Vafa-Witten formula and generalizations

Lothar Göttsche, joint work with Martijn Kool

Calabi-Yau and geometry
Rome, 29 May - 1 June 2019

Aim: study topological invariants of moduli spaces in algebraic geometry

We work over \mathbb{C}.
Moduli spaces:
A moduli space M is an algebraic variety, which parametrizes in a natural way interesting objects in algebraic geometry.

Aim: study topological invariants of moduli spaces in algebraic geometry

We work over \mathbb{C}.
Moduli spaces:
A moduli space M is an algebraic variety, which parametrizes in a natural way interesting objects in algebraic geometry.
Examples are:
(1) Hilbert schemes of points $S^{[n]}$ on an algebraic surface: \{zero dimensional subschemes of degree n on S \} (i.e. generically sets of n points on S).

Aim: study topological invariants of moduli spaces in algebraic geometry

We work over \mathbb{C}.

Moduli spaces:

A moduli space M is an algebraic variety, which parametrizes in a natural way interesting objects in algebraic geometry.
Examples are:
(1) Hilbert schemes of points $S^{[n]}$ on an algebraic surface: \{zero dimensional subschemes of degree n on S \} (i.e. generically sets of n points on S).
(2) Moduli spaces of stable sheaves $M_{S}^{H}\left(r, c_{1}, c_{2}\right)$: \{rank r coherent sheaves on S with Chern classes c_{1}, c_{2} \} (i.e. vector bundles with singularities).

In differential geometry can also consider moduli spaces, e.g. of asd-connections on a principal $S O(3)$-bundle over a 4-manifold X
Used to define and compute Donaldson invariants, which are C^{∞} invariants of 4-manifolds
If X is a projective algebraic surface close relationship to moduli spaces $M_{S}^{H}\left(2, c_{1}, c_{2}\right)$ of stable sheaves allows to compute Donaldson invariants via algebraic geometry.
S projective complex surface, H ample line bundle on S, i.e. $S \subset \mathbb{P}^{n}$ and H is the hyperplane bundle (or consider S with the Fubini-Study metric induced from \mathbb{P}^{n}). We assume always that
(1) $b_{1}(S)=\operatorname{dim} H^{1}(S, \mathbb{Q})=0$
(2) $p_{g}(S)=h^{0}\left(S, K_{S}\right)>0$, i.e. \exists nonvanishing holomorphic 2-forms on S

No moduli space for all coherent sheaves on S exists Consider a nice subset: stable sheaves: not too big subsheaves

No moduli space for all coherent sheaves on S exists
Consider a nice subset: stable sheaves: not too big subsheaves

$$
M_{S}^{H}\left(r, c_{1}, c_{2}\right)=\begin{gathered}
\text { moduli space of rank } r H \text {-semistable sheaves } \\
\text { on } S \text { with Chern classes } c_{1}, c_{2}
\end{gathered}
$$

\mathcal{E} semistable $\Longleftrightarrow \forall_{n \gg 0} \frac{h^{0}\left(S, \mathcal{F} \otimes H^{\otimes n}\right)}{r k(\mathcal{F})} \leq \frac{h^{0}\left(S, \mathcal{E} \otimes H^{\otimes n)}\right.}{r k(\mathcal{E})}$ for all \mathcal{F} subsheaf of \mathcal{E}.

No moduli space for all coherent sheaves on S exists Consider a nice subset: stable sheaves: not too big subsheaves

$$
M_{S}^{H}\left(r, c_{1}, c_{2}\right)=\begin{gathered}
\text { moduli space of rank } r H \text {-semistable sheaves } \\
\text { on } S \text { with Chern classes } c_{1}, c_{2}
\end{gathered}
$$

\mathcal{E} semistable $\Longleftrightarrow \forall_{n \gg 0} \frac{h^{0}\left(S, \mathcal{F} \otimes H^{\otimes n}\right)}{r k(\mathcal{F})} \leq \frac{h^{0}\left(\mathcal{S}, \mathcal{E} \otimes H^{\otimes n)}\right.}{\mathrm{rk}(\mathcal{E})}$ for all \mathcal{F} subsheaf of \mathcal{E}.
$M=M_{S}^{H}\left(r, c_{1}, c_{2}\right)$ is usually singular, has expected dimension

$$
v d=2 r c_{2}-(r-1) c_{1}^{2}+\left(r^{2}-1\right) \chi\left(\mathcal{O}_{s}\right) .
$$

$v d$ is the dimension M should have, more about that later

No moduli space for all coherent sheaves on S exists Consider a nice subset: stable sheaves: not too big subsheaves

$$
M_{S}^{H}\left(r, c_{1}, c_{2}\right)=\begin{gathered}
\text { moduli space of rank } r H \text {-semistable sheaves } \\
\text { on } S \text { with Chern classes } c_{1}, c_{2}
\end{gathered}
$$

\mathcal{E} semistable $\Longleftrightarrow \forall_{n \gg 0} \frac{h^{0}\left(S, \mathcal{F} \otimes H^{\otimes n}\right)}{r k(\mathcal{F})} \leq \frac{h^{0}\left(S, \mathcal{E} \otimes H^{\otimes n)}\right.}{\mathrm{rk}(\mathcal{E})}$ for all \mathcal{F} subsheaf of \mathcal{E}.
$M=M_{S}^{H}\left(r, c_{1}, c_{2}\right)$ is usually singular, has expected dimension

$$
v d=2 r c_{2}-(r-1) c_{1}^{2}+\left(r^{2}-1\right) \chi\left(\mathcal{O}_{s}\right) .
$$

$v d$ is the dimension M should have, more about that later Here write $c_{2}:=\int_{[S]} c_{2} \in \mathbb{Z}, c_{1}^{2}:=\int_{[S]} c_{1}^{2} \in \mathbb{Z}$

Rank 1 case: Hilbert scheme of points

$S^{[n]}=\{$ zero dimensional subschemes of length n on $S\}$
General pt Z of $S^{[n]}: Z=p_{1} \sqcup \ldots \sqcup p_{n}$ set of n distinct pts of S
When points come together have nontrivial scheme structure, $Z=Z_{1} \sqcup \ldots \sqcup Z_{k}$ such that $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{Z}=\sum_{i=1}^{k} \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{Z_{i}}=n$.

Rank 1 case: Hilbert scheme of points

$S^{[n]}=\{$ zero dimensional subschemes of length n on $S\}$
General pt Z of $S^{[n]}: Z=p_{1} \sqcup \ldots \sqcup p_{n}$ set of n distinct pts of S
When points come together have nontrivial scheme structure, $Z=Z_{1} \sqcup \ldots \sqcup Z_{k}$ such that $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{Z}=\sum_{i=1}^{k} \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{Z_{i}}=n$.
$S^{[n]}$ is smooth projective of dimension $2 n$.
$S^{[n]} \rightarrow S^{(n)}=S^{n} /($ perm. of factors), $Z \mapsto \operatorname{supp}(Z)$
is resolution of singularities.

Rank 1 case: Hilbert scheme of points

$S^{[n]}=\{$ zero dimensional subschemes of length n on $S\}$
General pt Z of $S^{[n]}: Z=p_{1} \sqcup \ldots \sqcup p_{n}$ set of n distinct pts of S
When points come together have nontrivial scheme structure, $Z=Z_{1} \sqcup \ldots \sqcup Z_{k}$ such that $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{Z}=\sum_{i=1}^{k} \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{Z_{i}}=n$.
$S^{[n]}$ is smooth projective of dimension $2 n$.
$S^{[n]} \rightarrow S^{(n)}=S^{n} /($ perm. of factors), $Z \mapsto \operatorname{supp}(Z)$
is resolution of singularities.
$M_{S}^{H}\left(1, L, c_{2}\right)=S^{\left[c_{2}\right]}$, via $Z \leftrightarrow I_{Z} \otimes \mathcal{O}(L) . I_{Z}$ ideal sheaf of Z.

Euler numbers of Hilbert schemes:
$M_{S}^{H}\left(1, L, c_{2}\right)=S^{\left[c_{2}\right]}$
Let $e(M)$ be the topological Euler number of M

Euler numbers of Hilbert schemes:
$M_{S}^{H}\left(1, L, c_{2}\right)=S^{\left[c_{2}\right]}$
Let $e(M)$ be the topological Euler number of M

Theorem (G'90)

$$
\sum_{n \geq 0} e\left(S^{[n]}\right) x^{n}=\frac{1}{\prod_{n>0}\left(1-x^{n}\right)^{e(S)}}
$$

Euler numbers of Hilbert schemes:
$M_{S}^{H}\left(1, L, c_{2}\right)=S^{\left[c_{2}\right]}$
Let $e(M)$ be the topological Euler number of M

Theorem (${ }^{\prime}$ '90)

$$
\sum_{n \geq 0} e\left(S^{[n]}\right) x^{n}=\frac{1}{\prod_{n>0}\left(1-x^{n}\right)^{e(S)}}
$$

By physics arguments, 1994 Vafa and Witten gave explicit conjectural formula for the generating function for $e\left(M_{S}^{H}(2, L, n)\right)$, in terms of modular forms.

