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Topological invariants of moduli spaces

Aim: study topological invariants of moduli spaces in
algebraic geometry
We work over C.
Moduli spaces:
A moduli space M is an algebraic variety, which parametrizes in
a natural way interesting objects in algebraic geometry.

Examples are:
1 Hilbert schemes of points S[n] on an algebraic surface:
{zero dimensional subschemes of degree n on S}
(i.e. generically sets of n points on S).

2 Moduli spaces of stable sheaves MH
S (r , c1, c2):

{rank r coherent sheaves on S with Chern classes c1, c2}
(i.e. vector bundles with singularities).
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Topological invariants of moduli spaces

In differential geometry can also consider moduli spaces,
e.g. of asd-connections on a principal SO(3)-bundle over a
4-manifold X
Used to define and compute Donaldson invariants, which are
C∞ invariants of 4-manifolds
If X is a projective algebraic surface close relationship to
moduli spaces MH

S (2, c1, c2) of stable sheaves allows to
compute Donaldson invariants via algebraic geometry.
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Topological invariants of moduli spaces

S projective complex surface, H ample line bundle on S, i.e.
S ⊂ Pn and H is the hyperplane bundle
(or consider S with the Fubini-Study metric induced from Pn).
We assume always that

1 b1(S) = dim H1(S,Q) = 0
2 pg(S) = h0(S,KS) > 0, i.e. ∃ nonvanishing holomorphic

2-forms on S
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Topological invariants of moduli spaces

No moduli space for all coherent sheaves on S exists
Consider a nice subset: stable sheaves: not too big
subsheaves

MH
S (r , c1, c2) =

moduli space of rank r H-semistable sheaves
on S with Chern classes c1, c2

E semistable ⇐⇒ ∀n�0
h0(S,F⊗H⊗n)

rk(F) ≤ h0(S,E⊗H⊗n)
rk(E) for all F

subsheaf of E .
M = MH

S (r , c1, c2) is usually singular, has expected dimension

vd = 2rc2 − (r − 1)c2
1 + (r2 − 1)χ(OS).

vd is the dimension M should have, more about that later
Here write c2 :=

∫
[S] c2 ∈ Z, c2

1 :=
∫
[S] c

2
1 ∈ Z
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Topological invariants of moduli spaces

Rank 1 case: Hilbert scheme of points

S[n] = {zero dimensional subschemes of length n on S}

General pt Z of S[n]: Z = p1 t . . . t pn set of n distinct pts of S
When points come together have nontrivial scheme structure,
Z = Z1 t . . . t Zk such that dimCOZ =

∑k
i=1 dimCOZi = n.

S[n] is smooth projective of dimension 2n.
S[n] → S(n) = Sn/(perm. of factors),Z 7→ supp(Z )
is resolution of singularities.
MH

S (1,L, c2) = S[c2], via Z ↔ IZ ⊗O(L). IZ ideal sheaf of Z .
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Topological invariants of moduli spaces

Euler numbers of Hilbert schemes:
MH

S (1,L, c2) = S[c2]

Let e(M) be the topological Euler number of M

Theorem (G’90)∑
n≥0

e(S[n])xn =
1∏

n>0(1− xn)e(S)

By physics arguments, 1994 Vafa and Witten gave explicit
conjectural formula for the generating function for
e(MH

S (2,L,n)), in terms of modular forms.
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Vafa-Witten conjecture

In whole talk assume stable=semistable (condition on c1).
Assume for simplicity in whole talk:
∃ smooth conn. curve in |KS| (zero set of holomorphic 2-form.)

