Introduction 00000000	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function

Holomorphic Euler Characteristics of line bundles on moduli spaces of sheaves on surfaces

Lothar Göttsche joint work with (1) H.Nakajima, K.Yoshioka, (2) D.Zagier

Interactions of Classical and Numerical Algebraic Geometry, Notre Dame, May 2008

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Introduction				

Invariants of moduli spaces: A moduli space is a variety *M* parametrizing objects, we are interested in. Invariants are intersection numbers $\int_M \alpha$ on moduli spaces. Often interesting in theoretical physics. **Examples of Moduli spaces**

- Moduli space of stable maps M_{g,n}(X, β) parametrizes morphism from a curve of genus g to a smooth variety X. The corresponding invariants are Gromov-Witten invariants
- Moduli space of stable vector bundles/sheaves on curve/surface/threefold corresponding invariants: conformal blocks/Donaldson inv./Donaldson-Thomas inv.

Introduction o o o o o o o o o o o o o o o o o o	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Introduction				

For a long time motivation for studying moduli spaces of sheaves on surfaces were Donaldson invariants. Refinement:

Let *Y* compact complex manifold of dimension *d*, $L \in Pic(X)$. Can define two related invariants of (Y, L):

• $\int_Y c_1(L)^d$ (degree)

2 $\chi(Y,L) = \sum_{i=0}^{d} (-1)^{i} h^{i}(Y,L)$ (holom. Euler char.)

Riemann-Roch: $\chi(Y, L^{\otimes n}) = \frac{n^d}{d!} \int_Y c_1(L)^d + O(n^{d-1})$. Thus (2) is a refinement of (1)

Introduction 0000000	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Introduction				

For a long time motivation for studying moduli spaces of sheaves on surfaces were Donaldson invariants. Refinement:

Let *Y* compact complex manifold of dimension *d*, $L \in Pic(X)$. Can define two related invariants of (Y, L):

• $\int_Y c_1(L)^d$ (degree)

2 $\chi(Y,L) = \sum_{i=0}^{d} (-1)^{i} h^{i}(Y,L)$ (holom. Euler char.)

Riemann-Roch: $\chi(Y, L^{\otimes n}) = \frac{n^d}{d!} \int_Y c_1(L)^d + O(n^{d-1})$. Thus (2) is a refinement of (1)

 $\chi(Y, L)$ contains geometric information about *Y* For *C* curve $\chi(C, L) = deg(L) + 1 - g$, i.e. determines genus In general information about linear systems, morphisms.

Introduction 0000000	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Introduction				

For a long time motivation for studying moduli spaces of sheaves on surfaces were Donaldson invariants. Refinement:

Let *Y* compact complex manifold of dimension *d*, $L \in Pic(X)$. Can define two related invariants of (Y, L):

• $\int_Y c_1(L)^d$ (degree)

2 $\chi(Y,L) = \sum_{i=0}^{d} (-1)^{i} h^{i}(Y,L)$ (holom. Euler char.)

Riemann-Roch: $\chi(Y, L^{\otimes n}) = \frac{n^d}{d!} \int_Y c_1(L)^d + O(n^{d-1})$. Thus (2) is a refinement of (1)

 $\chi(Y, L)$ contains geometric information about *Y* For *C* curve $\chi(C, L) = deg(L) + 1 - g$, i.e. determines genus In general information about linear systems, morphisms.

- Donaldson inv.=deg. of line bundle L on moduli of sheaves
- K-theory Don. inv.= holomorphic Euler characteristic of L

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
aside: Verlinde formu	la			

Let *C* nonsingular projective curve of genus g $M_C(r, L) =$ Moduli space of rk *r* bundles *E* on *C* with det(E) = L

One shows $Pic(M_C(r, L)) = \mathbb{Z} \cdot \theta$

Theorem

(Verlinde formula)

$$h^{0}(M_{C}(r,\mathcal{O}),\theta^{k}) = \chi(M_{C}(r,\mathcal{O}),\theta^{k})$$
$$= \frac{r^{g}}{(r+k)^{g}} \sum_{\substack{S \sqcup T = \{1,\dots,r+k\} \\ |S|=k}} \prod_{s \in S} \prod_{t \in T} \left| 2\sin\left(\pi\frac{s-t}{r+k}\right) \right|^{g-1}$$

In some sense we are trying to find the analogue of the Verlinde formula for surfaces.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Moduli spaces				

X simply conn. proj. algebraic surface, H ample on X Fix $c_1 \in H^2(X, \mathbb{Z})$, $c_2 \in H^4(X, \mathbb{Z})$.

