Refined curve counting

Lothar Göttsche, joint work with Vivek Shende

August 9, 2011

This talk: Curve counting on algebraic surfaces What does it mean to count courves?

This talk: Curve counting on algebraic surfaces What does it mean to count courves?

We work over \mathbb{C}. Always deal with projective varieties Smooth algebraic curve C over \mathbb{C} has a genus $g(C)=H^{0}\left(C, K_{C}\right)=$ number of handles. Nonsingular curve of degree d in \mathbb{P}^{2} has genus $g(d)=\binom{d-1}{2}$.

This talk: Curve counting on algebraic surfaces What does it mean to count courves?

We work over \mathbb{C}. Always deal with projective varieties Smooth algebraic curve C over \mathbb{C} has a genus $g(C)=H^{0}\left(C, K_{C}\right)=$ number of handles. Nonsingular curve of degree d in \mathbb{P}^{2} has genus $g(d)=\binom{d-1}{2}$. If C singular curve: (geometric) genus $g(C)$ genus of normalization

Example: Count (singular) curves of degree d, genus g in \mathbb{P}^{2} : Severi degrees

Example: Count (singular) curves of degree d, genus g in \mathbb{P}^{2} : Severi degrees
 curves with δ-nodes lie in codimension δ in $|\mathcal{O}(d)|$. general curve of genus $g(d)-\delta$ has precisely δ-nodes curves through a given point in \mathbb{P}^{2} form a hyperplane in $|\mathcal{O}(d)|$.

Example: Count (singular) curves of degree d, genus g in \mathbb{P}^{2} : Severi degrees
$|\mathcal{O}(d)|=\mathbb{P}^{\binom{d+2}{2}-1}=$ space of curves of degree d. curves with δ-nodes lie in codimension δ in $|\mathcal{O}(d)|$. general curve of genus $g(d)-\delta$ has precisely δ-nodes curves through a given point in \mathbb{P}^{2} form a hyperplane in $|\mathcal{O}(d)|$.
Severi degrees:
$n_{d, g}:=\#\left\{\right.$ curves of degree d, genus g in \mathbb{P}^{2} through $3 d-1+g$ general points $\}$
$n_{1,0}=n_{2,0}=1, n_{3,0}=12$

Example: Count (singular) curves of degree d, genus g in \mathbb{P}^{2} : Severi degrees
 curves with δ-nodes lie in codimension δ in $|\mathcal{O}(d)|$. general curve of genus $g(d)-\delta$ has precisely δ-nodes curves through a given point in \mathbb{P}^{2} form a hyperplane in $|\mathcal{O}(d)|$.
Severi degrees:
$n_{d, g}:=\#\left\{\right.$ curves of degree d, genus g in \mathbb{P}^{2} through $3 d-1+g$ general points $\}$
$n_{1,0}=n_{2,0}=1, n_{3,0}=12$
Caporaso-Harris recursion: A recursion formula that determines all $n_{d, g}$ recursively.

Why care?
These are classical questions, but for me the most important reason is the following:
These and similar numbers come up in physics, and there they are closely related to each other and to other subjects of mathematics
These relations will be reflected and are in some sense most visible in the generating functions of curve counting and other invariants.

There are different ways to count curves in varieties Usually there are several steps:
(1) Find the correct compact moduli space M, parametrizing the curves and the degenerations one wants to allow.

There are different ways to count curves in varieties Usually there are several steps:
(1) Find the correct compact moduli space M, parametrizing the curves and the degenerations one wants to allow.
(2) On wants to count curves satisfying certain conditions, this will be an intersection number on M.

There are different ways to count curves in varieties Usually there are several steps:
(1) Find the correct compact moduli space M, parametrizing the curves and the degenerations one wants to allow.
(2) On wants to count curves satisfying certain conditions, this will be an intersection number on M.
(3) Often one needs to use a virtual fundamental class and count "virtual numbers of curves".

There are different ways to count curves in varieties Usually there are several steps:
(1) Find the correct compact moduli space M, parametrizing the curves and the degenerations one wants to allow.
(2) On wants to count curves satisfying certain conditions, this will be an intersection number on M.
(3) Often one needs to use a virtual fundamental class and count "virtual numbers of curves".
(0) For Severi degrees: curves are elements of $|\mathcal{O}(d)|$

Count curves with given genus through correct number of points as points in proj. space $|\mathcal{O}(d)|$
(1) Gromov-Witten invariants: Count maps $f: C \rightarrow X$.
(1) Gromov-Witten invariants: Count maps $f: C \rightarrow X$.

Look at moduli space
$M_{g}(X, \beta)=\{(C, f)$ stable map $f: C \rightarrow X, C$ nodal curve of genus $\left.g, f_{*}([C])=\beta \in H^{2}(X, \mathbb{Z})\right\}$
(1) Gromov-Witten invariants: Count maps $f: C \rightarrow X$.

Look at moduli space
$M_{g}(X, \beta)=\{(C, f)$ stable map $f: C \rightarrow X, C$ nodal curve of genus $\left.g, f_{*}([C])=\beta \in H^{2}(X, \mathbb{Z})\right\}$
e.g. Let X quintic 3 -fold in \mathbb{P}^{4}
$N_{d}:=" \#\{$ rational curves of degree d in $X\} "$
$:=\operatorname{deg}\left(\left[M_{0}(X, d l)\right]^{\text {vir }}\right)$
$N_{1}=5, N_{2}=2875, N_{3}=609250, \ldots$
(1) Gromov-Witten invariants: Count maps $f: C \rightarrow X$.