In whole talk assume stable=semistable (condition on c_{1}). Assume for simplicity in whole talk:
\exists smooth conn. curve in $\left|K_{S}\right|$ (zero set of holomorphic 2-form.)

In whole talk assume stable=semistable (condition on c_{1}).
Assume for simplicity in whole talk:
\exists smooth conn. curve in $\left|K_{S}\right|$ (zero set of holomorphic 2-form.)
Write $K_{S}^{2}=\int_{[S]} K_{S}^{2}=\int_{[S]} c_{1}(S)^{2}$,
let $\chi\left(\mathcal{O}_{S}\right)$ holomorphic Euler characteristic
Write in future $M_{S}^{H}\left(c_{1}, c_{2}\right)=M_{S}^{H}\left(2, c_{1}, c_{2}\right)$, and always

$$
\mathrm{vd}=\operatorname{vd}_{M_{s}^{H}\left(c_{1}, c_{2}\right)}=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{s}\right)
$$

Vafa-Witten conjecture

In whole talk assume stable=semistable (condition on c_{1}).
Assume for simplicity in whole talk:
\exists smooth conn. curve in $\left|K_{S}\right|$ (zero set of holomorphic 2-form.)
Write $K_{S}^{2}=\int_{[S]} K_{S}^{2}=\int_{[S]} c_{1}(S)^{2}$,
let $\chi\left(\mathcal{O}_{S}\right)$ holomorphic Euler characteristic
Write in future $M_{S}^{H}\left(c_{1}, c_{2}\right)=M_{S}^{H}\left(2, c_{1}, c_{2}\right)$, and always

$$
\operatorname{vd}=\operatorname{vd}_{M_{S}^{H}\left(c_{1}, c_{2}\right)}=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)
$$

Conjecture (Vafa-Witten conjecture)

$$
\begin{aligned}
e\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)= & \operatorname{Coeff}_{x^{\text {vd }}}\left[8\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{s}\right)}\right. \\
& \left.\cdot\left(\frac{2 \prod_{n>0}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}}\right)^{K_{s}^{2}}\right]
\end{aligned}
$$

Want to interpret, check and refine this formula

$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ usually very singular might have dimension different from $\mathrm{vd}=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)$

$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ usually very singular might have dimension different from $\mathrm{vd}=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)$
But M has a virtual smooth structure of dimension vd with this behaves like smooth projective variety of dim. vd Can define virtual analogues of all invariants of smooth projective varieties
$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ usually very singular might have dimension different from vd $=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)$
But M has a virtual smooth structure of dimension vd with this behaves like smooth projective variety of dim. vd Can define virtual analogues of all invariants of smooth projective varieties

Idea: virtual Euler number $e^{\text {vir }}(M)$ and all other virtual invariants of M are invariant under deformation If one can deform to a smooth moduli space M_{s}, then e.g. $e^{\mathrm{vir}}(M)=e\left(M_{s}\right)$.
$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ usually very singular might have dimension different from $\mathrm{vd}=4 c_{2}-c_{1}^{2}-3 \chi\left(\mathcal{O}_{S}\right)$
But M has a virtual smooth structure of dimension vd with this behaves like smooth projective variety of dim. vd Can define virtual analogues of all invariants of smooth projective varieties

Idea: virtual Euler number $e^{\text {vir }}(M)$ and all other virtual invariants of M are invariant under deformation
If one can deform to a smooth moduli space M_{s}, then e.g. $e^{\mathrm{vir}}(M)=e\left(M_{s}\right)$.

Virtual structure is used to define most invariants in modern enumerative geometry, e.g. Gromov-Witten, Donaldson invariants, Donaldson Thomas invariants

In differential geometry, when the moduli space
(of solutions to some pde) is singular, one deforms the equation to get a smooth moduli space
(e.g. for Donaldson invariants).

In algebraic geometry, one keeps the moduli space as is, but adds virtual structure,
which keeps records why the moduli space is virtually smooth
This allows for better control.

At every point $[F] \in M$, tangent space $T_{[F]}=E x t^{1}(F, F)_{0}$ obstruction space $O_{[F]}=E x t^{2}(F, F)_{0}$
Kuranishi: \exists analytic map $\kappa: T_{[F], 0} \rightarrow O_{[F], 0}$,
s.th.anal. nbhd of $[F]$ in M is isom. to $\kappa^{-1}(0)$
\Longrightarrow if $O_{F}=0$ or κ submersion, M is nonsingular of dim $v d$

At every point $[F] \in M$, tangent space $T_{[F]}=E x t^{1}(F, F)_{0}$ obstruction space $O_{[F]}=E x t^{2}(F, F)_{0}$
Kuranishi: \exists analytic map $\kappa: T_{[F], 0} \rightarrow O_{[F], 0}$,
s.th.anal. nbhd of $[F]$ in M is isom. to $\kappa^{-1}(0)$
\Longrightarrow if $O_{F}=0$ or κ submersion, M is nonsingular of dim $v d$

Perfect obstruction theory:

Complex $E_{\mathbf{e}}=\left[E_{0} \rightarrow E_{1}\right]$ of vb on M, s.th. $\forall_{[F] \in M}$:
$T_{[F]} \simeq \operatorname{ker}\left(E_{0}([F]) \rightarrow E_{1}([F])\right), O_{F} \simeq \operatorname{coker}\left(E_{0}([F]) \rightarrow E_{1}([F])\right)$
i.e E. captures all tangents and obstructions via vector bundles

At every point $[F] \in M$, tangent space $T_{[F]}=E x t^{1}(F, F)_{0}$ obstruction space $O_{[F]}=E x t^{2}(F, F)_{0}$
Kuranishi: \exists analytic map $\kappa: T_{[F], 0} \rightarrow O_{[F], 0}$,
s.th.anal. nbhd of $[F]$ in M is isom. to $\kappa^{-1}(0)$
\Longrightarrow if $O_{F}=0$ or κ submersion, M is nonsingular of dim $v d$

Perfect obstruction theory:

Complex $E_{\mathbf{*}}=\left[E_{0} \rightarrow E_{1}\right]$ of vb on M, s.th. $\forall_{[F] \in M}$:
$T_{[F]} \simeq \operatorname{ker}\left(E_{0}([F]) \rightarrow E_{1}([F])\right), O_{F} \simeq \operatorname{coker}\left(E_{0}([F]) \rightarrow E_{1}([F])\right)$
i.e E. captures all tangents and obstructions via vector bundles

Then define: $T_{M}^{\text {vir }}:=\left[E_{0}\right]-\left[E_{1}\right] \in K^{0}(M)$, $\mathrm{vd}:=\mathrm{rk} T_{M}^{\mathrm{vir}}=\operatorname{rk}\left(E_{0}\right)-\mathrm{rk}\left(E_{1}\right)$
virtual fundamental class $[M]^{\text {vir }} \in H_{2 v d}(M, \mathbb{Z})$
virtual structure sheaf $\mathcal{O}_{M}^{\text {vir }} \in K_{0}(M)$ (these last two are difficult)

Definition

Virtual Euler number:

$$
e^{\mathrm{vir}}(M):=\int_{[M]_{\mathrm{vir}}} c_{\mathrm{vd}}\left(T^{\mathrm{vir}}(M)\right)
$$

Definition

Virtual Euler number:

$$
e^{\mathrm{vir}}(M):=\int_{[M]_{\mathrm{vir}}} c_{\mathrm{vd}}\left(T^{\mathrm{vir}}(M)\right)
$$

Conjecture

The Vafa-Witten formula holds with $e\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)$ replaced by $e^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)$.

holomorphic Euler characteristic:

$$
\chi(X, V):=\sum_{i \geq 0}(-1)^{i} \operatorname{dim} H^{i}(X, V), \quad V \in K^{0}(X)
$$

χ_{-y}-genus:

$$
\chi-y(X)=\sum_{p, q}(-1)^{p+q} y^{p} h^{p, q}(X)=\sum_{p}(-y)^{p} \chi\left(X, \Omega_{X}^{p}\right)
$$

alternating sum of Hodge numbers

holomorphic Euler characteristic:

$$
\chi(X, V):=\sum_{i \geq 0}(-1)^{i} \operatorname{dim} H^{i}(X, V), \quad V \in K^{0}(X)
$$

χ - - -genus:

$$
\chi-y(X)=\sum_{p, q}(-1)^{p+q} y^{p} h^{p, q}(X)=\sum_{p}(-y)^{p} \chi\left(X, \Omega_{X}^{p}\right)
$$

alternating sum of Hodge numbers

$\chi^{\text {vir }}(M, V):=\chi\left(M, \mathcal{O}_{M}^{\text {vir }} \otimes V\right)$. Let $\Omega_{M}^{\text {vir }}:=\left(T_{M}^{\text {vir }}\right)^{\vee}$.

$$
\chi_{-y}^{\mathrm{vir}}(M):=y^{-\mathrm{vd} / 2} \sum_{p}(-y)^{p} \chi^{\mathrm{vir}}\left(M, \Lambda^{p} \Omega_{M}^{\mathrm{vir}}\right)
$$

