Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz

Refined curve counting

Lothar Göttsche, joint work with Vivek Shende

August 9, 2011

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
•000000	000000	0000	00	000000				

This talk: Curve counting on algebraic surfaces What does it mean to count courves?

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
•000000								

This talk: Curve counting on algebraic surfaces What does it mean to count courves?

We work over \mathbb{C} . Always deal with projective varieties Smooth algebraic curve *C* over \mathbb{C} has a genus $g(C) = H^0(C, K_C) =$ number of handles. Nonsingular curve of degree *d* in \mathbb{P}^2 has genus $g(d) = \binom{d-1}{2}$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
•000000								

This talk: Curve counting on algebraic surfaces What does it mean to count courves?

We work over \mathbb{C} . Always deal with projective varieties Smooth algebraic curve *C* over \mathbb{C} has a genus $g(C) = H^0(C, K_C) =$ number of handles. Nonsingular curve of degree *d* in \mathbb{P}^2 has genus $g(d) = \binom{d-1}{2}$. If *C* singular curve: (geometric) genus g(C) genus of normalization

Introduction 000000	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o
Curve counti	20				

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
000000					
Curve counti	ng				

 $|\mathcal{O}(d)| = \mathbb{P}^{\binom{d+2}{2}-1}$ =space of curves of degree *d*. curves with δ -nodes lie in codimension δ in $|\mathcal{O}(d)|$. general curve of genus $g(d) - \delta$ has precisely δ -nodes curves through a given point in \mathbb{P}^2 form a hyperplane in $|\mathcal{O}(d)|$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
000000					
Curve counti	ng				

 $|\mathcal{O}(d)| = \mathbb{P}^{\binom{d+2}{2}-1}$ =space of curves of degree *d*. curves with δ -nodes lie in codimension δ in $|\mathcal{O}(d)|$. general curve of genus $g(d) - \delta$ has precisely δ -nodes curves through a given point in \mathbb{P}^2 form a hyperplane in $|\mathcal{O}(d)|$.

Severi degrees:

 $n_{d,g} := \#\{$ curves of degree d, genus g in \mathbb{P}^2 through 3d - 1 + g general points $\}$ $n_{1,0} = n_{2,0} = 1, n_{3,0} = 12$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz				
000000									
Curve counting									

 $|\mathcal{O}(d)| = \mathbb{P}^{\binom{d+2}{2}-1}$ =space of curves of degree *d*. curves with δ -nodes lie in codimension δ in $|\mathcal{O}(d)|$. general curve of genus $g(d) - \delta$ has precisely δ -nodes curves through a given point in \mathbb{P}^2 form a hyperplane in $|\mathcal{O}(d)|$.

Severi degrees:

 $n_{d,g} := \#\{$ curves of degree d, genus g in \mathbb{P}^2 through 3d - 1 + g general points $\}$ $n_{1,0} = n_{2,0} = 1, n_{3,0} = 12$ **Caporaso-Harris recursion:** A recursion formula that determines all $n_{d,g}$ recursively.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
000000					

Curve counting

Why care?

These are classical questions, but for me the most important reason is the following:

These and similar numbers come up in physics, and there they are closely related to each other and to other subjects of mathematics

These relations will be reflected and are in some sense most visible in the generating functions of curve counting and other invariants.

• Find the correct compact moduli space *M*, parametrizing the curves and the degenerations one wants to allow.

- Find the correct compact moduli space *M*, parametrizing the curves and the degenerations one wants to allow.
- On wants to count curves satisfying certain conditions, this will be an intersection number on *M*.

- Find the correct compact moduli space *M*, parametrizing the curves and the degenerations one wants to allow.
- On wants to count curves satisfying certain conditions, this will be an intersection number on *M*.
- Often one needs to use a virtual fundamental class and count "virtual numbers of curves".

Introduction 0000000	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz 0
Curve counti	ng				

- Find the correct compact moduli space *M*, parametrizing the curves and the degenerations one wants to allow.
- On wants to count curves satisfying certain conditions, this will be an intersection number on *M*.
- Often one needs to use a virtual fundamental class and count "virtual numbers of curves".

