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Introduction

Invariants of moduli spaces: A moduli space is a variety M
parametrizing objects, we are interested in.
Invariants are intersection numbers

∫
M α on moduli spaces.

Often interesting in theoretical physics.
Examples of Moduli spaces

1 Moduli space of stable maps Mg,n(X , β) parametrizes
morphism from a curve of genus g to a smooth variety X .
The corresponding invariants are Gromov-Witten invariants

2 Moduli space of stable vector bundles/sheaves on
curve/surface/threefold
corresponding invariants: conformal blocks/Donaldson
inv./Donaldson-Thomas inv.
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Introduction

For a long time motivation for studying moduli spaces of sheaves on
surfaces were Donaldson invariants. Refinement:

Let Y compact complex manifold of dimension d , L ∈ Pic(X ).
Can define two related invariants of (Y , L):

1
∫

Y c1(L)d (degree)

2 χ(Y , L) =
∑d

i=0(−1)ihi(Y , L) (holom. Euler char.)

Riemann-Roch: χ(Y , L⊗n) = nd

d!

∫
Y c1(L)d + O(nd−1).

Thus (2) is a refinement of (1)

χ(Y , L) contains geometric information about Y
For C curve χ(C, L) = deg(L) + 1− g, i.e. determines genus
In general information about linear systems, morphisms.

1 Donaldson inv.=deg. of line bundle L on moduli of sheaves

2 K-theory Don. inv.= holomorphic Euler characteristic of L
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aside: Verlinde formula

Let C nonsingular projective curve of genus g
MC(r , L) =
Moduli space of rk r bundles E on C with det(E) = L

One shows Pic(MC(r , L)) = Z · θ

Theorem
(Verlinde formula)

h0(MC(r ,O), θk ) = χ(MC(r ,O), θk )

=
rg

(r + k)g

∑
StT={1,...,r+k}

|S|=k

∏
s∈S

∏
t∈T

∣∣∣∣2 sin
(

π
s − t
r + k

)∣∣∣∣g−1

In some sense we are trying to find the analogue of the
Verlinde formula for surfaces.
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Moduli spaces

X simply conn. proj. algebraic surface, H ample on X
Fix c1 ∈ H2(X , Z), c2 ∈ H4(X , Z).

M := MH
X (c1, c2)

= moduli space of H-stable rk 2 torsion-free sheaves on X

torsion free sheaf="vector bundle with singularities"
H-stable: "all subsheaves of E are small":

h0(F⊗H⊗n)
rk(F) < h0(E⊗H⊗n)

rk(E) for all 0 6= F ⊂ E , n� 0

Moduli space means:
1 As set M is the set of isomorphism classes [E ] of H-stable

torsion free sheaves on X
2 If E/X × S flat family of sheaves, then

S → M; s 7→ [E|X×{s}] is a morphism.
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Definition of invariants

Simplifying assumptions:
M is compact
There is a universal sheaf E on X ×M
i.e. E|X×[E ] = E for all [E ] ∈ M
M is nonsingular of the expected dimension
d = 4c2 − c2

1 − 3χ(OX )

All these assumptions can be removed.

K 0(X ) := Grothendieck group of vector bundles =
free abelian group gen. by vector bundles on X/ ≡
Here, if 0→ E → F → G→ 0 is an exact sequence, then
F ≡ E + G.
This may look complicated, but is just a way to keep track of
rank and Chern classes
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Definition of invariants

K 0(X ) :=Grothendieck group of vector bundles
Let c ∈ K 0(X ) class of E ∈ M.

X
q←−X ×M

p−→M

Definition

Let v ∈ K 0(X ) with χ(X , c ⊗ v) = 0 (write v ∈ c⊥)
The determinant bundle for v is

λ(v) := det(Rp∗(E ⊗ q∗(v))−1 ∈ Pic(M)

Let L ∈ Pic(X ). Assume Lc1 even. Put

v(L) := L−1 −OX + kOpt ∈ c⊥

The Donaldson line bundle for L is L̃ := λ(v(L)).



Introduction Wallcrossing Strange duality Rational surfaces Nekrasov partition function

Definition of invariants

K 0(X ) :=Grothendieck group of vector bundles
Let c ∈ K 0(X ) class of E ∈ M.

