduction	Wallcrossing ●○○○	Nekrasov partition function	Strange duality	Rational surfaces
Walls				

Let (X, H) simply conn. polarized surface with $p_g(X) = 0$ $M_X^H(c_1, c_2)$ and invariants depend on H, via system of walls and chambers.

Definition

Let $C_X \subset H^2(X, \mathbb{R})$ be the ample cone. $\xi \in H^2(X, \mathbb{Z})$ defines wall of type (c_1, c_2) if $\xi \equiv c_1 \mod 2H^2(X, \mathbb{Z})$ $4c_2 - c_1^2 + \xi^2 \ge 0$ $4c_2 - c_1^2 + \xi^2 \ge 0$

3 the wall $W^{\xi} := \{H \in C_X \mid H \cdot \xi = 0\}$ is nonempty.

Introduction	Wallcrossing ●○○○	Nekrasov partition function	Strange duality	Rational surfaces
Walls				

Let (X, H) simply conn. polarized surface with $p_g(X) = 0$ $M_X^H(c_1, c_2)$ and invariants depend on H, via system of walls and chambers.

Definition

Let $C_X \subset H^2(X, \mathbb{R})$ be the ample cone. $\xi \in H^2(X, \mathbb{Z})$ defines wall of type (c_1, c_2) if

$$\bigcirc \ \xi \equiv c_1 \mod 2H^2(X,\mathbb{Z})$$

2
$$4c_2 - c_1^2 + \xi^2 \ge 0$$

● the wall $W^{\xi} := \{H \in C_X \mid H \cdot \xi = 0\}$ is nonempty.

Chambers=connected components of $C_X \setminus$ walls $M_X^H(c_1, c_2)$ and invariants constant on chambers, change when H crosses wall (i.e. $H_- \to H_+$ with $H_-\xi < 0 < H_+\xi$)

Introduction 0000	Wallcrossing ○●○○	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Definition

Let ξ define a wall of type (c_1, c_2) . Put $d := 4c_2 - c_1^2 - 3$ The wallcrossing term is $\Delta_{\xi,d}^X(L) := \chi(M_X^{H_+}(c_1, c_2)), \widetilde{L}) - \chi(M_X^{H_-}(c_1, c_2)), \widetilde{L}).$

Introduction	Wallcrossing ○●○○	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Definition

Let ξ define a wall of type (c_1, c_2) . Put $d := 4c_2 - c_1^2 - 3$ The wallcrossing term is $\Delta_{\xi,d}^X(L) := \chi(M_X^{H_+}(c_1, c_2)), \widetilde{L}) - \chi(M_X^{H_-}(c_1, c_2)), \widetilde{L}).$

First aim: give a generating function for the wallcrossing terms in terms of elliptic functions.

Introduction	Wallcrossing ○○●○	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Theta functions:

$$\begin{array}{l} \theta_{ab}(h) = \sum_{n \equiv a \ (2)} q^{n^2} (i^b y)^n, \ a, b \in \{0, 1\}, \ y = e^{h/2}, \ q = e^{\pi i \tau/4} \\ \theta_{ab} := \theta_{ab}(0), \ u := -\frac{\theta_{00}^2}{\theta_{10}^2} - \frac{\theta_{10}^2}{\theta_{00}^2}, \quad \Lambda := \frac{\theta_{11}(h)}{\theta_{01}(h)} \end{array}$$

Introduction	Wallcrossing ○○●○	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Theta functions:

$$\begin{array}{l} \theta_{ab}(h) = \sum_{n \equiv a \ (2)} q^{n^2} (i^b y)^n, \ a, b \in \{0, 1\}, \ y = e^{h/2}, \ q = e^{\pi i \tau/4} \\ \theta_{ab} := \theta_{ab}(0), \ u := -\frac{\theta_{00}^2}{\theta_{10}^2} - \frac{\theta_{10}^2}{\theta_{00}^2}, \quad \Lambda := \frac{\theta_{11}(h)}{\theta_{01}(h)} \end{array}$$

Theorem

Write

$$q^{-\xi^2} y^{\xi(L-K_X)} \left(\frac{\theta_{01}(h)}{\theta_{01}}\right)^{(L-K_X)^2} \theta_{01}^{\sigma(X)} q \frac{du}{dq} \frac{dh}{d\Lambda} = \sum_{d \in \mathbb{Z}_{\geq 0}} f_d(q) \Lambda^d.$$
$$f_d(q) \in \mathbb{Q}((q))$$

Introduction	Wallcrossing ○o●o	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Theta functions:

$$\begin{array}{l} \theta_{ab}(h) = \sum_{n \equiv a \ (2)} q^{n^2} (i^b y)^n, \ a, b \in \{0, 1\}, \ y = e^{h/2}, \ q = e^{\pi i \tau/4} \\ \theta_{ab} := \theta_{ab}(0), \ u := -\frac{\theta_{00}^2}{\theta_{10}^2} - \frac{\theta_{10}^2}{\theta_{00}^2}, \quad \Lambda := \frac{\theta_{11}(h)}{\theta_{01}(h)} \end{array}$$

Theorem

Write $q^{-\xi^{2}}y^{\xi(L-K_{X})}\left(\frac{\theta_{01}(h)}{\theta_{01}}\right)^{(L-K_{X})^{2}}\theta_{01}^{\sigma(X)}q\frac{du}{dq}\frac{dh}{d\Lambda} = \sum_{d \in \mathbb{Z}_{\geq 0}} f_{d}(q)\Lambda^{d}.$ $f_{d}(q) \in \mathbb{Q}((q))$

Then

$$\Delta_{\xi,d}^{X}(L) := \chi(M_{X}^{H_{+}}(c_{1},c_{2}),\widetilde{L}) - \chi(M_{X}^{H_{-}}(c_{1},c_{2}),\widetilde{L}) = \pm \operatorname{Coeff}_{q^{0}} f_{d}(q)$$

Generating function $\Delta_{\xi}^{X}(L) := \sum_{d} \Delta_{\xi,d}^{X}(L) \Lambda^{d} = \sum_{d} \operatorname{Coeff}_{q^{0}} f_{d}(q) \Lambda^{d} \in \mathbb{Z}[[\Lambda]]$

Introduction	Wallcrossing ○○○●	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Remark

(bad news) $\sum_{n} \chi(M_X^H(c_1, n), \tilde{L}) \Lambda^d$ has wallcrossing for all W^{ξ} with $\xi \in c_1 + 2H^2(X, \mathbb{Z})$: Walls are everywhere dense in C_X .