 $M := M_X^H(c_1, c_2)$ = moduli space of *H*-stable rk 2 torsion-free sheaves on *X*

torsion free sheaf="vector bundle with singularities" *H*-stable: "all subsheaves of \mathcal{E} are small": $\frac{h^{0}(\mathcal{F}\otimes H^{\otimes n})}{\operatorname{rk}(\mathcal{F})} < \frac{h^{0}(\mathcal{E}\otimes H^{\otimes n})}{\operatorname{rk}(\mathcal{E})} \text{ for all } 0 \neq \mathcal{F} \subset \mathcal{E}, n \gg 0$

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Moduli spaces				

X simply conn. proj. algebraic surface, H ample on X Fix $c_1 \in H^2(X, \mathbb{Z})$, $c_2 \in H^4(X, \mathbb{Z})$.

 $M:=M_X^H(c_1,c_2)$

= moduli space of H-stable rk 2 torsion-free sheaves on X

torsion free sheaf="vector bundle with singularities" *H*-stable: "all subsheaves of \mathcal{E} are small": $\frac{h^{0}(\mathcal{F}\otimes H^{\otimes n})}{rk(\mathcal{F})} < \frac{h^{0}(\mathcal{E}\otimes H^{\otimes n})}{rk(\mathcal{E})} \text{ for all } 0 \neq \mathcal{F} \subset \mathcal{E}, n \gg 0$ Moduli space means:

- As set *M* is the set of isomorphism classes [*E*] of *H*-stable torsion free sheaves on *X*
- 2 If $\mathcal{E}/X \times S$ flat family of sheaves, then $S \to M$; $s \mapsto [\mathcal{E}|_{X \times \{s\}}]$ is a morphism.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Definition of invariants	s			

Simplifying assumptions:

- M is compact
- There is a universal sheaf *E* on X × M
 i.e. *E*|_{X×[E]} = *E* for all [*E*] ∈ M
- *M* is nonsingular of the expected dimension $d = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_X)$

All these assumptions can be removed.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Definition of invariants	s			

Simplifying assumptions:

- M is compact
- There is a universal sheaf \mathcal{E} on $X \times M$ i.e. $\mathcal{E}|_{X \times [E]} = E$ for all $[E] \in M$
- *M* is nonsingular of the expected dimension $d = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_X)$

All these assumptions can be removed.

 $K^0(X) :=$ Grothendieck group of vector bundles = free abelian group gen. by vector bundles on X / \equiv Here, if $0 \to E \to F \to G \to 0$ is an exact sequence, then $F \equiv E + G$.

This may look complicated, but is just a way to keep track of rank and Chern classes

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Wallcrossing} & \mbox{Strange duality} & \mbox{Rational surfaces} & \mbox{Nekrasov partition function} \\ \hline \mbox{Ooco} & \mbox{Ooco}$

Definition

Let
$$v \in K^0(X)$$
 with $\chi(X, c \otimes v) = 0$ (write $v \in c^{\perp}$)
The determinant bundle for v is

$$\lambda(\mathbf{v}) := \det(Rp_*(\mathcal{E}\otimes q^*(\mathbf{v}))^{-1} \in Pic(M))$$

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Wallcrossing} & \mbox{Strange duality} & \mbox{Rational surfaces} & \mbox{Nekrasov partition function} \\ \mbox{ooo} & \mbox{$

Definition

Let
$$v \in K^0(X)$$
 with $\chi(X, c \otimes v) = 0$ (write $v \in c^{\perp}$)
The determinant bundle for v is

$$\lambda(\mathbf{v}) := \det(Rp_*(\mathcal{E} \otimes q^*(\mathbf{v}))^{-1} \in Pic(M))$$

Let $L \in Pic(X)$. Assume Lc_1 even. Put

$$v(L) := L^{-1} - \mathcal{O}_X + k\mathcal{O}_{pt} \in c^{\perp}$$

The Donaldson line bundle for *L* is $\tilde{L} := \lambda(v(L))$.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Definition of invariant	ts			

The *K*-theoretic Donaldson invariant for *L* is $\chi(M, \tilde{L})$. Generating function:

$$\chi^X_{c_1,H}(L) := \sum_{c_2} \chi(M^H_X(c_1,c_2),\widetilde{L}) t^{c_2} \in \mathbb{Z}[[t]].$$

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Definition of invariant	ts			

The *K*-theoretic Donaldson invariant for *L* is $\chi(M, \tilde{L})$. Generating function:

$$\chi^{X}_{c_{1},H}(L) := \sum_{c_{2}} \chi \big(M^{H}_{X}(c_{1},c_{2}),\widetilde{L} \big) t^{c_{2}} \in \mathbb{Z}[[t]]$$

Standard Donaldson invariant $\int_M c_1(\tilde{L})^d$.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Definition of invariant	ts			

The *K*-theoretic Donaldson invariant for *L* is $\chi(M, \tilde{L})$. Generating function:

$$\chi^X_{c_1,H}(L) := \sum_{c_2} \chi ig(M^H_X(c_1,c_2),\widetilde{L} ig) t^{c_2} \in \mathbb{Z}[[t]]$$

Standard Donaldson invariant $\int_M c_1(\widetilde{L})^d$.