Write K 2
S =

∫
[S]

K 2
S =

∫
[S]

c1(S)2,
let χ(OS) holomorphic Euler characteristic
Write in future MH

S (c1, c2) = MH
S (2, c1, c2), and always

vd = vdMH
S (c1,c2)

= 4c2 − c2
1 − 3χ(OS)

Conjecture (Vafa-Witten conjecture)

e(MH
S (c1, c2)) = Coeffxvd

[
8
(

1
2
∏

n>0(1− x2n)12

)χ(OS)

·

(
2
∏

n>0(1− x4n)2∑
n∈Z xn2

)K 2
S
]

Want to interpret, check and refine this formula
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Virtual Euler number

M = MH
S (c1, c2) usually very singular

might have dimension different from vd = 4c2 − c2
1 − 3χ(OS)

But M has a virtual smooth structure of dimension vd
with this behaves like smooth projective variety of dim. vd
Can define virtual analogues of all invariants of smooth
projective varieties

Idea: virtual Euler number evir(M) and all other virtual
invariants of M are invariant under deformation
If one can deform to a smooth moduli space Ms, then e.g.
evir(M) = e(Ms).

Virtual structure is used to define most invariants in modern
enumerative geometry, e.g. Gromov-Witten, Donaldson
invariants, Donaldson Thomas invariants
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Perfect obstruction theory

In differential geometry, when the moduli space
(of solutions to some pde) is singular, one deforms the equation
to get a smooth moduli space
(e.g. for Donaldson invariants).
In algebraic geometry, one keeps the moduli space as is, but
adds virtual structure,
which keeps records why the moduli space is virtually smooth
This allows for better control.
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Perfect obstruction theory

At every point [F ] ∈ M, tangent space T[F ] = Ext1(F ,F )0

obstruction space O[F ] = Ext2(F ,F )0
Kuranishi: ∃ analytic map κ : T[F ],0 → O[F ],0,
s.th.anal. nbhd of [F ] in M is isom. to κ−1(0)
=⇒ if OF = 0 or κ submersion, M is nonsingular of dim vd

Perfect obstruction theory:
Complex E• = [E0 → E1] of vb on M, s.th. ∀[F ]∈M :
T[F ] ' ker(E0([F ])→ E1([F ])), OF ' coker(E0([F ])→ E1([F ]))
i.e E• captures all tangents and obstructions via vector bundles

Then define: T vir
M := [E0]− [E1] ∈ K 0(M),

vd := rk T vir
M = rk(E0)− rk(E1)

virtual fundamental class [M]vir ∈ H2vd(M,Z)
virtual structure sheaf Ovir

M ∈ K0(M) (these last two are difficult)
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Virtual Euler number

Definition
Virtual Euler number:

evir(M) :=

∫
[M]vir

cvd(T vir(M))

Conjecture

The Vafa-Witten formula holds with e(MH
S (c1, c2)) replaced by

evir(MH
S (c1, c2)).
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Refinement to χy -genus

holomorphic Euler characteristic:

χ(X ,V ) :=
∑
i≥0

(−1)i dim H i(X ,V ), V ∈ K 0(X )

χ−y -genus:

χ−y (X ) =
∑
p,q

(−1)p+qyphp,q(X ) =
∑

p

(−y)pχ(X ,Ωp
X )

alternating sum of Hodge numbers

Virtual χ−y -genus. For V ∈ K 0(M), put
χvir(M,V ) := χ(M,Ovir

M ⊗ V ). Let Ωvir
M := (T vir

M )∨.

χvir
−y (M) := y−vd/2

∑
p

(−y)pχvir(M,ΛpΩvir
M )

χvir
−1(M) = evir(M), so this is refinement of virtual Euler number
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Refinement to χy -genus

ψS(x) := 8
(

1
2
∏

n>0(1− x2n)12

)χ(OS)
(

2
∏

n>0(1− x4n)2∑
n∈Z xn2

)K 2
S

Conjecture

evir(MH
S (c1, c2)) = Coeffxvd [ψS(x)].

Conjecture for virtual χ−y -genus:

ψS(x , y) := 8
(

1
2
∏

n>0(1− x2n)10(1− x2ny)(1− x2n/y)

)χ(OS)

·

(
2
∏

n>0(1− x4n)2∑
n∈Z xn2yn/2

)K 2
S

Conjecture

χvir
−y (MH

S (c1, c2)) = Coeffxvd [ψS(x , y)].