Introduction	Wallcrossing ○○○●	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Remark

(bad news) $\sum_{n} \chi(M_X^H(c_1, n), \tilde{L}) \Lambda^d$ has wallcrossing for all W^{ξ} with $\xi \in c_1 + 2H^2(X, \mathbb{Z})$: Walls are everywhere dense in C_X .

Corollary

(good news) Let ξ class of type (c_1, c_2)

•
$$\Delta_{\varepsilon}^{X}(L) \in \mathbb{Z}[\Lambda]$$
 (a polynomial!)

If
$$|\xi(L - K_X)| + 1 \le -\xi^2$$
 then $\Delta_{\xi}^X(L) = 0$
"Most walls do not contribute at all".

Introduction	Wallcrossing ○○○●	Nekrasov partition function	Strange duality	Rational surfaces
Wallcrossing formula				

Remark

(bad news) $\sum_{n} \chi(M_X^H(c_1, n), \tilde{L}) \Lambda^d$ has wallcrossing for all W^{ξ} with $\xi \in c_1 + 2H^2(X, \mathbb{Z})$: Walls are everywhere dense in C_X .

Corollary

(good news) Let ξ class of type (c_1, c_2)

①
$$\Delta_{\mathcal{E}}^{X}(L) \in \mathbb{Z}[\Lambda]$$
 (a polynomial!)

2 If
$$|\xi(L - K_X)| + 1 \le -\xi^2$$
 then $\Delta_{\xi}^X(L) = 0$
"Most walls do not contribute at all".

Corollary

 $\sum_{n} \chi(M_X^H(c_1, n), \tilde{L}) \Lambda^d$ independent of H up to adding a polynomial.

Introduction	Wallcrossing	Nekrasov partition function ●○○	Strange duality	Rational surfaces
Instanton moduli spac	ce			

Instanton moduli space:

 $M(n) = \{(E, \phi) \mid E \text{ rk } 2, \text{ sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2}\}$

Introduction	Wallcrossing	Nekrasov partition function ●○○	Strange duality	Rational surfaces
Instanton moduli spac	се			

Instanton moduli space:

$$\begin{split} & \mathcal{M}(n) = \{(E,\phi) \mid E \text{ rk 2, sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2} \} \\ & \textbf{Torus action: } \mathbb{C}^* \times \mathbb{C}^* \text{ acts on } (\mathbb{P}^2, I_{\infty}): \\ & (t_1, t_2)(z_0 : z_1 : z_2) = (z_0 : t_1 z_1 : t_2 z_2). \\ & \text{Extra } \mathbb{C}^* \text{ acts by } s(E, \phi) = (E, diag(s^{-1}, s) \circ \phi). \end{split}$$

Introduction	Wallcrossing	Nekrasov partition function ●○○	Strange duality	Rational surfaces
Instanton moduli spac	се			

Instanton moduli space:

$$\begin{split} M(n) &= \{ (E,\phi) \mid E \text{ is } 2, \text{ sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2} \} \\ \text{Torus action: } \mathbb{C}^* \times \mathbb{C}^* \text{ acts on } (\mathbb{P}^2, I_{\infty}) \text{:} \\ (t_1, t_2)(z_0 : z_1 : z_2) &= (z_0 : t_1 z_1 : t_2 z_2). \\ \text{Extra } \mathbb{C}^* \text{ acts by } s(E, \phi) &= (E, diag(s^{-1}, s) \circ \phi). \\ \text{Fixpoints: } M(n)^{(\mathbb{C}^*)^3} &= \{ (I_{Z_1} \oplus I_{Z_2}), id) \mid Z_i \in Hilb^{n_i}(\mathbb{A}^2, 0) \text{ monomial} \} \end{split}$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
0000	0000	000	000	000000000
Instanton moduli spa	ace			

Instanton moduli space:

$$\begin{split} & \mathcal{M}(n) = \{(E,\phi) \mid E \text{ rk } 2, \text{ sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2} \} \\ & \text{Torus action: } \mathbb{C}^* \times \mathbb{C}^* \text{ acts on } (\mathbb{P}^2, I_{\infty}) \text{:} \\ & (t_1, t_2)(z_0 : z_1 : z_2) = (z_0 : t_1 z_1 : t_2 z_2). \\ & \text{Extra } \mathbb{C}^* \text{ acts by } s(E, \phi) = (E, diag(s^{-1}, s) \circ \phi). \\ & \text{Fixpoints: } \mathcal{M}(n)^{(\mathbb{C}^*)^3} = \{(I_{Z_1} \oplus I_{Z_2}), id) \mid Z_i \in Hilb^{n_i}(\mathbb{A}^2, 0) \text{ monomial} \} \\ & \text{Character: Let } V \text{ vector space with } (\mathbb{C}^*)^3 \text{ action.} \Longrightarrow V = \bigoplus_i V_{M_i} \end{split}$$

 V_{M_i} eigenspace with eigenvalue M_i Laurent monomial in t_1, t_2, s .