$\chi_{-1}^{\mathrm{vir}}(M)=e^{\mathrm{vir}}(M)$, so this is refinement of virtual Euler number

$$
\psi_{s}(x):=8\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{s}\right)}\left(\frac{2 \prod_{n>0}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}}\right)^{k_{s}^{2}}
$$

$$
\psi_{S}(x):=8\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{s}\right)}\left(\frac{2 \prod_{n>0}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}}\right)^{k_{s}^{2}}
$$

Conjecture

$$
e^{\operatorname{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{\prime \prime}}\left[\psi_{S}(x)\right] .
$$

Refinement to χy-genus

$$
\psi_{s}(x):=8\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{s}\right)}\left(\frac{2 \prod_{n \gg}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}}\right)^{\kappa_{s}^{2}}
$$

Conjecture

$$
e^{\operatorname{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{\prime \prime}}\left[\psi_{S}(x)\right] .
$$

Conjecture for virtual χ_{-y}-genus:

$$
\begin{aligned}
\psi_{S}(x, y):= & 8\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{10}\left(1-x^{2 n} y\right)\left(1-x^{2 n} / y\right)}\right)^{\chi\left(\mathcal{O}_{s}\right)} \\
& \cdot\left(\frac{2 \prod_{n>0}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}} y^{n / 2}}\right)^{K_{s}^{2}}
\end{aligned}
$$

Conjecture

$\chi_{-y}^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{\text {vid }}}\left[\psi_{S}(x, y)\right]$.
Specializes to our version of VW conjecture for $y=1$

Have conjectural generating function for virtual Elliptic genus of $M_{S}^{H}\left(c_{1}, c_{2}\right)$ in terms of Siegel modular forms It gives generalization of the DMVV formula (Dijkgraaf-Moore-Verlinde-Verlinde '97), (Borisov-Libgober '00) for Hilbert schemes of points.
A bit too complicated to state here.

Final generalization: the cobordism class:
Two complex manifolds M, N have the same cobordism class
$\{M\}=\{N\}$
if they have the same Chern numbers:

$$
\int_{[M]} c_{i_{1}}(M) \cdots c_{i_{k}}(M)=\int_{[N]} c_{i_{1}}(N) \cdots c_{i_{k}}(N) \quad \forall k, i_{1}, \ldots, i_{k}
$$

Final generalization: the cobordism class:
Two complex manifolds M, N have the same cobordism class $\{M\}=\{N\}$
if they have the same Chern numbers:

$$
\int_{[M]} c_{i_{1}}(M) \cdots c_{i_{k}}(M)=\int_{[M]} c_{i_{1}}(N) \cdots c_{i_{k}}(N) \quad \forall{ }_{k, i_{1}, \ldots, i_{k}}
$$

Cobordism classes of complex manifolds generate a ring
$R=\sum_{n} R_{n}$ (graded by dimension)
$\{M\}\{N\}=\{M \times N\}, \quad\{M\}+\{N\}=\{M \sqcup N\}$
In fact

$$
R \otimes \mathbb{Q}=\mathbb{Q}\left[\left\{\mathbb{P}^{1}\right\},\left\{\mathbb{P}^{2}\right\},\left\{\mathbb{P}^{3}\right\}, \ldots\right]
$$

Ellingsrud-G-Lehn showed $\left\{S^{[n]}\right\}$ depends only on $\{S\}$ (equivalent: Chern numbers of $S^{[n]}$ depend only on $K_{S}^{2}, c_{2}(S)$)

Ellingsrud-G-Lehn showed $\left\{S^{[n]}\right\}$ depends only on $\{S\}$ (equivalent: Chern numbers of $S^{[n]}$ depend only on $K_{S}^{2}, c_{2}(S)$) For $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ let $\{M\}^{\text {vir }}$ be the virtual cobordism class given by the

$$
\int_{[M]^{\mathrm{vir}}} c_{i_{1}}\left(T_{M}^{\mathrm{vir}}\right) \cdots c_{i_{k}}\left(T_{M}^{\mathrm{vir}}\right) .
$$

Ellingsrud-G-Lehn showed $\left\{S^{[n]}\right\}$ depends only on $\{S\}$ (equivalent: Chern numbers of $S^{[n]}$ depend only on $K_{S}^{2}, c_{2}(S)$) For $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ let $\{M\}^{\text {vir }}$ be the virtual cobordism class given by the

$$
\int_{[M]^{\mathrm{vir}}} c_{i_{1}}\left(T_{M}^{\mathrm{vir}}\right) \cdots c_{i_{k}}\left(T_{M}^{\mathrm{vir}}\right) .
$$

Conjecture

There is a power series $P(x)=1+\sum_{n>0} P_{n} x^{n}$, with $P_{n} \in R_{n}$, s.th.

$$
\left\{M_{S}^{H}\left(c_{1}, c_{2}\right)\right\}^{\text {vir }}=\operatorname{Coeff}_{x^{\mathrm{xd}}}\left[8\left(\frac{1}{4} \sum_{n \geq 0}\left\{K 3^{[n]}\right\} x^{2 n}\right)^{\chi\left(\mathcal{O}_{s}\right) / 2}(2 P(x))^{K_{s}^{2}}\right] .
$$

Seiberg-Witten invariants:

invariants of differentiable 4-manifolds
S projective algebraic surface $H^{2}(S, \mathbb{Z}) \ni a \mapsto S W(a) \in \mathbb{Z}$, a is called SW class if $S W(a) \neq 0$.

Seiberg-Witten invariants:

invariants of differentiable 4-manifolds
S projective algebraic surface $H^{2}(S, \mathbb{Z}) \ni a \mapsto S W(a) \in \mathbb{Z}$, a is called SW class if $S W(a) \neq 0$.

In general for alg. surfaces they are easy to compute, e.g. if $b_{1}(S)=0, p_{g}(S)>0$ and $\left|K_{S}\right|$ contains smooth connected curve, then SW cl. of S are $0, K_{S}$ with

$$
S W(0)=1, \quad S W\left(K_{S}\right)=(-1)^{\chi\left(\mathcal{O}_{S}\right)}
$$

Seiberg-Witten invariants:

invariants of differentiable 4-manifolds
S projective algebraic surface $H^{2}(S, \mathbb{Z}) \ni a \mapsto S W(a) \in \mathbb{Z}$, a is called SW class if $S W(a) \neq 0$.

In general for alg. surfaces they are easy to compute, e.g. if $b_{1}(S)=0, p_{g}(S)>0$ and $\left|K_{S}\right|$ contains smooth connected curve, then SW cl. of S are $0, K_{S}$ with

$$
S W(0)=1, \quad S W\left(K_{S}\right)=(-1)^{\chi\left(\mathcal{O}_{S}\right)}
$$

This is the reason for our assumption that $\left|K_{S}\right|$ contains smooth connected curve, otherwise our results look more complicated.

General form of conjecture

We restrict attention to the virtual Euler number S projective surface with $b_{1}(S)=0, p_{g}(S)>0$.

Conjecture

$$
\begin{aligned}
& e^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{v d}}\left[4\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{s}\right)}\right. \\
& \left.\left(\frac{2 \prod_{n>0}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}}\right)^{K_{S}^{2}} \sum_{a \in H^{2}(S, \mathbb{Z})} S W(a)(-1)^{c_{1} a}\left(\frac{\sum_{n \in \mathbb{Z}} x^{n^{2}}}{\sum_{n \in \mathbb{Z}}(-1)^{n} x^{n^{2}}}\right)^{a K_{S}}\right]
\end{aligned}
$$

General form of conjecture

We restrict attention to the virtual Euler number
S projective surface with $b_{1}(S)=0, p_{g}(S)>0$.

Conjecture

$$
\begin{aligned}
& e^{\mathrm{vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{v d}}\left[4\left(\frac{1}{2 \prod_{n>0}\left(1-x^{2 n}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{s}\right)}\right. \\
& \left.\left(\frac{2 \prod_{n>0}\left(1-x^{4 n}\right)^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}}\right)^{K_{s}^{2}} \sum_{a \in H^{2}(S, \mathbb{Z})} S W(a)(-1)^{c_{1} a}\left(\frac{\sum_{n \in \mathbb{Z}} x^{n^{2}}}{\sum_{n \in \mathbb{Z}}(-1)^{n} x^{n^{2}}}\right)^{a K_{s}}\right],
\end{aligned}
$$

Examples:
(1) K3 surfaces: Let S be a K3 surface,
$M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ is nonsingular of dim $v d$ and $e(M)=e\left(S^{[v d / 2]}\right)$
(Yoshioka)

$$
\Longrightarrow e(M)=\operatorname{Coeff}_{x^{v d}}\left[\frac{1}{\prod_{n>0}\left(1-x^{2 n}\right)^{24}}\right]
$$