(0) For Severi degrees: curves are elements of |O(d)|Count curves with given genus through correct number of points as points in proj. space |O(d)|

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
0000000								
Curve counting								

(1) Gromov-Witten invariants: Count maps $f : C \rightarrow X$.

(1) Gromov-Witten invariants: Count maps $f : C \to X$. Look at moduli space $M_g(X, \beta) = \{(C, f) \text{ stable map } f : C \to X, C \text{ nodal curve of} genus g, f_*([C]) = \beta \in H^2(X, \mathbb{Z})\}$ Introduction Curve counting conj. Refined curve counting Interpretation of invariants Relation to Welschinger invariants Localiz: o

(1) Gromov-Witten invariants: Count maps $f : C \to X$. Look at moduli space $M_g(X, \beta) = \{(C, f) \text{ stable map } f : C \to X, C \text{ nodal curve of}$ genus $g, f_*([C]) = \beta \in H^2(X, \mathbb{Z})\}$ e.g. Let X quintic 3-fold in \mathbb{P}^4 $N_d := \#\{ \text{ rational curves of degree } d \text{ in } X \}^{"}$ $:= deg([M_0(X, dl)]^{vir})$ $N_1 = 5, N_2 = 2875, N_3 = 609250, \dots$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
0000000								

(1) Gromov-Witten invariants: Count maps $f: C \to X$. Look at moduli space $M_a(X,\beta) = \{(C,f) \text{ stable map } f: C \to X, C \text{ nodal curve of } \}$ genus $g, f_*([C]) = \beta \in H^2(X, \mathbb{Z})$ } e.g. Let X quintic 3-fold in \mathbb{P}^4 $N_d := \#\{ \text{ rational curves of degree } d \text{ in } X \}$ $:= deg([M_0(X, dI)]^{vir})$ $N_1 = 5, N_2 = 2875, N_3 = 609250, \ldots$ First computed by physicists using Mirror symmetry (There are pairs X, X' of Calabi-Yau 3-folds (i.e. $K_X = \mathcal{O}_X$) which are closely related. By physics counting curves on X is equivalent to variations of Hodge structures on X')

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
0000000					

(2) Gopakumar-Vafa (BPS)-invariants:

Gromov-Witten invariants count maps

Curve counting

 \implies complicated formulas for multiple covers

Gopakumar-Vafa invariants: conjectural invariants from physics that count actual (virtual) curves

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
0000000					

Curve counting

(2) Gopakumar-Vafa (BPS)-invariants:

Gromov-Witten invariants count maps

 \implies complicated formulas for multiple covers

Gopakumar-Vafa invariants: conjectural invariants from physics that count actual (virtual) curves

More conjecturally: there should be **refined BPS invariants**: GV invariants should be something like the Euler number of some physics moduli space and the refined invariants should be something like Betti numbers

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o		

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_X \to \mathcal{O}_C$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
Curve counti	ng				

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_X \to \mathcal{O}_C$ **P-T moduli space:** $P_n(X,\beta) := \{(F,s) \mid F \text{ pure 1-dimensional sheaf on } X,$ $s : \mathcal{O}_X \to F \text{ section, } dim(coker(s)) = 0, \ c_2(F) = \beta, \chi(F) = n \}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz	
000000	000000	0000	00	000000		

These count possibly degenerate curves in $C \subset X$, by counting their structure sheaves on $\mathcal{O}_X \to \mathcal{O}_C$ **P-T moduli space:** $P_n(X,\beta) := \{(F,s) \mid F \text{ pure 1-dimensional sheaf on } X,$ $s : \mathcal{O}_X \to F \text{ section}, \dim(coker(s)) = 0, c_2(F) = \beta, \chi(F) = n\}$ If *X* is CY 3-fold the expected dimension of $P_n(X,\beta)$ is 0 and the PT-invariant is $deg([P_n(X,n)]^{\text{vir}})$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz		
0000000							
Curve counting							

These count possibly degenerate curves in $\mathcal{C} \subset X$, by counting their structure sheaves on $\mathcal{O}_X \to \mathcal{O}_C$