The Character of V is $ch(V) := \sum_{i} dim(V_{M_i})M_i$

Introduction	Wallcrossing	Nekrasov partition function ○●○	Strange duality	Rational surfaces
Nekrasov partition fu	nction			

The Nekrasov partition function is given by

$$Z^{inst}(\epsilon_1,\epsilon_2,\boldsymbol{a},\Lambda) := \sum_{n\geq 0} \left(\frac{\Lambda^4}{t_1t_2}\right)^n ch(H^0(\boldsymbol{M}(\boldsymbol{n}),\mathcal{O}))|_{t_1=e^{\epsilon_1},t_2=e^{\epsilon_2},s=e^a}$$

 $Z = Z^{inst}Z^{pert}$, where Z^{pert} is explicit function of $\epsilon_1, \epsilon_2, a, \Lambda$.

Introduction	Wallcrossing	Nekrasov partition function ○●○	Strange duality	Rational surfaces
Nekrasov partition fu	nction			

The Nekrasov partition function is given by

$$Z^{inst}(\epsilon_1,\epsilon_2,\boldsymbol{a},\Lambda) := \sum_{n\geq 0} \left(\frac{\Lambda^4}{t_1t_2}\right)^n ch(H^0(\boldsymbol{M}(\boldsymbol{n}),\mathcal{O}))|_{t_1=e^{\epsilon_1},t_2=e^{\epsilon_2},s=e^{a}}$$

 $Z = Z^{inst}Z^{pert}$, where Z^{pert} is explicit function of $\epsilon_1, \epsilon_2, a, \Lambda$.

Nekrasov Conjecture (Nekrasov-Okounkov, Nakajima-Yoshioka, Braverman-Etingof):

•
$$F(\epsilon_1, \epsilon_2, a, \Lambda) = \epsilon_1 \epsilon_2 log(Z), F$$
 regular at $\epsilon_1, \epsilon_2 = 0$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces	
Proof of wallcrossing formula					

Introduction 0000	Wallcrossing	Nekrasov partition function ○○●	Strange duality	Rational surfaces	
Proof of wallcrossing formula					

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes .

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proof of wallcrossing				

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes . Wallcrossing: replace sheaves in extensions

$$0 \rightarrow \mathit{I}_{Z_1}((\mathit{c}_1 + \xi)/2) \rightarrow E \rightarrow \mathit{I}_{Z_2}((\mathit{c}_1 - \xi)/2) \rightarrow 0, \qquad \mathit{Z_i} \in \mathit{Hilb}^{n_i}(X)$$

by extensions the other way round.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proof of wallcrossing				

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes . Wallcrossing: replace sheaves in extensions

$$0 \rightarrow I_{Z_1}((c_1 + \xi)/2) \rightarrow E \rightarrow I_{Z_2}((c_1 - \xi)/2) \rightarrow 0, \qquad Z_i \in \textit{Hilb}^{n_i}(X)$$

by extensions the other way round.

 \implies change from $M_X^{H_-}(c_1, c_2)$ to $M_X^{H_+}(c_1, c_2)$ by series of flips with centers $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$. Compute $\Delta_{\mathcal{E},d}^X(L)$ as inters. numbers on the $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
		000		
Proof of wallcrossing	formula			

Express wallcrossing in terms of Nekrasov partition function, wallcrossing formula follows from Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes . Wallcrossing: replace sheaves in extensions

$$0 \rightarrow \mathit{I}_{Z_1}((c_1 + \xi)/2) \rightarrow E \rightarrow \mathit{I}_{Z_2}((c_1 - \xi)/2) \rightarrow 0, \qquad Z_i \in \mathit{Hilb}^{n_i}(X)$$

by extensions the other way round.

 \implies change from $M_X^{H_-}(c_1, c_2)$ to $M_X^{H_+}(c_1, c_2)$ by series of flips with centers $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$.

Compute $\Delta_{\xi,d}^{X}(L)$ as inters. numbers on the $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$. Reduce to case X is toric. Use localization to compute intersection number in terms of weights at fixpoints.

Get product of Nekrasov partition functions over the fixpoints of the action on *X* with ϵ_1 , ϵ_2 , *a* replaced by weights of the action.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Le Potier's strange de	uality			

Let X 1-conn. alg. surf., let $c, v \in K^0(X)$ with $\chi(c \otimes v) = 0$. Assume $H^2(E \otimes F) = 0$ for all $[E] \in M(c), [F] \in M(v)$.

$$\Theta := \left\{ ({\it E},{\it F}) \in {\it M}({\it c}) imes {\it M}({\it v}) \mid h^0({\it E} \otimes {\it F})
eq 0
ight\}$$

Assume Θ is zero set of $\sigma \in H^0(M(c) \times M(v), \lambda(v) \boxtimes \lambda(c))$ \implies Duality morphism $D : H^0(M(c), \lambda(v))^{\vee} \to H^0(M(v), \lambda(c))$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Le Potier's strange d	uality			

Let X 1-conn. alg. surf., let $c, v \in K^0(X)$ with $\chi(c \otimes v) = 0$. Assume $H^2(E \otimes F) = 0$ for all $[E] \in M(c), [F] \in M(v)$.

$$\Theta := \left\{ (\boldsymbol{E}, \boldsymbol{F}) \in \boldsymbol{M}(\boldsymbol{c}) imes \boldsymbol{M}(\boldsymbol{v}) \mid h^0(\boldsymbol{E} \otimes \boldsymbol{F})
eq 0
ight\}$$

Assume Θ is zero set of $\sigma \in H^0(M(c) \times M(v), \lambda(v) \boxtimes \lambda(c))$ \implies Duality morphism $D : H^0(M(c), \lambda(v))^{\vee} \to H^0(M(v), \lambda(c))$

Conjecture/Question

• Is $D: H^0(M(c), \lambda(v))^{\vee} \to H^0(M(v), \lambda(c))$ an isomorphism? (strong strange duality)

3 Is $\chi(M(c), \lambda(v)) = \chi(M(v), \lambda(c))$? (weak strange duality)

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Le Potier's strange du	uality			