X
q←−X ×M

p−→M

Definition

Let v ∈ K 0(X ) with χ(X , c ⊗ v) = 0 (write v ∈ c⊥)
The determinant bundle for v is

λ(v) := det(Rp∗(E ⊗ q∗(v))−1 ∈ Pic(M)

Let L ∈ Pic(X ). Assume Lc1 even. Put

v(L) := L−1 −OX + kOpt ∈ c⊥

The Donaldson line bundle for L is L̃ := λ(v(L)).



Introduction Wallcrossing Strange duality Rational surfaces Nekrasov partition function

Definition of invariants

Definition

The K -theoretic Donaldson invariant for L is χ(M, L̃).
Generating function:

χX
c1,H(L) :=

∑
c2

χ
(
MH

X (c1, c2), L̃
)
tc2 ∈ Z[[t ]].

Standard Donaldson invariant
∫

M c1(L̃)d .

Theorem

(Jun Li) For n� 0 the line bundle ñH on MH
X (c1, c2) is spanned,

and defines a birational morphism onto the Uhlenbeck
compactification.
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Main results

MH
X (c1, c2) depends on H:

There are walls (hyperplanes) in H2(X , R).
MH

X (c1, c2) and invariants change only when H crosses a wall.

Aims:
Prove wallcrossing formula for χ

(
MH

X (c1, c2), L̃
)

For X for P2 and rational ruled surfaces compute
generating function as rational function
Relate result to Le Potiers strange duality conjecture
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Walls

Let (X , H) simply conn. polarized surface with pg(X ) = 0
MH

X (c1, c2) depends on H, via a system of walls and chambers.

Definition

Let CX ⊂ H2(X , R) be the ample cone.
ξ ∈ H2(X , Z) defines wall of type (c1, c2) if

1 ξ ≡ c1 mod 2H2(X , Z)

2 4c2 − c2
1 + ξ2 ≥ 0

The wall is
W ξ := {H ∈ CX | H · ξ = 0}

Chambers=connected components of CX\ walls
MH

X (c1, c2) and invariants constant on chambers, change when
H crosses wall (i.e. H− → H+ with H−ξ < 0 < H+ξ)
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Wallcrossing formula

Definition

Let ξ define a wall of type (c1, c2). Put d := 4c2 − c2
1 − 3

The wallcrossing term is
∆X

ξ,d(L) := χ(MH+

X (c1, c2)), L̃)− χ(MH−
X (c1, c2)), L̃).

First aim: give a generating function for the wallcrossing terms
in terms of elliptic functions.
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Wallcrossing formula

Theta functions:
θab(h) =

∑
n≡a (2) qn2

(iby)n, a, b ∈ {0, 1}, y = eh/2

θab := θab(0), u := − θ2
00

θ2
10
− θ2

10
θ2

00
, Λ := θ11(h)

θ01(h)

Theorem
Write

q−ξ2
yξ(L−KX )

(
θ01(h)

θ01

)(L−KX )2

θ
σ(X)
01 q du

dq
dh
dΛ =

∑
d∈Z≥0

fd(q)Λd .
Then
∆X

ξ,d(L) := χ(MH+

X (c1, c2), L̃)− χ(MH−
X (c1, c2), L̃) =

±Coeffq0 fd(q).

Generating function
∆X

ξ (L) :=
∑

d ∆X
ξ,d(L)Λd =

∑
d Coeffq0 fd(q)Λd
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Wallcrossing formula

Before, to compute χ(MH
X (c1, c2), L̃), need to understand

MH
X (c1, c2) very well, only possible for small c2.

Want to determine generating function
∑

c2
χ(MH

X (c1, c2), L̃)tc2

This should be hopeless.
However, wallcrossing formula gives information for arbitrary c2

Remark
1 The walls W ξ of type (c1, c2) are locally finite in CX .
2 (bad news) If one wants to consider generating function∑

n χ(MH
X (c1, n), L̃)tn, one has to consider all walls W ξ for

all ξ ∈ c1 + 2H2(X , Z). These are everywhere dense in CX .
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Wallcrossing formula

Corollary
(good news) Let ξ class of type (c1, c2)

1 ∆X
ξ,d(L) = 0 for d large

(a wall contributes only in finitely may degrees)
2 If |ξ(L− KX )|+ 1 ≤ −ξ2 then ∆X

ξ,d(L) = 0 for all d
"Most walls do not contribute at all".