Look at moduli space
$M_{g}(X, \beta)=\{(C, f)$ stable map $f: C \rightarrow X, C$ nodal curve of genus $\left.g, f_{*}([C])=\beta \in H^{2}(X, \mathbb{Z})\right\}$
e.g. Let X quintic 3 -fold in \mathbb{P}^{4}
$N_{d}:=" \#\{$ rational curves of degree d in $X\} "$
$:=\operatorname{deg}\left(\left[M_{0}(X, d l)\right]^{v i r}\right)$
$N_{1}=5, N_{2}=2875, N_{3}=609250, \ldots$
First computed by physicists using Mirror symmetry
(There are pairs X, X^{\prime} of Calabi-Yau 3-folds (i.e. $K_{X}=\mathcal{O}_{X}$) which are closely related. By physics counting curves on X is equivalent to variations of Hodge structures on X^{\prime})
(2) Gopakumar-Vafa (BPS)-invariants:

Gromov-Witten invariants count maps
\Longrightarrow complicated formulas for multiple covers
Gopakumar-Vafa invariants: conjectural invariants from physics that count actual (virtual) curves
(2) Gopakumar-Vafa (BPS)-invariants:

Gromov-Witten invariants count maps
\Longrightarrow complicated formulas for multiple covers
Gopakumar-Vafa invariants: conjectural invariants from physics that count actual (virtual) curves
More conjecturally: there should be refined BPS invariants:
GV invariants should be something like the Euler number of some physics moduli space and the refined invariants should be something like Betti numbers
(3) Pandharipande-Thomas invariants:

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_{X} \rightarrow \mathcal{O}_{C}$
(3) Pandharipande-Thomas invariants:

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_{X} \rightarrow \mathcal{O}_{C}$
P-T moduli space:
$P_{n}(X, \beta):=\{(F, s) \mid F$ pure 1-dimensional sheaf on X,
$s: \mathcal{O}_{X} \rightarrow F$ section, $\left.\operatorname{dim}(\operatorname{coker}(s))=0, c_{2}(F)=\beta, \chi(F)=n\right\}$
(3) Pandharipande-Thomas invariants:

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_{X} \rightarrow \mathcal{O}_{C}$
P-T moduli space:
$P_{n}(X, \beta):=\{(F, s) \mid F$ pure 1-dimensional sheaf on X, $s: \mathcal{O}_{X} \rightarrow F$ section, $\left.\operatorname{dim}(\operatorname{coker}(s))=0, c_{2}(F)=\beta, \chi(F)=n\right\}$ If X is CY 3-fold the expected dimension of $P_{n}(X, \beta)$ is 0 and the PT-invariant is $\operatorname{deg}\left(\left[P_{n}(X, n)\right]^{\text {vir }}\right)$.
(3) Pandharipande-Thomas invariants:

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_{X} \rightarrow \mathcal{O}_{C}$
P-T moduli space:
$P_{n}(X, \beta):=\{(F, s) \mid F$ pure 1-dimensional sheaf on X,
$s: \mathcal{O}_{X} \rightarrow F$ section, $\left.\operatorname{dim}(\operatorname{coker}(s))=0, c_{2}(F)=\beta, \chi(F)=n\right\}$
If X is CY 3 -fold the expected dimension of $P_{n}(X, \beta)$ is 0 and the PT-invariant is $\operatorname{deg}\left(\left[P_{n}(X, n)\right]^{\text {vir }}\right)$.
Conjectural PT-GW correspondence:
PT and GW invariants conjectured equivalent (generating functions related by explicit change of variables)
PT have conjecturally defined GV-inv. in terms of PT-inv.
So all 3 sets of invariants are conjectured to be equivalent.
S smooth projective surface over \mathbb{C}
$L \in \operatorname{Pic}(S)$ very ample line bundle
$|L|=\mathbb{P}\left(H^{0}(S, L)\right)$ complete linear system
$g(L)=\frac{L\left(L+K_{S}\right)}{2}+1$ genus of smooth curve in $|L|$
S smooth projective surface over \mathbb{C}
$L \in \operatorname{Pic}(S)$ very ample line bundle
$|L|=\mathbb{P}\left(H^{0}(S, L)\right)$ complete linear system
$g(L)=\frac{L\left(L+K_{s}\right)}{2}+1$ genus of smooth curve in $|L|$
Count curves curves of given geometric genus in $|L|$:
Let $V_{\delta} \subset|L|$ general δ-dimensional linear subspace
S smooth projective surface over \mathbb{C}
$L \in \operatorname{Pic}(S)$ very ample line bundle
$|L|=\mathbb{P}\left(H^{0}(S, L)\right)$ complete linear system
$g(L)=\frac{L\left(L+K_{s}\right)}{2}+1$ genus of smooth curve in $|L|$
Count curves curves of given geometric genus in $|L|$:
Let $V_{\delta} \subset|L|$ general δ-dimensional linear subspace

Severi degree:

$n_{L, g(L)-\delta}:=\#\left\{\delta\right.$-nodal curves in $\left.V_{\delta}\right\}$ $=\#\left\{\right.$ curves of genus $g(L)-\delta$ in $\left.V_{\delta}\right\}$
(L sufficiently ample).
S smooth projective surface over \mathbb{C}
$L \in \operatorname{Pic}(S)$ very ample line bundle
$|L|=\mathbb{P}\left(H^{0}(S, L)\right)$ complete linear system
$g(L)=\frac{L\left(L+K_{s}\right)}{2}+1$ genus of smooth curve in $|L|$
Count curves curves of given geometric genus in $|L|$:
Let $V_{\delta} \subset|L|$ general δ-dimensional linear subspace

Severi degree:

$n_{L, g(L)-\delta}:=\#\left\{\delta\right.$-nodal curves in $\left.V_{\delta}\right\}$ $=\#\left\{\right.$ curves of genus $g(L)-\delta$ in $\left.V_{\delta}\right\}$
(L sufficiently ample).
Formulas for this as polynomial in $L^{2}, L K_{S}, K_{S}^{2}, c_{2}(S)$ computed by Avritzer-Vainsencher for $\delta \leq 6$ and by Kleimann-Piene for larger δ.

Yau-Zaslow formula from physics: Let S K3-surface, L line bundle on S, then the number $n_{L^{2}}$ of rational curves in $|L|$ depends only on L^{2} and

$$
\sum_{d} n_{d} q^{d}=\frac{1}{\Delta(q)}
$$

$\left(\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}\right)$.

Yau-Zaslow formula from physics: Let SK3-surface, L line bundle on S, then the number $n_{L^{2}}$ of rational curves in $|L|$ depends only on L^{2} and

$$
\sum_{d} n_{d} q^{d}=\frac{1}{\Delta(q)}
$$

$$
\left(\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}\right) .
$$

Conjecture (G 1997)

(1) Exists universal polynomial $n_{g(L)-\delta}^{L}$ in $L^{2}, L K_{S}, K_{S}^{2}, c_{2}(S)$, such that $n_{L, g(L)-\delta}=n_{g(L)-\delta}^{L}$ for L is sufficiently ample wrt δ. (2) Conjectural generating function for the $n_{g(L)-\delta}^{L}$.