Theorem

(Jun Li) For $n \gg 0$ the line bundle nH on $M_X^H(c_1, c_2)$ is spanned, and defines a birational morphism onto the Uhlenbeck compactification.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Main results				

 $M_X^H(c_1, c_2)$ depends on H: There are walls (hyperplanes) in $H^2(X, \mathbb{R})$. $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Main results				

 $M_X^H(c_1, c_2)$ depends on H: There are walls (hyperplanes) in $H^2(X, \mathbb{R})$. $M_X^H(c_1, c_2)$ and invariants change only when H crosses a wall.

Aims:

- Prove wallcrossing formula for $\chi(M_X^H(c_1, c_2), \tilde{L})$
- For X for P² and rational ruled surfaces compute generating function as rational function
- Relate result to Le Potiers strange duality conjecture

Introduction	Wallcrossing ●○○○○	Strange duality	Rational surfaces	Nekrasov partition function
Walls				

Let (X, H) simply conn. polarized surface with $p_g(X) = 0$ $M_X^H(c_1, c_2)$ depends on H, via a system of walls and chambers.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Walls				

Let (X, H) simply conn. polarized surface with $p_g(X) = 0$ $M_X^H(c_1, c_2)$ depends on H, via a system of walls and chambers.

Definition

Let $C_X \subset H^2(X, \mathbb{R})$ be the ample cone. $\xi \in H^2(X, \mathbb{Z})$ defines wall of type (c_1, c_2) if

$$\ \, \bullet \xi \equiv c_1 \mod 2H^2(X,\mathbb{Z})$$

2
$$4c_2 - c_1^2 + \xi^2 \ge 0$$

The wall is

$$W^{\xi} := \{H \in C_X \mid H \cdot \xi = 0\}$$

Introduction	Wallcrossing ●○○○○	Strange duality	Rational surfaces	Nekrasov partition function
Walls				

Let (X, H) simply conn. polarized surface with $p_g(X) = 0$ $M_X^H(c_1, c_2)$ depends on H, via a system of walls and chambers.

Definition

Let $C_X \subset H^2(X, \mathbb{R})$ be the ample cone. $\xi \in H^2(X, \mathbb{Z})$ defines wall of type (c_1, c_2) if

$$\ \, { \ \, } \xi \equiv c_1 \mod 2 H^2(X,\mathbb{Z})$$

2
$$4c_2 - c_1^2 + \xi^2 \ge 0$$

The wall is

$$W^{\xi} := \{H \in C_X \mid H \cdot \xi = 0\}$$

Chambers=connected components of $C_X \setminus$ walls $M_X^H(c_1, c_2)$ and invariants constant on chambers, change when H crosses wall (i.e. $H_- \to H_+$ with $H_-\xi < 0 < H_+\xi$)

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
	0000			
Wallcrossing formula	a			

Let ξ define a wall of type (c_1, c_2) . Put $d := 4c_2 - c_1^2 - 3$ The wallcrossing term is $\Delta_{\xi,d}^X(L) := \chi(M_X^{H_+}(c_1, c_2)), \widetilde{L}) - \chi(M_X^{H_-}(c_1, c_2)), \widetilde{L}).$

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
	0000			
Wallcrossing formula				

Let ξ define a wall of type (c_1, c_2) . Put $d := 4c_2 - c_1^2 - 3$ The wallcrossing term is $\Delta_{\xi,d}^X(L) := \chi(M_X^{H_+}(c_1, c_2)), \widetilde{L}) - \chi(M_X^{H_-}(c_1, c_2)), \widetilde{L}).$

First aim: give a generating function for the wallcrossing terms in terms of elliptic functions.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Wallcrossing formula				

Theta functions:

$$\theta_{ab}(h) = \sum_{n \equiv a} (2) q^{n^2} (i^b y)^n, \ a, b \in \{0, 1\}, \ y = e^{h/2}$$

 $\theta_{ab} := \theta_{ab}(0), \ u := -\frac{\theta_{00}^2}{\theta_{10}^2} - \frac{\theta_{10}^2}{\theta_{00}^2}, \quad \Lambda := \frac{\theta_{11}(h)}{\theta_{01}(h)}$

Introduction 00000000	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Wallcrossing formula				

Theta functions:

$$\theta_{ab}(h) = \sum_{n \equiv a} (2) q^{n^2} (i^b y)^n, \ a, b \in \{0, 1\}, \ y = e^{h/2}$$