This is very different from the usual Donaldson invariants.
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Strange duality

Let X algebraic surface, let c, v ∈ K 0(X ) with χ(c ⊗ v) = 0.
Assume H2(E ⊗ F ) = 0 for all [E ] ∈ M(c), [F ] ∈ M(v).

Θ :=
{
(E , F ) ∈ M(c)×M(v)

∣∣ h0(E ⊗ F ) 6= 0
}

Assume Θ is zero set of σ ∈ H0(M(c)×M(v), λ(v) � λ(c))
=⇒ Duality morphism D : H0(M(c), λ(v))∨ → H0(M(v), λ(c))

Conjecture/Question
1 When is D : H0(M(c), λ(v))∨ → H0(M(v), λ(c)) an

isomorphism? (strong strange duality)
2 When is χ(M(c), λ(v)) = χ(M(v), λ(c))? (weak strange

duality)
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Case of Donaldson bundles

Let L ∈ Pic(X ), c(n) class of E ∈ MH
X (c1, n)

v(L) = OX − L−1 + kOpt independent of n.
c(n) = O +O(c1)− nOpt , thus
λ(c(n)) = λ(O +O(c1))⊗ λ(Opt)

⊗−n.
It follows χ(M(v(L), λ(c(n))tn ∈ Q(t) is a rational function in t .
Strange duality implies χ(MH

X (c1, n), L̃) = χ(M(v(L), λ(c(n))

Conjecture
Let X projective surface, H ample n X, L ∈ Pic(X ). Then∑

n χ(MH
X (c1, n)L̃)tn ∈ Q(t).

Remark
There is natural morphism π : M(v(L))→ |L|,F 7→ supp(F)
General fibre over [C] is Picd(C).
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Rational surfaces

Let X be a rational surface. Possibly after blowing up X there is
an H0 with χ(MH0

X (c1, c2), L̃) = 0. =⇒ Everything is determined
by wallcrossing:

χ(MH
X (c1, c2), L̃) =

∑
ξH0<0<ξH

∆X
ξ,d(L)

Problem: If we want to look at generating functions, i.e.
consider all c2, the sum becomes infinite. Need arguments
about elliptic functions/modular forms to carry out the sum.
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Rational ruled surfaces

Let X rational ruled surface. F fibre, G section. Let L ∈ Pic(X ). Put
s = L · F , n = L ·G −G2. E.g. if X = P1 × P1, then L = nF + sG

Theorem

1 Let c1 = 0, F assume H·G−G2

H·F > n
4 , then

1 +
∑
c2>0

χ
(
MH

X (c1, c2), L̃
)
tc2 =


1

(1−t)n+1 s = 0
1

(1−t)2n+2 s = 1
1
2

(1+t)n+(−1)c1·L/2(1−t)n

(1−t)3n+3 s = 2

2 Let c1 · F odd, assume n
4 < H·G−G2

H·F < n, then

∑
c2>0

χ
(
MH

X (c1, c2), L̃
)
tc2−c2

1/4 =


0 s = 0

tn/2

(1−t)2n+2 s = 1
tn/4

2
(1+t1/2)n+(−1)c1L/2(1−t1/2)n

(1−t)3n+3 s = 2
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s = L · F , n = L ·G −G2. E.g. if X = P1 × P1, then L = nF + sG

Theorem

1 Let c1 = 0, F assume H·G−G2

H·F > n
4 , then

1 +
∑
c2>0

χ
(
MH

X (c1, c2), L̃
)
tc2 =


1

(1−t)n+1 s = 0
1

(1−t)2n+2 s = 1
1
2

(1+t)n+(−1)c1·L/2(1−t)n

(1−t)3n+3 s = 2

2 Let c1 · F odd, assume n
4 < H·G−G2

H·F < n, then

∑
c2>0

χ
(
MH

X (c1, c2), L̃
)
tc2−c2

1/4 =


0 s = 0

tn/2

(1−t)2n+2 s = 1
tn/4

2
(1+t1/2)n+(−1)c1L/2(1−t1/2)n

(1−t)3n+3 s = 2
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The projective plane

Want to use the formulas on P̂2 to get formulas for P2.
For this need blowup formulas.