Let X 1-conn. alg. surf., let $c, v \in K^0(X)$ with $\chi(c \otimes v) = 0$. Assume $H^2(E \otimes F) = 0$ for all $[E] \in M(c), [F] \in M(v)$.

$$\Theta := \left\{ (\boldsymbol{E}, \boldsymbol{F}) \in \boldsymbol{M}(\boldsymbol{c}) imes \boldsymbol{M}(\boldsymbol{v}) \mid h^0(\boldsymbol{E} \otimes \boldsymbol{F})
eq 0
ight\}$$

Assume Θ is zero set of $\sigma \in H^0(M(c) \times M(v), \lambda(v) \boxtimes \lambda(c))$ \implies Duality morphism $D : H^0(M(c), \lambda(v))^{\vee} \to H^0(M(v), \lambda(c))$

Conjecture/Question

• Is $D: H^0(M(c), \lambda(v))^{\vee} \to H^0(M(v), \lambda(c))$ an isomorphism? (strong strange duality)

3 Is $\chi(M(c), \lambda(v)) = \chi(M(v), \lambda(c))$? (weak strange duality)

For curves: rank/level duality conj. of Beauville, Donagi-Tu. Weak version is Corollary of Verlinde formula. Strong version proved by Belkale, Marian-Oprea.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality ○●○	Rational surfaces
Case of Donaldson	h bundles			

For simplicity
$$c_1 = 0$$
.
 $c(n) = \mathcal{O}^{\oplus 2} - n\mathcal{O}_{pt}$ class of $E \in M_X^H(0, n)$
Let $L \in Pic(X)$, $v(L) = \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt} \in c(n)^{\perp}$
Put $\theta := \lambda(\mathcal{O}_X)$, $\eta := \lambda(-\mathcal{O}_{pt}) \in Pic(M(v(L)))$
 $\Longrightarrow \lambda(c(n)) = \theta^{\otimes 2} \otimes \eta^{\otimes n}$.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Case of Donaldsor	n bundles			

For simplicity
$$c_1 = 0$$
.
 $c(n) = \mathcal{O}^{\oplus 2} - n\mathcal{O}_{pt}$ class of $E \in M_X^H(0, n)$
Let $L \in Pic(X)$, $v(L) = \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt} \in c(n)^{\perp}$
Put $\theta := \lambda(\mathcal{O}_X)$, $\eta := \lambda(-\mathcal{O}_{pt}) \in Pic(M(v(L)))$
 $\Longrightarrow \lambda(c(n)) = \theta^{\otimes 2} \otimes \eta^{\otimes n}$.
Strange duality: $\chi(M_X^H(0, n), \widetilde{L}) = \chi(M(v(L)), \lambda(c(n)))$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
			000	
Case of Donaldso	n bundles			

For simplicity
$$c_1 = 0$$
.
 $c(n) = \mathcal{O}^{\oplus 2} - n\mathcal{O}_{pt}$ class of $E \in M_X^H(0, n)$
Let $L \in Pic(X)$, $v(L) = \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt} \in c(n)^{\perp}$
Put $\theta := \lambda(\mathcal{O}_X), \eta := \lambda(-\mathcal{O}_{pt}) \in Pic(M(v(L)))$
 $\Longrightarrow \lambda(c(n)) = \theta^{\otimes 2} \otimes \eta^{\otimes n}$.
Strange duality: $\chi(M_X^H(0, n), \widetilde{L}) = \chi(M(v(L)), \lambda(c(n)))$
 $\Longrightarrow \sum_n \chi(M_X^H(0, n), \widetilde{L}) t^n = \sum_n \chi(M(v(L)), \theta^{\otimes 2} \otimes \eta^{\otimes n}) t^n \in \mathbb{Q}(t)$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality ○○●	Rational surfaces
Case of Donaldson bundles				

Remark

There is natural morphism $\pi : M(v(L)) \to |L|, \mathcal{F} \mapsto supp(\mathcal{F})$ General fibre over [C] is $Pic^{g-1}(C)$, (g = g(C)). Restriction of θ to $Pic^{g-1}(C)$ is the theta bundle, $\eta = \pi^*(\mathcal{O}(1))$.

Assuming strange duality, get

$$\chi(M_X^H(0, c_2), \widetilde{L}) = \chi(M(v(L)), \theta^{\otimes 2} \otimes \pi^*(\mathcal{O}(c_2)))$$
$$= \chi(|L|, \pi_*(\theta^{\otimes 2}) \otimes \mathcal{O}(c_2))$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality ○○●	Rational surfaces
Case of Donaldson b	undles			

Remark

There is natural morphism $\pi : M(v(L)) \to |L|, \mathcal{F} \mapsto supp(\mathcal{F})$ General fibre over [C] is $Pic^{g-1}(C)$, (g = g(C)). Restriction of θ to $Pic^{g-1}(C)$ is the theta bundle, $\eta = \pi^*(\mathcal{O}(1))$.

Assuming strange duality, get

$$\chi(M_X^H(0, c_2), \widetilde{L}) = \chi(M(\nu(L)), \theta^{\otimes 2} \otimes \pi^*(\mathcal{O}(c_2)))$$
$$= \chi(|L|, \pi_*(\theta^{\otimes 2}) \otimes \mathcal{O}(c_2))$$

Over general $C \in |L|$ have $rank(\pi_*\theta^2) = H^0(Pic^{g-1}(C), 2\theta) = 2^g$ Assume best of all worlds: $\pi_*\theta^2 = \bigoplus_{i=1}^{2^g} \mathcal{O}(-a_i)$, all $a_i < \chi(X, L)$. Then $\sum_{c_2 \ge 0} \chi(M_X^H(0, c_2), \widetilde{L}) t^{c_2} =$ $\sum_{c_2 \ge 0} H^0(|L|, \bigoplus_{i=1}^{2^g} \mathcal{O}(-a_i + c_2)) t^{c_2} = \frac{\sum_{i=1}^{2^g} t^{a_i}}{(1-t)^{dim|L|+1}}.$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces ●○○○○○○○
Rational surfaces				

