| Introduction<br>0000000 | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |  |
|-------------------------|------------------------------------------|------------------|----------------------|-----------------|--|
|                         |                                          |                  |                      |                 |  |
|                         |                                          |                  |                      |                 |  |
|                         |                                          |                  |                      |                 |  |
|                         |                                          |                  |                      |                 |  |
|                         |                                          |                  |                      |                 |  |
|                         | Vata-Witten formula and generalizations  |                  |                      |                 |  |

Lothar Göttsche, joint work with Martijn Kool

Calabi-Yau and geometry

Rome, 29 May - 1 June 2019

| Introduction<br>●○○○○○ | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|------------------------|------------------------------------------|------------------|----------------------|-----------------|
| Topological invaria    | ate of moduli epacos                     |                  |                      |                 |

## Aim: study topological invariants of moduli spaces in algebraic geometry

We work over  $\mathbb{C}.$ 

## Moduli spaces:

A moduli space M is an algebraic variety, which parametrizes in a natural way interesting objects in algebraic geometry.

| Introduction                            | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |  |
|-----------------------------------------|------------------------------------------|----------|----------------------|-----------------|--|
| 000000                                  |                                          |          |                      |                 |  |
| Topological invariants of moduli spaces |                                          |          |                      |                 |  |

# Aim: study topological invariants of moduli spaces in algebraic geometry

We work over  $\mathbb{C}$ .

## Moduli spaces:

A moduli space M is an algebraic variety, which parametrizes in a natural way interesting objects in algebraic geometry. Examples are:

 Hilbert schemes of points S<sup>[n]</sup> on an algebraic surface: {zero dimensional subschemes of degree n on S} (i.e. generically sets of n points on S).

| Introduction                            | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |  |
|-----------------------------------------|------------------------------------------|----------|----------------------|-----------------|--|
| 000000                                  |                                          |          |                      |                 |  |
| Topological invariants of moduli spaces |                                          |          |                      |                 |  |

# Aim: study topological invariants of moduli spaces in algebraic geometry

We work over  $\mathbb{C}$ .

## Moduli spaces:

A moduli space M is an algebraic variety, which parametrizes in a natural way interesting objects in algebraic geometry. Examples are:

- Hilbert schemes of points S<sup>[n]</sup> on an algebraic surface: {zero dimensional subschemes of degree n on S} (i.e. generically sets of n points on S).
- Moduli spaces of stable sheaves M<sup>H</sup><sub>S</sub>(r, c<sub>1</sub>, c<sub>2</sub>): {rank r coherent sheaves on S with Chern classes c<sub>1</sub>, c<sub>2</sub>} (i.e. vector bundles with singularities).

| Introduction                            | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |  |
|-----------------------------------------|------------------------------------------|----------|----------------------|-----------------|--|
| 000000                                  |                                          |          |                      |                 |  |
| Topological invariants of moduli spaces |                                          |          |                      |                 |  |

In differential geometry can also consider moduli spaces, e.g. of asd-connections on a principal SO(3)-bundle over a 4-manifold X

Used to define and compute Donaldson invariants, which are  $C^{\infty}$  invariants of 4-manifolds

If X is a projective algebraic surface close relationship to moduli spaces  $M_S^H(2, c_1, c_2)$  of stable sheaves allows to compute Donaldson invariants via algebraic geometry.

| Introduction        | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|---------------------|------------------------------------------|----------|----------------------|-----------------|
| 000000              |                                          |          |                      |                 |
| Topological invaria | ints of moduli spaces                    |          |                      |                 |

*S* projective complex surface, *H* ample line bundle on *S*, i.e.  $S \subset \mathbb{P}^n$  and *H* is the hyperplane bundle (or consider *S* with the Fubini-Study metric induced from  $\mathbb{P}^n$ ). We assume always that

• 
$$b_1(S) = \dim H^1(S, \mathbb{Q}) = 0$$

②  $p_g(S) = h^0(S, K_S) > 0$ , i.e. ∃ nonvanishing holomorphic 2-forms on *S* 

| Introduction         | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|----------------------|------------------------------------------|----------|----------------------|-----------------|
| 0000000              |                                          |          |                      |                 |
| Topological invariar | nts of moduli spaces                     |          |                      |                 |

| Introduction           | irtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|------------------------|-----------------------------------------|----------|----------------------|-----------------|
| 0000000 0              |                                         |          |                      |                 |
| Topological invariants | of moduli spaces                        |          |                      |                 |

 $M_S^H(r, c_1, c_2) = {\begin{array}{c} \text{moduli space of rank } r \ H \text{-semistable sheaves} \\ \text{on } S \text{ with Chern classes } c_1, c_2 \end{array}}$ 

 $\mathcal{E} \text{ semistable } \iff \forall_{n \gg 0} \ \frac{h^0(S, \mathcal{F} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{F})} \leq \frac{h^0(S, \mathcal{E} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{E})} \text{ for all } \mathcal{F} \text{ subsheaf of } \mathcal{E}.$ 

| Introduction         | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|----------------------|------------------------------------------|----------|----------------------|-----------------|
| 0000000              | 00000000                                 | 0000     | 0000000000           | 0000000         |
| Topological invarian | nts of moduli spaces                     |          |                      |                 |

 $M_S^H(r, c_1, c_2) = {\begin{array}{*{20}c} \text{moduli space of rank } r \ H \text{-semistable sheaves} \\ \text{on } S \text{ with Chern classes } c_1, c_2 \end{array}}$ 

- $\mathcal{E} \text{ semistable} \iff \forall_{n \gg 0} \ \frac{h^0(S, \mathcal{F} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{F})} \leq \frac{h^0(S, \mathcal{E} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{E})} \text{ for all } \mathcal{F} \text{ subsheaf of } \mathcal{E}.$
- $M = M_S^H(r, c_1, c_2)$  is usually singular, has expected dimension

$$vd = 2rc_2 - (r-1)c_1^2 + (r^2 - 1)\chi(\mathcal{O}_S).$$

*vd* is the dimension *M* should have, more about that later

| 0000000                                 |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|
| Tonological invariants of moduli spaces |  |  |  |  |  |

 $M_S^H(r, c_1, c_2) = {\text{moduli space of rank } r \ H - \text{semistable sheaves} \atop on S \text{ with Chern classes } c_1, c_2}$ 

- $\mathcal{E} \text{ semistable} \iff \forall_{n \gg 0} \ \frac{h^0(S, \mathcal{F} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{F})} \leq \frac{h^0(S, \mathcal{E} \otimes H^{\otimes n})}{\mathsf{rk}(\mathcal{E})} \text{ for all } \mathcal{F} \text{ subsheaf of } \mathcal{E}.$
- $M = M_S^H(r, c_1, c_2)$  is usually singular, has expected dimension

$$vd = 2rc_2 - (r-1)c_1^2 + (r^2 - 1)\chi(\mathcal{O}_S).$$

*vd* is the dimension *M* should have, more about that later Here write  $c_2 := \int_{[S]} c_2 \in \mathbb{Z}$ ,  $c_1^2 := \int_{[S]} c_1^2 \in \mathbb{Z}$ 

| Introduction        | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|---------------------|------------------------------------------|----------|----------------------|-----------------|
| 0000000             |                                          |          |                      |                 |
| Topological invaria | ants of moduli spaces                    |          |                      |                 |

#### Rank 1 case: Hilbert scheme of points

 $S^{[n]} = \{$ zero dimensional subschemes of length *n* on  $S\}$ 

General pt *Z* of  $S^{[n]}$ :  $Z = p_1 \sqcup \ldots \sqcup p_n$  set of *n* distinct pts of *S* When points come together have nontrivial scheme structure,  $Z = Z_1 \sqcup \ldots \sqcup Z_k$  such that  $\dim_{\mathbb{C}} \mathcal{O}_Z = \sum_{i=1}^k \dim_{\mathbb{C}} \mathcal{O}_{Z_i} = n$ .

### Rank 1 case: Hilbert scheme of points

 $S^{[n]} = \{ \text{zero dimensional subschemes of length } n \text{ on } S \}$ 

General pt *Z* of  $S^{[n]}$ :  $Z = p_1 \sqcup \ldots \sqcup p_n$  set of *n* distinct pts of *S* When points come together have nontrivial scheme structure,  $Z = Z_1 \sqcup \ldots \sqcup Z_k$  such that  $\dim_{\mathbb{C}} \mathcal{O}_Z = \sum_{i=1}^k \dim_{\mathbb{C}} \mathcal{O}_{Z_i} = n$ .  $S^{[n]}$  is smooth projective of dimension 2n.  $S^{[n]} \to S^{(n)} = S^n/(\text{perm. of factors}), Z \mapsto supp(Z)$ is resolution of singularities.

## Rank 1 case: Hilbert scheme of points

 $S^{[n]} = \{ \text{zero dimensional subschemes of length } n \text{ on } S \}$ 

General pt *Z* of  $S^{[n]}$ :  $Z = p_1 \sqcup ... \sqcup p_n$  set of *n* distinct pts of *S* When points come together have nontrivial scheme structure,  $Z = Z_1 \sqcup ... \sqcup Z_k$  such that  $\dim_{\mathbb{C}} \mathcal{O}_Z = \sum_{i=1}^k \dim_{\mathbb{C}} \mathcal{O}_{Z_i} = n$ .  $S^{[n]}$  is smooth projective of dimension 2n.  $S^{[n]} \to S^{(n)} = S^n/(\text{perm. of factors}), Z \mapsto supp(Z)$ is resolution of singularities.

 $M^H_S(1, L, c_2) = S^{[c_2]}$ , via  $Z \leftrightarrow I_Z \otimes \mathcal{O}(L)$ .  $I_Z$  ideal sheaf of Z.

| Introduction        | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|---------------------|------------------------------------------|------------------|----------------------|-----------------|
| Topological invaria | ants of moduli spaces                    |                  |                      |                 |

## Euler numbers of Hilbert schemes:

 $M_{S}^{H}(1, L, c_{2}) = S^{[c_{2}]}$ 

Let e(M) be the topological Euler number of M

| Introduction<br>○○○○○●○ | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|-------------------------|------------------------------------------|----------|----------------------|-----------------|
| Topological invaria     | nts of moduli spaces                     |          |                      |                 |

## Euler numbers of Hilbert schemes:

 $M_S^H(1, L, c_2) = S^{[c_2]}$ Let e(M) be the topological Euler number of M

## Theorem (G'90)

$$\sum_{n\geq 0} e(S^{[n]})x^n = \frac{1}{\prod_{n>0} (1-x^n)^{e(S)}}$$

| Introduction        | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|---------------------|------------------------------------------|----------|----------------------|-----------------|
| Topological invaria | nts of moduli spaces                     |          |                      |                 |

## Euler numbers of Hilbert schemes: $M_{S}^{H}(1, L, c_{2}) = S^{[c_{2}]}$

Let e(M) be the topological Euler number of M

## Theorem (G'90)

$$\sum_{n \ge 0} e(S^{[n]}) x^n = \frac{1}{\prod_{n > 0} (1 - x^n)^{e(S)}}$$

By physics arguments, 1994 Vafa and Witten gave explicit conjectural formula for the generating function for  $e(M_S^H(2, L, n))$ , in terms of modular forms.