Let X be a rational surface, X̂ the blowup of X in a point. E the
exceptional divisor. Let H ample on X and L ∈ Pic(X )

Theorem

∑
n

χ(MHbX (c1, n), L̃)tn =
∑

n

χ(MH
X (c1, n), L̃)tn

∑
n

χ(MHbX (c1, n), L̃− E)tn = (1− t)
∑

n

χ(MH
X (c1, n), L̃)tn

There are also "higher blowup formulas" for L̃− nE , which are
more difficult to write
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The projective plane

Theorem

1 +
∑
c2>0

χ
(
MP2(0, c2), ñH

)
tc2 =



1
(1−t)3 n = 1

1
(1−t)6 n = 2

1+t2

(1−t)10 n = 3
1+6t2+t3

(1−t)15 n = 4
1+21t2+20t3+21t4+t6

(1−t)21 n = 5∑
c2>0

χ
(
MP2(H, c2), ñH

)
tc2−1 =

{
1

(1−t)6 n = 2
1+6t+t3

(1−t)15 n = 4

For any ñH there is an algorithm to determine the generating function
as explicit rational function in t (computed for n ≤ 10)
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The projective plane

Danila determined other side of strange duality for H, 2H, 3H
and checked strange duality in this case for small c2.

Corollary
(Strong) strange duality holds for c1 = 0, H, L = H, 2H, 3H.

Yuan Yau is using the result to prove strange duality for larger n
and for rational ruled surfaces.
Strange duality for K3 and abelian surfaces has been studied
by Marian-Oprea. Belkale and Marian-Oprea, proved strange
duality for curves (also called rank-level duality).



Introduction Wallcrossing Strange duality Rational surfaces Nekrasov partition function

Instanton moduli space

Main ingredient in proof of wallcrossing formula:
Nekrasov partition function.

Instanton moduli space:
M(n) = {(E , φ)

∣∣ E rk 2, sheaf on P2 with c2(E) = n, φ : E |l∞ ' O⊕2}

Torus action: C∗ × C∗ acts on (P2, l∞):
(t1, t2)(z0 : z1 : z2) = (z0 : t1z1 : t2z2).
Extra C∗ acts by s(E , φ) = (E , diag(s−1, s) ◦ φ).
Fixpoints: M(n)(C

∗)3
=

{
(IZ1 ⊕ IZ2), id)

∣∣ Zi ∈ Hilbni (A2, 0) monomial
}

Character: Let V vector space with (C∗)3 action. =⇒ V =
∑

i VMi

VMi eigenspace with eigenvalue Mi Laurent monomial in t1, t2, s.
The Character of V is ch(V ) :=

∑
i dim(VMi )Mi
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Nekrasov partition function

The Nekrasov partition function is given by

Z inst(ε1, ε2, a,Λ) :=
∑
n≥0

( Λ4

t1t2

)n
ch(H0(M(n),O))|t1=eε1 ,t2=eε2 ,s=ea

Z = Z instZ pert , where Z pert is explicit function of ε1, ε2, a,Λ.

Nekrasov Conjecture (Nekrasov-Okounkov,
Nakajima-Yoshioka, Braverman-Etingof):

1 Z = exp(F (ε1,ε2,a,Λ
ε1ε2

), F regular at ε1, ε2

2 F |ε1=ε2=0 can be expressed in terms of elliptic functions.
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Proof of wallcrossing formula

Express wallcrossing in terms of the Nekrasov partition function, then
wallcrossing formula follows from the Nekrasov conjecture.

Reason it works: Both related to Hilbert schemes of points.
On M(n) fixpoints are pairs of zero dim. subschemes .
Wallcrossing is by replacing sheaves lying in extensions

0→ IZ1(ξ)→ E → IZ2(c1 − ξ)→ 0 Zi ∈ Hilbni (X )

by extensions the other way round.
This describes change from MH−

X (c1, c2) to MH+

X (c1, c2) by series of
flips with centers the Hilbn1(X )× Hilbn2(X ).
Use this to compute ∆X

ξ,d (L) as sum of intersection numbers on the
Hilbn1(X )× Hilbn2(X ).

Reduce to case X is toric. In this case use localization to compute
intersection number on Hilbn1(X )× Hilbn2(X ) in terms of weights at
the fixpoints. The expression obtained this way is equal to what one
gets by computing product of Nekrasov partition functions over the
fixpoints of the action on X with ε1, ε2, a replaced by weights of the
action.
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