Specializes to our version of VW conjecture for y = 1



Introduction Virtual Euler number and its refinements Examples Check of conjectures Further results

Refinement to χy -genus

ψS(x) := 8
(

1
2
∏

n>0(1− x2n)12

)χ(OS)
(

2
∏

n>0(1− x4n)2∑
n∈Z xn2

)K 2
S

Conjecture

evir(MH
S (c1, c2)) = Coeffxvd [ψS(x)].

Conjecture for virtual χ−y -genus:

ψS(x , y) := 8
(

1
2
∏

n>0(1− x2n)10(1− x2ny)(1− x2n/y)

)χ(OS)

·

(
2
∏

n>0(1− x4n)2∑
n∈Z xn2yn/2

)K 2
S

Conjecture

χvir
−y (MH

S (c1, c2)) = Coeffxvd [ψS(x , y)].

Specializes to our version of VW conjecture for y = 1



Introduction Virtual Euler number and its refinements Examples Check of conjectures Further results

Refinement to χy -genus

ψS(x) := 8
(

1
2
∏

n>0(1− x2n)12

)χ(OS)
(

2
∏

n>0(1− x4n)2∑
n∈Z xn2

)K 2
S

Conjecture

evir(MH
S (c1, c2)) = Coeffxvd [ψS(x)].

Conjecture for virtual χ−y -genus:

ψS(x , y) := 8
(

1
2
∏

n>0(1− x2n)10(1− x2ny)(1− x2n/y)

)χ(OS)

·

(
2
∏

n>0(1− x4n)2∑
n∈Z xn2yn/2

)K 2
S

Conjecture

χvir
−y (MH

S (c1, c2)) = Coeffxvd [ψS(x , y)].

Specializes to our version of VW conjecture for y = 1



Introduction Virtual Euler number and its refinements Examples Check of conjectures Further results

Elliptic genus

Have conjectural generating function for virtual Elliptic genus
of MH

S (c1, c2) in terms of Siegel modular forms
It gives generalization of the DMVV formula
(Dijkgraaf-Moore-Verlinde-Verlinde ’97), (Borisov-Libgober ’00)
for Hilbert schemes of points.
A bit too complicated to state here.
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Cobordism class

Final generalization: the cobordism class:
Two complex manifolds M, N have the same cobordism class
{M} = {N}
if they have the same Chern numbers:∫

[M]
ci1(M) · · · cik (M) =

∫
[N]

ci1(N) · · · cik (N) ∀k ,i1,...,ik

Cobordism classes of complex manifolds generate a ring
R =

∑
n Rn (graded by dimension)

{M}{N} = {M × N}, {M}+ {N} = {M t N}
In fact

R ⊗Q = Q[{P1}, {P2}, {P3}, . . .]
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Cobordism class

Ellingsrud-G-Lehn showed {S[n]} depends only on {S}
(equivalent: Chern numbers of S[n] depend only on K 2

S , c2(S))

For M = MH
S (c1, c2) let {M}vir be the virtual cobordism class

given by the ∫
[M]vir

ci1(T vir
M ) · · · cik (T vir

M ).

Conjecture
There is a power series P(x) = 1 +

∑
n>0 Pnxn, with Pn ∈ Rn,

s.th.

{MH
S (c1, c2)}vir = Coeffxvd

[
8

(
1
4

∑
n≥0

{K 3[n]}x2n

)χ(OS)/2

(2P(x))K 2
S

]
.
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General form of conjecture

Seiberg-Witten invariants:
invariants of differentiable 4-manifolds
S projective algebraic surface H2(S,Z) 3 a 7→ SW (a) ∈ Z, a is
called SW class if SW (a) 6= 0.