 $\theta_{ab} := \theta_{ab}(0), \ u := -\frac{\theta_{00}^2}{\theta_{10}^2} - \frac{\theta_{10}^2}{\theta_{00}^2}, \quad \Lambda := \frac{\theta_{11}(h)}{\theta_{01}(h)}$

Theorem

Write

$$q^{-\xi^2}y^{\xi(L-K_X)}\left(\frac{\theta_{01}(h)}{\theta_{01}}\right)^{(L-K_X)^2}\theta_{01}^{\sigma(X)}q\frac{du}{dq}\frac{dh}{d\Lambda}=\sum_{d\in\mathbb{Z}_{\geq 0}}f_d(q)\Lambda^d.$$

Introduction 00000000	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
Wallcrossing formula				

Theta functions:

$$\theta_{ab}(h) = \sum_{n \equiv a} (2) q^{n^2} (i^b y)^n, \ a, b \in \{0, 1\}, \ y = e^{h/2}$$

 $\theta_{ab} := \theta_{ab}(0), \ u := -\frac{\theta_{00}^2}{\theta_{10}^2} - \frac{\theta_{10}^2}{\theta_{00}^2}, \quad \Lambda := \frac{\theta_{11}(h)}{\theta_{01}(h)}$

Theorem

Write $q^{-\xi^{2}}y^{\xi(L-K_{X})}\left(\frac{\theta_{01}(h)}{\theta_{01}}\right)^{(L-K_{X})^{2}}\theta_{01}^{\sigma(X)}q\frac{du}{dq}\frac{dh}{d\Lambda} = \sum_{d\in\mathbb{Z}_{\geq 0}}f_{d}(q)\Lambda^{d}.$ Then $\Delta_{\xi,d}^{X}(L) := \chi(M_{X}^{H_{+}}(c_{1},c_{2}),\widetilde{L}) - \chi(M_{X}^{H_{-}}(c_{1},c_{2}),\widetilde{L}) = \pm \operatorname{Coeff}_{q^{0}}f_{d}(q).$

Generating function $\Delta_{\xi}^{X}(L) := \sum_{d} \Delta_{\xi,d}^{X}(L) \Lambda^{d} = \sum_{d} \operatorname{Coeff}_{q^{0}} f_{d}(q) \Lambda^{d}$

Introduction	Wallcrossing ○○○●○	Strange duality	Rational surfaces	Nekrasov partition function
Wallcrossing formula				

Before, to compute $\chi(M_X^H(c_1, c_2), \widetilde{L})$, need to understand $M_X^H(c_1, c_2)$ very well, only possible for small c_2 . Want to determine generating function $\sum_{c_2} \chi(M_X^H(c_1, c_2), \widetilde{L})t^{c_2}$ This should be hopeless.

However, wallcrossing formula gives information for arbitrary c2

Introduction	Wallcrossing ○○○●○	Strange duality	Rational surfaces	Nekrasov partition function
Wallcrossing formula				

Before, to compute $\chi(M_X^H(c_1, c_2), \widetilde{L})$, need to understand $M_X^H(c_1, c_2)$ very well, only possible for small c_2 . Want to determine generating function $\sum_{c_2} \chi(M_X^H(c_1, c_2), \widetilde{L})t^{c_2}$ This should be hopeless.

However, wallcrossing formula gives information for arbitrary c2

Remark

- The walls W^{ξ} of type (c_1, c_2) are locally finite in C_X .
- ② (bad news) If one wants to consider generating function $\sum_n \chi(M_X^H(c_1, n), \tilde{L})t^n$, one has to consider all walls W^{ξ} for all $\xi \in c_1 + 2H^2(X, \mathbb{Z})$. These are everywhere dense in C_X .

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
	0000			
Wallcrossing formula				

Corollary

(good news) Let ξ class of type (c_1, c_2)

•
$$\Delta_{\xi,d}^{X}(L) = 0$$
 for d large
(a wall contributes only in finitely may degrees)

2 If
$$|\xi(L - K_X)| + 1 \le -\xi^2$$
 then $\Delta_{\xi,d}^X(L) = 0$ for all d "Most walls do not contribute at all".

This is very different from the usual Donaldson invariants.