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
| 000000       |                                          |          |                      |                 |

#### Vafa-Witten conjecture

In whole talk assume stable=semistable (condition on  $c_1$ ). Assume for simplicity in whole talk:

 $\exists$  smooth conn. curve in  $|K_S|$  (zero set of holomorphic 2-form.)

| Introduction<br>○○○○○●                                                                                                                                                             | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|----------------------|-----------------|
| Vafa-Witten conjec                                                                                                                                                                 | ture                                     |                  |                      |                 |
| In whole talk assume stable=semistable (condition on $c_1$ ).<br>Assume for simplicity in whole talk:<br>$\exists$ smooth conn. curve in $ K_c $ (zero set of holomorphic 2-form.) |                                          |                  |                      |                 |

Write  $K_S^2 = \int_{[S]} K_S^2 = \int_{[S]} c_1(S)^2$ , let  $\chi(\mathcal{O}_S)$  holomorphic Euler characteristic Write in future  $M_S^H(c_1, c_2) = M_S^H(2, c_1, c_2)$ , and always

$$\mathrm{vd} = \mathrm{vd}_{M^{H}_{\mathcal{S}}(c_{1},c_{2})} = 4c_{2} - c_{1}^{2} - 3\chi(\mathcal{O}_{\mathcal{S}})$$

| Introduction<br>○○○○○●                                | Virtual Euler number and its refinements                                                                                                                                                                                                                                                         | Examples<br>0000                                                                  | Check of conjectures                                                         | Further results |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|
| Vafa-Witten conje                                     | cture                                                                                                                                                                                                                                                                                            |                                                                                   |                                                                              |                 |
| In who<br>Assun<br>∃ smo<br>Write<br>let χ(α<br>Write | ble talk assume stable=semis<br>ne for simplicity in whole talk:<br>oth conn. curve in $ K_S $ (zero s<br>$K_S^2 = \int_{[S]} K_S^2 = \int_{[S]} c_1(S)^2$ ,<br>$\mathcal{O}_S$ ) holomorphic Euler charaction<br>in future $M_S^H(c_1, c_2) = M_S^H(2, c_3)$<br>$vd = vd_{M_S^H(c_1, c_2)} = 4$ | table (cond<br>set of holon<br>teristic<br>$c_1, c_2)$ , and<br>$c_2 - c_1^2 - 3$ | ition on $c_1$ ).<br>norphic 2-form.)<br>always<br>$B_{\chi}(\mathcal{O}_S)$ |                 |
|                                                       |                                                                                                                                                                                                                                                                                                  |                                                                                   |                                                                              |                 |

Conjecture (Vafa-Witten conjecture)

$$e(M_{S}^{H}(c_{1}, c_{2})) = \operatorname{Coeff}_{x^{vd}} \left[ 8 \left( \frac{1}{2 \prod_{n>0} (1 - x^{2n})^{12}} \right)^{\chi(\mathcal{O}_{S})} \\ \cdot \left( \frac{2 \prod_{n>0} (1 - x^{4n})^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}} \right)^{K_{S}^{2}} \right]$$

Want to interpret, check and refine this formula

| Introduction         | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |  |
|----------------------|------------------------------------------|----------|----------------------|-----------------|--|
| Virtual Euler number |                                          |          |                      |                 |  |

$$M = M_S^H(c_1, c_2)$$
 usually very singular  
might have dimension different from  $vd = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$ 

| Introduction       | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|--------------------|------------------------------------------|------------------|----------------------|-----------------|
| Virtual Euler numb | er                                       |                  |                      |                 |

 $M = M_S^H(c_1, c_2)$  usually very singular might have dimension different from  $vd = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$ 

But *M* has a virtual smooth structure of dimension vd with this behaves like smooth projective variety of dim. vd Can define virtual analogues of all invariants of smooth projective varieties

| Introduction       | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------------|------------------------------------------|----------|----------------------|-----------------|
|                    | 0000000                                  |          |                      |                 |
| Virtual Euler numb | er                                       |          |                      |                 |

 $M = M_S^H(c_1, c_2)$  usually very singular might have dimension different from  $vd = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$ 

But *M* has a virtual smooth structure of dimension vd with this behaves like smooth projective variety of dim. vd Can define virtual analogues of all invariants of smooth projective varieties

**Idea:** virtual Euler number  $e^{\text{vir}}(M)$  and all other virtual invariants of *M* are invariant under deformation If one can deform to a smooth moduli space  $M_s$ , then e.g.  $e^{\text{vir}}(M) = e(M_s)$ .

| Introduction       | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|--------------------|------------------------------------------|------------------|----------------------|-----------------|
| Virtual Euler numb | er                                       |                  |                      |                 |

 $M = M_S^H(c_1, c_2)$  usually very singular might have dimension different from  $vd = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$ 

But *M* has a virtual smooth structure of dimension vd with this behaves like smooth projective variety of dim. vd Can define virtual analogues of all invariants of smooth projective varieties

**Idea:** virtual Euler number  $e^{\text{vir}}(M)$  and all other virtual invariants of *M* are invariant under deformation If one can deform to a smooth moduli space  $M_s$ , then e.g.  $e^{\text{vir}}(M) = e(M_s)$ .

Virtual structure is used to define most invariants in modern enumerative geometry, e.g. Gromov-Witten, Donaldson invariants, Donaldson Thomas invariants

| Introduction        | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|---------------------|------------------------------------------|----------|----------------------|-----------------|
| Perfect obstruction | on theory                                |          |                      |                 |

In differential geometry, when the moduli space

(of solutions to some pde) is singular, one deforms the equation to get a smooth moduli space

(e.g. for Donaldson invariants).

In algebraic geometry, one keeps the moduli space as is, but adds virtual structure,

which keeps records why the moduli space is virtually smooth This allows for better control.

| Introduction<br>0000000    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |  |
|----------------------------|------------------------------------------|------------------|----------------------|-----------------|--|
| Perfect obstruction theory |                                          |                  |                      |                 |  |

At every point  $[F] \in M$ , tangent space  $T_{[F]} = Ext^1(F, F)_0$ obstruction space  $O_{[F]} = Ext^2(F, F)_0$ **Kuranishi:**  $\exists$  analytic map  $\kappa : T_{[F],0} \to O_{[F],0}$ , s.th.anal. nbhd of [F] in M is isom. to  $\kappa^{-1}(0)$  $\implies$  if  $O_F = 0$  or  $\kappa$  submersion, M is nonsingular of dim vd

| Introduction<br>0000000    | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |  |
|----------------------------|------------------------------------------|----------|----------------------|-----------------|--|
| Perfect obstruction theory |                                          |          |                      |                 |  |

At every point  $[F] \in M$ , tangent space  $T_{[F]} = Ext^1(F, F)_0$ obstruction space  $O_{[F]} = Ext^2(F, F)_0$ **Kuranishi:**  $\exists$  analytic map  $\kappa : T_{[F],0} \to O_{[F],0}$ , s.th.anal. nbhd of [F] in M is isom. to  $\kappa^{-1}(0)$  $\implies$  if  $O_F = 0$  or  $\kappa$  submersion, M is nonsingular of dim vd

#### Perfect obstruction theory:

Complex  $E_{\bullet} = [E_0 \to E_1]$  of vb on M, s.th.  $\forall_{[F] \in M}$ :  $T_{[F]} \simeq ker(E_0([F]) \to E_1([F])), O_F \simeq coker(E_0([F]) \to E_1([F]))$ i.e  $E_{\bullet}$  captures all tangents and obstructions via vector bundles

| Introduction        | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|---------------------|------------------------------------------|------------------|----------------------|-----------------|
| Perfect obstruction | theory                                   |                  |                      |                 |

At every point  $[F] \in M$ , tangent space  $T_{[F]} = Ext^1(F, F)_0$ obstruction space  $O_{[F]} = Ext^2(F, F)_0$ **Kuranishi:**  $\exists$  analytic map  $\kappa : T_{[F],0} \to O_{[F],0}$ , s.th.anal. nbhd of [F] in M is isom. to  $\kappa^{-1}(0)$  $\implies$  if  $O_F = 0$  or  $\kappa$  submersion, M is nonsingular of dim vd

#### Perfect obstruction theory:

Complex  $E_{\bullet} = [E_0 \to E_1]$  of vb on M, s.th.  $\forall_{[F] \in M}$ :  $T_{[F]} \simeq ker(E_0([F]) \to E_1([F])), O_F \simeq coker(E_0([F]) \to E_1([F]))$ i.e  $E_{\bullet}$  captures all tangents and obstructions via vector bundles

Then define:  $T_M^{\text{vir}} := [E_0] - [E_1] \in K^0(M)$ , vd := rk  $T_M^{\text{vir}} = \text{rk}(E_0) - \text{rk}(E_1)$ virtual fundamental class  $[M]^{\text{vir}} \in H_{2\text{vd}}(M, \mathbb{Z})$ virtual structure sheaf  $\mathcal{O}_M^{\text{vir}} \in K_0(M)$  (these last two are difficult)

| Introduction       | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|--------------------|------------------------------------------|------------------|----------------------|-----------------|
| Virtual Euler numb | ber                                      |                  |                      |                 |

## Definition

## Virtual Euler number:

$$e^{\mathrm{vir}}(M) := \int_{[M]^{\mathrm{vir}}} c_{\mathrm{vd}}(T^{\mathrm{vir}}(M))$$

| Introduction       | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------------|------------------------------------------|----------|----------------------|-----------------|
| Virtual Euler numb | per                                      |          |                      |                 |

### Definition

#### Virtual Euler number:

$$e^{\mathrm{vir}}(M) := \int_{[M]^{\mathrm{vir}}} c_{\mathrm{vd}}(T^{\mathrm{vir}}(M))$$

#### Conjecture

The Vafa-Witten formula holds with  $e(M_S^H(c_1, c_2))$  replaced by  $e^{vir}(M_S^H(c_1, c_2))$ .