Yau-Zaslow formula from physics: Let SK3-surface, L line bundle on S, then the number $n_{L^{2}}$ of rational curves in $|L|$ depends only on L^{2} and

$$
\sum_{d} n_{d} q^{d}=\frac{1}{\Delta(q)}
$$

$$
\left(\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}\right) .
$$

Conjecture (G 1997)

(1) Exists universal polynomial $n_{g(L)-\delta}^{L}$ in $L^{2}, L K_{S}, K_{S}^{2}, C_{2}(S)$, such that $n_{L, g(L)-\delta}=n_{g(L)-\delta}^{L}$ for L is sufficiently ample wrt δ. (2) Conjectural generating function for the $n_{g(L)-\delta}^{L}$.

Part (1) of the conjecture (existence of univ. polyn. $n_{g(L)-\delta}^{L}$) was proven by Tzeng, Kool-Shende-Thomas (2010)

Aim: Give a refined version of conj, inspired by KST proof. Replace $n_{g(L)-\delta}^{L}$ by polynomials $N_{g(L)-\delta}(y) \in \mathbb{Z}[y]$ "Refined curve counting invariants" such that $N_{g(L)-\delta)}^{L}(1)=n_{g(L)-\delta}^{L}$.

Aim: Give a refined version of conj, inspired by KST proof.
Replace $n_{g(L)-\delta}^{L}$ by polynomials $N_{g(L)-\delta}(y) \in \mathbb{Z}[y]$
"Refined curve counting invariants"
such that $N_{g(L)-\delta)}^{L}(1)=n_{g(L)-\delta}^{L}$.
What do they count?

Aim: Give a refined version of conj, inspired by KST proof.
Replace $n_{g(L)-\delta}^{L}$ by polynomials $N_{g(L)-\delta}(y) \in \mathbb{Z}[y]$
"Refined curve counting invariants"
such that $N_{g(L)-\delta)}^{L}(1)=n_{g(L)-\delta}^{L}$.
What do they count?
X projective variety. Hilbert scheme $X^{[n]}$ of n points on X parametrizes zero dimensional subschemes of length n on X, i.e. generically sets of n points on X.
X projective variety. Hilbert scheme $X^{[n]}$ of n points on X parametrizes zero dimensional subschemes of length n on X, i.e. generically sets of n points on X.

On a smooth curve C a subscheme of length n is a set of n points counted with multiplicity.
Thus $C^{[n]}=C^{(n)}$ is just the symmetric power.
If C is a singular curve then $C^{[n]} \neq C^{(n)}$.
X projective variety. Hilbert scheme $X^{[n]}$ of n points on X parametrizes zero dimensional subschemes of length n on X, i.e. generically sets of n points on X.

On a smooth curve C a subscheme of length n is a set of n points counted with multiplicity.
Thus $C^{[n]}=C^{(n)}$ is just the symmetric power.
If C is a singular curve then $C^{[n]} \neq C^{(n)}$.
If S is a smooth projective surface, then $S^{[n]}$ is smooth projective variety of dimension $2 n$.
For any line bundle $L \in \operatorname{Pic}(S)$ have a tautological vector bundle $L^{[n]}$ of rank n on $S^{[n]}$ with fibre $L^{[n]}([Z])=H^{0}(L \mid z)$.
X projective variety. Hilbert scheme $X^{[n]}$ of n points on X parametrizes zero dimensional subschemes of length n on X, i.e. generically sets of n points on X.

On a smooth curve C a subscheme of length n is a set of n points counted with multiplicity.
Thus $C^{[n]}=C^{(n)}$ is just the symmetric power.
If C is a singular curve then $C^{[n]} \neq C^{(n)}$.
If S is a smooth projective surface, then $S^{[n]}$ is smooth projective variety of dimension $2 n$.
For any line bundle $L \in \operatorname{Pic}(S)$ have a tautological vector bundle $L^{[n]}$ of rank n on $S^{[n]}$ with fibre $L^{[n]}([Z])=H^{0}(L \mid z)$.

Recall $L \in \operatorname{Pic}(S)$ suff. ample, $V_{\delta} \subset|L|$ general linear subspace $\mathcal{C}:=\left\{(p,[C]) \in S \times V_{\delta} \mid p \in C\right\}$ universal curve $\mathcal{C}^{[n]}:=\left\{([Z],[C]) \in S^{[n]} \times V_{\delta} \mid Z \subset C\right\}$ rel. Hilbert scheme

Recall $L \in \operatorname{Pic}(S)$ suff. ample, $V_{\delta} \subset|L|$ general linear subspace $\mathcal{C}:=\left\{(p,[C]) \in S \times V_{\delta} \mid p \in C\right\}$ universal curve $\mathcal{C}^{[n]}:=\left\{([Z],[C]) \in S^{[n]} \times V_{\delta} \mid Z \subset C\right\}$ rel. Hilbert scheme

KST show:

(1) $\exists_{n_{I} \in \mathbb{Z}}, I=g(L)-\delta, \ldots, g(L)$ s.th.

$$
\sum_{n \geq 0} e\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{I=g(L)-\delta}^{g(L)} n_{l} q^{g(L)-I}(1-q)^{2 I-2}
$$

$$
e(X)=\sum_{i=0}(-1)^{i} r k\left(H^{i}(X, \mathbb{Z})\right) \text { topological Euler number }
$$

(2) $n_{g-\delta}^{L}=n_{g-\delta}$.

Recall $L \in \operatorname{Pic}(S)$ suff. ample, $V_{\delta} \subset|L|$ general linear subspace $\mathcal{C}:=\left\{(p,[C]) \in S \times V_{\delta} \mid p \in C\right\}$ universal curve $\mathcal{C}^{[n]}:=\left\{([Z],[C]) \in S^{[n]} \times V_{\delta} \mid Z \subset C\right\}$ rel. Hilbert scheme

KST show:

(1) $\exists_{n_{I} \in \mathbb{Z}}, I=g(L)-\delta, \ldots, g(L)$ s.th.

$$
\begin{aligned}
& \sum_{n \geq 0} e\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{I=g(L)-\delta}^{g(L)} n_{l} q^{g(L)-I}(1-q)^{2 /-2} \\
& e(X)=\sum_{i=0}^{2 \operatorname{dim}(X)}(-1)^{i} r k\left(H^{i}(X, \mathbb{Z})\right) \text { topological Euler number }
\end{aligned}
$$

(2) $n_{g-\delta}^{L}=n_{g-\delta}$.