In general for alg. surfaces they are easy to compute, e.g.
if b1(S) = 0, pg(S) > 0 and |KS| contains smooth connected
curve, then SW cl. of S are 0,KS with

SW (0) = 1, SW (KS) = (−1)χ(OS)

This is the reason for our assumption that |KS| contains smooth
connected curve, otherwise our results look more complicated.
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General form of conjecture

We restrict attention to the virtual Euler number
S projective surface with b1(S) = 0, pg(S) > 0.

Conjecture

evir(MH
S (c1, c2)) = Coeffxvd

[
4
(

1
2
∏

n>0(1− x2n)12

)χ(OS)

(
2
∏

n>0(1− x4n)2∑
n∈Z xn2

)K 2
S ∑

a∈H2(S,Z)

SW (a)(−1)c1a

( ∑
n∈Z xn2∑

n∈Z(−1)nxn2

)aKS
]
,

Examples:
(1) K3 surfaces: Let S be a K3 surface,
M = MH

S (c1, c2) is nonsingular of dim vd and e(M) = e(S[vd/2])
(Yoshioka)

=⇒ e(M) = Coeffxvd

[
1∏

n>0(1− x2n)24

]
Follows from our formula because K 2

S = 0, and SW (0) = 1 is only
SW invariant.
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Examples

(2) Elliptic surfaces: (Yoshioka) S ellipic surface χ(OS) = d , F fibre
M = MH

S (c1, c2) is nonsingular of dim vd

e(M) =

Coeffxvd

[
1∏

n>0(1−x2n)12d

]
c1F ≡ 1 mod 2,

0 c1F ≡ 0 mod 2

Follows from our formula because K 2
S = 0 and SW invariants are

SW (kF ) = (−1)k
(d−2

k

)
, k = 0, . . . ,d − 2

(3) Blowup formula:(Li-Qin) Let Ŝ the blowup of surface S.
c1 ∈ H2(S), E exceptional divisor. Then

∑
c2

e(MH
Ŝ

(c1 + aE , c2))xvd =

∑
n∈Z x (2n+a)2∏

n>0(1− x4n)2

∑
c2

e(MH
S (c1, c2))xvd

We predict the same formula with e replaced by evir on both sides,
because K 2

Ŝ
= K 2

S − 1 and SW invariants are
SWŜ(a) = SWŜ(a + E) = SWS(a) for all SW classes a on S
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Examples

(4) Quintic in P3: Let S be a nonsingular quintic in P3, H the
hyperplane section. We show∑

c2

evir(MH
S (H, c2)xvd = 8 + 52720x4 + 48754480x8

+ 17856390560x12 + 3626761297400x16 . . .+ O(x28)

conferming the conjecture
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Mochizuki formula

Main tool: Mochizuki’s formula:
Compute intersection numbers on M = MH

S (c1, c2) in terms of
intersection numbers on Hilbert scheme of points.

On S ×M have E universal sheaf
i.e. if [E ] ∈ M corresponds to a sheaf E on S then E|S×[E ] = E .
For α ∈ Hk (S), put

τi(α) := πM∗(ci(E)π∗S(α)) ∈ H2i−4+k (M)

Let P(E) be any polynomial in the τi(α)
Mochizuki’s formula expresses

∫
[M]vir P(E) in terms of intersec.

numbers on S[n1] × S[n2], and Seiberg-Witten invariants.
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Mochizuki formula

evir(M), χvir
−y (M) Ellvir(M) and {M}vir can all be expressed as∫

[M]vir P(E), for suitable polyn. P, so can reduce computation to
Hilbert schemes.

For χvir
−y (M) Ellvir(M) use virtual Riemann-Roch formula

Theorem (Fantechi-G.)

