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Introduction Wallcrossing Nekrasov partition function Strange duality Rational surfaces

Moduli spaces

Everything is over C.
X simply conn. proj. algebraic surface, H ample on X
Fix c1 ∈ H2(X , Z), c2 ∈ H4(X , Z).

M := MH
X (c1, c2)

= moduli space of H-semistable rk 2 torsion-free sheaves on X

H-semistable: χ(F⊗H⊗n)
rk(F) ≤ χ(E⊗H⊗n)

rk(E) for all 0 6= F ⊂ E , n� 0

H-slope stable: c1(F)H
rk(F) < c1(E)H

rk(E)

For simplicity assume universal sheaf E on X ×M
i.e. E|X×[E ] = E for all [E ] ∈ M
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Introduction Wallcrossing Nekrasov partition function Strange duality Rational surfaces

Determinant bundles

K 0(X ) :=Grothendieck group of vector bundles
Let c ∈ K 0(X ) class of E ∈ M.

X
q←−X ×M

p−→M

Definition

Let v ∈ K 0(X ) with χ(X , c ⊗ v) = 0 (write v ∈ c⊥)
The determinant bundle for v is

λ(v) := det(Rp∗(E ⊗ q∗(v))−1 ∈ Pic(M)

λ : c⊥ → Pic(M) is homomorphism.

Let L ∈ Pic(X ). Assume Lc1 even. Put

v(L) := OX − L−1 + kOpt ∈ c⊥

The Donaldson line bundle for L is L̃ := λ(v(L)).
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Determinant bundles

Definition

The K -theoretic Donaldson invariant for L is χ(M, L̃).

Generating function:∑
c2

χ
(
MH

X (c1, c2), L̃
)
Λd ∈ Z[[Λ]].

d = 4c2 − c2
1 − 3 = expdim(M)

Standard Donaldson invariant∫
M

c1(L̃)d = lim
n→∞

d !

nd χ
(
M, ñL

)
by Riemann-Roch
(K-th Don. invariants are refinement of standard Don. inv.).
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Introduction Wallcrossing Nekrasov partition function Strange duality Rational surfaces

Main results

MH
X (c1, c2) depends on H:

There are walls (hyperplanes) in H2(X , R).
MH

X (c1, c2) and invariants change only when H crosses a wall.

Aims:
Review wallcrossing formula for χ

(
MH

X (c1, c2), L̃
)

proved with Nakajima, Yoshioka
For X rational surface, want to prove generating function is
rational function, and compute it in many cases
Relate result to Le Potier’s strange duality conjecture
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Walls

Let (X , H) simply conn. polarized surface with pg(X ) = 0
MH

X (c1, c2) and invariants depend on H, via system of walls and
chambers.

Definition

Let CX ⊂ H2(X , R) be the ample cone.
ξ ∈ H2(X , Z) defines wall of type (c1, c2) if

1 ξ ≡ c1 mod 2H2(X , Z)

2 4c2 − c2
1 + ξ2 ≥ 0

3 the wall W ξ := {H ∈ CX | H · ξ = 0} is nonempty.

Chambers=connected components of CX\ walls
MH

X (c1, c2) and invariants constant on chambers, change when
H crosses wall (i.e. H− → H+ with H−ξ < 0 < H+ξ)
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Wallcrossing formula

Definition

Let ξ define a wall of type (c1, c2). Put d := 4c2 − c2
1 − 3

The wallcrossing term is
∆X

ξ,d(L) := χ(MH+

X (c1, c2)), L̃)− χ(MH−
X (c1, c2)), L̃).

First aim: give a generating function for the wallcrossing terms
in terms of elliptic functions.
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Wallcrossing formula

Theta functions:
θab(h) =

∑
n≡a (2) qn2

(iby)n, a, b ∈ {0, 1}, y = eh/2, q = eπiτ/4

θab := θab(0), u := − θ2
00

θ2
10
− θ2

10
θ2

00
, Λ := θ11(h)

θ01(h)

Theorem
Write

q−ξ2
yξ(L−KX )

(
θ01(h)

θ01

)(L−KX )2

θ
σ(X)
01 q du

dq
dh
dΛ =

∑
d∈Z≥0

fd(q)Λd .
fd(q) ∈ Q((q))

Then
∆X

ξ,d(L) :=χ(MH+

X (c1, c2), L̃)−χ(MH−
X (c1, c2), L̃)=±Coeffq0 fd(q)

Generating function
∆X

ξ (L) :=
∑

d ∆X
ξ,d(L)Λd =

∑
d Coeffq0 fd(q)Λd ∈ Z[[Λ]]
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Wallcrossing formula

Remark

(bad news)
∑

n χ(MH
X (c1, n), L̃)Λd has wallcrossing for all W ξ

with ξ ∈ c1 + 2H2(X , Z): Walls are everywhere dense in CX .