Note: This computes $n_{g-\delta}^{L}$ as a BPS invariant:
Pandharipande-Thomas defined BPS-invariants by formula (1).

Why does this prove the conjecture?

Why does this prove the conjecture?
$e\left(\mathcal{C}^{[n]}\right)$ is tautological intersection number on $S^{[n]}$:
$L^{[n]}$ tautological vector bundle on $S^{[n]}, L^{[n]}([Z])=H^{0}(L \mid z)$.
Let H pullback of $\mathcal{O}(1)$ from $V_{\delta}=\mathbb{P}^{\delta}$.
$L^{[n]} \boxtimes H$ has section s with zero set $Z(s)=\mathcal{C}^{[n]}$.

Why does this prove the conjecture?
$e\left(\mathcal{C}^{[n]}\right)$ is tautological intersection number on $S^{[n]}$:
$L^{[n]}$ tautological vector bundle on $S^{[n]}, L^{[n]}([Z])=H^{0}(L \mid z)$.
Let H pullback of $\mathcal{O}(1)$ from $V_{\delta}=\mathbb{P}^{\delta}$.
$L^{[n]} \boxtimes H$ has section s with zero set $Z(s)=\mathcal{C}^{[n]}$.
This allows to compute $e\left(\mathcal{C}^{[n]}\right)$ as intersection number on $S^{[n]}$:

$$
e\left(\mathcal{C}^{[n]}\right)=\int_{S^{[n]} \times V_{\delta}} \frac{c\left(T_{S^{[n]}}\right) c_{n}\left(L^{[n]} \otimes H\right)}{c\left(L^{[n]} \otimes H\right)}
$$

$\left(c(E)=1+c_{1}(E)+\ldots+c_{r k(E)}(E)\right.$ Chern class) .
Ellingsrud-G-Lehn: such "tautological" integrals are always given by universal polynomials in $L^{2}, L K_{S}, K_{S}^{2}, c_{2}(S)$.

Refinement: $L \in \operatorname{Pic}(S)$ suff ample, $V_{\delta} \subset|L|$ general δ-dim linear subspace.
Recall: defined $n_{g(L)-\delta}^{L}$ by
$\sum_{n \geq 0} e\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} n_{1} q^{g(L)-1}(1-q)^{2 l-2}$.
Note: $(1-q)^{2 l-2}=\sum_{n \geq 0} e\left(C^{[n]}\right) q^{n}$ for C smooth, $g(C)=I$.

Refinement: $L \in \operatorname{Pic}(S)$ suff ample, $V_{\delta} \subset|L|$ general δ-dim linear subspace.
Recall: defined $n_{g(L)-\delta}^{L}$ by
$\sum_{n \geq 0} e\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} n_{1} q^{g(L)-1}(1-q)^{2 l-2}$.
Note: $(1-q)^{21-2}=\sum_{n \geq 0} e\left(C^{[n]}\right) q^{n}$ for C smooth, $g(C)=1$.
Idea: Replace everywhere Euler number by χ_{-y}-genus
$\chi_{-y}(X)=\sum_{p, q}(-1)^{p+q} y^{q} h^{p q}(X)=\sum_{q}(-y)^{q} \chi\left(X, \Omega^{q}(X)\right)$
Note: $\chi_{-1}(X)=e(X)$

Refinement: $L \in \operatorname{Pic}(S)$ suff ample, $V_{\delta} \subset|L|$ general δ-dim linear subspace.
Recall: defined $n_{g(L)-\delta}^{L}$ by
$\sum_{n \geq 0} e\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} n_{1} q^{g(L)-1}(1-q)^{21-2}$.
Note: $(1-q)^{2 l-2}=\sum_{n \geq 0} e\left(C^{[n]}\right) q^{n}$ for C smooth, $g(C)=1$.
Idea: Replace everywhere Euler number by χ_{-y}-genus
$\chi-y(X)=\sum_{p, q}(-1)^{p+q} y^{q} h^{p q}(X)=\sum_{q}(-y)^{q} \chi\left(X, \Omega^{q}(X)\right)$
Note: $\chi_{-1}(X)=e(X)$

Conjecture

$\exists_{N_{(}(y) \in \mathbb{Z}[y]}, I=g(L)-\delta, \ldots, g(L)$ s.th.
$\sum_{n \geq 0} \chi_{-y}\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} N_{l}(y) q^{g(L)-I}((1-q)(1-q y))^{l-1}$
Obvious if one allows $\sum_{l=-\infty}^{g(L)}$

Conjecture

$\exists_{N_{l}(y) \in \mathbb{Z}[y]}, I=g(L)-\delta, \ldots, g(L)$ s.th.
$\sum_{n \geq 0} \chi-y\left(C^{[(n)}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} N_{l}(y) q^{g(L)-1}((1-q)(1-q y))^{1-1}$.

Conjecture

$$
\begin{aligned}
& \exists_{N_{l}(y) \in \mathbb{Z}[y]}, I=g(L)-\delta, \ldots, g(L) \text { s.th. } \\
& \sum_{n \geq 0} \chi-y\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} N_{l}(y) q^{g(L)-I}((1-q)(1-q y))^{l-1} .
\end{aligned}
$$

Definition

$N_{g(L)-\delta}^{L}:=N_{g(L)-\delta}$ is the refined curve counting invariant of curves of genus $g(L)-\delta$ in $|L|$. (Do not need conjecture for this).

Conjecture

$$
\begin{aligned}
& \exists_{N_{l}(y) \in \mathbb{Z}[y]}, I=g(L)-\delta, \ldots, g(L) \text { s.th. } \\
& \sum_{n \geq 0} \chi-y\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{l=g(L)-\delta}^{g(L)} N_{l}(y) q^{g(L)-1}((1-q)(1-q y))^{l-1} .
\end{aligned}
$$

Definition

$N_{g(L)-\delta}^{L}:=N_{g(L)-\delta}$ is the refined curve counting invariant of curves of genus $g(L)-\delta$ in $|L|$. (Do not need conjecture for this).