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
|              | 0000000                                  |          |                      |                 |

Refinement to  $\chi_{y}$ -genus

## holomorphic Euler characteristic:

$$\chi(X, V) := \sum_{i \ge 0} (-1)^i \dim H^i(X, V), \quad V \in K^0(X)$$

 $\chi_{-y}$ -genus:

$$\chi_{-y}(X) = \sum_{p,q} (-1)^{p+q} y^p h^{p,q}(X) = \sum_p (-y)^p \chi(X, \Omega_X^p)$$

alternating sum of Hodge numbers

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
|              | 0000000                                  |          |                      |                 |

Refinement to  $\chi_{y}$ -genus

#### holomorphic Euler characteristic:

$$\chi(X, V) := \sum_{i \ge 0} (-1)^i \dim H^i(X, V), \quad V \in K^0(X)$$

 $\chi_{-y}$ -genus:

$$\chi_{-y}(X) = \sum_{p,q} (-1)^{p+q} y^p h^{p,q}(X) = \sum_p (-y)^p \chi(X, \Omega_X^p)$$

alternating sum of Hodge numbers

Virtual 
$$\chi_{-y}$$
-genus. For  $V \in K^{0}(M)$ , put  
 $\chi^{\operatorname{vir}}(M, V) := \chi(M, \mathcal{O}_{M}^{\operatorname{vir}} \otimes V)$ . Let  $\Omega_{M}^{\operatorname{vir}} := (T_{M}^{\operatorname{vir}})^{\vee}$ .  
 $\chi_{-y}^{\operatorname{vir}}(M) := y^{-\operatorname{vd}/2} \sum_{p} (-y)^{p} \chi^{\operatorname{vir}}(M, \Lambda^{p} \Omega_{M}^{\operatorname{vir}})$ 

 $\chi_{-1}^{\text{vir}}(M) = e^{\text{vir}}(M)$ , so this is refinement of virtual Euler number

| Introduction               | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|----------------------------|------------------------------------------|----------|----------------------|-----------------|
|                            | 00000000                                 |          |                      |                 |
| Refinement to $\chi_{y}$ - | genus                                    |          |                      |                 |

$$\psi_{\mathcal{S}}(x) := 8 \left( \frac{1}{2 \prod_{n > 0} (1 - x^{2n})^{12}} \right)^{\chi(\mathcal{O}_{\mathcal{S}})} \left( \frac{2 \prod_{n > 0} (1 - x^{4n})^2}{\sum_{n \in \mathbb{Z}} x^{n^2}} \right)^{\kappa_{\mathcal{S}}^2}$$

| Introduction               | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|----------------------------|------------------------------------------|------------------|----------------------|-----------------|
| Refinement to $\chi_{y}$ - | genus                                    |                  |                      |                 |

$$\psi_{\mathcal{S}}(x) := 8 \left( \frac{1}{2 \prod_{n>0} (1-x^{2n})^{12}} \right)^{\chi(\mathcal{O}_{\mathcal{S}})} \left( \frac{2 \prod_{n>0} (1-x^{4n})^2}{\sum_{n \in \mathbb{Z}} x^{n^2}} \right)^{K_{\mathcal{S}}^2}$$

#### Conjecture

 $e^{\operatorname{vir}}(M^H_{\mathcal{S}}(c_1, c_2)) = \operatorname{Coeff}_{x^{\operatorname{vd}}}[\psi_{\mathcal{S}}(x)].$ 

| Introduction               | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|----------------------------|------------------------------------------|----------|----------------------|-----------------|
| Refinement to $\chi_{y}$ - | genus                                    |          |                      |                 |

$$\psi_{\mathcal{S}}(x) := 8 \left( \frac{1}{2 \prod_{n>0} (1-x^{2n})^{12}} \right)^{\chi(\mathcal{O}_{\mathcal{S}})} \left( \frac{2 \prod_{n>0} (1-x^{4n})^2}{\sum_{n \in \mathbb{Z}} x^{n^2}} \right)^{K_{\mathcal{S}}}$$

#### Conjecture

$$e^{\operatorname{vir}}(M^H_{\mathcal{S}}(c_1,c_2)) = \operatorname{Coeff}_{x^{\operatorname{vd}}}[\psi_{\mathcal{S}}(x)].$$

### Conjecture for virtual $\chi_{-y}$ -genus:

$$\psi_{\mathcal{S}}(x,y) := 8 \left( \frac{1}{2 \prod_{n>0} (1 - x^{2n})^{10} (1 - x^{2n} y) (1 - x^{2n} / y)} \right)^{\chi(\mathcal{O}_{\mathcal{S}})} \\ \cdot \left( \frac{2 \prod_{n>0} (1 - x^{4n})^2}{\sum_{n \in \mathbb{Z}} x^{n^2} y^{n/2}} \right)^{K_{\mathcal{S}}^2}$$

#### Conjecture

$$\chi_{-y}^{\mathrm{vir}}(M_{S}^{H}(c_{1},c_{2})) = \mathrm{Coeff}_{x^{\mathrm{vd}}}[\psi_{S}(x,y)].$$

Specializes to our version of VW conjecture for y = 1

| Introduction   | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|----------------|------------------------------------------|----------|----------------------|-----------------|
| Elliptic genus |                                          |          |                      |                 |

Have conjectural generating function for virtual Elliptic genus of  $M_S^H(c_1, c_2)$  in terms of Siegel modular forms It gives generalization of the DMVV formula (Dijkgraaf-Moore-Verlinde-Verlinde '97), (Borisov-Libgober '00) for Hilbert schemes of points. A bit too complicated to state here.

| Introduction    | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|-----------------|------------------------------------------|----------|----------------------|-----------------|
| Cobordism class |                                          |          |                      |                 |

## Final generalization: the cobordism class:

Two complex manifolds *M*, *N* have the same cobordism class  $\{M\} = \{N\}$ 

if they have the same Chern numbers:

$$\int_{[M]} c_{i_1}(M) \cdots c_{i_k}(M) = \int_{[N]} c_{i_1}(N) \cdots c_{i_k}(N) \quad \forall_{k,i_1,...,i_k}$$
| Introduction    | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|-----------------|------------------------------------------|----------|----------------------|-----------------|
| Cobordism class |                                          |          |                      |                 |

# Final generalization: the cobordism class:

Two complex manifolds *M*, *N* have the same cobordism class  $\{M\} = \{N\}$ 

if they have the same Chern numbers:

$$\int_{[M]} c_{i_1}(M) \cdots c_{i_k}(M) = \int_{[N]} c_{i_1}(N) \cdots c_{i_k}(N) \quad \forall_{k,i_1,\ldots,i_k}$$

Cobordism classes of complex manifolds generate a ring  $R = \sum_{n} R_n$  (graded by dimension)  $\{M\}\{N\} = \{M \times N\}, \quad \{M\} + \{N\} = \{M \sqcup N\}$ In fact

$${\pmb R}\otimes \mathbb{Q}=\mathbb{Q}[\{\mathbb{P}^1\},\{\mathbb{P}^2\},\{\mathbb{P}^3\},\ldots]$$

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-----------------|------------------------------------------|------------------|----------------------|-----------------|
| Cobordism class |                                          |                  |                      |                 |

Ellingsrud-G-Lehn showed  $\{S^{[n]}\}$  depends only on  $\{S\}$ (equivalent: Chern numbers of  $S^{[n]}$  depend only on  $K_S^2$ ,  $c_2(S)$ )

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-----------------|------------------------------------------|------------------|----------------------|-----------------|
| Cobordism class |                                          |                  |                      |                 |

Ellingsrud-G-Lehn showed  $\{S^{[n]}\}$  depends only on  $\{S\}$ (equivalent: Chern numbers of  $S^{[n]}$  depend only on  $K_S^2$ ,  $c_2(S)$ ) For  $M = M_S^H(c_1, c_2)$  let  $\{M\}^{\text{vir}}$  be the virtual cobordism class given by the

$$\int_{[M]^{\mathrm{vir}}} c_{i_1}(T_M^{\mathrm{vir}}) \cdots c_{i_k}(T_M^{\mathrm{vir}}).$$

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-----------------|------------------------------------------|------------------|----------------------|-----------------|
| Cobordism class |                                          |                  |                      |                 |

Ellingsrud-G-Lehn showed  $\{S^{[n]}\}$  depends only on  $\{S\}$ (equivalent: Chern numbers of  $S^{[n]}$  depend only on  $K_S^2$ ,  $c_2(S)$ ) For  $M = M_S^H(c_1, c_2)$  let  $\{M\}^{\text{vir}}$  be the virtual cobordism class given by the

$$\int_{[M]^{\mathrm{vir}}} c_{i_1}(T_M^{\mathrm{vir}}) \cdots c_{i_k}(T_M^{\mathrm{vir}}).$$

### Conjecture

There is a power series  $P(x) = 1 + \sum_{n>0} P_n x^n$ , with  $P_n \in R_n$ , s.th.

$$\{M_{\mathcal{S}}^{\mathcal{H}}(c_{1},c_{2})\}^{\mathrm{vir}} = \mathrm{Coeff}_{x^{\mathrm{vd}}}\left[8\left(\frac{1}{4}\sum_{n\geq 0}\{K3^{[n]}\}x^{2n}\right)^{\chi(\mathcal{O}_{\mathcal{S}})/2}(2P(x))^{K_{\mathcal{S}}^{2}}\right].$$

| Introduction       | Virtual Euler number and its refinements | Examples<br>••••• | Check of conjectures | Further results |
|--------------------|------------------------------------------|-------------------|----------------------|-----------------|
| General form of co | njecture                                 |                   |                      |                 |

## Seiberg-Witten invariants:

invariants of differentiable 4-manifolds *S* projective algebraic surface  $H^2(S, \mathbb{Z}) \ni a \mapsto SW(a) \in \mathbb{Z}$ , *a* is called SW class if  $SW(a) \neq 0$ .

| Introduction       | Virtual Euler number and its refinements | Examples<br>•••• | Check of conjectures | Further results |
|--------------------|------------------------------------------|------------------|----------------------|-----------------|
| General form of co | njecture                                 |                  |                      |                 |

## Seiberg-Witten invariants:

invariants of differentiable 4-manifolds *S* projective algebraic surface  $H^2(S, \mathbb{Z}) \ni a \mapsto SW(a) \in \mathbb{Z}$ , *a* is called SW class if  $SW(a) \neq 0$ .

In general for alg. surfaces they are easy to compute, e.g. if  $b_1(S) = 0$ ,  $p_g(S) > 0$  and  $|K_S|$  contains smooth connected curve, then SW cl. of *S* are 0,  $K_S$  with

$$SW(0) = 1$$
,  $SW(K_S) = (-1)^{\chi(\mathcal{O}_S)}$ 

| Introduction       | Virtual Euler number and its refinements | Examples<br>•••• | Check of conjectures | Further results |
|--------------------|------------------------------------------|------------------|----------------------|-----------------|
| General form of co | njecture                                 |                  |                      |                 |

## Seiberg-Witten invariants:

invariants of differentiable 4-manifolds *S* projective algebraic surface  $H^2(S, \mathbb{Z}) \ni a \mapsto SW(a) \in \mathbb{Z}$ , *a* is called SW class if  $SW(a) \neq 0$ .

In general for alg. surfaces they are easy to compute, e.g. if  $b_1(S) = 0$ ,  $p_g(S) > 0$  and  $|K_S|$  contains smooth connected curve, then SW cl. of *S* are 0,  $K_S$  with

$$SW(0) = 1$$
,  $SW(K_S) = (-1)^{\chi(\mathcal{O}_S)}$ 

This is the reason for our assumption that  $|K_S|$  contains smooth connected curve, otherwise our results look more complicated.

| General form of co      | onjecture                                |                  |                      |                 |
|-------------------------|------------------------------------------|------------------|----------------------|-----------------|
| Introduction<br>0000000 | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |

We restrict attention to the virtual Euler number *S* projective surface with  $b_1(S) = 0$ ,  $p_g(S) > 0$ .