Corollary
(good news) Let ξ class of type (c1, c2)

1 ∆X
ξ (L) ∈ Z[Λ] (a polynomial!)

2 If |ξ(L− KX )|+ 1 ≤ −ξ2 then ∆X
ξ (L) = 0

"Most walls do not contribute at all".

Corollary∑
n χ(MH

X (c1, n), L̃)Λd independent of H up to adding a
polynomial.
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Instanton moduli space

Main ingredient in proof of wallcrossing formula:
Nekrasov partition function.

Instanton moduli space:
M(n) = {(E , φ)

∣∣ E rk 2, sheaf on P2 with c2(E) = n, φ : E |l∞ ' O⊕2}

Torus action: C∗ × C∗ acts on (P2, l∞):
(t1, t2)(z0 : z1 : z2) = (z0 : t1z1 : t2z2).
Extra C∗ acts by s(E , φ) = (E , diag(s−1, s) ◦ φ).
Fixpoints: M(n)(C

∗)3
=

{
(IZ1 ⊕ IZ2), id)

∣∣ Zi ∈ Hilbni (A2, 0) monomial
}

Character: Let V vector space with (C∗)3 action. =⇒ V =
⊕

i VMi

VMi eigenspace with eigenvalue Mi Laurent monomial in t1, t2, s.
The Character of V is ch(V ) :=

∑
i dim(VMi )Mi
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Nekrasov partition function

The Nekrasov partition function is given by

Z inst(ε1, ε2, a,Λ) :=
∑
n≥0

( Λ4

t1t2

)n
ch(H0(M(n),O))|t1=eε1 ,t2=eε2 ,s=ea

Z = Z instZ pert , where Z pert is explicit function of ε1, ε2, a,Λ.

Nekrasov Conjecture (Nekrasov-Okounkov,
Nakajima-Yoshioka, Braverman-Etingof):

1 F (ε1, ε2, a,Λ) = ε1ε2log(Z ), F regular at ε1, ε2 = 0
2 F0(a,Λ) = F |ε1=ε2=0 can be expressed in terms of elliptic

functions.
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Proof of wallcrossing formula

Express wallcrossing in terms of Nekrasov partition function,
wallcrossing formula follows from Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points.
On M(n) fixpoints are pairs of zero dim. subschemes .
Wallcrossing: replace sheaves in extensions

0→ IZ1((c1 + ξ)/2)→ E → IZ2((c1 − ξ)/2)→ 0, Zi ∈ Hilbni (X )

by extensions the other way round.
=⇒ change from MH−

X (c1, c2) to MH+

X (c1, c2) by series of flips with
centers Hilbn1(X )× Hilbn2(X ).
Compute ∆X

ξ,d (L) as inters. numbers on the Hilbn1(X )× Hilbn2(X ).
Reduce to case X is toric. Use localization to compute intersection
number in terms of weights at fixpoints.
Get product of Nekrasov partition functions over the fixpoints of the
action on X with ε1, ε2, a replaced by weights of the action.
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Le Potier’s strange duality

Let X 1-conn. alg. surf., let c, v ∈ K 0(X ) with χ(c ⊗ v) = 0.
Assume H2(E ⊗ F ) = 0 for all [E ] ∈ M(c), [F ] ∈ M(v).

Θ :=
{
(E , F ) ∈ M(c)×M(v)

∣∣ h0(E ⊗ F ) 6= 0
}

Assume Θ is zero set of σ ∈ H0(M(c)×M(v), λ(v) � λ(c))
=⇒ Duality morphism D : H0(M(c), λ(v))∨ → H0(M(v), λ(c))

Conjecture/Question
1 Is D : H0(M(c), λ(v))∨ → H0(M(v), λ(c)) an isomorphism?