Example

Nodal cubics in $\mathbb{P}^{2}: \mathcal{C} / \mathbb{P}^{1}$ pencil of cubics $n_{0}^{3 H}=\#\{$ rational curves in pencil $\}=12$,
$N_{0}^{3 H}(y)=\chi_{-y}(\mathcal{C})=1+10 y+y^{2}$

Check of Conjecture: $\chi-y\left(\mathcal{C}^{[n]}\right)$ computed by very similar integral on $S^{[n]}$ as $e\left(\mathcal{C}^{[n]}\right)$.
EGL: coeff. of $\chi_{-y}\left(\mathcal{C}^{[n]}\right)$ are univ. polyn. in $L^{2}, L K_{S}, K_{S}^{2}, c_{2}(S)$.

Check of Conjecture: $\chi-y\left(\mathcal{C}^{[n]}\right)$ computed by very similar integral on $S^{[n]}$ as $e\left(\mathcal{C}^{[n]}\right)$.
EGL: coeff. of $\chi_{-y}\left(\mathcal{C}^{[n]}\right)$ are univ. polyn. in $L^{2}, L K_{S}, K_{S}^{2}, C_{2}(S)$.
\Longrightarrow determined by values for
$(S, L)=\left(\mathbb{P}^{2}, \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}(1)\right),\left(\mathbb{P}^{2}, \mathcal{O}(-1)\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}\right)$.
These are toric surface: action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ on S with finitely many fixpoints. Action lifts to $S^{[n]}$ with finitely many fixpoints p_{1}, \ldots, p_{e}.
Bott Residue formula: Integral for $\chi_{-y}\left(\mathcal{C}^{[n]}\right)$ on $S^{[n]}$ can be computed in terms of the weights of action of T on the fibres $T_{S[n]}\left(p_{i}\right), L^{[n]}\left(p_{i}\right)$. Programmed on computer:

Check of Conjecture: $\chi-y\left(\mathcal{C}^{[n]}\right)$ computed by very similar integral on $S^{[n]}$ as $e\left(\mathcal{C}^{[n]}\right)$.
EGL: coeff. of $\chi_{-y}\left(\mathcal{C}^{[n]}\right)$ are univ. polyn. in $L^{2}, L K_{S}, K_{S}^{2}, C_{2}(S)$.
\Longrightarrow determined by values for
$(S, L)=\left(\mathbb{P}^{2}, \mathcal{O}\right),\left(\mathbb{P}^{2}, \mathcal{O}(1)\right),\left(\mathbb{P}^{2}, \mathcal{O}(-1)\right),\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}\right)$.
These are toric surface: action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ on S with finitely many fixpoints. Action lifts to $S^{[n]}$ with finitely many fixpoints p_{1}, \ldots, p_{e}.
Bott Residue formula: Integral for $\chi_{-y}\left(\mathcal{C}^{[n]}\right)$ on $S^{[n]}$ can be computed in terms of the weights of action of T on the fibres $T_{S^{[n]}}\left(p_{i}\right), L^{[n]}\left(p_{i}\right)$. Programmed on computer:
Result: Conjecture is true modulo q^{11}.
$\sum_{n \geq 0} \chi-y\left(\mathcal{C}^{[n]}\right) q^{n} \equiv \sum_{l=g(L)-\delta}^{g(L)} N_{l}(y) q^{g(L)-1}((1-q)(1-q y))^{l-1}$

The computation gives conjectural generating function for refined invariants $N_{g(L)-\delta}^{L}(y)$. Let $\bar{N}_{g(L)-\delta}^{L}(y):=N_{g(L)-\delta}^{L}(y) / y^{\delta}$

The computation gives conjectural generating function for refined invariants $N_{g(L)-\delta}^{L}(y)$. Let $\bar{N}_{g(L)-\delta}^{L}(y):=N_{g(L)-\delta}^{L}(y) / y^{\delta}$
$D:=q \frac{q}{d q}$
$\Delta(y, q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{20}\left(1-y q^{n}\right)^{2}\left(1-y^{-1} q^{n}\right)^{2}$,
$\widetilde{D G}_{2}(y, q)=\sum_{n \geq 1} q^{n}\left(\sum_{d \mid n} \frac{n}{d} \frac{y^{d}-2+y^{-d}}{y-2+y}\right)$
$B_{1}(y, q)=1-q-\left(y+3+y^{-1}\right) q^{2}+\ldots$,
$B_{2}(y, q)=1+\left(y+3+y^{-1}\right) q+\left(y^{2}+y^{-2}\right) q^{2}+\ldots$

The computation gives conjectural generating function for refined invariants $N_{g(L)-\delta}^{L}(y)$. Let $\bar{N}_{g(L)-\delta}^{L}(y):=N_{g(L)-\delta}^{L}(y) / y^{\delta}$
$D:=q \frac{q}{d q}$
$\Delta(y, q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{20}\left(1-y q^{n}\right)^{2}\left(1-y^{-1} q^{n}\right)^{2}$,
$\widetilde{D G}_{2}(y, q)=\sum_{n \geq 1} q^{n}\left(\sum_{d \mid n} \frac{n}{d} \frac{y^{d}-2+y^{-d}}{y-2+y}\right)$
$B_{1}(y, q)=1-q-\left(y+3+y^{-1}\right) q^{2}+\ldots$,
$B_{2}(y, q)=1+\left(y+3+y^{-1}\right) q+\left(y^{2}+y^{-2}\right) q^{2}+\ldots$

Conjecture

$$
\sum_{\delta} \bar{N}_{g(L)-\delta}^{L}(y)\left(\widetilde{D G}_{2}(y, q)\right)^{\delta}=\frac{\left(\widetilde{D G}_{2}(y, q) / q\right)^{\chi(L)} B_{1}(y, q)^{K_{x}^{2}} B_{2}(y, q)^{L K_{x}}}{\left(\Delta(y, q) D \widetilde{D G}_{2}(y, q) / q^{2}\right)^{\chi\left(\mathcal{O}_{x}\right) / 2}}
$$

Putting $y=1$ recovers the previous conjecture

Interpretation of the $N_{g(L)-\delta}^{L}(y)$: what do they count? $n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics Hope: $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants
At any rate we hope that they count curves on S in some refined sense

Interpretation of the $N_{g(L)-\delta}^{L}(y)$: what do they count?
$n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics
Hope: $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants
At any rate we hope that they count curves on S in some refined sense
Case of a K3 surface: Let $S K 3$-surface, e.g. quartic in \mathbb{P}^{3}, L primitive line bundle on S
Write $\bar{N}_{g(L)-\delta}^{g(L)}(y):=\bar{N}_{g(L)-\delta}^{L}(y)$ (depends only on $g(L)$).