# Conjecture

$$e^{\operatorname{vir}}(M_{S}^{H}(c_{1}, c_{2})) = \operatorname{Coeff}_{x^{vd}} \left[ 4 \left( \frac{1}{2 \prod_{n>0} (1 - x^{2n})^{12}} \right)^{\chi(\mathcal{O}_{S})} \left( \frac{2 \prod_{n>0} (1 - x^{4n})^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}} \right)^{\kappa_{S}^{2}} \sum_{a \in H^{2}(S,\mathbb{Z})} SW(a) (-1)^{c_{1}a} \left( \frac{\sum_{n \in \mathbb{Z}} x^{n^{2}}}{\sum_{n \in \mathbb{Z}} (-1)^{n} x^{n^{2}}} \right)^{aK_{S}} \right]$$

| Introduction       | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|--------------------|------------------------------------------|------------------|----------------------|-----------------|
| General form of co | njecture                                 |                  |                      |                 |

We restrict attention to the virtual Euler number *S* projective surface with  $b_1(S) = 0$ ,  $p_g(S) > 0$ .

#### Conjecture

$$e^{\operatorname{vir}}(M_{S}^{H}(c_{1}, c_{2})) = \operatorname{Coeff}_{x^{vd}} \left[ 4 \left( \frac{1}{2 \prod_{n>0} (1 - x^{2n})^{12}} \right)^{\chi(\mathcal{O}_{S})} \left( \frac{2 \prod_{n>0} (1 - x^{4n})^{2}}{\sum_{n \in \mathbb{Z}} x^{n^{2}}} \right)^{K_{S}^{2}} \sum_{a \in H^{2}(S,\mathbb{Z})} SW(a) (-1)^{c_{1}a} \left( \frac{\sum_{n \in \mathbb{Z}} x^{n^{2}}}{\sum_{n \in \mathbb{Z}} (-1)^{n} x^{n^{2}}} \right)^{aK_{S}} \right].$$

# **Examples:** (1) K3 surfaces: Let *S* be a K3 surface, $M = M_S^H(c_1, c_2)$ is nonsingular of dim *vd* and $e(M) = e(S^{\lfloor vd/2 \rfloor})$ (Yoshioka)

$$\implies e(M) = \operatorname{Coeff}_{x^{vd}} \left[ \frac{1}{\prod_{n>0} (1-x^{2n})^{24}} \right]$$

Follows from our formula because  $K_S^2 = 0$ , and SW(0) = 1 is only SW invariant.

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
| Examples     |                                          |          |                      |                 |

(2) Elliptic surfaces: (Yoshioka) *S* elliptic surface  $\chi(O_S) = d$ , *F* fibre  $M = M_S^H(c_1, c_2)$  is nonsingular of dim *vd* 

$$e(M) = \begin{cases} \operatorname{Coeff}_{X^{vd}} \left[ \frac{1}{\prod_{n>0} (1-x^{2n})^{12d}} \right] & c_1 F \equiv 1 \mod 2, \\ 0 & c_1 F \equiv 0 \mod 2 \end{cases}$$

Follows from our formula because  $K_S^2 = 0$  and SW invariants are  $SW(kF) = (-1)^k {d-2 \choose k}, k = 0, \dots, d-2$ 

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
|              |                                          | 0000     |                      |                 |
|              |                                          |          |                      |                 |

Examples

(2) Elliptic surfaces: (Yoshioka) *S* ellipic surface  $\chi(O_S) = d$ , *F* fibre  $M = M_S^H(c_1, c_2)$  is nonsingular of dim *vd* 

$$e(M) = \begin{cases} \operatorname{Coeff}_{X^{vd}} \left[ \frac{1}{\prod_{n>0} (1-x^{2n})^{12d}} \right] & c_1 F \equiv 1 \mod 2, \\ 0 & c_1 F \equiv 0 \mod 2 \end{cases}$$

Follows from our formula because  $K_S^2 = 0$  and SW invariants are  $SW(kF) = (-1)^k {\binom{d-2}{k}}, k = 0, ..., d-2$ (3) Blowup formula:(Li-Qin) Let  $\widehat{S}$  the blowup of surface *S*.  $c_1 \in H^2(S), E$  exceptional divisor. Then

$$\sum_{c_2} e(M_{\widehat{S}}^H(c_1 + aE, c_2)) x^{vd} = \frac{\sum_{n \in \mathbb{Z}} x^{(2n+a)^2}}{\prod_{n > 0} (1 - x^{4n})^2} \sum_{c_2} e(M_S^H(c_1, c_2)) x^{vd}$$

We predict the same formula with *e* replaced by  $e^{\text{vir}}$  on both sides, because  $K_{\widehat{S}}^2 = K_S^2 - 1$  and SW invariants are  $SW_{\widehat{S}}(a) = SW_{\widehat{S}}(a + E) = SW_S(a)$  for all *SW* classes *a* on *S* 

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
| Examples     |                                          |          |                      |                 |

(4) Quintic in  $\mathbb{P}^3$ : Let *S* be a nonsingular quintic in  $\mathbb{P}^3$ , *H* the hyperplane section. We show

$$\sum_{c_2} e^{\text{vir}} (M_S^H(H, c_2) x^{vd} = 8 + 52720 x^4 + 48754480 x^8 + 17856390560 x^{12} + 3626761297400 x^{16} \dots + O(x^{28}))$$

conferming the conjecture

| Introduction      | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures<br>●ooooooooo | Further results |
|-------------------|------------------------------------------|------------------|------------------------------------|-----------------|
| Mochizuki formula |                                          |                  |                                    |                 |

# Main tool: Mochizuki's formula:

Compute intersection numbers on  $M = M_S^H(c_1, c_2)$  in terms of intersection numbers on Hilbert scheme of points.

| Introduction      | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-------------------|------------------------------------------|------------------|----------------------|-----------------|
| Mochizuki formula |                                          |                  |                      |                 |

# Main tool: Mochizuki's formula:

Compute intersection numbers on  $M = M_S^H(c_1, c_2)$  in terms of intersection numbers on Hilbert scheme of points.

On  $S \times M$  have  $\mathcal{E}$  universal sheaf i.e. if  $[E] \in M$  corresponds to a sheaf E on S then  $\mathcal{E}|_{S \times [E]} = E$ . For  $\alpha \in H^k(S)$ , put

$$au_i(lpha) := \pi_{M_*}(c_i(\mathcal{E})\pi^*_{\mathcal{S}}(lpha)) \in H^{2i-4+k}(M)$$

| Introduction      | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-------------------|------------------------------------------|------------------|----------------------|-----------------|
| Mochizuki formula |                                          |                  |                      |                 |

# Main tool: Mochizuki's formula:

Compute intersection numbers on  $M = M_S^H(c_1, c_2)$  in terms of intersection numbers on Hilbert scheme of points.

On  $S \times M$  have  $\mathcal{E}$  universal sheaf i.e. if  $[E] \in M$  corresponds to a sheaf E on S then  $\mathcal{E}|_{S \times [E]} = E$ . For  $\alpha \in H^k(S)$ , put

$$au_i(lpha) := \pi_{M_*}(\mathcal{C}_i(\mathcal{E})\pi^*_{\mathcal{S}}(lpha)) \in \mathcal{H}^{2i-4+k}(M)$$

Let  $P(\mathcal{E})$  be any polynomial in the  $\tau_i(\alpha)$ Mochizuki's formula expresses  $\int_{[M]^{\text{vir}}} P(\mathcal{E})$  in terms of intersec. numbers on  $S^{[n_1]} \times S^{[n_2]}$ , and Seiberg-Witten invariants.

| Introduction      | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-------------------|------------------------------------------|------------------|----------------------|-----------------|
| Mochizuki formula |                                          |                  |                      |                 |

 $e^{\text{vir}}(M)$ ,  $\chi^{\text{vir}}_{-Y}(M) Ell^{\text{vir}}(M)$  and  $\{M\}^{\text{vir}}$  can all be expressed as  $\int_{[M]^{\text{vir}}} P(\mathcal{E})$ , for suitable polyn. *P*, so can reduce computation to Hilbert schemes.

| Mochizuki formul | a                                        |          |                      |                 |
|------------------|------------------------------------------|----------|----------------------|-----------------|
|                  |                                          |          | 000000000            |                 |
| Introduction     | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |

 $e^{\text{vir}}(M)$ ,  $\chi_{-y}^{\text{vir}}(M) Ell^{\text{vir}}(M)$  and  $\{M\}^{\text{vir}}$  can all be expressed as  $\int_{[M]^{\text{vir}}} P(\mathcal{E})$ , for suitable polyn. *P*, so can reduce computation to Hilbert schemes.

For  $\chi_{-y}^{\text{vir}}(M)$  *Ell*<sup>vir</sup>(*M*) use virtual Riemann-Roch formula

Theorem (Fantechi-G.)

For  $V \in K^0(M)$  have

$$\chi^{\mathrm{vir}}(\boldsymbol{M},\boldsymbol{V}) = \int_{[\boldsymbol{M}]^{\mathrm{vir}}} \mathrm{ch}(\boldsymbol{V}) \mathrm{td}(\boldsymbol{T}_{\boldsymbol{M}}^{\mathrm{vir}}).$$

| Introduction      | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-------------------|------------------------------------------|------------------|----------------------|-----------------|
| Mochizuki formula |                                          |                  |                      |                 |

 $S^{[n_1]} \times S^{[n_2]} = \{ \text{pairs} (Z_1, Z_2) \text{ of subsch. of deg.} (n_1, n_2) \text{ on } S \}$ 

Work on  $S \times S^{[n_1]} \times S^{[n_2]}$ , projection p to  $S^{[n_1]} \times S^{[n_2]}$ 

| Introduction      | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|-------------------|------------------------------------------|----------|----------------------|-----------------|
| 0000000           | 00000000                                 | 0000     | 000000000            | 0000000         |
| Mochizuki formula |                                          |          |                      |                 |

 $S^{[n_1]} \times S^{[n_2]} = \{ \text{pairs} (Z_1, Z_2) \text{ of subsch. of deg.} (n_1, n_2) \text{ on } S \}$ 

Work on  $S \times S^{[n_1]} \times S^{[n_2]}$ , projection p to  $S^{[n_1]} \times S^{[n_2]}$ Two universal sheaves: Let  $a_1, a_2 \in Pic(S)$ 

 $\ \, \bullet \ \, \mathcal{I}_i(a) \text{ sheaf on } S \times S^{[n_1]} \times S^{[n_2]} \text{ with } \mathcal{I}_i(a_i)|_{S \times (Z_1, Z_2)} = I_{Z_i} \otimes a_9$ 

<sup>(2)</sup>  $\mathcal{O}_i(a_i)$ , vector bundle of rank  $n_i$  on  $S^{[n_1]} \times S^{[n_2]}$ , with fibre  $\mathcal{O}_i(a_i)(Z_1, Z_2) = H^0(\mathcal{O}_{Z_i} \otimes a_i)$ 

| 0000000           | oooo | 0000000 |
|-------------------|------|---------|
| Mochizuki formula |      |         |

 $S^{[n_1]} \times S^{[n_2]} = \{ \text{pairs} (Z_1, Z_2) \text{ of subsch. of deg.} (n_1, n_2) \text{ on } S \}$ 

Work on  $S \times S^{[n_1]} \times S^{[n_2]}$ , projection p to  $S^{[n_1]} \times S^{[n_2]}$ Two universal sheaves: Let  $a_1, a_2 \in \text{Pic}(S)$ 