P-T moduli space:

$$\begin{split} P_n(X,\beta) &:= \{(F,s) \mid F \text{ pure 1-dimensional sheaf on } X, \\ s &: \mathcal{O}_X \to F \text{ section, } dim(coker(s)) = 0, \ c_2(F) = \beta, \chi(F) = n \} \\ \text{If } X \text{ is CY 3-fold the expected dimension of } P_n(X,\beta) \text{ is 0 and} \\ \text{the PT-invariant is } deg([P_n(X,n)]^{\text{vir}}). \end{split}$$

Conjectural PT-GW correspondence:

PT and GW invariants conjectured equivalent (generating functions related by explicit change of variables) PT have conjecturally defined GV-inv. in terms of PT-inv.

So all 3 sets of invariants are conjectured to be equivalent.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	● 00 000				
.					

 $\begin{array}{l} S \text{ smooth projective surface over } \mathbb{C} \\ L \in \textit{Pic}(S) \text{ very ample line bundle} \\ |L| = \mathbb{P}(H^0(S,L)) \text{ complete linear system} \\ g(L) = \frac{L(L+K_S)}{2} + 1 \text{ genus of smooth curve in } |L| \end{array}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o
.					

S smooth projective surface over \mathbb{C} $L \in Pic(S)$ very ample line bundle $|L| = \mathbb{P}(H^0(S, L))$ complete linear system $g(L) = \frac{L(L+K_S)}{2} + 1$ genus of smooth curve in |L|Count curves curves of given geometric genus in |L|: Let $V_{\delta} \subset |L|$ general δ -dimensional linear subspace

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	00000				

S smooth projective surface over \mathbb{C} $L \in Pic(S)$ very ample line bundle $|L| = \mathbb{P}(H^0(S, L))$ complete linear system $g(L) = \frac{L(L+K_S)}{2} + 1$ genus of smooth curve in |L|Count curves curves of given geometric genus in |L|: Let $V_{\delta} \subset |L|$ general δ -dimensional linear subspace Severi degree:

 $n_{L,g(L)-\delta} := \#\{\delta \text{-nodal curves in } V_{\delta}\} \\ = \#\{ \text{ curves of genus } g(L) - \delta \text{ in } V_{\delta} \} \\ (L \text{ sufficiently ample}).$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	00000				

S smooth projective surface over \mathbb{C} $L \in Pic(S)$ very ample line bundle $|L| = \mathbb{P}(H^0(S, L))$ complete linear system $g(L) = \frac{L(L+K_S)}{2} + 1$ genus of smooth curve in |L|Count curves curves of given geometric genus in |L|: Let $V_{\delta} \subset |L|$ general δ -dimensional linear subspace **Severi degree:**

$n_{L,g(L)-\delta} := \#\{\delta \text{-nodal curves in } V_{\delta}\}$

= #{ curves of genus $g(L) - \delta$ in V_{δ} }

(*L* sufficiently ample).

Formulas for this as polynomial in L^2 , LK_S , K_S^2 , $c_2(S)$ computed by Avritzer-Vainsencher for $\delta \leq 6$ and by Kleimann-Piene for larger δ .

Introduction Curve counting conj. Refined curve counting Interpretation of invariants Relation to Welschinger invariants Localization of the curve counting of the curve c

Curve counting conjecture

Yau-Zaslow formula from physics: Let *S* K3-surface, *L* line bundle on *S*, then the number n_{L^2} of rational curves in |L| depends only on L^2 and

$$\sum_d n_d q^d = \frac{1}{\Delta(q)}$$

 $(\Delta(q) = q \prod_{n \ge 1} (1 - q^n)^{24}).$

Curve counting conjecture

Yau-Zaslow formula from physics: Let *S* K3-surface, *L* line bundle on *S*, then the number n_{L^2} of rational curves in |L| depends only on L^2 and

$$\sum_d n_d q^d = rac{1}{\Delta(q)}$$

$$(\Delta(q) = q \prod_{n \ge 1} (1 - q^n)^{24}).$$

Conjecture (G 1997)