Interpretation of the $N_{g(L)-\delta}^{L}(y)$: what do they count?
$n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics
Hope: $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants
At any rate we hope that they count curves on S in some refined sense
Case of a K3 surface: Let $S K 3$-surface, e.g. quartic in \mathbb{P}^{3}, L primitive line bundle on S
Write $\bar{N}_{g(L)-\delta}^{g(L)}(y):=\bar{N}_{g(L)-\delta}^{L}(y)$ (depends only on $\left.g(L)\right)$.
Conjecture says: $\sum_{g \geq 0} \bar{N}_{k}^{g}(y) q^{g-1}=\frac{\widetilde{D G_{2}}(y, q)^{k}}{\Delta(y, q)}$

Interpretation of the $N_{g(L)-\delta}^{L}(y)$: what do they count?
$n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics
Hope: $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants
At any rate we hope that they count curves on S in some refined sense
Case of a K3 surface: Let $S K 3$-surface, e.g. quartic in \mathbb{P}^{3}, L primitive line bundle on S
Write $\bar{N}_{g(L)-\delta}^{g(L)}(y):=\bar{N}_{g(L)-\delta}^{L}(y)$ (depends only on $\left.g(L)\right)$.
Conjecture says: $\sum_{g \geq 0} \bar{N}_{k}^{g}(y) q^{g-1}=\frac{\widetilde{D G}_{2}(y, q)^{k}}{\Delta(y, q)}$
The Gromov-Witten and Pandharipande-Thomas invariants were computed in this case by Maulik-Pandharipande-Thomas By the GW-PT correspondence (proven in this case) both are equivalent, so we only state PT invariants.

Pandharipande-Thomas invariants:

\mathcal{C} universal curve over $|L|$.
P -T moduli space:
$P_{n}(S, L) \simeq \mathcal{C}^{[n+g(L)-1]} /|L|$.
H pullback of hyperplane class on $|L|$.
PT invariants with point insertions:
$C_{n, g}^{k}:=\int_{P_{n}(S, L)} c\left(\Omega_{P}\right) H^{k}$ for $g=g(L)=\frac{L^{2}}{2}+1$.

Comparison with BPS states on K3 surfaces

Pandharipande-Thomas invariants:

\mathcal{C} universal curve over $|L|$.
P -T moduli space:
$P_{n}(S, L) \simeq \mathcal{C}^{[n+g(L)-1]} /|L|$.
H pullback of hyperplane class on $|L|$.
PT invariants with point insertions:
$C_{n, g}^{k}:=\int_{P_{n}(S, L)} c\left(\Omega_{P}\right) H^{k}$ for $g=g(L)=\frac{L^{2}}{2}+1$.

Theorem (MPT)

$$
\sum_{n \geq 0} \sum_{g \geq 0} C_{n, g}^{k}(-y)^{n} q^{g-1}=(-1)^{k-1}\left(y-2+y^{-1}\right)^{k-1} \frac{\widetilde{D G}_{2}(y, q)^{k}}{\Delta(y, q)}
$$

Modulo the conjecture this says
$\bar{N}_{k}^{g}(y)=(-1)^{k-1}\left(y-2+y^{-1}\right)^{k-1} \sum_{n \geq 0} C_{n, g}^{k}(-y)^{n}$
Thus $N_{k}^{g}(y)$ counts PT invariants with k point insertions.

Let S be a real toric surface (S defined over $\mathbb{R}, \mathbb{C}^{*} \times \mathbb{C}^{*}$-action defined over \mathbb{R}, fixed points real (for simplicity assume $S=\mathbb{P}^{2}$, but what follows works more generally).
We conjecture that the refined invariants $N_{g}^{L}(y)$ specialized at $y=-1$ compute the Welschinger invariants, counting real algebraic curves

Let S be a real toric surface (S defined over $\mathbb{R}, \mathbb{C}^{*} \times \mathbb{C}^{*}$-action defined over \mathbb{R}, fixed points real (for simplicity assume $S=\mathbb{P}^{2}$, but what follows works more generally).
We conjecture that the refined invariants $N_{g}^{L}(y)$ specialized at $y=-1$ compute the Welschinger invariants, counting real algebraic curves
Severi degree:
$n_{d, g(d)-\delta}:=\#\{$ curves of degree d, genus $g(d)-\delta$ through

$$
\left.\binom{d+2}{2}-1-\delta \text { points }\right\}
$$

Let S be a real toric surface (S defined over $\mathbb{R}, \mathbb{C}^{*} \times \mathbb{C}^{*}$-action defined over \mathbb{R}, fixed points real (for simplicity assume $S=\mathbb{P}^{2}$, but what follows works more generally).
We conjecture that the refined invariants $N_{g}^{L}(y)$ specialized at $y=-1$ compute the Welschinger invariants, counting real algebraic curves

Severi degree:

$n_{d, g(d)-\delta}:=\#\{$ curves of degree d, genus $g(d)-\delta$ through

$$
\left.\binom{d+2}{2}-1-\delta \text { points }\right\}
$$

Caporaso-Harris recursion: $n_{d, g}$ computed by recursion. The recursion involves relative Severi degrees $n_{d, g}(\alpha, \beta)$ $\left(\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots\right), \alpha_{i}, \beta_{j} \in \mathbb{Z}_{\geq 0}\right)$ (tangency conditions along fixed line)
$n_{d, g}((d),(0))=n_{d, g}$.
X real algebraic surface, complex surface defined over \mathbb{R}
Complex conjugation maps X to itself and $X^{\mathbb{R}}$ is fixpoint locus
Real algebraic curve in X : complex curve inv. under conjugation
X real algebraic surface, complex surface defined over \mathbb{R}
Complex conjugation maps X to itself and $X^{\mathbb{R}}$ is fixpoint locus
Real algebraic curve in X : complex curve inv. under conjugation
Welschinger invariants:
$w_{L, g(L)-\delta}=($ signed $) \#\{$ real δ-nodal curves in X through $\operatorname{dim}|L|-\delta$ real points $\}$
sign: $(-1)^{s}, s=\#\left\{\right.$ isolated nodes in $\left.C^{\mathbb{R}}\right\}$
X real algebraic surface, complex surface defined over \mathbb{R}
Complex conjugation maps X to itself and $X^{\mathbb{R}}$ is fixpoint locus
Real algebraic curve in X : complex curve inv. under conjugation
Welschinger invariants:
$w_{L, g(L)-\delta}=($ signed $) \#\{$ real δ-nodal curves in X through $\operatorname{dim}|L|-\delta$ real points $\}$
sign: $(-1)^{s}, s=\#\left\{\right.$ isolated nodes in $\left.C^{\mathbb{R}}\right\}$