For V ∈ K 0(M) have

χvir(M,V ) =

∫
[M]vir

ch(V )td(T vir
M ).
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Mochizuki formula

S[n1] × S[n2] = {pairs (Z1,Z2) of subsch. of deg. (n1,n2) on S}

Work on S × S[n1] × S[n2], projection p to S[n1] × S[n2]

Two universal sheaves: Let a1,a2 ∈ Pic(S)

1 Ii (a) sheaf on S × S[n1] × S[n2] with Ii (ai )|S×(Z1,Z2) = IZi ⊗ a9

2 Oi (ai ), vector bundle of rank ni on S[n1] × S[n2], with fibre
Oi (ai )(Z1,Z2) = H0(OZi ⊗ ai )

Remember, we want to compute
∫
[M]vir P(E)

There is a (Laurent) polynomial ΨP(a1,a2,n1,n2, s) associated to P in
a variable s, the

τ i (α) := p∗(ci (I1(a1)⊕I2(a2))π∗S(α)) ∈ H2i−4+k (S[n1]×S[n2]), α ∈ Hk (S)

and the Chern classes of O1(a1), O2(a2), s.th following holds: Put

AP(a1,a2, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1 ]×S[n2 ]

ΨP(a1,a2,n1,n2, s) ∈ Q[s, s−1]
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Mochizuki formula

AP(a1,a2, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1]×S[n2]

ΨP(a1,a2,n1,n2, s)

Theorem (Mochizuki)

Assume χ(E) > 0 for E ∈ MS
H (c1, c2). Then∫

[MH
S (c1,c2)]vir

P(E) =
∑

c1=a1+a2
a1H<a2H

SW (a1)Coeffs0AP(a1,a2, c2, s)

i.e. we replace a simple formula on a space where we cannot
compute anything by a terrible formula on simpler space
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Universality

Take now for P(E) = cvd(T vir
M ) (works the same for the others)

Put

ZS(a1,a2, s,q) =
∑

n1,n2≥0

∫
S[n1]×S[n2]

A(a1,a2,a1a2 + n1 + n2, s)qn1+n2

Proposition
There exist univ. functions

A1(s,q), . . . ,A7(s,q) ∈ Q[s, s−1][[q]]

s.th. ∀S,a1,a2

ZS(a1,a2, s,q) = F0(a1,a2, s)Aa2
1

1 Aa1a2
2 Aa2

2
3 Aa1KS

4 Aa2KS
5 A

K 2
S

6 Aχ(OS)
7 ,

(where F0(a1,a2, s) is some explicit elementary function).
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Universality

Proof: Modification of an argument of Elllingsrud-G-Lehn:
"Intersection numbers of universal sheaves on S[n] are
universal polynomials in intersection numbers on S".

Reason: Untersection numbers on S[n] computed inductively:
Zn(S) := {(x ,Z ) ∈ S × S[n]|x ∈ Z} universal subscheme
Blowup of S × S[n] along Zn(S) is

S[n,n+1] := {(Z ,W ) ∈ S[n] × S[n+1] | Z ∈W}

This allows to compute intersection numbers of S[n+1] in terms
of inters. numbers on S and S[n], and conclude by induction.
This gives:

Coeffqk sl ZS(a1,a2, s,q) = Pk ,l(a2
1,a1a2,a2

2,a1KS,a1KS,K 2
S , χ(OS))

for some polynomial Pk ,l depending only on k , l .
For the multiplicativity use additional tricks.
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Reduction to P2 and P1 × P1.

A1(s,q), . . .A7(s,q) are determined by value of ZS(a1,a2, s,q)
for 7 triples (S,a1,a2) (S surface, a1,a2 ∈ Pic(S)) s.th.
corresponding 7-tuples (a2

1,a1a2,a2
2,a1KS,a1KS,K 2

S , χ(OS))
are linearly independent

We take

(P2,O,O), (P1 × P1,O,O), (P2,O(1),O), (P2,O,O(1)),

(P2,O(1),O(1)), (P1 × P1,O(1,0),O), (P1 × P1,O,O(1,0))

In this case S is a smooth toric, i.e. have an action of
T = C∗ × C∗ with finitely many fixpoints,
Action of T lifts to action on S[n] still with finitely many fixpoints
described by partitions, compute by equivariant localization.
This computes ZS(a1,a2, s,q) in terms of combinatorics of
partitions.