(1) Exists universal polynomial $n_{g(L)-\delta}^{L}$ in L^{2} , LK_{S} , K_{S}^{2} , $c_{2}(S)$, such that $n_{L,g(L)-\delta} = n_{g(L)-\delta}^{L}$ for L is sufficiently ample wrt δ . (2) Conjectural generating function for the $n_{g(L)-\delta}^{L}$. Curve counting conjecture

Yau-Zaslow formula from physics: Let *S* K3-surface, *L* line bundle on *S*, then the number n_{L^2} of rational curves in |L| depends only on L^2 and

$$\sum_d n_d q^d = rac{1}{\Delta(q)}$$

$$(\Delta(q) = q \prod_{n \ge 1} (1 - q^n)^{24}).$$

Conjecture (G 1997)

(1) Exists universal polynomial $n_{g(L)-\delta}^{L}$ in L^{2} , LK_{S} , K_{S}^{2} , $c_{2}(S)$, such that $n_{L,g(L)-\delta} = n_{g(L)-\delta}^{L}$ for L is sufficiently ample wrt δ . (2) Conjectural generating function for the $n_{g(L)-\delta}^{L}$.

Part (1) of the conjecture (existence of univ. polyn. $n_{g(L)-\delta}^{L}$) was proven by Tzeng, Kool-Shende-Thomas (2010)

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
	000000							

Aim: Give a refined version of conj, inspired by KST proof. Replace $n_{g(L)-\delta}^{L}$ by polynomials $N_{g(L)-\delta}(y) \in \mathbb{Z}[y]$ "Refined curve counting invariants" such that $N_{g(L)-\delta}^{L}(1) = n_{g(L)-\delta}^{L}$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz			
	000000							

Aim: Give a refined version of conj, inspired by KST proof. Replace $n_{g(L)-\delta}^{L}$ by polynomials $N_{g(L)-\delta}(y) \in \mathbb{Z}[y]$ "Refined curve counting invariants" such that $N_{g(L)-\delta}^{L}(1) = n_{g(L)-\delta}^{L}$. What do they count?

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz				
	000000								
Curve counting conjecture									

Aim: Give a refined version of conj, inspired by KST proof. Replace $n_{g(L)-\delta}^{L}$ by polynomials $N_{g(L)-\delta}(y) \in \mathbb{Z}[y]$ "Refined curve counting invariants" such that $N_{g(L)-\delta}^{L}(1) = n_{g(L)-\delta}^{L}$. What do they count?

X projective variety. Hilbert scheme $X^{[n]}$ of *n* points on X parametrizes zero dimensional subschemes of length *n* on X, i.e. generically sets of *n* points on X.

Introduction 0000000	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o			
Deview of Lilbert askemen of asists								

X projective variety. Hilbert scheme $X^{[n]}$ of *n* points on X parametrizes zero dimensional subschemes of length *n* on X, i.e. generically sets of *n* points on X.

On a smooth curve C a subscheme of length n is a set of n points counted with multiplicity.

Thus $C^{[n]} = C^{(n)}$ is just the symmetric power.

If *C* is a singular curve then $C^{[n]} \neq C^{(n)}$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	000000				

Review of Hilbert schemes of points

X projective variety. Hilbert scheme $X^{[n]}$ of *n* points on X parametrizes zero dimensional subschemes of length *n* on X, i.e. generically sets of *n* points on X.

On a smooth curve C a subscheme of length n is a set of n points counted with multiplicity.

Thus $C^{[n]} = C^{(n)}$ is just the symmetric power.

If *C* is a singular curve then $C^{[n]} \neq C^{(n)}$.

If *S* is a smooth projective surface, then $S^{[n]}$ is smooth projective variety of dimension 2n.

For any line bundle $L \in Pic(S)$ have a tautological vector bundle $L^{[n]}$ of rank *n* on $S^{[n]}$ with fibre $L^{[n]}([Z]) = H^0(L|_Z)$.
Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	000000				

Review of Hilbert schemes of points

X projective variety. Hilbert scheme $X^{[n]}$ of *n* points on X parametrizes zero dimensional subschemes of length *n* on X, i.e. generically sets of *n* points on X.