Introduction	Wallcrossing	Strange duality ●○	Rational surfaces	Nekrasov partition function
Strange duality				

Let X algebraic surface, let $c, v \in K^0(X)$ with $\chi(c \otimes v) = 0$. Assume $H^2(E \otimes F) = 0$ for all $[E] \in M(c)$, $[F] \in M(v)$.

$$\Theta := \big\{ (E,F) \in \textit{M}(\textit{c}) \times \textit{M}(\textit{v}) \mid \textit{h}^{0}(E \otimes F) \neq 0 \big\}$$

Assume Θ is zero set of $\sigma \in H^0(\mathcal{M}(c) \times \mathcal{M}(v), \lambda(v) \boxtimes \lambda(c))$ \implies Duality morphism $D : H^0(\mathcal{M}(c), \lambda(v))^{\vee} \to H^0(\mathcal{M}(v), \lambda(c))$

Introduction	Wallcrossing	Strange duality ●○	Rational surfaces	Nekrasov partition function
Strange duality				

Let X algebraic surface, let $c, v \in K^0(X)$ with $\chi(c \otimes v) = 0$. Assume $H^2(E \otimes F) = 0$ for all $[E] \in M(c)$, $[F] \in M(v)$.

$$\Theta := \big\{ (E,F) \in \textit{M}(\textit{c}) \times \textit{M}(\textit{v}) \mid \textit{h}^{0}(E \otimes F) \neq 0 \big\}$$

Assume Θ is zero set of $\sigma \in H^0(\mathcal{M}(c) \times \mathcal{M}(v), \lambda(v) \boxtimes \lambda(c))$ \implies Duality morphism $D : H^0(\mathcal{M}(c), \lambda(v))^{\vee} \to H^0(\mathcal{M}(v), \lambda(c))$

Conjecture/Question

- When is D : H⁰(M(c), λ(v))[∨] → H⁰(M(v), λ(c)) an isomorphism? (strong strange duality)
- When is χ(M(c), λ(v)) = χ(M(v), λ(c))? (weak strange duality)

Introduction 00000000	Wallcrossing	Strange duality ○●	Rational surfaces	Nekrasov partition function		
Case of Donaldson bundles						

Let
$$L \in Pic(X)$$
, $c(n)$ class of $E \in M_X^H(c_1, n)$
 $v(L) = \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt}$ independent of n .
 $c(n) = \mathcal{O} + \mathcal{O}(c_1) - n\mathcal{O}_{pt}$, thus
 $\lambda(c(n)) = \lambda(\mathcal{O} + \mathcal{O}(c_1)) \otimes \lambda(\mathcal{O}_{pt})^{\otimes -n}$.
It follows $\chi(M(v(L), \lambda(c(n))t^n \in \mathbb{Q}(t) \text{ is a rational function in } t$.
Strange duality implies $\chi(M_X^H(c_1, n), \widetilde{L}) = \chi(M(v(L), \lambda(c(n)))$

Introduction	Wallcrossing	Strange duality ○●	Rational surfaces	Nekrasov partition function		
Case of Donaldson bundles						

Let
$$L \in Pic(X)$$
, $c(n)$ class of $E \in M_X^H(c_1, n)$
 $v(L) = \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt}$ independent of n .
 $c(n) = \mathcal{O} + \mathcal{O}(c_1) - n\mathcal{O}_{pt}$, thus
 $\lambda(c(n)) = \lambda(\mathcal{O} + \mathcal{O}(c_1)) \otimes \lambda(\mathcal{O}_{pt})^{\otimes -n}$.
It follows $\chi(M(v(L), \lambda(c(n))t^n \in \mathbb{Q}(t)$ is a rational function in t .
Strange duality implies $\chi(M_X^H(c_1, n), \widetilde{L}) = \chi(M(v(L), \lambda(c(n)))$

Conjecture

Let X projective surface, H ample $n X, L \in Pic(X)$. Then $\sum_{n} \chi(M_X^H(c_1, n)\widetilde{L})t^n \in \mathbb{Q}(t)$.

Introduction	Wallcrossing	Strange duality ○●	Rational surfaces	Nekrasov partition function
Case of Donaldso	n bundles			

Let
$$L \in Pic(X)$$
, $c(n)$ class of $E \in M_X^H(c_1, n)$
 $v(L) = \mathcal{O}_X - L^{-1} + k\mathcal{O}_{pt}$ independent of n .
 $c(n) = \mathcal{O} + \mathcal{O}(c_1) - n\mathcal{O}_{pt}$, thus
 $\lambda(c(n)) = \lambda(\mathcal{O} + \mathcal{O}(c_1)) \otimes \lambda(\mathcal{O}_{pt})^{\otimes -n}$.
It follows $\chi(M(v(L), \lambda(c(n))t^n \in \mathbb{Q}(t)$ is a rational function in t .
Strange duality implies $\chi(M_X^H(c_1, n), \widetilde{L}) = \chi(M(v(L), \lambda(c(n)))$

Conjecture

Let X projective surface, H ample $n X, L \in Pic(X)$. Then $\sum_{n} \chi(M_X^H(c_1, n)\widetilde{L})t^n \in \mathbb{Q}(t)$.