Follows from our formula because $K_{S}^{2}=0$, and $S W(0)=1$ is only SW invariant.
(2) Elliptic surfaces: (Yoshioka) S ellipic surface $\chi\left(O_{S}\right)=d, F$ fibre $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ is nonsingular of dim $v d$

$$
e(M)= \begin{cases}\operatorname{Coeff}_{x^{v d}}\left[\frac{1}{\prod_{n>0}\left(1-x^{2 n}\right)^{12 d}}\right] & c_{1} F \equiv 1 \quad \bmod 2 \\ 0 & c_{1} F \equiv 0 \quad \bmod 2\end{cases}
$$

Follows from our formula because $K_{S}^{2}=0$ and SW invariants are $S W(k F)=(-1)^{k}\binom{d-2}{k}, k=0, \ldots, d-2$
(2) Elliptic surfaces: (Yoshioka) S ellipic surface $\chi\left(O_{S}\right)=d, F$ fibre $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ is nonsingular of dim $v d$

$$
e(M)= \begin{cases}\operatorname{Coeff}_{x^{v d}}\left[\frac{1}{\prod_{n>0}\left(1-x^{2 n}\right)^{12 d}}\right] & c_{1} F \equiv 1 \quad \bmod 2 \\ 0 & c_{1} F \equiv 0 \quad \bmod 2\end{cases}
$$

Follows from our formula because $K_{S}^{2}=0$ and SW invariants are $S W(k F)=(-1)^{k}\binom{d-2}{k}, k=0, \ldots, d-2$
(3) Blowup formula:(Li-Qin) Let \widehat{S} the blowup of surface S.
$c_{1} \in H^{2}(S), E$ exceptional divisor. Then

$$
\sum_{c_{2}} e\left(M_{\tilde{s}}^{H}\left(c_{1}+a E, c_{2}\right)\right) x^{v d}=\frac{\sum_{n \in \mathbb{Z}} x^{(2 n+a)^{2}}}{\prod_{n>0}\left(1-x^{4 n}\right)^{2}} \sum_{c_{2}} e\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right) x^{v d}
$$

We predict the same formula with e replaced by $e^{\text {vir }}$ on both sides, because $K_{S}^{2}=K_{S}^{2}-1$ and $S W$ invariants are $S W_{\hat{S}}(a)=S W_{\widehat{S}}(a+E)=S W_{S}(a)$ for all $S W$ classes a on S
(4) Quintic in \mathbb{P}^{3} : Let S be a nonsingular quintic in \mathbb{P}^{3}, H the hyperplane section. We show

$$
\begin{aligned}
& \sum_{c_{2}} e^{\mathrm{vir}}\left(M_{S}^{H}\left(H, c_{2}\right) x^{v d}=8+52720 x^{4}+48754480 x^{8}\right. \\
& \quad+17856390560 x^{12}+3626761297400 x^{16} \ldots+O\left(x^{28}\right)
\end{aligned}
$$

conferming the conjecture

Main tool: Mochizuki's formula:

Compute intersection numbers on $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ in terms of intersection numbers on Hilbert scheme of points.

Main tool: Mochizuki's formula:

Compute intersection numbers on $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ in terms of intersection numbers on Hilbert scheme of points.
On $S \times M$ have \mathcal{E} universal sheaf
i.e. if $[E] \in M$ corresponds to a sheaf E on S then $\left.\mathcal{E}\right|_{S \times[E]}=E$.

For $\alpha \in H^{k}(S)$, put

$$
\tau_{i}(\alpha):=\pi_{M_{*}}\left(c_{i}(\mathcal{E}) \pi_{S}^{*}(\alpha)\right) \in H^{2 i-4+k}(M)
$$

Main tool: Mochizuki's formula:

Compute intersection numbers on $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ in terms of intersection numbers on Hilbert scheme of points.
On $S \times M$ have \mathcal{E} universal sheaf
i.e. if $[E] \in M$ corresponds to a sheaf E on S then $\left.\mathcal{E}\right|_{S \times[E]}=E$.

For $\alpha \in H^{k}(S)$, put

$$
\tau_{i}(\alpha):=\pi_{M_{*}}\left(c_{i}(\mathcal{E}) \pi_{S}^{*}(\alpha)\right) \in H^{2 i-4+k}(M)
$$

Let $P(\mathcal{E})$ be any polynomial in the $\tau_{i}(\alpha)$
Mochizuki's formula expresses $\int_{[M]]^{\text {ir }}} P(\mathcal{E})$ in terms of intersec.
numbers on $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, and Seiberg-Witten invariants.
$e^{\mathrm{vir}}(M), \chi_{-y}^{\mathrm{vir}}(M) E / /^{\mathrm{vir}}(M)$ and $\{M\}^{\mathrm{vir}}$ can all be expressed as $\int_{[M]^{\text {vir }}} P(\mathcal{E})$, for suitable polyn. P, so can reduce computation to Hilbert schemes.
$e^{\mathrm{vir}}(M), \chi_{-y}^{\mathrm{vir}}(M) E /{ }^{\mathrm{ir}}(M)$ and $\{M\}^{\mathrm{vir}}$ can all be expressed as $\int_{[M]_{\text {vir }}} P(\mathcal{E})$, for suitable polyn. P, so can reduce computation to Hilbert schemes.

For $\chi_{-y}^{\text {vir }}(M) E / V^{\text {ir }}(M)$ use virtual Riemann-Roch formula

Theorem (Fantechi-G.)

For $V \in K^{0}(M)$ have

$$
\chi^{\mathrm{vir}}(M, V)=\int_{[M]_{\mathrm{vir}}} \operatorname{ch}(V) \operatorname{td}\left(T_{M}^{\mathrm{vir}}\right) .
$$

$$
S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}=\left\{\text { pairs }\left(Z_{1}, Z_{2}\right) \text { of subsch. of deg. }\left(n_{1}, n_{2}\right) \text { on } S\right\}
$$

Work on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, projection p to $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$

$$
S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}=\left\{\text { pairs }\left(Z_{1}, Z_{2}\right) \text { of subsch. of deg. }\left(n_{1}, n_{2}\right) \text { on } S\right\}
$$

Work on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, projection p to $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$
Two universal sheaves: Let $a_{1}, a_{2} \in \operatorname{Pic}(S)$
(1) $\mathcal{I}_{i}(a)$ sheaf on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$ with $\left.\mathcal{I}_{i}\left(a_{i}\right)\right|_{S \times\left(z_{1}, Z_{2}\right)}=I_{z_{i}} \otimes a_{9}$
(2) $\mathcal{O}_{i}\left(a_{i}\right)$, vector bundle of rank n_{i} on $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, with fibre $\mathcal{O}_{i}\left(a_{i}\right)\left(Z_{1}, Z_{2}\right)=H^{0}\left(\mathcal{O}_{z_{i}} \otimes a_{i}\right)$

$$
S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}=\left\{\text { pairs }\left(Z_{1}, Z_{2}\right) \text { of subsch. of deg. }\left(n_{1}, n_{2}\right) \text { on } S\right\}
$$

Work on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, projection p to $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$
Two universal sheaves: Let $a_{1}, a_{2} \in \operatorname{Pic}(S)$
(1) $\mathcal{I}_{i}(a)$ sheaf on $S \times S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$ with $\left.\mathcal{I}_{i}\left(a_{i}\right)\right|_{S \times\left(Z_{1}, Z_{2}\right)}=I_{z_{i}} \otimes a_{9}$
(2) $\mathcal{O}_{i}\left(a_{i}\right)$, vector bundle of rank n_{i} on $S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}$, with fibre $\mathcal{O}_{i}\left(a_{i}\right)\left(Z_{1}, Z_{2}\right)=H^{0}\left(\mathcal{O}_{z_{i}} \otimes a_{i}\right)$
Remember, we want to compute $\int_{[M]_{\text {lir }}} P(\mathcal{E})$
There is a (Laurent) polynomial $\Psi_{P}\left(a_{1}, a_{2}, n_{1}, n_{2}, s\right)$ associated to P in a variable s, the
$\bar{\tau}_{i}(\alpha):=p_{*}\left(c_{i}\left(\mathcal{I}_{1}\left(a_{1}\right) \oplus \mathcal{I}_{2}\left(a_{2}\right)\right) \pi_{S}^{*}(\alpha)\right) \in H^{2 i-4+k}\left(S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}\right), \quad \alpha \in H^{k}(S)$
and the Chern classes of $\mathcal{O}_{1}\left(a_{1}\right), \mathcal{O}_{2}\left(a_{2}\right)$, s.th following holds: Put
$A_{P}\left(a_{1}, a_{2}, c_{2}, s\right)=\sum_{n_{1}+n_{2}=c_{2}-a_{1} a_{2}} \int_{S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}} \Psi_{P}\left(a_{1}, a_{2}, n_{1}, n_{2}, s\right) \in \mathbb{Q}\left[s, s^{-1}\right]$

$$
A_{P}\left(a_{1}, a_{2}, c_{2}, s\right)=\sum_{n_{1}+n_{2}=c_{2}-a_{1} a_{2}} \int_{S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}} \Psi_{P}\left(a_{1}, a_{2}, n_{1}, n_{2}, s\right)
$$

Theorem (Mochizuki)