Introduction Virtual Euler number and its refinements Examples Check of conjectures Further results

Reduction to P2 and P1 × P1.

A1(s,q), . . .A7(s,q) are determined by value of ZS(a1,a2, s,q)
for 7 triples (S,a1,a2) (S surface, a1,a2 ∈ Pic(S)) s.th.
corresponding 7-tuples (a2

1,a1a2,a2
2,a1KS,a1KS,K 2

S , χ(OS))
are linearly independent
We take

(P2,O,O), (P1 × P1,O,O), (P2,O(1),O), (P2,O,O(1)),

(P2,O(1),O(1)), (P1 × P1,O(1,0),O), (P1 × P1,O,O(1,0))

In this case S is a smooth toric, i.e. have an action of
T = C∗ × C∗ with finitely many fixpoints,
Action of T lifts to action on S[n] still with finitely many fixpoints
described by partitions, compute by equivariant localization.
This computes ZS(a1,a2, s,q) in terms of combinatorics of
partitions.



Introduction Virtual Euler number and its refinements Examples Check of conjectures Further results

Reduction to P2 and P1 × P1.

A1(s,q), . . .A7(s,q) are determined by value of ZS(a1,a2, s,q)
for 7 triples (S,a1,a2) (S surface, a1,a2 ∈ Pic(S)) s.th.
corresponding 7-tuples (a2

1,a1a2,a2
2,a1KS,a1KS,K 2

S , χ(OS))
are linearly independent
We take

(P2,O,O), (P1 × P1,O,O), (P2,O(1),O), (P2,O,O(1)),

(P2,O(1),O(1)), (P1 × P1,O(1,0),O), (P1 × P1,O,O(1,0))

In this case S is a smooth toric, i.e. have an action of
T = C∗ × C∗ with finitely many fixpoints,
Action of T lifts to action on S[n] still with finitely many fixpoints
described by partitions, compute by equivariant localization.
This computes ZS(a1,a2, s,q) in terms of combinatorics of
partitions.



Introduction Virtual Euler number and its refinements Examples Check of conjectures Further results

Reduction to P2 and P1 × P1.

Computation: Wrote a Pari/GP program

Result: Computed A1, . . .A7

mod q31 for evir(M)

mod q8 for χvir
−y (M)

mod q7 for Ellvir(M) and {M}vir

This confirms conjectures for K3 surfaces, their blowups, elliptic
surfaces, double covers of P2 and rational ruled surfaces,
complete intersections, for vd(M) smaller than roughly 3

2 times
the power of q.
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Equivariant localization

Let X be a smooth projective variety with action of T = C∗ × C∗
with finitely many fixpoints, p1, . . . ,pe
Let E be equivariant vector bundle of rank r on X .

Fibre E(pi ) of X at fixp. pi has basis of eigenvect. for T -action
E(pi ) =

⊕r
k=1 Cvi , with action (t1, t2) · vi = tni

1 tmi
2 vi , ni ,mi ∈ Z

Equivariant Chern class of fibre at fixpoint:

cT (E(pi )) = (1+cT
1 (E(pi ))+. . .+cT

r (E(pi )) =
r∏

i=1

(1+niε1+miε2) ∈ Z[ε1, ε2]

Let P(c(E)))polynomial in Chern classes of E , of degree d = dim(X )

Theorem (Bott residue formula)∫
[X ]

P
(
c(E)

)
=

e∑
k=1

P
(
cT (E(pk ))

)
cT

dim(X)(TX (pk ))

(does not depend on ε1, ε2)
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Equivariant localization

For simplicity S = P2. T = C∗ × C∗ acts on P2 by

(t1, t2) · (X0 : X1 : X2) = (X0 : t1X1 : t2X2)

Fixpoints are p0 = (1,0,0), p1 = (0,1,0), p2 = (0,0,1).