Theorem (Itenberg-Kharlamov-Shustin)

There is a Caporaso-Harris type recursion for $w_{d, g}$.
The recursion uses tropical geometry.
X real algebraic surface, complex surface defined over \mathbb{R}
Complex conjugation maps X to itself and $X^{\mathbb{R}}$ is fixpoint locus
Real algebraic curve in X : complex curve inv. under conjugation
Welschinger invariants:
$w_{L, g(L)-\delta}=($ signed $) \#\{$ real δ-nodal curves in X through $\operatorname{dim}|L|-\delta$ real points $\}$
sign: $(-1)^{s}, s=\#\left\{\right.$ isolated nodes in $\left.C^{\mathbb{R}}\right\}$

Theorem (Itenberg-Kharlamov-Shustin)

There is a Caporaso-Harris type recursion for $w_{d, g}$.
The recursion uses tropical geometry.

Conjecture

$$
w_{d, g(d)-\delta}=(-1)^{\delta} N_{g(d)-\delta}^{d H}(-1)\left(=\bar{N}_{g(d)-\delta}^{d H}(-1)\right) \text {, if } \delta \leq 3 d-3
$$

(using the recursion this is checked for $d<15, \delta<11$).

Refined Severi degrees

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees:

Found recursion defining polynomials $N_{d, g}(\alpha, \beta) \in Z_{\geq 0}[y]$, s.th. $N_{d, g}(\alpha, \beta)(1)=n_{d, g}(\alpha, \beta), N_{d, g}(\alpha, \beta)(-1)= \pm w_{d, g}(\alpha, \beta)$.

Definition

Call $N_{d, g}(y)$ refined Severi degrees

Refined Severi degrees

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees:

Found recursion defining polynomials $N_{d, g}(\alpha, \beta) \in Z_{\geq 0}[y]$, s.th. $N_{d, g}(\alpha, \beta)(1)=n_{d, g}(\alpha, \beta), N_{d, g}(\alpha, \beta)(-1)= \pm w_{d, g}(\alpha, \beta)$.

Definition

Call $N_{d, g}(y)$ refined Severi degrees

Conjecture

$N_{d, g(d)-\delta}(y)=N_{g(d)-\delta}^{d H}(y)$ for $\delta \leq 2 d-2$.
This conjecture is confirmed for $d<15, \delta<11$).

Refined Severi degrees

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees:

Found recursion defining polynomials $N_{d, g}(\alpha, \beta) \in Z_{\geq 0}[y]$,
s.th. $N_{d, g}(\alpha, \beta)(1)=n_{d, g}(\alpha, \beta), N_{d, g}(\alpha, \beta)(-1)= \pm w_{d, g}(\alpha, \beta)$.

Definition

Call $N_{d, g}(y)$ refined Severi degrees

Conjecture

$$
N_{d, g(d)-\delta}(y)=N_{g(d)-\delta}^{d H}(y) \text { for } \delta \leq 2 d-2 .
$$

This conjecture is confirmed for $d<15, \delta<11$).

Example

$$
N_{3,0}(y)=N_{0}^{3 H}(y)=1+10 y+y^{2}, n_{3,0}=12, w_{3,0}=8 .
$$

Refined Severi degrees

Other specialization: $y=0: \chi_{0}(X)=\chi\left(X, \mathcal{O}_{X}\right)$.

Proposition

$$
N_{d, g(d)-\delta}(0)=\binom{g(d)}{\delta}
$$

Refined Severi degrees

Other specialization: $y=0: \chi_{0}(X)=\chi\left(X, \mathcal{O}_{X}\right)$.

Proposition

$$
N_{d, g(d)-\delta}(0)=\binom{g(d)}{\delta}
$$

Theorem

S surface, $L \in \operatorname{Pic}(S)$, then $N_{g(L)-\delta}^{L}=\left(\underset{\delta}{g(L)-1+\chi\left(\mathcal{O}_{\chi}\right)}\right)$.

Refined Severi degrees

Other specialization: $y=0: \chi_{0}(X)=\chi\left(X, \mathcal{O}_{X}\right)$.

Proposition

$$
N_{d, g(d)-\delta}(0)=\binom{g(d)}{\delta}
$$

Theorem

S surface, $L \in \operatorname{Pic}(S)$, then $N_{g(L)-\delta}^{L}=\left(\underset{\delta}{g(L)-1+\chi\left(\mathcal{O}_{x}\right)}\right)$.

Question

(1) What is the enumerative meaning of $N_{d, g}(y)$?
(2) Are the $N_{d, g}(y)$ related to tropical geometry?
(3) For general surfaces, is there an interpretation of $N_{g(L)-\delta}^{L}(-1)$?
(9) Can the $N_{g(L)-\delta}^{L}(y)$ be related to open Gromov-Witten invariants?
(ad (2)): S a surface with an antisymplectic involution: Welschinger invariants still defined, but usually different from $N_{g(L)-\delta}^{L}(-1)$.
(ad (2)): S a surface with an antisymplectic involution: Welschinger invariants still defined, but usually different from $N_{g(L)-\delta}^{L}(-1)$.
$(\operatorname{ad}(3))$: Let (X, τ) is surface with an antisymplectic involution Corresponding open Gromov-Witten invariants:
Let $X^{\tau} \subset X$ fixpoint set of τ
(ad (2)): S a surface with an antisymplectic involution:
Welschinger invariants still defined, but usually different from $N_{g(L)-\delta)}^{L}(-1)$.
$(\operatorname{ad}(3))$: Let (X, τ) is surface with an antisymplectic involution Corresponding open Gromov-Witten invariants:
Let $X^{\tau} \subset X$ fixpoint set of τ
Open Gromov-Witten invariants count maps from Riemann surfaces with boundary (C, B) to X, s.th. boundary B is mapped to X^{τ}.
(ad (2)): S a surface with an antisymplectic involution:
Welschinger invariants still defined, but usually different from
$N_{g(L)-\delta}^{L}(-1)$.
$(\operatorname{ad}(3))$: Let (X, τ) is surface with an antisymplectic involution Corresponding open Gromov-Witten invariants:
Let $X^{\tau} \subset X$ fixpoint set of τ
Open Gromov-Witten invariants count maps from Riemann surfaces with boundary (C, B) to X, s.th. boundary B is mapped to X^{τ}.
Welschinger invariants are a special case of this: Given
$f:(C, B) \rightarrow\left(X, X^{\tau}\right)$ by the Schwarz reflection principle get $\bar{f}: \bar{C} \rightarrow X$, where \bar{C} is the curve obtained by gluing C to C along B. If τ is complex conjugation, real algebraic curve.