- $\ \, \bullet \ \, \mathcal{I}_i(a) \text{ sheaf on } S \times S^{[n_1]} \times S^{[n_2]} \text{ with } \mathcal{I}_i(a_i)|_{S \times (Z_1,Z_2)} = I_{Z_i} \otimes a_9$
- ②  $\mathcal{O}_i(a_i)$ , vector bundle of rank  $n_i$  on  $S^{[n_1]} \times S^{[n_2]}$ , with fibre  $\mathcal{O}_i(a_i)(Z_1, Z_2) = H^0(\mathcal{O}_{Z_i} \otimes a_i)$

Remember, we want to compute  $\int_{[M]^{vir}} P(\mathcal{E})$ There is a (Laurent) polynomial  $\Psi_P(a_1, a_2, n_1, n_2, s)$  associated to *P* in a variable *s*, the

$$\overline{\tau}_i(\alpha) := \boldsymbol{p}_*(\boldsymbol{c}_i(\mathcal{I}_1(\boldsymbol{a}_1) \oplus \mathcal{I}_2(\boldsymbol{a}_2)) \pi^*_{\mathcal{S}}(\alpha)) \in \mathcal{H}^{2i-4+k}(\mathcal{S}^{[n_1]} \times \mathcal{S}^{[n_2]}), \quad \alpha \in \mathcal{H}^k(\mathcal{S})$$

and the Chern classes of  $\mathcal{O}_1(a_1)$ ,  $\mathcal{O}_2(a_2)$ , s.th following holds: Put

$$A_{P}(a_{1}, a_{2}, c_{2}, s) = \sum_{n_{1}+n_{2}=c_{2}-a_{1}a_{2}} \int_{\mathcal{S}^{[n_{1}]}\times\mathcal{S}^{[n_{2}]}} \Psi_{P}(a_{1}, a_{2}, n_{1}, n_{2}, s) \in \mathbb{Q}[s, s^{-1}]$$

| Introduction      | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-------------------|------------------------------------------|------------------|----------------------|-----------------|
| Mochizuki formula |                                          |                  |                      |                 |

$$A_{P}(a_{1}, a_{2}, c_{2}, s) = \sum_{n_{1}+n_{2}=c_{2}-a_{1}a_{2}} \int_{S^{[n_{1}]}\times S^{[n_{2}]}} \Psi_{P}(a_{1}, a_{2}, n_{1}, n_{2}, s)$$

#### Theorem (Mochizuki)

Assume 
$$\chi(E) > 0$$
 for  $E \in M^S_H(c_1, c_2)$ . Then

$$\int_{[M_{S}^{H}(c_{1},c_{2})]^{\text{vir}}} P(\mathcal{E}) = \sum_{\substack{c_{1}=a_{1}+a_{2}\\a_{1}H< a_{2}H}} SW(a_{1}) \text{Coeff}_{s^{0}} A_{P}(a_{1},a_{2},c_{2},s)$$

i.e. we replace a simple formula on a space where we cannot compute anything by a terrible formula on simpler space

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures |
|--------------|------------------------------------------|----------|----------------------|
|              |                                          |          | 0000000000           |

#### Universality

Take now for  $P(\mathcal{E}) = c_{vd}(T_M^{vir})$  (works the same for the others) Put

Further results

$$Z_{S}(a_{1}, a_{2}, s, q) = \sum_{n_{1}, n_{2} \ge 0} \int_{S^{[n_{1}]} \times S^{[n_{2}]}} A(a_{1}, a_{2}, a_{1}a_{2} + n_{1} + n_{2}, s)q^{n_{1} + n_{2}}$$

Introduction

Virtual Euler number and its refinements

#### Universality

Take now for  $P(\mathcal{E}) = c_{vd}(T_M^{vir})$  (works the same for the others) Put

$$Z_{S}(a_{1}, a_{2}, s, q) = \sum_{n_{1}, n_{2} \ge 0} \int_{S^{[n_{1}]} \times S^{[n_{2}]}} A(a_{1}, a_{2}, a_{1}a_{2} + n_{1} + n_{2}, s)q^{n_{1} + n_{2}}$$

### Proposition

There exist univ. functions

$$oldsymbol{A}_1(oldsymbol{s},oldsymbol{q}),\ldots,oldsymbol{A}_7(oldsymbol{s},oldsymbol{q})\in \mathbb{Q}[oldsymbol{s},oldsymbol{s}^{-1}][[oldsymbol{q}]]$$

*s.th.*  $\forall_{S,a_1,a_2}$ 

$$Z_{S}(a_{1}, a_{2}, s, q) = F_{0}(a_{1}, a_{2}, s) A_{1}^{a_{1}^{2}} A_{2}^{a_{1}a_{2}} A_{3}^{a_{2}^{2}} A_{4}^{a_{1}K_{S}} A_{5}^{a_{2}K_{S}} A_{6}^{K_{S}^{2}} A_{7}^{\chi(\mathcal{O}_{S})},$$

(where  $F_0(a_1, a_2, s)$  is some explicit elementary function).

| Introduction |
|--------------|
|              |

Virtual Euler number and its refinements

Examples

Check of conjectures

Further results

#### Universality

**Proof:** Modification of an argument of Elllingsrud-G-Lehn: "Intersection numbers of universal sheaves on  $S^{[n]}$  are universal polynomials in intersection numbers on  $S^{"}$ .

| Introduction<br>0000000 | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-------------------------|------------------------------------------|------------------|----------------------|-----------------|
| Universality            |                                          |                  |                      |                 |

**Proof:** Modification of an argument of Elllingsrud-G-Lehn: "Intersection numbers of universal sheaves on  $S^{[n]}$  are universal polynomials in intersection numbers on  $S^{"}$ .

**Reason:** Untersection numbers on  $S^{[n]}$  computed inductively:  $Z_n(S) := \{(x, Z) \in S \times S^{[n]} | x \in Z\}$  universal subscheme Blowup of  $S \times S^{[n]}$  along  $Z_n(S)$  is

$$\mathcal{S}^{[n,n+1]} := \{(\mathcal{Z},\mathcal{W}) \in \mathcal{S}^{[n]} imes \mathcal{S}^{[n+1]} \mid \mathcal{Z} \in \mathcal{W}\}$$

This allows to compute intersection numbers of  $S^{[n+1]}$  in terms of inters. numbers on *S* and  $S^{[n]}$ , and conclude by induction.

| Introduction<br>0000000 | Virtual Euler number and its refinements | Examples | Check of conjectures<br>○○○○●○○○○○ | Further results |
|-------------------------|------------------------------------------|----------|------------------------------------|-----------------|
| Universality            |                                          |          |                                    |                 |

**Proof:** Modification of an argument of Elllingsrud-G-Lehn: "Intersection numbers of universal sheaves on  $S^{[n]}$  are universal polynomials in intersection numbers on  $S^{"}$ .

**Reason:** Untersection numbers on  $S^{[n]}$  computed inductively:  $Z_n(S) := \{(x, Z) \in S \times S^{[n]} | x \in Z\}$  universal subscheme Blowup of  $S \times S^{[n]}$  along  $Z_n(S)$  is

$$\mathcal{S}^{[n,n+1]} := \{(Z, \mathcal{W}) \in \mathcal{S}^{[n]} imes \mathcal{S}^{[n+1]} \mid Z \in \mathcal{W}\}$$

This allows to compute intersection numbers of  $S^{[n+1]}$  in terms of inters. numbers on *S* and  $S^{[n]}$ , and conclude by induction. This gives:

$$\text{Coeff}_{q^{k}s'}Z_{S}(a_{1}, a_{2}, s, q) = P_{k,l}(a_{1}^{2}, a_{1}a_{2}, a_{2}^{2}, a_{1}K_{S}, a_{1}K_{S}, K_{S}^{2}, \chi(O_{S}))$$

for some polynomial  $P_{k,l}$  depending only on k, l. For the multiplicativity use additional tricks.

| Introduction                   | Virtual Euler number and its refinements              | Examples<br>0000 | Check of conjectures | Further results |
|--------------------------------|-------------------------------------------------------|------------------|----------------------|-----------------|
| Reduction to $\mathbb{P}^2$ ar | $\operatorname{nd} \mathbb{P}^1 \times \mathbb{P}^1.$ |                  |                      |                 |

 $A_1(s,q), \ldots A_7(s,q)$  are determined by value of  $Z_S(a_1, a_2, s, q)$  for 7 triples  $(S, a_1, a_2)$  (S surface,  $a_1, a_2 \in Pic(S)$ ) s.th. corresponding 7-tuples  $(a_1^2, a_1a_2, a_2^2, a_1K_S, a_1K_S, K_S^2, \chi(O_S))$  are linearly independent

| Introduction                  | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|-------------------------------|------------------------------------------|----------|----------------------|-----------------|
|                               |                                          |          | 00000000000          |                 |
| Reduction to $\mathbb{P}^2$ a | nd ⊫1 ∨ ⊫1                               |          |                      |                 |

 $A_1(s,q), \ldots A_7(s,q)$  are determined by value of  $Z_S(a_1, a_2, s, q)$  for 7 triples  $(S, a_1, a_2)$  (S surface,  $a_1, a_2 \in Pic(S)$ ) s.th. corresponding 7-tuples  $(a_1^2, a_1a_2, a_2^2, a_1K_S, a_1K_S, K_S^2, \chi(O_S))$  are linearly independent We take

$$\begin{split} (\mathbb{P}^2,\mathcal{O},\mathcal{O}), (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O},\mathcal{O}), (\mathbb{P}^2,\mathcal{O}(1),\mathcal{O}), (\mathbb{P}^2,\mathcal{O},\mathcal{O}(1)), \\ (\mathbb{P}^2,\mathcal{O}(1),\mathcal{O}(1)), (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O}(1,0),\mathcal{O}), (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O},\mathcal{O}(1,0)) \end{split}$$

| Introduction                | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|-----------------------------|------------------------------------------|----------|----------------------|-----------------|
|                             |                                          |          | 00000000000          |                 |
| Poduction to P <sup>2</sup> | and $\mathbb{D}^1 \times \mathbb{D}^1$   |          |                      |                 |

 $A_1(s,q), \ldots A_7(s,q)$  are determined by value of  $Z_S(a_1, a_2, s, q)$  for 7 triples  $(S, a_1, a_2)$  (S surface,  $a_1, a_2 \in Pic(S)$ ) s.th. corresponding 7-tuples  $(a_1^2, a_1a_2, a_2^2, a_1K_S, a_1K_S, K_S^2, \chi(O_S))$  are linearly independent We take

$$\begin{split} (\mathbb{P}^2,\mathcal{O},\mathcal{O}), (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O},\mathcal{O}), (\mathbb{P}^2,\mathcal{O}(1),\mathcal{O}), (\mathbb{P}^2,\mathcal{O},\mathcal{O}(1)), \\ (\mathbb{P}^2,\mathcal{O}(1),\mathcal{O}(1)), (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O}(1,0),\mathcal{O}), (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O},\mathcal{O}(1,0)) \end{split}$$

In this case *S* is a smooth toric, i.e. have an action of  $T = \mathbb{C}^* \times \mathbb{C}^*$  with finitely many fixpoints, Action of *T* lifts to action on  $S^{[n]}$  still with finitely many fixpoints described by partitions, compute by equivariant localization. This computes  $Z_S(a_1, a_2, s, q)$  in terms of combinatorics of partitions.