Let *X* be a rational surface. Possibly after blowing up *X* there is an H_0 (on boundary of ample cone) with $\chi(M_X^{H_0}(c_1, c_2), \tilde{L}) = 0$ for all c_2 . \Longrightarrow Everything is determined by wallcrossing:

$$\sum_{n} \chi(M_X^H(c_1, n), \widetilde{L}) \Lambda^d = \sum_{\xi H_0 \le 0 < \xi H} \Delta_{\xi}^X(L)$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Rational surfaces				

Let *X* be a rational surface. Possibly after blowing up *X* there is an H_0 (on boundary of ample cone) with $\chi(M_X^{H_0}(c_1, c_2), \tilde{L}) = 0$ for all c_2 . \Longrightarrow Everything is determined by wallcrossing:

$$\sum_{n} \chi(M_X^H(c_1, n), \widetilde{L}) \Lambda^d = \sum_{\xi H_0 \le 0 < \xi H} \Delta_{\xi}^X(L)$$

Problem: H_0 is not ample. The sum will be infinite (infinitely many summands nonzero). Need arguments about elliptic functions/modular forms to carry it out.

Introduction 0000	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces	
Rational ruled sur	faces				
Let X rational ruled surface. F fibre. Let $G \in \frac{1}{2}H^2(X, \mathbb{Z})$ with $G^2 = 0$, $FG = 1$. Let $L \in Pic(X)$. Write $L = nF + sG$, $s \in \mathbb{Z}$, $n \in \frac{1}{2}\mathbb{Z}$ (e.g. $\mathbb{P}^1 \times \mathbb{P}^1$: F, G fibres of both proj, $\widehat{\mathbb{P}}^2$: $F = H - E$, $G = (H + E)/2$)					

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Rational ruled sur	faces			
FG =	1. Let $L \in Pic($	urface. <i>F</i> fibre. Let $G \in X$). Write $L = nF + sG$ pres of both proj, $\widehat{\mathbb{P}}^2$: <i>F</i>	$s \in \mathbb{Z}, n \in \frac{1}{2}\mathbb{Z}$	

• Let
$$c_1 = 0, F$$
, then
 $1 + \sum_{c_2 > 0} \chi(M_X^H(c_1, c_2), \widetilde{L}) t^{c_2} \simeq \begin{cases} \frac{1}{(1-t)^{n+1}} & s = 0\\ \frac{1}{(1-t)^{2n+2}} & s = 1\\ \frac{1}{2} \frac{(1+t)^n + (-1)^{c_1 \cdot L/2} (1-t)^n}{(1-t)^{3n+3}} & s = 2 \end{cases}$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Rational ruled sur	faces			
FG =	1. Let <i>L</i> ∈ <i>Pic</i> (surface. F fibre. Let $G \in X$). Write $L = nF + sG$ pres of both proj, $\widehat{\mathbb{P}}^2$: F	$, s \in \mathbb{Z}, n \in \frac{1}{2}\mathbb{Z}$	
Theor	em			
	et $c_1 = 0, F$, th			
		$\left(\frac{1}{(1-t)^{n+1}}\right)$		s = 0
1	$+\sum \chi(M_X^H(a))$	$(c_1, c_2), \widetilde{L} t^{c_2} \simeq \begin{cases} rac{1}{(1-t)^{n+1}} \\ rac{1}{(1-t)^{2n+2}} \\ rac{1}{2} rac{(1-t)^{n+1}}{(1-t)^{n+1}} \end{cases}$	2	<i>s</i> = 1
	$c_2 > 0$	$\frac{1}{2} \frac{(1+t)^n}{(1+t)^n}$	$+(-1)^{c_1\cdot L/2}(1-t)^n$	s = 2

$$\begin{cases} (1-t)^{2n+2} \\ \frac{1}{2} \frac{(1-t)^{n+2}}{(1-t)^{3n+3}} \\ \end{cases} S = 2$$

Let
$$c_1 \cdot F$$
 odd, then

$$\sum_{c_2 > 0} \chi(M_X^H(c_1, c_2), \widetilde{L}) t^{c_2 - c_1^2/4} \simeq \begin{cases} 0 & s = 0 \\ \frac{t^{n/2}}{(1-t)^{2n+2}} & s = 1 \\ \frac{t^{n/4}}{2} \frac{(1+t^{1/2})^n + (-1)^{c_1 L/2} (1-t^{1/2})^n}{(1-t)^{3n+3}} & s = 2 \end{cases}$$

Introdu 0000	iction	Wallcrossing	Nekrasov partition functi	on Stra	ange duality o	Rational surfa ○●○○○○○○	
Ration	al ruled surface	es					
	<i>FG</i> = 1.	Let $L \in Pic(X)$	face. F fibre. Le). Write $L = nF$ - es of both proj, $\widehat{\mathbb{P}}$	$+ sG, s \in \mathbb{Z}$	$\mathbb{Z}, n \in \frac{1}{2}\mathbb{Z}$		
	Theorer	n					
		$c_1 = 0, F$, then					
			$\int \frac{1}{(1-1)^2}$	$\frac{1}{-t)^{n+1}}$	S	= 0	
	1 +	$\sum \chi(M_X^H(c_1,$	$(c_2), \widetilde{L} t^{c_2} \simeq \begin{cases} \frac{1}{(1)} \end{cases}$	$\frac{1}{(t)^{2n+2}}$	S	= 1	
		$c_2 > 0$	$(c_2), \widetilde{L} t^{c_2} \simeq \begin{cases} \overline{(1)} \\ \overline{(1)} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases}$	$\frac{(1+t)^n+(-1)^{c_1}}{(1-t)^{3r_1}}$	$\frac{L/2}{n+3}(1-t)^n$ S	= 2	