Assume $\chi(E)>0$ for $E \in M_{H}^{S}\left(c_{1}, c_{2}\right)$. Then

$$
\int_{\left[M_{s}^{H}\left(c_{1}, c_{2}\right)^{\text {lir }}\right.} P(\mathcal{E})=\sum_{\substack{c_{1}=a_{1}+a_{2} \\ a_{1} H \in a_{2} H}} S W\left(a_{1}\right) \operatorname{Coeff}_{s^{0}} A_{P}\left(a_{1}, a_{2}, c_{2}, s\right)
$$

i.e. we replace a simple formula on a space where we cannot compute anything by a terrible formula on simpler space

Take now for $P(\mathcal{E})=c_{\mathrm{vd}}\left(T_{M}^{\text {vir }}\right)$ (works the same for the others)
Put

$$
Z_{S}\left(a_{1}, a_{2}, s, q\right)=\sum_{n_{1}, n_{2} \geq 0} \int_{S^{\left[n_{1}\right]} \times S^{\left[n_{2}\right]}} A\left(a_{1}, a_{2}, a_{1} a_{2}+n_{1}+n_{2}, s\right) q^{n_{1}+n_{2}}
$$

Take now for $P(\mathcal{E})=c_{\mathrm{vd}}\left(T_{M}^{\mathrm{vir}}\right)$ (works the same for the others)
Put
$Z_{S}\left(a_{1}, a_{2}, s, q\right)=\sum_{n_{1}, n_{2} \geq 0} \int_{S^{\left[n_{1}\right]} \times S^{\left(n_{2}\right]}} A\left(a_{1}, a_{2}, a_{1} a_{2}+n_{1}+n_{2}, s\right) q^{n_{1}+n_{2}}$

Proposition

There exist univ. functions

$$
A_{1}(s, q), \ldots, A_{7}(s, q) \in \mathbb{Q}\left[s, s^{-1}\right][[q]]
$$

s.th. $\forall_{S, a_{1}, a_{2}}$
$Z_{S}\left(a_{1}, a_{2}, s, q\right)=F_{0}\left(a_{1}, a_{2}, s\right) A_{1}^{a_{1}^{2}} A_{2}^{a_{1} a_{2}} A_{3}^{a_{2}^{2}} A_{4}^{a_{1} K_{S}} A_{5}^{a_{2}} K_{s} A_{6}^{K_{S}^{2}} A_{7}^{\chi\left(\mathcal{O}_{S}\right)}$,
(where $F_{0}\left(a_{1}, a_{2}, s\right)$ is some explicit elementary function).

Proof: Modification of an argument of Elllingsrud-G-Lehn: "Intersection numbers of universal sheaves on $S^{[n]}$ are universal polynomials in intersection numbers on $S^{\prime \prime}$.

Proof: Modification of an argument of Ellingsrud-G-Lehn:
"Intersection numbers of universal sheaves on $S^{[n]}$ are universal polynomials in intersection numbers on $S^{\prime \prime}$.
Reason: Untersection numbers on $S^{[n]}$ computed inductively: $Z_{n}(S):=\left\{(x, Z) \in S \times S^{[n]} \mid x \in Z\right\}$ universal subscheme Blowup of $S \times S^{[n]}$ along $Z_{n}(S)$ is

$$
S^{[n, n+1]}:=\left\{(Z, W) \in S^{[n]} \times S^{[n+1]} \mid Z \in W\right\}
$$

This allows to compute intersection numbers of $S^{[n+1]}$ in terms of inters. numbers on S and $S^{[n]}$, and conclude by induction.

Proof: Modification of an argument of Ellingsrud-G-Lehn:
"Intersection numbers of universal sheaves on $S^{[n]}$ are universal polynomials in intersection numbers on $S^{\prime \prime}$.
Reason: Untersection numbers on $S^{[n]}$ computed inductively: $Z_{n}(S):=\left\{(x, Z) \in S \times S^{[n]} \mid x \in Z\right\}$ universal subscheme Blowup of $S \times S^{[n]}$ along $Z_{n}(S)$ is

$$
S^{[n, n+1]}:=\left\{(Z, W) \in S^{[n]} \times S^{[n+1]} \mid Z \in W\right\}
$$

This allows to compute intersection numbers of $S^{[n+1]}$ in terms of inters. numbers on S and $S^{[n]}$, and conclude by induction.
This gives:
$\operatorname{Coeff}_{q^{k} s} Z_{S}\left(a_{1}, a_{2}, s, q\right)=P_{k, /}\left(a_{1}^{2}, a_{1} a_{2}, a_{2}^{2}, a_{1} K_{S}, a_{1} K_{S}, K_{S}^{2}, \chi\left(O_{S}\right)\right)$
for some polynomial $P_{k, l}$ depending only on k, l.
For the multiplicativity use additional tricks.

Reduction to \mathbb{P}^{2} and $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

$A_{1}(s, q), \ldots A_{7}(s, q)$ are determined by value of $Z_{S}\left(a_{1}, a_{2}, s, q\right)$ for 7 triples $\left(S, a_{1}, a_{2}\right)$ (S surface, $\left.a_{1}, a_{2} \in \operatorname{Pic}(S)\right)$ s.th. corresponding 7-tuples $\left(a_{1}^{2}, a_{1} a_{2}, a_{2}^{2}, a_{1} K_{S}, a_{1} K_{S}, K_{S}^{2}, \chi\left(O_{S}\right)\right)$ are linearly independent

Reduction to \mathbb{P}^{2} and $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

$A_{1}(s, q), \ldots A_{7}(s, q)$ are determined by value of $Z_{S}\left(a_{1}, a_{2}, s, q\right)$ for 7 triples (S, a_{1}, a_{2}) (S surface, $a_{1}, a_{2} \in \operatorname{Pic}(S)$) s.th. corresponding 7 -tuples ($a_{1}^{2}, a_{1} a_{2}, a_{2}^{2}, a_{1} K_{S}, a_{1} K_{S}, K_{S}^{2}, \chi\left(O_{S}\right)$) are linearly independent
We take

$$
\begin{aligned}
& \left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}(1)\right), \\
& \left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}(1)\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,0), \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}(1,0)\right)
\end{aligned}
$$

$A_{1}(s, q), \ldots A_{7}(s, q)$ are determined by value of $Z_{S}\left(a_{1}, a_{2}, s, q\right)$ for 7 triples (S, a_{1}, a_{2}) (S surface, $a_{1}, a_{2} \in \operatorname{Pic}(S)$) s.th.
corresponding 7 -tuples ($\left.a_{1}^{2}, a_{1} a_{2}, a_{2}^{2}, a_{1} K_{S}, a_{1} K_{S}, K_{S}^{2}, \chi\left(O_{S}\right)\right)$ are linearly independent
We take

$$
\begin{aligned}
& \left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}, \mathcal{O}(1)\right), \\
& \left(\mathbb{P}^{2}, \mathcal{O}(1), \mathcal{O}(1)\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,0), \mathcal{O}\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}, \mathcal{O}(1,0)\right)
\end{aligned}
$$

In this case S is a smooth toric, i.e. have an action of
$T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints,
Action of T lifts to action on $S^{[n]}$ still with finitely many fixpoints described by partitions, compute by equivariant localization. This computes $Z_{S}\left(a_{1}, a_{2}, s, q\right)$ in terms of combinatorics of partitions.

Computation: Wrote a Pari/GP program

Computation: Wrote a Pari/GP program Result: Computed $A_{1}, \ldots A_{7}$

$\bmod q^{31}$ for $e^{\mathrm{vir}}(M)$
$\bmod q^{8}$ for $\chi_{-y}^{\mathrm{vir}}(M)$
$\bmod q^{7}$ for $E / /^{\mathrm{vir}}(M)$ and $\{M\}^{\text {vir }}$

Computation: Wrote a Pari/GP program
Result: Computed $A_{1}, \ldots A_{7}$

$$
\begin{aligned}
& \bmod q^{31} \text { for } e^{\operatorname{vir}}(M) \\
& \bmod q^{8} \text { for } \chi_{-y}^{\operatorname{vir}}(M) \\
& \bmod q^{7} \text { for } E / l^{\operatorname{vir}}(M) \text { and }\{M\}^{\operatorname{vir}}
\end{aligned}
$$

This confirms conjectures for K3 surfaces, their blowups, elliptic surfaces, double covers of \mathbb{P}^{2} and rational ruled surfaces, complete intersections, for $\operatorname{vd}(M)$ smaller than roughly $\frac{3}{2}$ times the power of q.

Let X be a smooth projective variety with action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints, p_{1}, \ldots, p_{e} Let E be equivariant vector bundle of rank r on X.