Local (equivariant) coordinates near p0 are x = X1
X0
, y = X2

X0
,

T action (t1, t2)(x , y) = (t1x , t2y), similar for the p1,p2

Z ∈ (P2)[n] is T -invariant =⇒ Z = Z0 t Z1 t Z2 supp(Zi) = pi .
=⇒ Reduce to case supp(Z ) = pi , e.g. p0

Easy: Z is T -invariant ⇐⇒ IZ ∈ k [x , y ] is gen. by monomials
Can write

IZ = (yn0 , xyn1 , ...., x r ynr , x r+1) (n0, . . . ,nr ) partition of n

Fixpoints on (P2)[n] are in bijections with triples (P0,P1,P2) of
partitions of 3 numbers adding up to n.
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Equivariant localization

Need to compute things like c(O[n])
O[n] vector bundle on (P2)[n] with fibre O[n](Z ) = H0(OZ )

If Z = Z0 t Z1 t Z2, supp(Zi ) = pi , then

O[n](Z ) = O[n0](Z0)⊕O[n1](Z1)⊕O[n2](Z2)

cT (O[n](Z )) = cT (O[n0](Z0))cT (O[n1](Z1))cT (O[n2](Z2))

Let e.g. Z = Z0, IZ = (y4, xy2, x2y , x3)
Then the fibre O[n](Z ) = H0(OZ ) = C[x , y ]/(y4, xy2, x2y , x3)
Thus basis of eigenvectors of fibre for T action is

1 y y2 y3

x xy
x2

with eigenvalues
1 t2 t2

2 t3
2

t1 t1t2
t2
1

Thus

cT (O[n](Z )) = (1 + ε2)(1 + 2ε2)(1 + 3ε2)(1 + ε1)(1 + ε1 + ε2)(1 + 2ε1).
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The rank 3 case

Now: state version of the Vafa-Witten formula for moduli space
MH

S (3, c1, c2) of rank 3 sheaves.
(There is a wrong physics prediction for all ranks ≥ 3)
Have formulas both for χvir

−y (M) and evir(M). For simplicity state
only for evir(M).
The formula again depends on the expected dimension

vd = vd(MH
S (3, c1, c2) = 6c2 − 2c2

1 − 8χ(OS).

Again assume S algebraic surface with b1(S) = 0 and
pg(S) > 0. For simplicity assume S contains an irreducible
canonical curve (zero set of a holomorphic 2 form).
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The rank 3 case

ΘA,0(x) =
∑

(n,m)∈Z2

x2(n2−nm+m2), ΘA,1(x) =
∑

(n,m)∈Z2

εn+mx2(n2−nm+m2)

Theta functions for A2-lattice, here ε = e2πi/3.

Define modular function

z(x) :=
ΘA,0(x)

ΘA,1(x)
= 1 + 9x2 + 27x4 + 81x6 + O(x8),

Define z1(x), z2(x) = z1(−x) as the solutions of the equation
w2 − 4z(x)2w + 4z(x) = 0.

Recall η(x) =
∏

n>0(1− xn), and define

ΨS,c1 (x) = 9
(

1
3η(x2)12

)χ(OS)(3η(x6)3

ΘA,1(x)

)K 2
S

·
(

z1(x)K 2
S + z2(x)K 2

S + (−1)χ(OS)(εc1KS + ε−c1KS )
)
.

Conjecture

evir(MH
S (3, c1, c2)) = Coeffxvd

[
ΨS,c1 (x)

]
.
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Unification of Witten and Vafa-Witten conjecture

S algebraic surface with b1 = 0, pg > 0
MH

S (c1, c2) = H-semi-stable rank 2 sheaves on S
E universal sheaf on S ×M. For α ∈ H2(S), put

µ(β) = pM∗(c2(E)− c2
1(E)/4)/α ∈ H2(M)

Donaldson invariant:

DS,c1(
αvd

vd!
) =

∫
[MH

S (c1,c2)]vir

µ(α)vd

vd!

Theorem (Witten conj., G.-Nakajima, Yoshioka)

DS,c1(
αvd

vd!
) =22+K 2

S−χ(OS)Coeffzvd

[
exp

(Q(α)

2
z2
)

·
∑

ai SWcl.