2 Let $c_1 \cdot F$ odd, then $\sum_{c_2 > 0} \chi(M_X^H(c_1, c_2), \widetilde{L}) t^{c_2 - c_1^2/4} \simeq \begin{cases} 0 & s = 0 \\ \frac{t^{n/2}}{(1-t)^{2n+2}} & s = 1 \\ \frac{t^{n/4}}{2} \frac{(1+t^{1/2})^n + (-1)^{c_1 L/2} (1-t^{1/2})^n}{(1-t)^{3n+3}} & s = 2 \end{cases}$

Explicit formulas for L = nF + sG, $s \le 7$.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Blowup formulas				

Want to use the formulas on $\widehat{\mathbb{P}}^2$ to get formulas for $\mathbb{P}^2.$ For this need blowup formulas.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Blowup formulas				

Want to use the formulas on $\widehat{\mathbb{P}}^2$ to get formulas for \mathbb{P}^2 . For this need blowup formulas. Let *X* rational surface, \widehat{X} blowup in a point, *E* exceptional divisor. Let *H* ample on *X* and $L \in Pic(X)$

Theorem

$$\sum_{n} \chi(M_{\widehat{\chi}}^{H}(c_{1},n),\widetilde{L})t^{n} = \sum_{n} \chi(M_{X}^{H}(c_{1},n),\widetilde{L})t^{n}$$
$$\sum_{n} \chi(M_{\widehat{\chi}}^{H}(c_{1},n),\widetilde{L-E})t^{n} = (1-t)\sum_{n} \chi(M_{X}^{H}(c_{1},n),\widetilde{L})t^{n}$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Blowup formulas				

Want to use the formulas on $\widehat{\mathbb{P}}^2$ to get formulas for \mathbb{P}^2 . For this need blowup formulas. Let *X* rational surface, \widehat{X} blowup in a point, *E* exceptional divisor. Let *H* ample on *X* and $L \in Pic(X)$

Theorem

$$\sum_{n} \chi(M_{\widehat{X}}^{H}(c_{1},n),\widetilde{L})t^{n} = \sum_{n} \chi(M_{X}^{H}(c_{1},n),\widetilde{L})t^{n}$$
$$\sum_{n} \chi(M_{\widehat{X}}^{H}(c_{1},n),\widetilde{L-E})t^{n} = (1-t)\sum_{n} \chi(M_{X}^{H}(c_{1},n),\widetilde{L})t^{n}$$

One also needs higher order blowup formulas for L - mE. These involve an analogue of the point class.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Projective plane				

$$1 + \sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(0, c_2), \widetilde{nH}) t^{c_2} = \begin{cases} \frac{1}{(1-t)^3} & n = 1\\ \frac{1}{(1-t)^6} & n = 2\\ \frac{1+t^2}{(1-t)^{10}} & n = 3\\ \frac{1+6t^2+t^3}{(1-t)^{15}} & n = 4\\ \frac{1+21t^2+20t^3+21t^4+t^6}{(1-t)^{21}} & n = 5 \end{cases}$$
$$\sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(H, c_2), \widetilde{nH}) t^{c_2 - 1} = \begin{cases} \frac{1}{(1-t)^6} & n = 2\\ \frac{1+6t+t^3}{(1-t)^{15}} & n = 4 \end{cases}$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Projective plane				

$$1 + \sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(0, c_2), \widetilde{nH}) t^{c_2} = \begin{cases} \frac{1}{(1-t)^3} & n = 1\\ \frac{1}{(1-t)^6} & n = 2\\ \frac{1+t^2}{(1-t)^{10}} & n = 3\\ \frac{1+6t^2+t^3}{(1-t)^{15}} & n = 4\\ \frac{1+21t^2+20t^3+21t^4+t^6}{(1-t)^{21}} & n = 5 \end{cases}$$
$$\sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(H, c_2), \widetilde{nH}) t^{c_2 - 1} = \begin{cases} \frac{1}{(1-t)^6} & n = 2\\ \frac{1+6t+t^3}{(1-t)^{15}} & n = 4 \end{cases}$$

Corollary

(Strong) strange duality holds for $c_1 = 0, H, L = H, 2H, 3H$.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Projective plane				

$$1 + \sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(0, c_2), \widetilde{nH}) t^{c_2} = \begin{cases} \frac{1}{(1-t)^3} & n = 1\\ \frac{1}{(1-t)^6} & n = 2\\ \frac{1+t^2}{(1-t)^{10}} & n = 3\\ \frac{1+6t^2+t^3}{(1-t)^{15}} & n = 4\\ \frac{1+21t^2+20t^3+21t^4+t^6}{(1-t)^{21}} & n = 5 \end{cases}$$
$$\sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(H, c_2), \widetilde{nH}) t^{c_2 - 1} = \begin{cases} \frac{1}{(1-t)^6} & n = 2\\ \frac{1+6t+t^3}{(1-t)^{15}} & n = 4 \end{cases}$$

Corollary

(Strong) strange duality holds for $c_1 = 0, H, L = H, 2H, 3H$.

(Danila determined other side of strange duality for H, 2H, 3H and checked strange duality in this case for small c_2 .)

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
General rational su	Irfaces			

For rational surfaces the generating functions are rational:

Theorem

Let X rational surface, H ample, $L, c_1 \in Pic(X)$ with Lc_1 even. There are (computable) $P_{L,c_1}^X(t) \in \mathbb{Q}[t], l \in \mathbb{Z}$ s.th.

$$\sum_{n\geq 0}\chi(M_X^H(c_1,n),\widetilde{L})t^n\simeq \frac{P_{L,c_1}^X(t)}{(1-t)^{l}}.$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
General rational su	Irfaces			

For rational surfaces the generating functions are rational:

Theorem

Let X rational surface, H ample, $L, c_1 \in Pic(X)$ with Lc_1 even. There are (computable) $P_{L,c_1}^X(t) \in \mathbb{Q}[t], l \in \mathbb{Z}$ s.th.

$$\sum_{n\geq 0}\chi(M_X^H(c_1,n),\widetilde{L})t^n\simeq \frac{P_{L,c_1}^X(t)}{(1-t)^j}.$$

Conjecture

If $h^i(X, L) = 0$ for i > 0 and general $C \in |L|$ is nonsing. genus g, then $I = \chi(X, L)$ and $P_{L,c_1}^X(t)$ has nonnegative coefficients and $P_{L,c_1}^X(1) = 2^g$.