Let X be a smooth projective variety with action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints, p_{1}, \ldots, p_{e} Let E be equivariant vector bundle of rank r on X.
Fibre $E\left(p_{i}\right)$ of X at fixp. p_{i} has basis of eigenvect. for T-action $E\left(p_{i}\right)=\bigoplus_{k=1}^{r} \mathbb{C} v_{i}$, with action $\left(t_{1}, t_{2}\right) \cdot v_{i}=t_{1}^{n_{i}} t_{2}^{m_{i}} v_{i}, n_{i}, m_{i} \in \mathbb{Z}$

Let X be a smooth projective variety with action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints, p_{1}, \ldots, p_{e}
Let E be equivariant vector bundle of rank r on X.
Fibre $E\left(p_{i}\right)$ of X at fixp. p_{i} has basis of eigenvect. for T-action $E\left(p_{i}\right)=\bigoplus_{k=1}^{r} \mathbb{C} v_{i}$, with action $\left(t_{1}, t_{2}\right) \cdot v_{i}=t_{1}^{n_{i}} t_{2}^{m_{i}} v_{i}, n_{i}, m_{i} \in \mathbb{Z}$
Equivariant Chern class of fibre at fixpoint:

$$
c^{T}\left(E\left(p_{i}\right)\right)=\left(1+c_{1}^{T}\left(E\left(p_{i}\right)\right)+\ldots+c_{r}^{T}\left(E\left(p_{i}\right)\right)=\prod_{i=1}^{r}\left(1+n_{i} \epsilon_{1}+m_{i} \epsilon_{2}\right) \in \mathbb{Z}\left[\epsilon_{1}, \epsilon_{2}\right]\right.
$$

Let X be a smooth projective variety with action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints, p_{1}, \ldots, p_{e}
Let E be equivariant vector bundle of rank r on X.
Fibre $E\left(p_{i}\right)$ of X at fixp. p_{i} has basis of eigenvect. for T-action $E\left(p_{i}\right)=\bigoplus_{k=1}^{r} \mathbb{C} v_{i}$, with action $\left(t_{1}, t_{2}\right) \cdot v_{i}=t_{1}^{n_{i}} t_{2}^{m_{i}} v_{i}, n_{i}, m_{i} \in \mathbb{Z}$
Equivariant Chern class of fibre at fixpoint:

$$
c^{\top}\left(E\left(p_{i}\right)\right)=\left(1+c_{1}^{\top}\left(E\left(p_{i}\right)\right)+\ldots+c_{r}^{\top}\left(E\left(p_{i}\right)\right)=\prod_{1}\left(1+n_{i} \epsilon_{1}+m_{i} \epsilon_{2}\right) \in \mathbb{Z}\left[\epsilon_{1}, \epsilon_{2}\right]\right.
$$

Let $P(c(E))$)polynomial in Chern classes of E, of degree $d=\operatorname{dim}(X)$

Theorem (Bott residue formula)

$$
\int_{[X]} P(c(E))=\sum_{k=1}^{e} \frac{P\left(c^{T}\left(E\left(p_{k}\right)\right)\right)}{c_{\operatorname{dim}(X)}^{T}\left(T_{X}\left(p_{k}\right)\right)}
$$

(does not depend on $\epsilon_{1}, \epsilon_{2}$)

For simplicity $S=\mathbb{P}^{2} . T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on \mathbb{P}^{2} by

$$
\left(t_{1}, t_{2}\right) \cdot\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{0}: t_{1} X_{1}: t_{2} X_{2}\right)
$$

Fixpoints are $p_{0}=(1,0,0), p_{1}=(0,1,0), p_{2}=(0,0,1)$.

For simplicity $S=\mathbb{P}^{2} . T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on \mathbb{P}^{2} by

$$
\left(t_{1}, t_{2}\right) \cdot\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{0}: t_{1} X_{1}: t_{2} X_{2}\right)
$$

Fixpoints are $p_{0}=(1,0,0), p_{1}=(0,1,0), p_{2}=(0,0,1)$.
Local (equivariant) coordinates near p_{0} are $x=\frac{X_{1}}{X_{0}}, y=\frac{x_{2}}{X_{0}}$, T action $\left(t_{1}, t_{2}\right)(x, y)=\left(t_{1} x, t_{2} y\right)$, similar for the p_{1}, p_{2}

For simplicity $S=\mathbb{P}^{2} . T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on \mathbb{P}^{2} by

$$
\left(t_{1}, t_{2}\right) \cdot\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{0}: t_{1} X_{1}: t_{2} X_{2}\right)
$$

Fixpoints are $p_{0}=(1,0,0), p_{1}=(0,1,0), p_{2}=(0,0,1)$.
Local (equivariant) coordinates near p_{0} are $x=\frac{X_{1}}{X_{0}}, y=\frac{X_{2}}{X_{0}}$, T action $\left(t_{1}, t_{2}\right)(x, y)=\left(t_{1} x, t_{2} y\right)$, similar for the p_{1}, p_{2} $Z \in\left(\mathbb{P}^{2}\right)^{[n]}$ is T-invariant $\Longrightarrow Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2} \quad \operatorname{supp}\left(Z_{i}\right)=p_{i}$.
\Longrightarrow Reduce to case $\operatorname{supp}(Z)=p_{i}$, e.g. p_{0}

For simplicity $S=\mathbb{P}^{2} . T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on \mathbb{P}^{2} by

$$
\left(t_{1}, t_{2}\right) \cdot\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{0}: t_{1} X_{1}: t_{2} X_{2}\right)
$$

Fixpoints are $p_{0}=(1,0,0), p_{1}=(0,1,0), p_{2}=(0,0,1)$.
Local (equivariant) coordinates near p_{0} are $x=\frac{x_{1}}{X_{0}}, y=\frac{x_{2}}{X_{0}}$,
T action $\left(t_{1}, t_{2}\right)(x, y)=\left(t_{1} x, t_{2} y\right)$, similar for the p_{1}, p_{2}
$Z \in\left(\mathbb{P}^{2}\right)^{[n]}$ is T-invariant $\Longrightarrow Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2} \quad \operatorname{supp}\left(Z_{i}\right)=p_{i}$.
\Longrightarrow Reduce to case $\operatorname{supp}(Z)=p_{i}$, e.g. p_{0}
Easy: Z is T-invariant $\Longleftrightarrow I_{Z} \in k[x, y]$ is gen. by monomials Can write

$$
I_{z}=\left(y^{n_{0}}, x y^{n_{1}}, \ldots ., x^{r} y^{n_{r}}, x^{r+1}\right) \quad\left(n_{0}, \ldots, n_{r}\right) \text { partition of } n
$$

Fixpoints on $\left(\mathbb{P}^{2}\right)^{[n]}$ are in bijections with triples $\left(P_{0}, P_{1}, P_{2}\right)$ of partitions of 3 numbers adding up to n.

Need to compute things like $c\left(\mathcal{O}^{[n]}\right)$ $\mathcal{O}^{[n]}$ vector bundle on $\left(\mathbb{P}^{2}\right)^{[n]}$ with fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{z}\right)$

Equivariant localization

Need to compute things like $c\left(\mathcal{O}^{[n]}\right)$
$\mathcal{O}^{[n]}$ vector bundle on $\left(\mathbb{P}^{2}\right)^{[n]}$ with fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{Z}\right)$
If $Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2}, \operatorname{supp}\left(Z_{i}\right)=p_{i}$, then

$$
\begin{aligned}
\mathcal{O}^{[n]}(Z) & =\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right) \oplus \mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right) \oplus \mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right) \\
c^{T}\left(\mathcal{O}^{[n]}(Z)\right) & =c^{T}\left(\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right)\right)
\end{aligned}
$$

Equivariant localization

Need to compute things like $c\left(\mathcal{O}^{[n]}\right)$
$\mathcal{O}^{[n]}$ vector bundle on $\left(\mathbb{P}^{2}\right)^{[n]}$ with fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{Z}\right)$
If $Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2}, \operatorname{supp}\left(Z_{i}\right)=p_{i}$, then

$$
\begin{aligned}
\mathcal{O}^{[n]}(Z) & =\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right) \oplus \mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right) \oplus \mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right) \\
c^{T}\left(\mathcal{O}^{[n]}(Z)\right) & =c^{T}\left(\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right)\right)
\end{aligned}
$$

Let e.g. $Z=Z_{0}, I_{Z}=\left(y^{4}, x y^{2}, x^{2} y, x^{3}\right)$
Then the fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{z}\right)=\mathbb{C}[x, y] /\left(y^{4}, x y^{2}, x^{2} y, x^{3}\right)$
Thus basis of eigenvectors of fibre for T action is

Equivariant localization

Need to compute things like $c\left(\mathcal{O}^{[n]}\right)$
$\mathcal{O}^{[n]}$ vector bundle on $\left(\mathbb{P}^{2}\right)^{[n]}$ with fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{Z}\right)$
If $Z=Z_{0} \sqcup Z_{1} \sqcup Z_{2}, \operatorname{supp}\left(Z_{i}\right)=p_{i}$, then

$$
\begin{aligned}
\mathcal{O}^{[n]}(Z) & =\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right) \oplus \mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right) \oplus \mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right) \\
c^{T}\left(\mathcal{O}^{[n]}(Z)\right) & =c^{T}\left(\mathcal{O}^{\left[n_{0}\right]}\left(Z_{0}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{1}\right]}\left(Z_{1}\right)\right) c^{T}\left(\mathcal{O}^{\left[n_{2}\right]}\left(Z_{2}\right)\right)
\end{aligned}
$$

Let e.g. $Z=Z_{0}, I_{Z}=\left(y^{4}, x y^{2}, x^{2} y, x^{3}\right)$
Then the fibre $\mathcal{O}^{[n]}(Z)=H^{0}\left(\mathcal{O}_{z}\right)=\mathbb{C}[x, y] /\left(y^{4}, x y^{2}, x^{2} y, x^{3}\right)$
Thus basis of eigenvectors of fibre for T action is

Thus
$c^{T}\left(\mathcal{O}^{[n]}(Z)\right)=\left(1+\epsilon_{2}\right)\left(1+2 \epsilon_{2}\right)\left(1+3 \epsilon_{2}\right)\left(1+\epsilon_{1}\right)\left(1+\epsilon_{1}+\epsilon_{2}\right)\left(1+2 \epsilon_{1}\right)$.