On a smooth curve C a subscheme of length n is a set of n points counted with multiplicity.

Thus $C^{[n]} = C^{(n)}$ is just the symmetric power.

If *C* is a singular curve then $C^{[n]} \neq C^{(n)}$.

If *S* is a smooth projective surface, then $S^{[n]}$ is smooth projective variety of dimension 2n.

For any line bundle $L \in Pic(S)$ have a tautological vector bundle $L^{[n]}$ of rank *n* on $S^{[n]}$ with fibre $L^{[n]}([Z]) = H^0(L|_Z)$.

ntroduction Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
000000 000000				

Sketch of KST proof

Recall $L \in Pic(S)$ suff. ample, $V_{\delta} \subset |L|$ general linear subspace $C := \{(p, [C]) \in S \times V_{\delta} \mid p \in C\}$ universal curve $C^{[n]} := \{([Z], [C]) \in S^{[n]} \times V_{\delta} \mid Z \subset C\}$ rel. Hilbert scheme

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	000000				

Sketch of KST proof

Recall $L \in Pic(S)$ suff. ample, $V_{\delta} \subset |L|$ general linear subspace $C := \{(p, [C]) \in S \times V_{\delta} \mid p \in C\}$ universal curve $C^{[n]} := \{([Z], [C]) \in S^{[n]} \times V_{\delta} \mid Z \subset C\}$ rel. Hilbert scheme **KST show:**

Introduction C	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	00000				

Sketch of KST proof

Recall $L \in Pic(S)$ suff. ample, $V_{\delta} \subset |L|$ general linear subspace $C := \{(p, [C]) \in S \times V_{\delta} \mid p \in C\}$ universal curve $C^{[n]} := \{([Z], [C]) \in S^{[n]} \times V_{\delta} \mid Z \subset C\}$ rel. Hilbert scheme **KST show:**

$$\exists_{n_{l}\in\mathbb{Z}}, l = g(L) - \delta, \dots, g(L) \text{ s.th.}$$

$$\sum_{n\geq 0} e(\mathcal{C}^{[n]})q^{n} = \sum_{l=g(L)-\delta}^{g(L)} n_{l}q^{g(L)-l}(1-q)^{2l-2}.$$

$$e(X) = \sum_{i=0}^{2dim(X)} (-1)^{i}rk(H^{i}(X,\mathbb{Z})) \text{ topological Euler number}$$

$$n_{q-\delta}^{L} = n_{g-\delta}.$$

Note: This computes $n_{g-\delta}^{L}$ as a BPS invariant: Pandharipande-Thomas defined BPS-invariants by formula (1).

Introduction	Curve counting conj. ○○○○○●	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o
Sketch of KS	T proof				

Why does this prove the conjecture?

Introduction 0000000	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o
Sketch of KS	ST proof				

Why does this prove the conjecture? $e(\mathcal{C}^{[n]})$ is tautological intersection number on $S^{[n]}$: $L^{[n]}$ tautological vector bundle on $S^{[n]}$, $L^{[n]}([Z]) = H^0(L|_Z)$. Let *H* pullback of $\mathcal{O}(1)$ from $V_{\delta} = \mathbb{P}^{\delta}$. $L^{[n]} \boxtimes H$ has section *s* with zero set $Z(s) = \mathcal{C}^{[n]}$.

Introduction 0000000	Curve counting conj. ○○○○○●	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o
Sketch of KS	T proof				

Why does this prove the conjecture? $e(\mathcal{C}^{[n]})$ is tautological intersection number on $S^{[n]}$: $L^{[n]}$ tautological vector bundle on $S^{[n]}$, $L^{[n]}([Z]) = H^0(L|_Z)$. Let H pullback of $\mathcal{O}(1)$ from $V_{\delta} = \mathbb{P}^{\delta}$. $L^{[n]} \boxtimes H$ has section s with zero set $Z(s) = \mathcal{C}^{[n]}$. This allows to compute $e(\mathcal{C}^{[n]})$ as intersection number on $S^{[n]}$:

$$m{e}(\mathcal{C}^{[n]}) = \int_{\mathcal{S}^{[n]} imes V_{\delta}} rac{c(\mathcal{T}_{\mathcal{S}^{[n]}}) c_n(\mathcal{L}^{[n]} \otimes \mathcal{H})}{c(\mathcal{L}^{[n]} \otimes \mathcal{H})}$$