(True in all cases I checked)

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Symmetry conjecture				

Again X rational surface H ample on X, $L \in Pic(X)$ Write

$$\chi^{H}_{X,c_{1}}(L,\Lambda) := \sum_{n \geq 0} \chi(M^{H}_{X}(c_{1},n),\widetilde{L})\Lambda^{d} \in \mathbb{Z}[\Lambda,1/(1-\Lambda^{4})]$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Symmetry conjecture				

Again X rational surface H ample on X, $L \in Pic(X)$ Write

$$\chi^{H}_{X,c_{1}}(L,\Lambda) := \sum_{n \geq 0} \chi(M^{H}_{X}(c_{1},n),\widetilde{L})\Lambda^{d} \in \mathbb{Z}[\Lambda,1/(1-\Lambda^{4})]$$

Conjecture

$$\chi_{X,c_1}^{H}\left(L,\frac{1}{\Lambda}\right)\simeq(-1)^{\chi(X,L)}\Lambda^{(L-K_X)^2+2}\chi_{X,L+c_1-K_X}^{H}\left(L,\Lambda\right).$$

(Checked in all computed cases, compatible with blowup formulas.)

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Symmetry conjecture				

Again X rational surface H ample on X, $L \in Pic(X)$ Write

$$\chi^{H}_{X,c_{1}}(L,\Lambda) := \sum_{n \geq 0} \chi(M^{H}_{X}(c_{1},n),\widetilde{L})\Lambda^{d} \in \mathbb{Z}[\Lambda,1/(1-\Lambda^{4})]$$

Conjecture

$$\chi_{X,c_1}^{H}\left(L,\frac{1}{\Lambda}\right)\simeq (-1)^{\chi(X,L)}\Lambda^{(L-K_X)^2+2}\chi_{X,L+c_1-K_X}^{H}\left(L,\Lambda\right).$$

(Checked in all computed cases, compatible with blowup formulas.) What is the explanation of the Le Potier dual statement? Fourier-Mukai transform for $M(v) \rightarrow |L|$?

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
D ()				

Proofs and complements

Example proof: $X = \mathbb{P}^1 \times \mathbb{P}^1$, L = nF. To show

$$\chi(nF) := 1 + \sum_{c_2} \chi(M_X^H(F, c_2), \widetilde{nF}) \Lambda^{4c_2} = \frac{1}{(1 - \Lambda^4)^{n+1}}$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proofs and compleme	ents			

Example proof: $X = \mathbb{P}^1 \times \mathbb{P}^1$, L = nF. To show

$$\chi(nF) := 1 + \sum_{c_2} \chi(M_X^H(F, c_2), \widetilde{nF}) \Lambda^{4c_2} = \frac{1}{(1 - \Lambda^4)^{n+1}}$$

Induction on *n*: $n = 0: \chi(M_X^H(F, c_2), \mathcal{O}) = 1$, o.K.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces

Proofs and complements

Example proof: $X = \mathbb{P}^1 \times \mathbb{P}^1$, L = nF. To show

$$\chi(nF) := 1 + \sum_{c_2} \chi(M_X^H(F, c_2), \widetilde{nF}) \Lambda^{4c_2} = \frac{1}{(1 - \Lambda^4)^{n+1}}.$$

4

Induction on *n*: $n = 0: \chi(M_X^H(F, c_2), \mathcal{O}) = 1$, o.K.

$$(1 - \Lambda^{4})\chi((n+1)F) - \chi(nF)$$

= $-\sum_{k\geq 0} (1 - \Lambda^{4}) (\Delta^{\chi}_{(2k+1)F}((n+1)F) - \Delta^{\chi}_{(2k+1)F}(nF))$
= $-\sum_{k\geq 0} \operatorname{Coeff}_{q^{0}} \left[y^{4k+2}((1 - \Lambda^{4})Q^{4n+12} - Q^{4n+8}R) \right]$
= $\operatorname{Coeff}_{q^{0}} \left[\frac{1}{y^{2} - y^{-2}} ((1 - \Lambda^{4})Q^{4n+12} - Q^{4n+8})R \right]$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces

Proofs and complements

Example proof: $X = \mathbb{P}^1 \times \mathbb{P}^1$, L = nF. To show

$$\chi(nF) := 1 + \sum_{c_2} \chi(M_X^H(F, c_2), \widetilde{nF}) \Lambda^{4c_2} = \frac{1}{(1 - \Lambda^4)^{n+1}}$$

Induction on *n*: n = 0: $\chi(M_X^H(F, c_2), \mathcal{O}) = 1$, o.K.