Now: state version of the Vafa-Witten formula for moduli space $M_{S}^{H}\left(3, c_{1}, c_{2}\right)$ of rank 3 sheaves.
(There is a wrong physics prediction for all ranks ≥ 3) Have formulas both for $\chi_{-y}^{\mathrm{vir}}(M)$ and $e^{\mathrm{vir}}(M)$. For simplicity state only for $e^{\text {vir }}(M)$.
The formula again depends on the expected dimension

$$
\operatorname{vd}=\operatorname{vd}\left(M_{S}^{H}\left(3, c_{1}, c_{2}\right)=6 c_{2}-2 c_{1}^{2}-8 \chi\left(\mathcal{O}_{S}\right)\right.
$$

Again assume S algebraic surface with $b_{1}(S)=0$ and $p_{g}(S)>0$. For simplicity assume S contains an irreducible canonical curve (zero set of a holomorphic 2 form).

$$
\Theta_{A, 0}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} x^{2\left(n^{2}-n m+m^{2}\right)}, \quad \Theta_{A, 1}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} \epsilon^{n+m} x^{2\left(n^{2}-n m+m^{2}\right)}
$$

Theta functions for A_{2}-lattice, here $\epsilon=e^{2 \pi i / 3}$.

$$
\Theta_{A, 0}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} x^{2\left(n^{2}-n m+m^{2}\right)}, \quad \Theta_{A, 1}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} \epsilon^{n+m} x^{2\left(n^{2}-n m+m^{2}\right)}
$$

Theta functions for A_{2}-lattice, here $\epsilon=e^{2 \pi i / 3}$. Define modular function

$$
z(x):=\frac{\Theta_{A, 0}(x)}{\Theta_{A, 1}(x)}=1+9 x^{2}+27 x^{4}+81 x^{6}+O\left(x^{8}\right)
$$

Define $z_{1}(x), z_{2}(x)=z_{1}(-x)$ as the solutions of the equation $w^{2}-4 z(x)^{2} w+4 z(x)=0$.

$$
\Theta_{A, 0}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} x^{2\left(n^{2}-n m+m^{2}\right)}, \quad \Theta_{A, 1}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} \epsilon^{n+m} x^{2\left(n^{2}-n m+m^{2}\right)}
$$

Theta functions for A_{2}-lattice, here $\epsilon=e^{2 \pi i / 3}$. Define modular function

$$
z(x):=\frac{\Theta_{A, 0}(x)}{\Theta_{A, 1}(x)}=1+9 x^{2}+27 x^{4}+81 x^{6}+O\left(x^{8}\right)
$$

Define $z_{1}(x), z_{2}(x)=z_{1}(-x)$ as the solutions of the equation

$$
w^{2}-4 z(x)^{2} w+4 z(x)=0
$$

Recall $\bar{\eta}(x)=\prod_{n>0}\left(1-x^{n}\right)$, and define

$$
\begin{aligned}
\Psi_{S, c_{1}}(x)=9 & \left(\frac{1}{3 \bar{\eta}\left(x^{2}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{S}\right)}\left(\frac{3 \bar{\eta}\left(x^{6}\right)^{3}}{\Theta_{A, 1}(x)}\right)^{K_{S}^{2}} \\
& \cdot\left(z_{1}(x)^{K_{S}^{2}}+z_{2}(x)^{K_{S}^{2}}+(-1)^{\chi\left(\mathcal{O}_{S}\right)}\left(\epsilon^{c_{1} K_{S}}+\epsilon^{-c_{1} K_{S}}\right)\right)
\end{aligned}
$$

$$
\Theta_{A, 0}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} x^{2\left(n^{2}-n m+m^{2}\right)}, \quad \Theta_{A, 1}(x)=\sum_{(n, m) \in \mathbb{Z}^{2}} \epsilon^{n+m} x^{2\left(n^{2}-n m+m^{2}\right)}
$$

Theta functions for A_{2}-lattice, here $\epsilon=e^{2 \pi i / 3}$. Define modular function

$$
z(x):=\frac{\Theta_{A, 0}(x)}{\Theta_{A, 1}(x)}=1+9 x^{2}+27 x^{4}+81 x^{6}+O\left(x^{8}\right)
$$

Define $z_{1}(x), z_{2}(x)=z_{1}(-x)$ as the solutions of the equation

$$
w^{2}-4 z(x)^{2} w+4 z(x)=0
$$

Recall $\bar{\eta}(x)=\prod_{n>0}\left(1-x^{n}\right)$, and define

$$
\begin{aligned}
\Psi_{S, c_{1}}(x)=9 & \left(\frac{1}{3 \bar{\eta}\left(x^{2}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{S}\right)}\left(\frac{3 \bar{\eta}\left(x^{6}\right)^{3}}{\Theta_{A, 1}(x)}\right)^{K_{S}^{2}} \\
& \cdot\left(z_{1}(x)^{K_{S}^{2}}+z_{2}(x)^{K_{S}^{2}}+(-1)^{\chi\left(\mathcal{O}_{S}\right)}\left(\epsilon^{c_{1} K_{s}}+\epsilon^{-c_{1} K_{s}}\right)\right) .
\end{aligned}
$$

Conjecture

$$
e^{\operatorname{vir}}\left(M_{S}^{H}\left(3, c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{\mathrm{xd}}}\left[\Psi_{S, c_{1}}(x)\right] .
$$

S algebraic surface with $b_{1}=0, p_{g}>0$
$M_{S}^{H}\left(c_{1}, c_{2}\right)=H$-semi-stable rank 2 sheaves on S
E universal sheaf on $S \times M$. For $\alpha \in H_{2}(S)$, put

$$
\mu(\beta)=p_{M *}\left(c_{2}(E)-c_{1}^{2}(E) / 4\right) / \alpha \in H^{2}(M)
$$

S algebraic surface with $b_{1}=0, p_{g}>0$
$M_{S}^{H}\left(c_{1}, c_{2}\right)=H$-semi-stable rank 2 sheaves on S
E universal sheaf on $S \times M$. For $\alpha \in H_{2}(S)$, put

$$
\mu(\beta)=p_{M *}\left(c_{2}(E)-c_{1}^{2}(E) / 4\right) / \alpha \in H^{2}(M)
$$

Donaldson invariant:

$$
D_{S, c_{1}}\left(\frac{\alpha^{\mathrm{vd}}}{\mathrm{vd}!}\right)=\int_{\left[M_{S}^{H}\left(c_{1}, c_{2}\right)\right]^{\mathrm{vir}}} \frac{\mu(\alpha)^{\mathrm{vd}}}{\mathrm{vd}!}
$$

Unification of Witten and Vafa-Witten conjecture

S algebraic surface with $b_{1}=0, p_{g}>0$
$M_{S}^{H}\left(c_{1}, c_{2}\right)=H$-semi-stable rank 2 sheaves on S
E universal sheaf on $S \times M$. For $\alpha \in H_{2}(S)$, put

$$
\mu(\beta)=p_{M *}\left(c_{2}(E)-c_{1}^{2}(E) / 4\right) / \alpha \in H^{2}(M)
$$

Donaldson invariant:

$$
D_{S, c_{1}}\left(\frac{\alpha^{\mathrm{vd}}}{\mathrm{vd}!}\right)=\int_{\left[M_{S}^{H}\left(c_{1}, c_{2}\right)\right]^{\mathrm{vir}}} \frac{\mu(\alpha)^{\mathrm{vd}}}{\mathrm{vd}!}
$$

Theorem (Witten conj., G.-Nakajima, Yoshioka)

$$
\begin{aligned}
D_{S, c_{1}}\left(\frac{\alpha^{\mathrm{vd}}}{\mathrm{vd}!}\right)= & 2^{2+K_{S}^{2}-\chi\left(\mathcal{O}_{S}\right)} \operatorname{Coeff}_{z^{\mathrm{kd}}}\left[\exp \left(\frac{Q(\alpha)}{2} z^{2}\right)\right. \\
& \left.\cdot \sum_{a_{i} S W c l .} \operatorname{SW}\left(a_{i}\right)(-1)^{\left\langle c_{1}, a_{i}\right\rangle} \exp \left(\left\langle K_{S}-2 a_{i}, \alpha\right\rangle z\right)\right]
\end{aligned}
$$