| Introduction                   | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------------------------|------------------------------------------|----------|----------------------|-----------------|
|                                |                                          |          | 000000000000         |                 |
| Reduction to $\mathbb{P}^2$ as | nd $\mathbb{P}^1 \times \mathbb{P}^1$ .  |          |                      |                 |

# Computation: Wrote a Pari/GP program



```
Computation: Wrote a Pari/GP program Result: Computed A_1, \ldots A_7
```

mod  $q^{31}$  for  $e^{\text{vir}}(M)$ mod  $q^8$  for  $\chi^{\text{vir}}_{-y}(M)$ mod  $q^7$  for  $Ell^{\text{vir}}(M)$  and  $\{M\}^{\text{vir}}$ 



```
Computation: Wrote a Pari/GP program Result: Computed A_1, \ldots A_7
```

```
mod q^{31} for e^{\text{vir}}(M)
mod q^8 for \chi^{\text{vir}}_{-y}(M)
mod q^7 for Ell^{\text{vir}}(M) and \{M\}^{\text{vir}}
```

This confirms conjectures for K3 surfaces, their blowups, elliptic surfaces, double covers of  $\mathbb{P}^2$  and rational ruled surfaces, complete intersections, for vd(M) smaller than roughly  $\frac{3}{2}$  times the power of q.

| Introduction             | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |  |  |
|--------------------------|------------------------------------------|----------|----------------------|-----------------|--|--|
| Equivariant localization |                                          |          |                      |                 |  |  |
|                          |                                          |          |                      |                 |  |  |

Let *X* be a smooth projective variety with action of  $T = \mathbb{C}^* \times \mathbb{C}^*$ 

with finitely many fixpoints,  $p_1, \ldots, p_e$ 

Let *E* be equivariant vector bundle of rank *r* on *X*.

| Introduction        | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|---------------------|------------------------------------------|------------------|----------------------|-----------------|
| Equivariant localiz | ation                                    |                  |                      |                 |

Let *X* be a smooth projective variety with action of  $T = \mathbb{C}^* \times \mathbb{C}^*$  with finitely many fixpoints,  $p_1, \ldots, p_e$ 

Let *E* be equivariant vector bundle of rank r on *X*.

Fibre  $E(p_i)$  of X at fixp.  $p_i$  has basis of eigenvect. for T-action  $E(p_i) = \bigoplus_{k=1}^r \mathbb{C}v_i$ , with action  $(t_1, t_2) \cdot v_i = t_1^{n_i} t_2^{m_i} v_i$ ,  $n_i, m_i \in \mathbb{Z}$ 

| Introduction             | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |  |
|--------------------------|------------------------------------------|------------------|----------------------|-----------------|--|
| Equivariant localization |                                          |                  |                      |                 |  |

Let *X* be a smooth projective variety with action of  $T = \mathbb{C}^* \times \mathbb{C}^*$  with finitely many fixpoints,  $p_1, \ldots, p_e$ Let *E* be equivariant vector bundle of rank *r* on *X*.

Fibre  $E(p_i)$  of X at fixp.  $p_i$  has basis of eigenvect. for T-action  $E(p_i) = \bigoplus_{k=1}^r \mathbb{C}v_i$ , with action  $(t_1, t_2) \cdot v_i = t_1^{n_i} t_2^{m_i} v_i$ ,  $n_i, m_i \in \mathbb{Z}$ 

Equivariant Chern class of fibre at fixpoint:

$$c^{\mathsf{T}}(E(p_i)) = (1 + c_1^{\mathsf{T}}(E(p_i)) + \ldots + c_r^{\mathsf{T}}(E(p_i))) = \prod_{i=1}^{\mathsf{T}} (1 + n_i \epsilon_1 + m_i \epsilon_2) \in \mathbb{Z}[\epsilon_1, \epsilon_2]$$

r

| Introduction         | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|----------------------|------------------------------------------|------------------|----------------------|-----------------|
| Equivariant localiza | ation                                    |                  |                      |                 |

Let *X* be a smooth projective variety with action of  $T = \mathbb{C}^* \times \mathbb{C}^*$  with finitely many fixpoints,  $p_1, \ldots, p_e$ Let *E* be equivariant vector bundle of rank *r* on *X*.

Fibre  $E(p_i)$  of X at fixp.  $p_i$  has basis of eigenvect. for T-action  $E(p_i) = \bigoplus_{k=1}^r \mathbb{C}v_i$ , with action  $(t_1, t_2) \cdot v_i = t_1^{n_i} t_2^{m_i} v_i$ ,  $n_i, m_i \in \mathbb{Z}$ 

Equivariant Chern class of fibre at fixpoint:

$$c^{T}(E(p_{i})) = (1+c_{1}^{T}(E(p_{i}))+\ldots+c_{r}^{T}(E(p_{i}))) = \prod_{i=1}^{i}(1+n_{i}\epsilon_{1}+m_{i}\epsilon_{2}) \in \mathbb{Z}[\epsilon_{1},\epsilon_{2}]$$
  
Let  $P(c(E)))$  polynomial in Chern classes of  $E$ , of degree  $d = \dim(X)$ 

Theorem (Bott residue formula)

$$\int_{[X]} P(c(E)) = \sum_{k=1}^{e} \frac{P(c^{T}(E(p_k)))}{c_{dim(X)}^{T}(T_X(p_k))}$$

(does not depend on  $\epsilon_1, \epsilon_2$ )
| Introduction      | Virtual Euler number and its refinements                              | Examples<br>0000      | Check of conjectures | Further results |
|-------------------|-----------------------------------------------------------------------|-----------------------|----------------------|-----------------|
| Equivariant local | lization                                                              |                       |                      |                 |
| For s             | implicity $\mathcal{S}=\mathbb{P}^2.$ $\mathcal{T}=\mathbb{C}^*	imes$ | $\mathbb{C}^*$ acts c | on ℙ <sup>2</sup> by |                 |

$$(t_1, t_2) \cdot (X_0 : X_1 : X_2) = (X_0 : t_1 X_1 : t_2 X_2)$$

Fixpoints are  $p_0 = (1, 0, 0)$ ,  $p_1 = (0, 1, 0)$ ,  $p_2 = (0, 0, 1)$ .

| Introduction                                                                                         | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|------------------------------------------------------------------------------------------------------|------------------------------------------|----------|----------------------|-----------------|
| Equivariant local                                                                                    | lization                                 |          |                      |                 |
| For simplicity $S = \mathbb{P}^2$ . $T = \mathbb{C}^* \times \mathbb{C}^*$ acts on $\mathbb{P}^2$ by |                                          |          |                      |                 |

$$(t_1, t_2) \cdot (X_0 : X_1 : X_2) = (X_0 : t_1 X_1 : t_2 X_2)$$

Fixpoints are  $p_0 = (1, 0, 0)$ ,  $p_1 = (0, 1, 0)$ ,  $p_2 = (0, 0, 1)$ . Local (equivariant) coordinates near  $p_0$  are  $x = \frac{X_1}{X_0}$ ,  $y = \frac{X_2}{X_0}$ , T action  $(t_1, t_2)(x, y) = (t_1 x, t_2 y)$ , similar for the  $p_1, p_2$ 

| Introduction        | Virtual Euler number and its refinements         | Examples<br>0000       | Check of conjectures | Further results |
|---------------------|--------------------------------------------------|------------------------|----------------------|-----------------|
| Equivariant localiz | ation                                            |                        |                      |                 |
| For si              | mplicity $S=\mathbb{P}^2.$ $T=\mathbb{C}^*	imes$ | $\mathbb{C}^*$ acts of | on ℙ <sup>2</sup> by |                 |

$$(t_1, t_2) \cdot (X_0 : X_1 : X_2) = (X_0 : t_1 X_1 : t_2 X_2)$$

Fixpoints are  $p_0 = (1, 0, 0)$ ,  $p_1 = (0, 1, 0)$ ,  $p_2 = (0, 0, 1)$ . Local (equivariant) coordinates near  $p_0$  are  $x = \frac{X_1}{X_0}$ ,  $y = \frac{X_2}{X_0}$ , T action  $(t_1, t_2)(x, y) = (t_1 x, t_2 y)$ , similar for the  $p_1, p_2$   $Z \in (\mathbb{P}^2)^{[n]}$  is T-invariant  $\Longrightarrow Z = Z_0 \sqcup Z_1 \sqcup Z_2$   $supp(Z_i) = p_i$ .  $\Longrightarrow$  Reduce to case  $supp(Z) = p_i$ , e.g.  $p_0$ 

| Introduction     | Virtual Euler number and its refinements               | Examples<br>0000       | Check of conjectures | Further results |
|------------------|--------------------------------------------------------|------------------------|----------------------|-----------------|
| Equivariant loca | lization                                               |                        |                      |                 |
| For s            | simplicity $S - \mathbb{P}^2  T - \mathbb{C}^* \times$ | $\mathbb{C}^*$ acts of | n ℙ² hv              |                 |

$$(t_1, t_2) \cdot (X_0 : X_1 : X_2) = (X_0 : t_1 X_1 : t_2 X_2)$$

Fixpoints are  $p_0 = (1, 0, 0)$ ,  $p_1 = (0, 1, 0)$ ,  $p_2 = (0, 0, 1)$ . Local (equivariant) coordinates near  $p_0$  are  $x = \frac{X_1}{X_0}$ ,  $y = \frac{X_2}{X_0}$ , T action  $(t_1, t_2)(x, y) = (t_1x, t_2y)$ , similar for the  $p_1, p_2$  $Z \in (\mathbb{P}^2)^{[n]}$  is T-invariant  $\Longrightarrow Z = Z_0 \sqcup Z_1 \sqcup Z_2 \quad supp(Z_i) = p_i$ .  $\Longrightarrow$  Reduce to case  $supp(Z) = p_i$ , e.g.  $p_0$ Easy: Z is T-invariant  $\iff I_Z \in k[x, y]$  is gen. by monomials Can write

$$I_Z = (y^{n_0}, xy^{n_1}, ..., x^r y^{n_r}, x^{r+1})$$
  $(n_0, ..., n_r)$  partition of  $n$ 

Fixpoints on  $(\mathbb{P}^2)^{[n]}$  are in bijections with triples  $(P_0, P_1, P_2)$  of partitions of 3 numbers adding up to *n*.

| 0000000                  | 00000000 | 0000 | 00000000000 | 0000000 |  |
|--------------------------|----------|------|-------------|---------|--|
| Equivariant localization |          |      |             |         |  |

Need to compute things like  $c(\mathcal{O}^{[n]})$  $\mathcal{O}^{[n]}$  vector bundle on  $(\mathbb{P}^2)^{[n]}$  with fibre  $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z)$  Equivariant localization Need to compute things like  $c(\mathcal{O}^{[n]})$   $\mathcal{O}^{[n]}$  vector bundle on  $(\mathbb{P}^2)^{[n]}$  with fibre  $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z)$ If  $Z = Z_0 \sqcup Z_1 \sqcup Z_2$ ,  $supp(Z_i) = p_i$ , then  $\mathcal{O}^{[n]}(Z) = \mathcal{O}^{[n_0]}(Z_0) \oplus \mathcal{O}^{[n_1]}(Z_1) \oplus \mathcal{O}^{[n_2]}(Z_2)$  $c^T(\mathcal{O}^{[n]}(Z)) = c^T(\mathcal{O}^{[n_0]}(Z_0))c^T(\mathcal{O}^{[n_1]}(Z_1))c^T(\mathcal{O}^{[n_2]}(Z_2))$ 