(strong strange duality)
2 Is χ(M(c), λ(v)) = χ(M(v), λ(c))? (weak strange duality)

For curves: rank/level duality conj. of Beauville, Donagi-Tu.
Weak version is Corollary of Verlinde formula.
Strong version proved by Belkale, Marian-Oprea.
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Case of Donaldson bundles

For simplicity c1 = 0.
c(n) = O⊕2 − nOpt class of E ∈ MH

X (0, n)
Let L ∈ Pic(X ), v(L) = OX − L−1 + kOpt ∈ c(n)⊥

Put θ := λ(OX ), η := λ(−Opt) ∈ Pic(M(v(L)))
=⇒ λ(c(n)) = θ⊗2 ⊗ η⊗n.

Strange duality: χ(MH
X (0, n), L̃) = χ(M(v(L)), λ(c(n)))

=⇒
∑

n χ(MH
X (0, n), L̃)tn =

∑
n χ(M(v(L)), θ⊗2 ⊗ η⊗n)tn ∈ Q(t)
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Case of Donaldson bundles

Remark
There is natural morphism π : M(v(L))→ |L|,F 7→ supp(F)
General fibre over [C] is Picg−1(C), (g = g(C)).
Restriction of θ to Picg−1(C) is the theta bundle, η = π∗(O(1)).

Assuming strange duality, get

χ
(
MH

X (0, c2), L̃
)

= χ(M(v(L)), θ⊗2 ⊗ π∗(O(c2)))

= χ(|L|, π∗(θ⊗2)⊗O(c2))

Over general C ∈ |L| have
rank(π∗θ

2) = H0(Picg−1(C), 2θ) = 2g

Assume best of all worlds: π∗θ
2 =

⊕2g

i=1O(−ai), all
ai < χ(X , L). Then∑

c2≥0 χ
(
MH

X (0, c2), L̃
)
tc2 =∑

c2≥0 H0(|L|,⊕2g

i=1O(−ai + c2)
)
tc2 =

P2g
i=1 tai

(1−t)dim|L|+1 .
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Rational surfaces

Let X be a rational surface. Possibly after blowing up X there is
an H0 (on boundary of ample cone) with χ(MH0

X (c1, c2), L̃) = 0
for all c2. =⇒ Everything is determined by wallcrossing:∑

n

χ(MH
X (c1, n), L̃)Λd =

∑
ξH0≤0<ξH

∆X
ξ (L)

Problem: H0 is not ample. The sum will be infinite (infinitely
many summands nonzero). Need arguments about elliptic
functions/modular forms to carry it out.
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Rational ruled surfaces

Let X rational ruled surface. F fibre. Let G ∈ 1
2 H2(X , Z) with G2 = 0,

FG = 1. Let L ∈ Pic(X ). Write L = nF + sG, s ∈ Z, n ∈ 1
2Z

(e.g. P1×P1: F , G fibres of both proj, P̂2: F = H −E , G = (H + E)/2)

Theorem

1 Let c1 = 0, F, then

1 +
∑
c2>0

χ
(
MH

X (c1, c2), L̃
)
tc2 '


1

(1−t)n+1 s = 0
1

(1−t)2n+2 s = 1
1
2

(1+t)n+(−1)c1·L/2(1−t)n

(1−t)3n+3 s = 2

2 Let c1 · F odd, then

∑
c2>0

χ
(
MH

X (c1, c2), L̃
)
tc2−c2

1/4 '


0 s = 0

tn/2

(1−t)2n+2 s = 1
tn/4

2
(1+t1/2)n+(−1)c1L/2(1−t1/2)n

(1−t)3n+3 s = 2

3 Explicit formulas for L = nF + sG, s ≤ 7.
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Blowup formulas

Want to use the formulas on P̂2 to get formulas for P2.
For this need blowup formulas.

Let X rational surface, X̂ blowup in a point, E exceptional
divisor. Let H ample on X and L ∈ Pic(X )

Theorem

∑
n

χ(MHbX (c1, n), L̃)tn =
∑

n

χ(MH
X (c1, n), L̃)tn

∑
n

χ(MHbX (c1, n), L̃− E)tn = (1− t)
∑

n

χ(MH
X (c1, n), L̃)tn

One also needs higher order blowup formulas for ˜L−mE .
These involve an analogue of the point class.
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Projective plane

Theorem

1 +
∑
c2>0

χ
(
MP2(0, c2), ñH

)
tc2 =



1
(1−t)3 n = 1

1
(1−t)6 n = 2

1+t2

(1−t)10 n = 3
1+6t2+t3

(1−t)15 n = 4
1+21t2+20t3+21t4+t6

(1−t)21 n = 5∑
c2>0

χ
(
MP2(H, c2), ñH

)
tc2−1 =

{
1

(1−t)6 n = 2
1+6t+t3

(1−t)15 n = 4

Corollary

(Strong) strange duality holds for c1 = 0, H, L = H, 2H, 3H.