$$
\begin{aligned}
& N_{d, g}(\alpha, \beta)(y)=\sum_{k \mid \beta_{k}>0} \frac{1-y^{k}}{1-y} N_{d, g}\left(\alpha+e_{k}, \beta-e_{k}\right)(y) \\
& \quad+\sum_{\beta^{\prime}, \alpha^{\prime}, g^{\prime}} y^{I_{\beta}+l_{\alpha^{\prime}}} \prod_{i}\left(\frac{1-y^{i}}{1-y}\right)^{\beta_{i}^{\prime}-\beta_{i}}\binom{\alpha}{\alpha^{\prime}}\binom{\beta^{\prime}}{\beta} N_{d-1, g^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right)(y)
\end{aligned}
$$

$$
\begin{aligned}
& N_{d, g}(\alpha, \beta)(y)=\sum_{k \mid \beta_{k}>0} \frac{1-y^{k}}{1-y} N_{d, g}\left(\alpha+e_{k}, \beta-e_{k}\right)(y) \\
& \quad+\sum_{\beta^{\prime}, \alpha^{\prime}, g^{\prime}} y^{I_{\beta}+I_{\alpha^{\prime}}} \prod_{i}\left(\frac{1-y^{i}}{1-y}\right)^{\beta_{i}^{\prime}-\beta_{i}}\binom{\alpha}{\alpha^{\prime}}\binom{\beta^{\prime}}{\beta} N_{d-1, g^{\prime}}\left(\begin{array}{l}
\left.\alpha^{\prime}, \beta^{\prime}\right)(y) \\
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots\right), I_{\alpha}=\sum_{i} i \alpha_{i}, \quad\binom{\alpha}{\beta}=\prod_{i}\binom{\alpha_{i}}{\beta_{i}} \\
e_{k}=(0, \ldots, 0,1,0, \ldots): 1 \text { in position } k .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& N_{d, g}(\alpha, \beta)(y)=\sum_{k \mid \beta_{k}>0} \frac{1-y^{k}}{1-y} N_{d, g}\left(\alpha+e_{k}, \beta-e_{k}\right)(y) \\
& \quad+\sum_{\beta^{\prime}, \alpha^{\prime}, g^{\prime}} y^{I_{\beta}+I_{\alpha^{\prime}}} \prod_{i}\left(\frac{1-y^{i}}{1-y}\right)^{\beta_{i}^{\prime}-\beta_{i}}\binom{\alpha}{\alpha^{\prime}}\binom{\beta^{\prime}}{\beta} N_{d-1, g^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right)(y)
\end{aligned}
$$

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots\right), I_{\alpha}=\sum_{i} i \alpha_{i}, \quad\binom{\alpha}{\beta}=\prod_{i}\binom{\alpha_{i}}{\beta_{i}},
$$

$$
e_{k}=(0, \ldots, 0,1,0, \ldots): 1 \text { in position } k .
$$

Second sum is over all $\alpha^{\prime} \leq \alpha, \beta^{\prime} \geq \beta$ and g^{\prime} such that

$$
I_{\alpha^{\prime}}+I_{\beta^{\prime}}=d-1, \quad g-g^{\prime}=\sum_{i}\left(\beta_{i}^{\prime}-\beta_{i}\right) .
$$

$y=1$ gives Caporaso-Harris recursion,
$y=-1$ gives recursion for Welschinger invariants.

Let X variety with \mathbb{C}^{*}-action by with fixpointset $\left\{p_{1}, \ldots, p_{e}\right\}$ finite Let t be the coordinate on \mathbb{C}^{*}. Let ε be a variable.
Let E vector bundle on X to which action lifts. (True for $E=T_{X}$ tangent bundle)

Let X variety with \mathbb{C}^{*}-action by with fixpointset $\left\{p_{1}, \ldots, p_{e}\right\}$ finite Let t be the coordinate on \mathbb{C}^{*}. Let ε be a variable.
Let E vector bundle on X to which action lifts. (True for $E=T_{X}$ tangent bundle)
$E\left(p_{i}\right)$ vector space with \mathbb{C}^{*} action, has basis of eigenvectors
$E\left(p_{i}\right)=\sum_{i=1}^{r} \mathbb{C} e_{j}, \quad t \cdot e_{j}=t^{w_{j}} e_{j}$, put $w\left(e_{j}\right):=w_{j} \varepsilon$

Let X variety with \mathbb{C}^{*}-action by with fixpointset $\left\{p_{1}, \ldots, p_{e}\right\}$ finite Let t be the coordinate on \mathbb{C}^{*}. Let ε be a variable.
Let E vector bundle on X to which action lifts. (True for $E=T_{X}$ tangent bundle)
$E\left(p_{i}\right)$ vector space with \mathbb{C}^{*} action, has basis of eigenvectors
$E\left(p_{i}\right)=\sum_{i=1}^{r} \mathbb{C} e_{j}, \quad t \cdot e_{j}=t^{w_{j}} e_{j}$, put $w\left(e_{j}\right):=w_{j} \varepsilon$
Write
$\prod_{i=1}^{r}\left(1+w\left(e_{i}\right)\right)=:\left(1+c_{1}\left(E\left(p_{i}\right)\right)+c_{2}\left(E\left(p_{i}\right)\right)+\ldots+c_{n}\left(E\left(p_{i}\right)\right)\right)$.
Let $P\left(c_{1}(E), \ldots, c_{r}(E)\right)$ polynomial of weight $d=\operatorname{dim}(X)$ in
Chern classes of E.
Then $\int_{X} P\left(c_{1}(E), \ldots, c_{r}(E)\right)=\sum_{i=1}^{e} \frac{P\left(c_{1}\left(E\left(p_{i}\right)\right), \ldots, c_{r}\left(E\left(p_{i}\right)\right)\right)}{c_{d}\left(T_{X}\left(p_{i}\right)\right)}$