SW (ai)(−1)〈c1,ai 〉 exp
(
〈KS − 2ai , α〉z

)]
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Unification of Witten and Vafa-Witten conjecture

Interpolate between VW and Don. invariants

Eisenstein series:

G2(x) :=
∑
n>0

(∑
d|n

d
)

xn, DG2(x) :=
∑
n>0

(∑
d|n

nd
)

xn

Conjecture

∫
[MH

S (c1,c2)]vir
cvd−n(T vir

MH
S (c1,n)

)
µ(α)n

n!
= Coeffxvdzn

[
8
(

1
2η(x2)12

)χ(OS)

(
2η(x4)2

θ3(x)

)K 2
S

exp
(1

2
DG2(x2)Q(α)z2 − 2G2(x2)〈KS, α〉z)

)
·
∑

ai SWcl.

SW (ai )(−1)〈c1,ai〉
( θ3(x)

θ3(−x)

)〈KS ,ai〉
e
(

1
2 (G2(x)−G2(−x))〈KS−2ai ,α〉z

)]

z → 0: Vafa-Witten invariants, x → 0, xz → 1: Donaldson
invariants
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Elliptic genus

Elliptic genus: (Introduced by Witten, motivated by physics).
The elliptic genus is a refinement of the χ−y -genus.
It associates to a smooth projective variety a Jacobi form
(something like a modular form in two variables e.g. θ3(x , y))

For vector bundle E put

Ellq,y (E) = y− rk(E)/2
⊗
n≥1

(
Λ−yqn−1E∨ ⊗ Λ−yqnE ⊗ SqnE∨ ⊗ SqnE

)
,

Λt (E) =
⊕
n≥0

tnΛnE , St (E) =
⊕
n≥0

tnSnE .

Ell(X ) := χ(X ,Ellq,y (TX )) elliptic genus.
Ellvir(M) := χvir(M,Ellq,y (T vir

M )) virtual elliptic genus.
for q = 0 Ellvir(M) specializes to χvir

−y (M).
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Ell(X ) := χ(X ,Ellq,y (TX )) elliptic genus.
Ellvir(M) := χvir(M,Ellq,y (T vir

M )) virtual elliptic genus.
for q = 0 Ellvir(M) specializes to χvir

−y (M).
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Elliptic genus

DMVV formula (conj. Dijkgraaf-Moore-Verlinde-Verlinde ’97),
(proof: Borisov-Libgober ’00)
Put

L
(∑

m,l

cm,ly lqm
)

:=
∏
n>0

∏
m,l

(1− xny lqm)cnm,l

Borcherds type lift, Jacobi form 7→ Siegel modular form

Then

∑
n≥0

Ell(S[n])xn =
1

L(Ell(S))
=

(
1

L(24φ2)
for S = K 3

)
.
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Elliptic genus

G1,0(q, y) = −1
2

y + 1
y − 1

+
∑
n>0

∑
d|n

(yd − y−d )qn, G2(q) = − 1
24

+
∑
n>0

∑
d|n

dqn

G2,0(q, y) = y
∂G1,0(q, y)

∂y
− 2G2(q) = ℘(q, y), G3,0(q, y) = y

∂℘(q, y)

∂y

φi (q, y) :=Gi,0(q, y)

(
(y1/2 − y−1/2)

∏
n>0

(1− qny)(1− qn/y)

(1− qn)2

)i

L
(∑

m,l

cm,ly lqm
)

:=
∏
n>0

∏
m,l

(1− xny lqm)cnm,l , Ln(φ) = L(φ)|x=xn

Conjecture

Ellvir(MH
S (c1, c2)) = Coeffxvd

[
8

(
1
2

1
L2(12φ2)

)χ(OS)

·

(
2L4(φ1φ3)L(−2φ1)

L2(−2φev
1 (q1/2, y)− φ1(q2, y2) + 2φ2

1)

)K 2
S
]
.
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