 $(c(E) = 1 + c_1(E) + \ldots + c_{rk(E)}(E)$ Chern class). Ellingsrud-G-Lehn: such "tautological" integrals are always given by universal polynomials in L^2 , LK_S , K_S^2 , $c_2(S)$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Refinement: $L \in Pic(S)$ suff ample, $V_{\delta} \subset |L|$ general δ -dim linear subspace.

Recall: defined
$$n_{g(L)-\delta}^{L}$$
 by

$$\sum_{n\geq 0} e(C^{[n]})q^{n} = \sum_{l=g(L)-\delta}^{g(L)} n_{l}q^{g(L)-l}(1-q)^{2l-2}.$$
Note: $(1-q)^{2l-2} = \sum_{n\geq 0} e(C^{[n]})q^{n}$ for *C* smooth, $g(C) = l$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Refinement: $L \in Pic(S)$ suff ample, $V_{\delta} \subset |L|$ general δ -dim linear subspace.

Recall: defined
$$n_{g(L)-\delta}^{L}$$
 by

$$\sum_{n\geq 0} e(\mathcal{C}^{[n]})q^{n} = \sum_{\substack{l=g(L)-\delta \\ l=g(L)-\delta}}^{g(L)} n_{l}q^{g(L)-l}(1-q)^{2l-2}.$$
Note: $(1-q)^{2l-2} = \sum_{n\geq 0} e(C^{[n]})q^{n}$ for C smooth, $g(C) = l$.
Idea: Replace everywhere Euler number by χ_{-y} -genus
 $\chi_{-y}(X) = \sum_{\substack{p,q \\ p,q}} (-1)^{p+q}y^{q}h^{pq}(X) = \sum_{q} (-y)^{q}\chi(X, \Omega^{q}(X))$
Note: $\chi_{-1}(X) = e(X)$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Refinement: $L \in Pic(S)$ suff ample, $V_{\delta} \subset |L|$ general δ -dim linear subspace.

Recall: defined
$$n_{g(L)-\delta}^{L}$$
 by

$$\sum_{n\geq 0} e(\mathcal{C}^{[n]})q^{n} = \sum_{\substack{l=g(L)-\delta \\ l=g(L)-\delta}}^{g(L)} n_{l}q^{g(L)-l}(1-q)^{2l-2}.$$
Note: $(1-q)^{2l-2} = \sum_{n\geq 0} e(\mathcal{C}^{[n]})q^{n}$ for \mathcal{C} smooth, $g(\mathcal{C}) = l$.
Idea: Replace everywhere Euler number by χ_{-y} -genus
 $\chi_{-y}(X) = \sum_{\substack{p,q \\ p,q}} (-1)^{p+q}y^{q}h^{pq}(X) = \sum_{q} (-y)^{q}\chi(X, \Omega^{q}(X))$
Note: $\chi_{-1}(X) = e(X)$

Conjecture

$$\exists_{N_{l}(y)\in\mathbb{Z}[y]}, l = g(L) - \delta, \dots, g(L) \text{ s.th.} \\ \sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]})q^{n} = \sum_{l=g(L)-\delta}^{g(L)} N_{l}(y)q^{g(L)-l}((1-q)(1-qy))^{l-1}$$

Obvious if one allows $\sum_{l=-\infty}^{g(L)}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Conjecture

$$\exists_{N_l(y)\in\mathbb{Z}[y]}, l = g(L) - \delta, \dots, g(L) \text{ s.th.} \\ \sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]})q^n = \sum_{l=g(L)-\delta}^{g(L)} N_l(y)q^{g(L)-l} ((1-q)(1-qy))^{l-1}.$$

Introduction Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	0000			

Conjecture

$$\exists_{N_{l}(y)\in\mathbb{Z}[y]}, l = g(L) - \delta, \dots, g(L) \text{ s.th.} \\ \sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]})q^{n} = \sum_{l=g(L)-\delta}^{g(L)} N_{l}(y)q^{g(L)-l}((1-q)(1-qy))^{l-1}.$$

Definition

 $N_{g(L)-\delta}^{L} := N_{g(L)-\delta}$ is the refined curve counting invariant of curves of genus $g(L) - \delta$ in |L|. (Do not need conjecture for this).