Examples

Check of conjectures

Further results

Virtual Euler number and its refinements

Introduction

00000000000 Equivariant localization Need to compute things like  $c(\mathcal{O}^{[n]})$  $\mathcal{O}^{[n]}$  vector bundle on  $(\mathbb{P}^2)^{[n]}$  with fibre  $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z)$ If  $Z = Z_0 \sqcup Z_1 \sqcup Z_2$ ,  $supp(Z_i) = p_i$ , then  $\mathcal{O}^{[n]}(Z) = \mathcal{O}^{[n_0]}(Z_0) \oplus \mathcal{O}^{[n_1]}(Z_1) \oplus \mathcal{O}^{[n_2]}(Z_2)$  $c^{T}(\mathcal{O}^{[n]}(Z)) = c^{T}(\mathcal{O}^{[n_{0}]}(Z_{0}))c^{T}(\mathcal{O}^{[n_{1}]}(Z_{1}))c^{T}(\mathcal{O}^{[n_{2}]}(Z_{2}))$ Let e.g.  $Z = Z_0$ ,  $I_Z = (y^4, xy^2, x^2y, x^3)$ Then the fibre  $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z) = \mathbb{C}[x, y]/(y^4, xy^2, x^2y, x^3)$ 

Examples

Check of conjectures

Further results

Thus basis of eigenvectors of fibre for T action is

Virtual Euler number and its refinements

Introduction

Equivariant localization  
Need to compute things like 
$$c(\mathcal{O}^{[n]})$$
  
 $\mathcal{O}^{[n]}$  vector bundle on  $(\mathbb{P}^2)^{[n]}$  with fibre  $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z)$   
If  $Z = Z_0 \sqcup Z_1 \sqcup Z_2$ ,  $supp(Z_i) = p_i$ , then  
 $\mathcal{O}^{[n]}(Z) = \mathcal{O}^{[n_0]}(Z_0) \oplus \mathcal{O}^{[n_1]}(Z_1) \oplus \mathcal{O}^{[n_2]}(Z_2)$   
 $c^T(\mathcal{O}^{[n]}(Z)) = c^T(\mathcal{O}^{[n_0]}(Z_0))c^T(\mathcal{O}^{[n_1]}(Z_1))c^T(\mathcal{O}^{[n_2]}(Z_2))$   
Let e.g.  $Z = Z_0$ ,  $I_Z = (y^4, xy^2, x^2y, x^3)$   
Then the fibre  $\mathcal{O}^{[n]}(Z) = H^0(\mathcal{O}_Z) = \mathbb{C}[x, y]/(y^4, xy^2, x^2y, x^3)$   
Thus basis of eigenvectors of fibre for  $T$  action is

Check of conjectures

Virtual Euler number and its refinements

Thus

$$c^{\mathsf{T}}(\mathcal{O}^{[n]}(Z)) = (1+\epsilon_2)(1+2\epsilon_2)(1+3\epsilon_2)(1+\epsilon_1)(1+\epsilon_1+\epsilon_2)(1+2\epsilon_1).$$

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results<br>●○○○○○○ |
|-----------------|------------------------------------------|------------------|----------------------|----------------------------|
| The rank 3 case |                                          |                  |                      |                            |

Now: state version of the Vafa-Witten formula for moduli space  $M_S^H(3, c_1, c_2)$  of rank 3 sheaves. (There is a *wrong* physics prediction for all ranks  $\geq$  3) Have formulas both for  $\chi_{-y}^{\text{vir}}(M)$  and  $e^{\text{vir}}(M)$ . For simplicity state only for  $e^{\text{vir}}(M)$ .

The formula again depends on the expected dimension

$$vd = vd(M_S^H(3, c_1, c_2) = 6c_2 - 2c_1^2 - 8\chi(\mathcal{O}_S).$$

Again assume *S* algebraic surface with  $b_1(S) = 0$  and  $p_g(S) > 0$ . For simplicity assume *S* contains an irreducible canonical curve (zero set of a holomorphic 2 form).

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|-----------------|------------------------------------------|------------------|----------------------|-----------------|
| The rank 3 case |                                          |                  |                      |                 |

$$\Theta_{A,0}(x) = \sum_{(n,m)\in\mathbb{Z}^2} x^{2(n^2 - nm + m^2)}, \quad \Theta_{A,1}(x) = \sum_{(n,m)\in\mathbb{Z}^2} \epsilon^{n+m} x^{2(n^2 - nm + m^2)}$$

Theta functions for  $A_2$ -lattice, here  $\epsilon = e^{2\pi i/3}$ .

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results<br>o●ooooo |
|-----------------|------------------------------------------|------------------|----------------------|----------------------------|
| The rank 3 case |                                          |                  |                      |                            |

$$\Theta_{A,0}(x) = \sum_{(n,m)\in\mathbb{Z}^2} x^{2(n^2 - nm + m^2)}, \quad \Theta_{A,1}(x) = \sum_{(n,m)\in\mathbb{Z}^2} \epsilon^{n+m} x^{2(n^2 - nm + m^2)}$$

Theta functions for  $A_2$ -lattice, here  $\epsilon = e^{2\pi i/3}$ . Define modular function

$$Z(x) := rac{\Theta_{A,0}(x)}{\Theta_{A,1}(x)} = 1 + 9x^2 + 27x^4 + 81x^6 + O(x^8),$$

Define  $z_1(x)$ ,  $z_2(x) = z_1(-x)$  as the solutions of the equation  $w^2 - 4z(x)^2w + 4z(x) = 0.$ 

|                 |  | 00000000000 | 000000 |
|-----------------|--|-------------|--------|
| The rank 3 case |  |             |        |

$$\Theta_{A,0}(x) = \sum_{(n,m)\in\mathbb{Z}^2} x^{2(n^2 - nm + m^2)}, \quad \Theta_{A,1}(x) = \sum_{(n,m)\in\mathbb{Z}^2} \epsilon^{n+m} x^{2(n^2 - nm + m^2)}$$

Theta functions for  $A_2$ -lattice, here  $\epsilon = e^{2\pi i/3}$ . Define modular function

$$Z(x) := rac{\Theta_{A,0}(x)}{\Theta_{A,1}(x)} = 1 + 9x^2 + 27x^4 + 81x^6 + O(x^8),$$

Define  $z_1(x)$ ,  $z_2(x) = z_1(-x)$  as the solutions of the equation  $w^2 - 4z(x)^2w + 4z(x) = 0.$ 

Recall  $\overline{\eta}(x) = \prod_{n>0} (1 - x^n)$ , and define

$$\begin{split} \Psi_{S,c_1}(x) &= 9 \left( \frac{1}{3\overline{\eta}(x^2)^{12}} \right)^{\chi(\mathcal{O}_S)} \left( \frac{3\overline{\eta}(x^6)^3}{\Theta_{A,1}(x)} \right)^{K_S^2} \\ & \cdot \left( z_1(x)^{K_S^2} + z_2(x)^{K_S^2} + (-1)^{\chi(\mathcal{O}_S)} (\epsilon^{c_1K_S} + \epsilon^{-c_1K_S}) \right). \end{split}$$

| Introduction    | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results<br>o●ooooo |
|-----------------|------------------------------------------|------------------|----------------------|----------------------------|
| The rank 3 case |                                          |                  |                      |                            |

$$\Theta_{A,0}(x) = \sum_{(n,m)\in\mathbb{Z}^2} x^{2(n^2 - nm + m^2)}, \quad \Theta_{A,1}(x) = \sum_{(n,m)\in\mathbb{Z}^2} \epsilon^{n+m} x^{2(n^2 - nm + m^2)}$$

Theta functions for  $A_2$ -lattice, here  $\epsilon = e^{2\pi i/3}$ . Define modular function

$$Z(x) := rac{\Theta_{A,0}(x)}{\Theta_{A,1}(x)} = 1 + 9x^2 + 27x^4 + 81x^6 + O(x^8),$$

Define  $z_1(x)$ ,  $z_2(x) = z_1(-x)$  as the solutions of the equation  $w^2 - 4z(x)^2w + 4z(x) = 0.$ 

Recall  $\overline{\eta}(x) = \prod_{n>0} (1 - x^n)$ , and define

$$\begin{split} \Psi_{\mathcal{S},c_{1}}(x) &= 9 \left( \frac{1}{3\overline{\eta}(x^{2})^{12}} \right)^{\chi(\mathcal{O}_{\mathcal{S}})} \left( \frac{3\overline{\eta}(x^{6})^{3}}{\Theta_{A,1}(x)} \right)^{K_{\mathcal{S}}^{2}} \\ &\cdot \left( z_{1}(x)^{K_{\mathcal{S}}^{2}} + z_{2}(x)^{K_{\mathcal{S}}^{2}} + (-1)^{\chi(\mathcal{O}_{\mathcal{S}})} (\epsilon^{c_{1}K_{\mathcal{S}}} + \epsilon^{-c_{1}K_{\mathcal{S}}}) \right). \end{split}$$

### Conjecture

 $\boldsymbol{e}^{\mathrm{vir}}(\boldsymbol{M}^{H}_{\mathcal{S}}(\boldsymbol{3},\boldsymbol{c}_{1},\boldsymbol{c}_{2}))=\mathrm{Coeff}_{\boldsymbol{X}^{\mathrm{vd}}}\big[\Psi_{\mathcal{S},\boldsymbol{c}_{1}}(\boldsymbol{X})\big].$ 

Introduction

Virtual Euler number and its refinements

Examples

Check of conjectures

Further results

#### Unification of Witten and Vafa-Witten conjecture

*S* algebraic surface with  $b_1 = 0$ ,  $p_g > 0$  $M_S^H(c_1, c_2) = H$ -semi-stable rank 2 sheaves on *S E* universal sheaf on  $S \times M$ . For  $\alpha \in H_2(S)$ , put

$$\mu(\beta) = p_{M*}(c_2(E) - c_1^2(E)/4)/\alpha \in H^2(M)$$

Introduction

Virtual Euler number and its refinements

Examples 0000 Check of conjectures

Further results

### Unification of Witten and Vafa-Witten conjecture

*S* algebraic surface with  $b_1 = 0$ ,  $p_g > 0$  $M_S^H(c_1, c_2) = H$ -semi-stable rank 2 sheaves on *S E* universal sheaf on  $S \times M$ . For  $\alpha \in H_2(S)$ , put

$$\mu(\beta) = p_{M*}(c_2(E) - c_1^2(E)/4)/\alpha \in H^2(M)$$

**Donaldson invariant:** 

$$D_{\mathcal{S},c_1}(\frac{\alpha^{\mathrm{vd}}}{\mathrm{vd}!}) = \int_{[M_{\mathcal{S}}^{\mathcal{H}}(c_1,c_2)]^{\mathrm{vir}}} \frac{\mu(\alpha)^{\mathrm{vd}}}{\mathrm{vd}!}$$