Remark

There is natural morphism $\pi : M(v(L)) \to |L|, \mathcal{F} \mapsto supp(\mathcal{F})$ General fibre over [C] is $Pic^{d}(C)$.

Let X be a rational surface. Possibly after blowing up X there is an H_0 with $\chi(M_X^{H_0}(c_1, c_2), \tilde{L}) = 0$. \Longrightarrow Everything is determined by wallcrossing:

$$\chi(M_X^H(c_1, c_2), \widetilde{L}) = \sum_{\xi H_0 < 0 < \xi H} \Delta_{\xi, d}^X(L)$$

Let X be a rational surface. Possibly after blowing up X there is an H_0 with $\chi(M_X^{H_0}(c_1, c_2), \tilde{L}) = 0. \implies$ Everything is determined by wallcrossing:

$$\chi(M_X^H(c_1, c_2), \widetilde{L}) = \sum_{\xi H_0 < 0 < \xi H} \Delta_{\xi, d}^X(L)$$

Problem: If we want to look at generating functions, i.e. consider all c_2 , the sum becomes infinite. Need arguments about elliptic functions/modular forms to carry out the sum.

Introduction	Wallcrossing	Strange duality	Rational surfaces ○●○○○	Nekrasov partition function
Rational ruled surf	faces			
			G section. Let $L \in \mathbb{P}^1 \times \mathbb{P}^1$, then $L =$	

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
			0000	
Rational ruled surfa	ces			

Let X rational ruled surface. F fibre, G section. Let $L \in Pic(X)$. Put $s = L \cdot F$, $n = L \cdot G - G^2$. E.g. if $X = \mathbb{P}^1 \times \mathbb{P}^1$, then L = nF + sG

Theorem

• Let $c_1 = 0, F$ assume $\frac{H \cdot G - G^2}{H \cdot F} > \frac{n}{4}$, then

$$1 + \sum_{c_2 > 0} \chi(M_X^H(c_1, c_2), \widetilde{L}) t^{c_2} = \begin{cases} \frac{1}{(1-t)^{n+1}} & s = 0\\ \frac{1}{(1-t)^{2n+2}} & s = 1\\ \frac{1}{2} \frac{(1+t)^n + (-1)^{c_1 \cdot L/2} (1-t)^n}{(1-t)^{3n+3}} & s = 2 \end{cases}$$

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
			0000	
Rational ruled surfac	es			

Let X rational ruled surface. F fibre, G section. Let $L \in Pic(X)$. Put $s = L \cdot F$, $n = L \cdot G - G^2$. E.g. if $X = \mathbb{P}^1 \times \mathbb{P}^1$, then L = nF + sG

Theorem

• Let $c_1 = 0, F$ assume $\frac{H \cdot G - G^2}{H \cdot F} > \frac{n}{4}$, then

$$1 + \sum_{c_2 > 0} \chi(M_X^H(c_1, c_2), \widetilde{L}) t^{c_2} = \begin{cases} \frac{1}{(1-t)^{n+1}} & s = 0\\ \frac{1}{(1-t)^{2n+2}} & s = 1\\ \frac{1}{2} \frac{(1+t)^n + (-1)^{c_1 \cdot L/2} (1-t)^n}{(1-t)^{3n+3}} & s = 2 \end{cases}$$

2 Let $c_1 \cdot F$ odd, assume $\frac{n}{4} < \frac{H \cdot G - G^2}{H \cdot F} < n$, then

$$\sum_{c_2 > 0} \chi(M_X^H(c_1, c_2), \widetilde{L}) t^{c_2 - c_1^2/4} = \begin{cases} 0 & s = 0\\ \frac{t^{n/2}}{(1 - t)^{2n+2}} & s = 1\\ \frac{t^{n/4}}{2} \frac{(1 + t^{1/2})^n + (-1)^{c_1 L/2} (1 - t^{1/2})^n}{(1 - t)^{3n+3}} & s = 2 \end{cases}$$

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
The projective plane				

Want to use the formulas on $\widehat{\mathbb{P}}^2$ to get formulas for $\mathbb{P}^2.$ For this need blowup formulas.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
The projective plane				

Want to use the formulas on $\widehat{\mathbb{P}}^2$ to get formulas for \mathbb{P}^2 . For this need blowup formulas. Let *X* be a rational surface, \widehat{X} the blowup of *X* in a point. *E* the exceptional divisor. Let *H* ample on *X* and $L \in Pic(X)$

Theorem

$$\sum_{n} \chi(M_{\widehat{\chi}}^{H}(c_{1},n),\widetilde{L})t^{n} = \sum_{n} \chi(M_{X}^{H}(c_{1},n),\widetilde{L})t^{n}$$
$$\sum_{n} \chi(M_{\widehat{\chi}}^{H}(c_{1},n),\widetilde{L-E})t^{n} = (1-t)\sum_{n} \chi(M_{X}^{H}(c_{1},n),\widetilde{L})t^{n}$$