(Danila determined other side of strange duality for H, 2H, 3H
and checked strange duality in this case for small c2.)
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General rational surfaces

For rational surfaces the generating functions are rational:

Theorem
Let X rational surface, H ample, L, c1 ∈ Pic(X ) with Lc1 even.
There are (computable) PX

L,c1
(t) ∈ Q[t ], l ∈ Z s.th.

∑
n≥0

χ(MH
X (c1, n), L̃)tn '

PX
L,c1

(t)

(1− t)l .

Conjecture

If hi(X , L) = 0 for i > 0 and general C ∈ |L| is nonsing. genus
g, then l = χ(X , L) and PX

L,c1
(t) has nonnegative coefficients

and PX
L,c1

(1) = 2g .

(True in all cases I checked)
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Symmetry conjecture

Again X rational surface H ample on X , L ∈ Pic(X )
Write

χH
X ,c1

(L,Λ) :=
∑
n≥0

χ(MH
X (c1, n), L̃)Λd ∈ Z[Λ, 1/(1− Λ4)]

Conjecture

χH
X ,c1

(
L,

1
Λ

)
' (−1)χ(X ,L)Λ(L−KX )2+2χH

X ,L+c1−KX

(
L,Λ).

(Checked in all computed cases, compatible with blowup
formulas.)
What is the explanation of the Le Potier dual statement?
Fourier-Mukai transform for M(v)→ |L|?
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Proofs and complements

Example proof: X = P1 × P1, L = nF . To show

χ(nF ) := 1 +
∑
c2

χ(MH
X (F , c2), ñF )Λ4c2 =

1
(1− Λ4)n+1 .

Induction on n: n = 0: χ(MH
X (F , c2),O) = 1, o.K.

(1− Λ4)χ((n + 1)F )− χ(nF )

= −
∑
k≥0

(1− Λ4)
(
∆X

(2k+1)F ((n + 1)F )−∆X
(2k+1)F (nF )

)
= −

∑
k≥0

Coeff
q0

[
y4k+2((1− Λ4)Q4n+12 −Q4n+8R

]
= Coeff

q0

[ 1
y2 − y−2

(
(1− Λ4)Q4n+12 −Q4n+8)R

]
Q = θ01(h)

θ01
, y = eh/2, Λ = θ11(h)

θ01(h) .

Enough to show: Coeffq0

[
1

y2−y−2

(
(1− Λ4)Q4n+8 −Q4n+4)× R

]
= 0

Turns out to follow from θ4
00 = θ4

10 + θ4
01 [Jacobi]
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Proofs and complements

Know Q4 ∈ Q[[q2Λ2, q4]]. Will show

1
y2 − y−2

(
(1− Λ4)Q4 − 1

)
R ∈ Q[[q2Λ2, q4]] (∗)

By y − y−1 ∈ q−1ΛQ[[q2Λ2, q4]], (∗) follows from
(y2 − y−2)|

(
(1− Λ4)Q4 − 1

)
in Q[y , y−1][[q]].

Using Q = θ01(h)
θ01

, y = eh/2, Λ = θ11(h)
θ01(h) , clearing denominators,

this is

θ01(h)4 − θ11(h)4 − θ4
01 = 0, y = ±1,±i

For y = ±1 this is 0 = 0. For y = ±i it is

θ4
00 = θ4

10 + θ4
01 [Jacobi]
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Higher blowup formulas

General formula, involves analogue of point class.
U ∈ K̃ 0(MH

X (c1, c2)) universal. U = (p2!

(
(E · E∨) · p∗1(O{x})

)
??

Theorem
There are universal polynomials Pm(x , t), such that∑

n

χ(MHbX (c1, n), ˜L−mE)tn =
∑

n

χ(MH
X (c1, n), L̃⊗ Pm(U, t))tn

χ(M, L̃⊗ Uk tn) := χ(M, L̃⊗ U⊗k )tn

Let M := 2 θ4
01

θ2
10θ2

00

θ10(h)2θ2
00(h)

θ4
01(h)

, Λ = θ11(h)
θ01(h) . Then

θ01((m + 1)h)θ
(m+1)2−1
01

θ01(h)(m+1)2 = Pm(M2,Λ4)

P0 = 1, P1 = (1− t), P2 = (1− t)2 − tx , P3 = (1− t)4 − tx2

.
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