Introduction

Virtual Euler number and its refinements

Examples 0000 Check of conjectures

Further results

### Unification of Witten and Vafa-Witten conjecture

*S* algebraic surface with  $b_1 = 0$ ,  $p_g > 0$  $M_S^H(c_1, c_2) = H$ -semi-stable rank 2 sheaves on *S E* universal sheaf on  $S \times M$ . For  $\alpha \in H_2(S)$ , put

$$\mu(\beta) = p_{M*}(c_2(E) - c_1^2(E)/4)/\alpha \in H^2(M)$$

**Donaldson invariant:** 

$$\mathcal{D}_{\mathcal{S}, \mathcal{C}_1}(rac{lpha^{\mathrm{vd}}}{\mathrm{vd}!}) = \int_{[\mathcal{M}_{\mathcal{S}}^H(\mathcal{C}_1, \mathcal{C}_2)]^{\mathrm{vir}}} rac{\mu(lpha)^{\mathrm{vd}}}{\mathrm{vd}!}$$

## Theorem (Witten conj., G.-Nakajima, Yoshioka)

$$D_{S,c_{1}}\left(\frac{\alpha^{\mathrm{vd}}}{\mathrm{vd}!}\right) = 2^{2+\mathcal{K}_{S}^{2}-\chi(\mathcal{O}_{S})}\mathrm{Coeff}_{z^{\mathrm{vd}}}\left[\exp\left(\frac{Q(\alpha)}{2}z^{2}\right)\right.\\\left.\left.\left.\left.\sum_{a_{i}\ SWcl.}SW(a_{i})(-1)^{\langle c_{1},a_{i}\rangle}\exp\left(\langle\mathcal{K}_{S}-2a_{i},\alpha\rangle z\right)\right]\right.\right]$$

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
|              |                                          |          |                      | 0000000         |

Unification of Witten and Vafa-Witten conjecture

Interpolate between VW and Don. invariants

Eisenstein series:

$$G_2(x) := \sum_{n>0} \Big(\sum_{d|n} d\Big) x^n, \quad DG_2(x) := \sum_{n>0} \Big(\sum_{d|n} nd\Big) x^n$$

Conjecture

. а

$$\int_{[M_{S}^{H}(c_{1},c_{2})]^{\text{vir}}} C_{\text{vd}-n}(T_{M_{S}^{H}(c_{1},n)}^{\text{vir}}) \frac{\mu(\alpha)^{n}}{n!} = \text{Coeff}_{x^{\text{vd}}z^{n}} \left[ 8 \left( \frac{1}{2\overline{\eta}(x^{2})^{12}} \right)^{\chi(\mathcal{O}_{S})} \right.$$
$$\left. \left( \frac{2\overline{\eta}(x^{4})^{2}}{\theta_{3}(x)} \right)^{K_{S}^{2}} \exp\left( \frac{1}{2} DG_{2}(x^{2}) Q(\alpha) z^{2} - 2G_{2}(x^{2}) \langle K_{S}, \alpha \rangle z \right) \right) \right.$$
$$\sum_{SWcl.} SW(a_{i})(-1)^{\langle c_{1},a_{i} \rangle} \left( \frac{\theta_{3}(x)}{\theta_{3}(-x)} \right)^{\langle K_{S},a_{i} \rangle} e^{\left( \frac{1}{2} (G_{2}(x) - G_{2}(-x)) \langle K_{S} - 2a_{i}, \alpha \rangle z \right)} \right]$$

 $z \rightarrow 0$ : Vafa-Witten invariants,  $x \rightarrow 0$ ,  $xz \rightarrow 1$ : Donaldson invariants

| Introduction   | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results<br>○○○○●○○ |
|----------------|------------------------------------------|------------------|----------------------|----------------------------|
| Elliptic genus |                                          |                  |                      |                            |
|                |                                          |                  |                      |                            |
|                |                                          |                  |                      |                            |

**Elliptic genus:** (Introduced by Witten, motivated by physics). The elliptic genus is a refinement of the  $\chi_{-y}$ -genus. It associates to a smooth projective variety a Jacobi form (something like a modular form in two variables e.g.  $\theta_3(x, y)$ )

| Introduction   | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|----------------|------------------------------------------|------------------|----------------------|-----------------|
| Elliptic genus |                                          |                  |                      |                 |

**Elliptic genus:** (Introduced by Witten, motivated by physics). The elliptic genus is a refinement of the  $\chi_{-y}$ -genus. It associates to a smooth projective variety a Jacobi form (something like a modular form in two variables e.g.  $\theta_3(x, y)$ ) For vector bundle *E* put

$$Ell_{q,y}(E) = y^{-\operatorname{rk}(E)/2} \bigotimes_{n \ge 1} \left( \Lambda_{-yq^{n-1}} E^{\vee} \otimes \Lambda_{-yq^{n}} E \otimes S_{q^{n}} E^{\vee} \otimes S_{q^{n}} E \right),$$
$$\Lambda_{t}(E) = \bigoplus_{n \ge 0} t^{n} \Lambda^{n} E, \quad S_{t}(E) = \bigoplus_{n \ge 0} t^{n} S^{n} E.$$

| Introduction   | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|----------------|------------------------------------------|------------------|----------------------|-----------------|
| Elliptic genus |                                          |                  |                      |                 |

**Elliptic genus:** (Introduced by Witten, motivated by physics). The elliptic genus is a refinement of the  $\chi_{-y}$ -genus. It associates to a smooth projective variety a Jacobi form (something like a modular form in two variables e.g.  $\theta_3(x, y)$ ) For vector bundle *E* put

$$Ell_{q,y}(E) = y^{-\operatorname{rk}(E)/2} \bigotimes_{n \ge 1} \left( \Lambda_{-yq^{n-1}} E^{\vee} \otimes \Lambda_{-yq^{n}} E \otimes S_{q^{n}} E^{\vee} \otimes S_{q^{n}} E \right),$$
$$\Lambda_{t}(E) = \bigoplus_{n \ge 0} t^{n} \Lambda^{n} E, \quad S_{t}(E) = \bigoplus_{n \ge 0} t^{n} S^{n} E.$$

 $\begin{array}{l} \textit{Ell}(X) := \chi(X,\textit{Ell}_{q,y}(\mathcal{T}_X)) \text{ elliptic genus.} \\ \textit{Ell}^{\text{vir}}(M) := \chi^{\text{vir}}(M,\textit{Ell}_{q,y}(\mathcal{T}_M^{\text{vir}})) \text{ virtual elliptic genus.} \\ \text{for } q = 0 \textit{ Ell}^{\text{vir}}(M) \text{ specializes to } \chi^{\text{vir}}_{-y}(M). \end{array}$ 

| Introduction   | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results<br>○○○○●○ |
|----------------|------------------------------------------|------------------|----------------------|---------------------------|
| Elliptic genus |                                          |                  |                      |                           |

**DMVV formula** (conj. Dijkgraaf-Moore-Verlinde-Verlinde '97), (proof: Borisov-Libgober '00) Put

$$L\Big(\sum_{m,l}c_{m,l}y^lq^m\Big) := \prod_{n>0}\prod_{m,l}(1-x^ny^lq^m)^{c_{nm,l}}$$

Borcherds type lift, Jacobi form  $\mapsto$  Siegel modular form

| Introduction   | Virtual Euler number and its refinements | Examples<br>0000 | Check of conjectures | Further results |
|----------------|------------------------------------------|------------------|----------------------|-----------------|
| Elliptic genus |                                          |                  |                      |                 |

**DMVV formula** (conj. Dijkgraaf-Moore-Verlinde-Verlinde '97), (proof: Borisov-Libgober '00) Put

$$L\Big(\sum_{m,l}c_{m,l}y^lq^m\Big):=\prod_{n>0}\prod_{m,l}(1-x^ny^lq^m)^{c_{nm,l}}$$

Borcherds type lift, Jacobi form  $\mapsto$  Siegel modular form Then

$$\sum_{n\geq 0} EII(S^{[n]})x^n = \frac{1}{L(EII(S))} = \left(\frac{1}{L(24\phi_2)} \text{ for } S = K3\right).$$

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
|              |                                          |          |                      | 000000          |
|              |                                          |          |                      |                 |

### Elliptic genus

$$\begin{aligned} G_{1,0}(q,y) &= -\frac{1}{2} \frac{y+1}{y-1} + \sum_{n>0} \sum_{d|n} (y^d - y^{-d}) q^n, \ G_2(q) &= -\frac{1}{24} + \sum_{n>0} \sum_{d|n} dq^n \\ G_{2,0}(q,y) &= y \frac{\partial G_{1,0}(q,y)}{\partial y} - 2G_2(q) = \wp(q,y), \quad G_{3,0}(q,y) = y \frac{\partial \wp(q,y)}{\partial y} \\ \phi_i(q,y) &:= G_{i,0}(q,y) \left( (y^{1/2} - y^{-1/2}) \prod_{n>0} \frac{(1-q^n y)(1-q^n/y)}{(1-q^n)^2} \right)^i \\ L \left( \sum_{m,l} c_{m,l} y^l q^m \right) &:= \prod_{n>0} \prod_{m,l} (1-x^n y^l q^m)^{c_{nm,l}}, \quad L_n(\phi) = L(\phi)|_{x=x^n} \end{aligned}$$

| Introduction | Virtual Euler number and its refinements | Examples | Check of conjectures | Further results |
|--------------|------------------------------------------|----------|----------------------|-----------------|
|              |                                          |          |                      | 0000000         |
|              |                                          |          |                      |                 |

### Elliptic genus

$$\begin{split} G_{1,0}(q,y) &= -\frac{1}{2} \frac{y+1}{y-1} + \sum_{n>0} \sum_{d|n} (y^d - y^{-d}) q^n, \ G_2(q) = -\frac{1}{24} + \sum_{n>0} \sum_{d|n} dq^n \\ G_{2,0}(q,y) &= y \frac{\partial G_{1,0}(q,y)}{\partial y} - 2G_2(q) = \wp(q,y), \quad G_{3,0}(q,y) = y \frac{\partial \wp(q,y)}{\partial y} \\ \phi_i(q,y) &:= G_{i,0}(q,y) \left( (y^{1/2} - y^{-1/2}) \prod_{n>0} \frac{(1-q^n y)(1-q^n / y)}{(1-q^n)^2} \right)^i \\ L \left( \sum_{m,l} c_{m,l} y^l q^m \right) &:= \prod_{n>0} \prod_{m,l} (1-x^n y^l q^m)^{c_{nm,l}}, \quad L_n(\phi) = L(\phi)|_{x=x^n} \end{split}$$

# Conjecture

$$Ell^{\text{vir}}(M_{S}^{H}(c_{1}, c_{2})) = \text{Coeff}_{x^{vd}} \left[ 8 \left( \frac{1}{2} \frac{1}{L_{2}(12\phi_{2})} \right)^{\chi(\mathcal{O}_{S})} \\ \cdot \left( \frac{2L_{4}(\phi_{1}\phi_{3})L(-2\phi_{1})}{L_{2}(-2\phi_{1}^{\text{ev}}(q^{1/2}, y) - \phi_{1}(q^{2}, y^{2}) + 2\phi_{1}^{2})} \right)^{K_{S}^{2}} \right].$$