Unification of Witten and Vafa-Witten conjecture

Interpolate between VW and Don. invariants
Eisenstein series:

$$
G_{2}(x):=\sum_{n>0}\left(\sum_{d \mid n} d\right) x^{n}, \quad D G_{2}(x):=\sum_{n>0}\left(\sum_{d \mid n} n d\right) x^{n}
$$

Conjecture

$$
\begin{array}{r}
\int_{\left[M_{S}^{H}\left(c_{1}, c_{2}\right)\right]^{\mathrm{vir}}} c_{\mathrm{vd}-n}\left(T_{M_{S}^{H}\left(c_{1}, n\right)}^{\mathrm{vir}}\right) \frac{\mu(\alpha)^{n}}{n!}=\operatorname{Coeff}_{x^{\mathrm{dd}} z^{n}}\left[8\left(\frac{1}{2 \bar{\eta}\left(x^{2}\right)^{12}}\right)^{\chi\left(\mathcal{O}_{S}\right)}\right. \\
\left.\left(\frac{2 \bar{\eta}\left(x^{4}\right)^{2}}{\theta_{3}(x)}\right)^{K_{S}^{2}} \exp \left(\frac{1}{2} D G_{2}\left(x^{2}\right) Q(\alpha) z^{2}-2 G_{2}\left(x^{2}\right)\left\langle K_{S}, \alpha\right\rangle z\right)\right) \\
\left.\cdot \sum_{a_{i} S W C l .} S W\left(a_{i}\right)(-1)^{\left\langle c_{1}, a_{i}\right\rangle}\left(\frac{\theta_{3}(x)}{\theta_{3}(-x)}\right)^{\left\langle K_{S}, a_{i}\right\rangle} e^{\left(\frac{1}{2}\left(G_{2}(x)-G_{2}(-x)\right)\left\langle K_{S}-2 a_{i}, \alpha\right\rangle z\right)}\right]
\end{array}
$$

$z \rightarrow 0$: Vafa-Witten invariants, $x \rightarrow 0, x z \rightarrow 1$: Donaldson invariants

Elliptic genus: (Introduced by Witten, motivated by physics). The elliptic genus is a refinement of the χ_{-y}-genus.
It associates to a smooth projective variety a Jacobi form (something like a modular form in two variables e.g. $\theta_{3}(x, y)$)

Elliptic genus: (Introduced by Witten, motivated by physics).
The elliptic genus is a refinement of the χ_{-y}-genus.
It associates to a smooth projective variety a Jacobi form (something like a modular form in two variables e.g. $\theta_{3}(x, y)$)
For vector bundle E put

$$
\begin{gathered}
E I_{q, y}(E)=y^{-\mathrm{rk}(E) / 2} \bigotimes_{n \geq 1}\left(\Lambda_{-y q^{n-1}} E^{\vee} \otimes \Lambda_{-y q^{n}} E \otimes S_{q^{n}} E^{\vee} \otimes S_{q^{n}} E\right) \\
\Lambda_{t}(E)=\bigoplus_{n \geq 0} t^{n} \Lambda^{n} E, \quad S_{t}(E)=\bigoplus_{n \geq 0} t^{n} S^{n} E
\end{gathered}
$$

Elliptic genus: (Introduced by Witten, motivated by physics).
The elliptic genus is a refinement of the χ_{-y}-genus.
It associates to a smooth projective variety a Jacobi form (something like a modular form in two variables e.g. $\theta_{3}(x, y)$)
For vector bundle E put

$$
\begin{gathered}
E \|_{q, y}(E)=y^{-r k(E) / 2} \bigotimes_{n \geq 1}\left(\Lambda_{-y q^{n-1}} E^{\vee} \otimes \Lambda_{-y q^{n}} E \otimes S_{q^{n}} E^{\vee} \otimes S_{q^{n}} E\right), \\
\Lambda_{t}(E)=\bigoplus_{n \geq 0} t^{n} \Lambda^{n} E, \quad S_{t}(E)=\bigoplus_{n \geq 0} t^{n} S^{n} E .
\end{gathered}
$$

$E \|(X):=\chi\left(X, E \|_{q, y}\left(T_{X}\right)\right)$ elliptic genus.
$E / l^{\mathrm{vir}}(M):=\chi^{\mathrm{vir}}\left(M, E l_{q, y}\left(T_{M}^{\mathrm{vir}}\right)\right)$ virtual elliptic genus.
for $q=0 E / l^{\mathrm{vir}}(M)$ specializes to $\chi_{-y}^{\mathrm{vir}}(M)$.

DMVV formula (conj. Dijkgraaf-Moore-Verlinde-Verlinde '97), (proof: Borisov-Libgober '00)
Put

$$
L\left(\sum_{m, l} c_{m, l} y^{\prime} q^{m}\right):=\prod_{n>0} \prod_{m, l}\left(1-x^{n} y^{\prime} q^{m}\right)^{c_{n m, l}}
$$

Borcherds type lift, Jacobi form \mapsto Siegel modular form

DMVV formula (conj. Dijkgraaf-Moore-Verlinde-Verlinde '97), (proof: Borisov-Libgober '00)
Put

$$
L\left(\sum_{m, l} c_{m, l} y^{\prime} q^{m}\right):=\prod_{n>0} \prod_{m, l}\left(1-x^{n} y^{\prime} q^{m}\right)^{c_{n m, l}}
$$

Borcherds type lift, Jacobi form \mapsto Siegel modular form Then

$$
\sum_{n \geq 0} E \|\left(S^{[n]}\right) x^{n}=\frac{1}{L(E \|(S))}=\quad\left(\frac{1}{L\left(24 \phi_{2}\right)} \text { for } S=K 3\right) .
$$

Elliptic genus

$$
\begin{aligned}
& G_{1,0}(q, y)=-\frac{1}{2} \frac{y+1}{y-1}+\sum_{n>0} \sum_{d \mid n}\left(y^{d}-y^{-d}\right) q^{n}, \quad G_{2}(q)=-\frac{1}{24}+\sum_{n>0} \sum_{d \mid n} d q^{n} \\
& G_{2,0}(q, y)=y \frac{\partial G_{1,0}(q, y)}{\partial y}-2 G_{2}(q)=\wp(q, y), \quad G_{3,0}(q, y)=y \frac{\partial \wp(q, y)}{\partial y} \\
& \phi_{i}(q, y):=G_{i, 0}(q, y)\left(\left(y^{1 / 2}-y^{-1 / 2}\right) \prod_{n>0} \frac{\left(1-q^{n} y\right)\left(1-q^{n} / y\right)}{\left(1-q^{n}\right)^{2}}\right)^{i} \\
& L\left(\sum_{m, l} c_{m, l} y^{\prime} q^{m}\right):=\prod_{n>0} \prod_{m, l}\left(1-x^{n} y^{\prime} q^{m}\right)^{c_{n m, l}, \quad L_{n}(\phi)=\left.L(\phi)\right|_{x=x^{n}}}
\end{aligned}
$$

Elliptic genus

$$
\begin{aligned}
& G_{1,0}(q, y)=-\frac{1}{2} \frac{y+1}{y-1}+\sum_{n>0} \sum_{d \mid n}\left(y^{d}-y^{-d}\right) q^{n}, \quad G_{2}(q)=-\frac{1}{24}+\sum_{n>0} \sum_{d \mid n} d q^{n} \\
& G_{2,0}(q, y)=y \frac{\partial G_{1,0}(q, y)}{\partial y}-2 G_{2}(q)=\wp(q, y), \quad G_{3,0}(q, y)=y \frac{\partial \wp(q, y)}{\partial y} \\
& \phi_{i}(q, y):=G_{i, 0}(q, y)\left(\left(y^{1 / 2}-y^{-1 / 2}\right) \prod_{n>0} \frac{\left(1-q^{n} y\right)\left(1-q^{n} / y\right)}{\left(1-q^{n}\right)^{2}}\right)^{i} \\
& \quad L\left(\sum_{m, l} c_{m, l} y^{\prime} q^{m}\right):=\prod_{n>0} \prod_{m, l}\left(1-x^{n} y^{\prime} q^{m}\right)^{c_{m m, l}, \quad L_{n}(\phi)=\left.L(\phi)\right|_{x=x^{n}}}
\end{aligned}
$$

Conjecture

$E / /^{\mathrm{Vir}}\left(M_{S}^{H}\left(c_{1}, c_{2}\right)\right)=\operatorname{Coeff}_{x^{\prime d}}\left[8\left(\frac{1}{2} \frac{1}{L_{2}\left(12 \phi_{2}\right)}\right)^{\chi\left(\mathcal{O}_{s}\right)}\right.$

$$
\left.\cdot\left(\frac{2 L_{4}\left(\phi_{1} \phi_{3}\right) L\left(-2 \phi_{1}\right)}{L_{2}\left(-2 \phi_{1}^{\mathrm{ev}}\left(q^{1 / 2}, y\right)-\phi_{1}\left(q^{2}, y^{2}\right)+2 \phi_{1}^{2}\right)}\right)^{\kappa_{\S}^{2}}\right] .
$$