There are also "higher blowup formulas" for L - nE, which are more difficult to write

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
The projective plane				

Theorem

$$1 + \sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(0, c_2), \widetilde{nH}) t^{c_2} = \begin{cases} \frac{1}{(1-t)^3} & n = 1\\ \frac{1}{(1-t)^6} & n = 2\\ \frac{1+t^2}{(1-t)^{10}} & n = 3\\ \frac{1+6t^2+t^3}{(1-t)^{15}} & n = 4\\ \frac{1+21t^2+20t^3+21t^4+t^6}{(1-t)^{21}} & n = 5 \end{cases}$$
$$\sum_{c_2 > 0} \chi(M_{\mathbb{P}^2}(H, c_2), \widetilde{nH}) t^{c_2 - 1} = \begin{cases} \frac{1}{(1-t)^6} & n = 2\\ \frac{1+6t^2+t^3}{(1-t)^{15}} & n = 4 \end{cases}$$

For any \widetilde{nH} there is an algorithm to determine the generating function as explicit rational function in t (computed for $n \le 10$)

Introduction 0000000	Wallcrossing	Strange duality	Rational surfaces ○○○○●	Nekrasov partition function
The projective plane				

Danila determined other side of strange duality for H, 2H, 3H and checked strange duality in this case for small c_2 .

Corollary

(Strong) strange duality holds for $c_1 = 0, H, L = H, 2H, 3H$.

Yuan Yau is using the result to prove strange duality for larger *n* and for rational ruled surfaces.

Strange duality for K3 and abelian surfaces has been studied by Marian-Oprea. Belkale and Marian-Oprea, proved strange duality for curves (also called rank-level duality).

Instanton moduli space:

 $M(n) = \{(E, \phi) \mid E \text{ rk } 2, \text{ sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2}\}$

Instanton moduli space:

$$\begin{split} & \mathcal{M}(n) = \{(E,\phi) \mid E \text{ rk 2, sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2} \} \\ & \textbf{Torus action: } \mathbb{C}^* \times \mathbb{C}^* \text{ acts on } (\mathbb{P}^2, I_{\infty}): \\ & (t_1, t_2)(z_0 : z_1 : z_2) = (z_0 : t_1 z_1 : t_2 z_2). \\ & \text{Extra } \mathbb{C}^* \text{ acts by } s(E, \phi) = (E, diag(s^{-1}, s) \circ \phi). \end{split}$$

Instanton moduli space:

$$\begin{split} M(n) &= \{ (E,\phi) \mid E \text{ is } 2, \text{ sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2} \} \\ \text{Torus action: } \mathbb{C}^* \times \mathbb{C}^* \text{ acts on } (\mathbb{P}^2, I_{\infty}) \text{:} \\ (t_1, t_2)(z_0 : z_1 : z_2) &= (z_0 : t_1 z_1 : t_2 z_2). \\ \text{Extra } \mathbb{C}^* \text{ acts by } s(E, \phi) &= (E, diag(s^{-1}, s) \circ \phi). \\ \text{Fixpoints: } M(n)^{(\mathbb{C}^*)^3} &= \{ (I_{Z_1} \oplus I_{Z_2}), id) \mid Z_i \in Hilb^{n_i}(\mathbb{A}^2, 0) \text{ monomial} \} \end{split}$$

Instanton moduli space:

$$\begin{split} & M(n) = \{(E,\phi) \mid E \text{ rk } 2, \text{ sheaf on } \mathbb{P}^2 \text{ with } c_2(E) = n, \phi : E|_{I_{\infty}} \simeq \mathcal{O}^{\oplus 2} \} \\ & \text{Torus action: } \mathbb{C}^* \times \mathbb{C}^* \text{ acts on } (\mathbb{P}^2, I_{\infty}) \text{:} \\ & (t_1, t_2)(z_0 : z_1 : z_2) = (z_0 : t_1 z_1 : t_2 z_2). \\ & \text{Extra } \mathbb{C}^* \text{ acts by } s(E, \phi) = (E, diag(s^{-1}, s) \circ \phi). \\ & \text{Fixpoints: } M(n)^{(\mathbb{C}^*)^3} = \{(I_{Z_1} \oplus I_{Z_2}), id) \mid Z_i \in Hilb^{n_i}(\mathbb{A}^2, 0) \text{ monomial} \} \\ & \text{Character: Let } V \text{ vector space with } (\mathbb{C}^*)^3 \text{ action.} \Longrightarrow V = \sum_i V_{M_i} \\ & V_{M_i} \text{ eigenspace with eigenvalue } M_i \text{ Laurent monomial in } t_1, t_2, s. \end{split}$$