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Conjecture

$$\exists_{N_{l}(y)\in\mathbb{Z}[y]}, l = g(L) - \delta, \dots, g(L) \text{ s.th.} \\ \sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]})q^{n} = \sum_{l=g(L)-\delta}^{g(L)} N_{l}(y)q^{g(L)-l}((1-q)(1-qy))^{l-1}.$$

Definition

 $N_{g(L)-\delta}^{L} := N_{g(L)-\delta}$ is the refined curve counting invariant of curves of genus $g(L) - \delta$ in |L|. (Do not need conjecture for this).

Example

Nodal cubics in \mathbb{P}^2 : \mathcal{C}/\mathbb{P}^1 pencil of cubics $n_0^{3H} = \#\{\text{rational curves in pencil}\}=12, N_0^{3H}(y) = \chi_{-y}(\mathcal{C}) = 1 + 10y + y^2$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Check of Conjecture: $\chi_{-y}(\mathcal{C}^{[n]})$ computed by very similar integral on $S^{[n]}$ as $e(\mathcal{C}^{[n]})$. EGL: coeff. of $\chi_{-y}(\mathcal{C}^{[n]})$ are univ. polyn. in $L^2, LK_S, K_S^2, c_2(S)$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Check of Conjecture: $\chi_{-\nu}(\mathcal{C}^{[n]})$ computed by very similar integral on $S^{[n]}$ as $e(\mathcal{C}^{[n]})$. EGL: coeff. of $\chi_{-\nu}(\mathcal{C}^{[n]})$ are univ. polyn. in $L^2, LK_S, K_S^2, c_2(S)$. \implies determined by values for $(S, L) = (\mathbb{P}^2, \mathcal{O}), (\mathbb{P}^2, \mathcal{O}(1)), (\mathbb{P}^2, \mathcal{O}(-1)), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}).$ These are toric surface: action of $T = \mathbb{C}^* \times \mathbb{C}^*$ on *S* with finitely many fixpoints. Action lifts to $S^{[n]}$ with finitely many fixpoints p_1, \ldots, p_e . **Bott Residue formula:** Integral for $\chi_{-\nu}(\mathcal{C}^{[n]})$ on $\mathcal{S}^{[n]}$ can be computed in terms of the weights of action of T on the fibres

 $T_{S^{[n]}}(p_i), L^{[n]}(p_i)$. Programmed on computer:

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

Check of Conjecture: $\chi_{-\nu}(\mathcal{C}^{[n]})$ computed by very similar integral on $S^{[n]}$ as $e(\mathcal{C}^{[n]})$. EGL: coeff. of $\chi_{-\nu}(\mathcal{C}^{[n]})$ are univ. polyn. in $L^2, LK_S, K_S^2, c_2(S)$. \implies determined by values for $(S, L) = (\mathbb{P}^2, \mathcal{O}), (\mathbb{P}^2, \mathcal{O}(1)), (\mathbb{P}^2, \mathcal{O}(-1)), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}).$ These are toric surface: action of $T = \mathbb{C}^* \times \mathbb{C}^*$ on *S* with finitely many fixpoints. Action lifts to $S^{[n]}$ with finitely many fixpoints p_1, \ldots, p_e . **Bott Residue formula:** Integral for $\chi_{-\nu}(\mathcal{C}^{[n]})$ on $\mathcal{S}^{[n]}$ can be computed in terms of the weights of action of T on the fibres $T_{S[n]}(p_i), L^{[n]}(p_i)$. Programmed on computer: **Result:** Conjecture is true modulo q^{11} .

$$\sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]})q^n \equiv \sum_{l=g(L)-\delta}^{g(L)} N_l(y)q^{g(L)-l}((1-q)(1-qy))^{l-1}$$