$$\begin{aligned} &(1 - \Lambda^4)\chi((n+1)F) - \chi(nF) \\ &= -\sum_{k \ge 0} (1 - \Lambda^4) \left(\Delta^{\chi}_{(2k+1)F}((n+1)F) - \Delta^{\chi}_{(2k+1)F}(nF) \right) \\ &= -\sum_{k \ge 0} \operatorname{Coeff}_{q^0} \left[y^{4k+2}((1 - \Lambda^4)Q^{4n+12} - Q^{4n+8}R) \right] \\ &= \operatorname{Coeff}_{q^0} \left[\frac{1}{y^2 - y^{-2}} \left((1 - \Lambda^4)Q^{4n+12} - Q^{4n+8} \right) R \right] \end{aligned}$$

$$\begin{split} & Q = \frac{\theta_{01}(h)}{\theta_{01}}, \, y = e^{h/2}, \, \Lambda = \frac{\theta_{11}(h)}{\theta_{01}(h)}.\\ & \text{Enough to show: Coeff}_{q^0} \left[\frac{1}{y^2 - y^{-2}} \left((1 - \Lambda^4) Q^{4n+8} - Q^{4n+4} \right) \times R \right] = 0\\ & \text{Turns out to follow from } \theta_{00}^4 = \theta_{10}^4 + \theta_{01}^4 \qquad \text{[Jacobi]} \end{split}$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proofs and compl	ements			
		.		
Know	$Q^4 \in \mathbb{Q}[[q^2 \Lambda^2]]$	² , <i>q</i> ⁴]]. Will show		

$$\frac{1}{y^2 - y^{-2}} \big((1 - \Lambda^4) Q^4 - 1 \big) R \in \mathbb{Q}[[q^2 \Lambda^2, q^4]] \quad (*)$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proofs and compleme	ents			

Know
$$Q^4 \in \mathbb{Q}[[q^2 \Lambda^2, q^4]]$$
. Will show

$$\frac{1}{y^2 - y^{-2}} \big((1 - \Lambda^4) Q^4 - 1 \big) R \in \mathbb{Q}[[q^2 \Lambda^2, q^4]] \quad (*)$$

By $y - y^{-1} \in q^{-1} \wedge \mathbb{Q}[[q^2 \wedge^2, q^4]]$, (*) follows from $(y^2 - y^{-2})|((1 - \Lambda^4)Q^4 - 1)$ in $\mathbb{Q}[y, y^{-1}][[q]]$.

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proofs and compleme	ents			

Know
$$Q^4 \in \mathbb{Q}[[q^2 \Lambda^2, q^4]]$$
. Will show

$$\frac{1}{y^2 - y^{-2}} ((1 - \Lambda^4)Q^4 - 1)R \in \mathbb{Q}[[q^2\Lambda^2, q^4]] \quad (*)$$

By
$$y - y^{-1} \in q^{-1} \wedge \mathbb{Q}[[q^2 \wedge^2, q^4]]$$
, (*) follows from
 $(y^2 - y^{-2})|((1 - \Lambda^4)Q^4 - 1) \text{ in } \mathbb{Q}[y, y^{-1}][[q]].$
Using $Q = \frac{\theta_{01}(h)}{\theta_{01}}$, $y = e^{h/2}$, $\Lambda = \frac{\theta_{11}(h)}{\theta_{01}(h)}$, clearing denominators, this is

$$\theta_{01}(h)^4 - \theta_{11}(h)^4 - \theta_{01}^4 = 0, \qquad y = \pm 1, \pm i$$

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Proofs and compleme	ents			

Know
$$Q^4 \in \mathbb{Q}[[q^2 \Lambda^2, q^4]]$$
. Will show

$$\frac{1}{y^2 - y^{-2}} \big((1 - \Lambda^4) Q^4 - 1 \big) R \in \mathbb{Q}[[q^2 \Lambda^2, q^4]] \quad (*)$$

By
$$y - y^{-1} \in q^{-1} \wedge \mathbb{Q}[[q^2 \wedge^2, q^4]]$$
, (*) follows from
 $(y^2 - y^{-2})|((1 - \Lambda^4)Q^4 - 1) \text{ in } \mathbb{Q}[y, y^{-1}][[q]].$
Using $Q = \frac{\theta_{01}(h)}{\theta_{01}}$, $y = e^{h/2}$, $\Lambda = \frac{\theta_{11}(h)}{\theta_{01}(h)}$, clearing denominators, this is

$$\theta_{01}(h)^4 - \theta_{11}(h)^4 - \theta_{01}^4 = 0, \qquad y = \pm 1, \pm i$$

For $y = \pm 1$ this is 0 = 0. For $y = \pm i$ it is

$$\theta_{00}^4 = \theta_{10}^4 + \theta_{01}^4$$
 [Jacobi]

Introduction	Wallcrossing	Nekrasov partition function	Strange duality	Rational surfaces
Higher blowup for	mulas			

General formula, involves analogue of point class. $U \in \widetilde{K}^0(M_X^H(c_1, c_2))$ universal. $U = (p_{2!}((\mathcal{E} \cdot \mathcal{E}^{\vee}) \cdot p_1^*(\mathcal{O}_{\{x\}}))??$

Theorem

There are universal polynomials $P_m(x, t)$, such that

$$\sum_{n} \chi(M_{\widehat{\chi}}^{H}(\boldsymbol{c}_{1},n),\widetilde{\boldsymbol{L}-\boldsymbol{m}}\boldsymbol{E})t^{n} = \sum_{n} \chi(M_{X}^{H}(\boldsymbol{c}_{1},n),\widetilde{\boldsymbol{L}}\otimes\boldsymbol{P}_{\boldsymbol{m}}(\boldsymbol{U},t))t^{n}$$

$$\begin{split} \chi(M,\widetilde{L}\otimes U^kt^n) &:= \chi(M,\widetilde{L}\otimes U^{\otimes k})t^n\\ \text{Let } M &:= 2\frac{\theta_{0_1}^4}{\theta_{10}^2\theta_{00}^2}\frac{\theta_{10}(h)^2\theta_{00}^2(h)}{\theta_{01}^4(h)}, \, \Lambda = \frac{\theta_{11}(h)}{\theta_{01}(h)}. \text{ Then} \end{split}$$

$$\frac{\theta_{01}((m+1)h)\theta_{01}^{(m+1)^2-1}}{\theta_{01}(h)^{(m+1)^2}} = P_m(M^2, \Lambda^4)$$

 $P_0 = 1, P_1 = (1 - t), P_2 = (1 - t)^2 - tx, P_3 = (1 - t)^4 - tx^2$