The Character of V is $ch(V) := \sum_{i} dim(V_{M_i})M_i$

The Nekrasov partition function is given by

$$Z^{inst}(\epsilon_1,\epsilon_2,\boldsymbol{a},\Lambda) := \sum_{n\geq 0} \left(\frac{\Lambda^4}{t_1t_2}\right)^n ch(H^0(\boldsymbol{M}(\boldsymbol{n}),\mathcal{O}))|_{t_1=e^{\epsilon_1},t_2=e^{\epsilon_2},s=e^a}$$

 $Z = Z^{inst}Z^{pert}$, where Z^{pert} is explicit function of $\epsilon_1, \epsilon_2, a, \Lambda$.

The Nekrasov partition function is given by

$$Z^{inst}(\epsilon_1,\epsilon_2,\boldsymbol{a},\Lambda) := \sum_{n\geq 0} \left(\frac{\Lambda^4}{t_1t_2}\right)^n ch(H^0(\boldsymbol{M}(\boldsymbol{n}),\mathcal{O}))|_{t_1=e^{\epsilon_1},t_2=e^{\epsilon_2},s=e^a}$$

 $Z = Z^{inst}Z^{pert}$, where Z^{pert} is explicit function of $\epsilon_1, \epsilon_2, a, \Lambda$.

Nekrasov Conjecture (Nekrasov-Okounkov, Nakajima-Yoshioka, Braverman-Etingof):

•
$$Z = \exp(\frac{F(\epsilon_1, \epsilon_2, a, \Lambda)}{\epsilon_1 \epsilon_2}), F$$
 regular at ϵ_1, ϵ_2

2 $F|_{\epsilon_1=\epsilon_2=0}$ can be expressed in terms of elliptic functions.

Introduction	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function
				000
D (()				

Proof of wallcrossing formula

Express wallcrossing in terms of the Nekrasov partition function, then wallcrossing formula follows from the Nekrasov conjecture.

Introduction 00000000	Wallcrossing	Strange duality	Rational surfaces	Nekrasov partition function ○○●		

Express wallcrossing in terms of the Nekrasov partition function, then wallcrossing formula follows from the Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes .

Express wallcrossing in terms of the Nekrasov partition function, then wallcrossing formula follows from the Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes . Wallcrossing is by replacing sheaves lying in extensions

$$0 \rightarrow I_{Z_1}(\xi) \rightarrow E \rightarrow I_{Z_2}(c_1 - \xi) \rightarrow 0 \quad Z_i \in Hilb^{n_i}(X)$$

by extensions the other way round.

 Introduction
 Wallcrossing
 Strange duality
 Rational surfaces
 Nekrasov partition function

 00000000
 00000
 00000
 00000
 00000

 Proof of wallcrossing formula
 00000
 00000
 00000

Express wallcrossing in terms of the Nekrasov partition function, then wallcrossing formula follows from the Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes . Wallcrossing is by replacing sheaves lying in extensions

$$0 \rightarrow I_{Z_1}(\xi) \rightarrow E \rightarrow I_{Z_2}(c_1 - \xi) \rightarrow 0 \quad Z_i \in Hilb^{n_i}(X)$$

by extensions the other way round.

This describes change from $M_X^{H_-}(c_1, c_2)$ to $M_X^{H_+}(c_1, c_2)$ by series of flips with centers the $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$.

Use this to compute $\Delta_{\xi,d}^X(L)$ as sum of intersection numbers on the $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$.

 Introduction
 Wallcrossing
 Strange duality
 Rational surfaces
 Nekrasov partition function

 00000000
 00000
 00000
 00000
 00000

 Proof of wallcrossing formula

Express wallcrossing in terms of the Nekrasov partition function, then wallcrossing formula follows from the Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points. On M(n) fixpoints are pairs of zero dim. subschemes . Wallcrossing is by replacing sheaves lying in extensions

$$0 \rightarrow I_{Z_1}(\xi) \rightarrow E \rightarrow I_{Z_2}(c_1 - \xi) \rightarrow 0 \quad Z_i \in Hilb^{n_i}(X)$$

by extensions the other way round.

This describes change from $M_X^{H_-}(c_1, c_2)$ to $M_X^{H_+}(c_1, c_2)$ by series of flips with centers the $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$.

Use this to compute $\Delta_{\xi,d}^X(L)$ as sum of intersection numbers on the $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$.

Reduce to case X is toric. In this case use localization to compute intersection number on $Hilb^{n_1}(X) \times Hilb^{n_2}(X)$ in terms of weights at the fixpoints. The expression obtained this way is equal to what one gets by computing product of Nekrasov partition functions over the fixpoints of the action on X with ϵ_1 , ϵ_2 , a replaced by weights of the action.