Introduction Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
	0000			

The computation gives conjectural generating function for refined invariants $N_{g(L)-\delta}^{L}(y)$. Let $\overline{N}_{g(L)-\delta}^{L}(y) := N_{g(L)-\delta}^{L}(y)/y^{\delta}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

The computation gives conjectural generating function for refined invariants $N_{g(L)-\delta}^{L}(y)$. Let $\overline{N}_{g(L)-\delta}^{L}(y) := N_{g(L)-\delta}^{L}(y)/y^{\delta}$

$$\begin{split} D &:= q \frac{q}{dq} \\ \Delta(y,q) &= q \prod_{n \ge 1} (1-q^n)^{20} (1-yq^n)^2 (1-y^{-1}q^n)^2, \\ \widetilde{DG}_2(y,q) &= \sum_{n \ge 1} q^n \Big(\sum_{d \mid n} \frac{n}{d} \frac{y^d - 2 + y^{-d}}{y - 2 + y} \Big) \\ B_1(y,q) &= 1 - q - (y + 3 + y^{-1})q^2 + \dots, \\ B_2(y,q) &= 1 + (y + 3 + y^{-1})q + (y^2 + y^{-2})q^2 + \dots \end{split}$$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
		0000			

The computation gives conjectural generating function for refined invariants $N_{q(L)-\delta}^{L}(y)$. Let $\overline{N}_{g(L)-\delta}^{L}(y) := N_{q(L)-\delta}^{L}(y)/y^{\delta}$

$$D := q \frac{q}{dq}$$

$$\Delta(y,q) = q \prod_{n \ge 1} (1-q^n)^{20} (1-yq^n)^2 (1-y^{-1}q^n)^2,$$

$$\widetilde{DG}_2(y,q) = \sum_{n \ge 1} q^n \left(\sum_{d|n} \frac{n}{d} \frac{y^d - 2 + y^{-d}}{y - 2 + y} \right)$$

$$B_1(y,q) = 1 - q - (y + 3 + y^{-1})q^2 + \dots,$$

$$B_2(y,q) = 1 + (y + 3 + y^{-1})q + (y^2 + y^{-2})q^2 + \dots$$

Conjecture

$$\sum_{\delta} \overline{N}_{g(L)-\delta}^{L}(y) (\widetilde{DG}_{2}(y,q))^{\delta} = \frac{(\widetilde{DG}_{2}(y,q)/q)^{\chi(L)} B_{1}(y,q)^{K_{\chi}^{2}} B_{2}(y,q)^{LK_{\chi}}}{(\Delta(y,q) D\widetilde{DG}_{2}(y,q)/q^{2})^{\chi(\mathcal{O}_{\chi})/2}}$$

Putting y = 1 recovers the previous conjecture

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
			•0		

Interpretation of the $N_{g(L)-\delta}^{L}(y)$: what do they count? $n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics **Hope:** $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants At any rate we hope that they count curves on *S* in some refined sense

Interpretation of the $N_{q(L)-\delta}^{L}(y)$: what do they count?

 $n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics **Hope:** $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants At any rate we hope that they count curves on *S* in some refined sense

Case of a K3 surface: Let *S K*3-surface, e.g. quartic in \mathbb{P}^3 , *L* primitive line bundle on *S* Write $\overline{N}_{g(L)-\delta}^{g(L)}(y) := \overline{N}_{g(L)-\delta}^L(y)$ (depends only on g(L)).

Interpretation of the $N_{a(L)-\delta}^{L}(y)$: what do they count?

 $n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics **Hope:** $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants At any rate we hope that they count curves on *S* in some refined sense

Case of a K3 surface: Let *S K*3-surface, e.g. quartic in \mathbb{P}^3 , *L* primitive line bundle on *S* Write $\overline{N}_{g(L)-\delta}^{g(L)}(y) := \overline{N}_{g(L)-\delta}^{L}(y)$ (depends only on g(L)). **Conjecture says:** $\sum_{g\geq 0} \overline{N}_{k}^{g}(y)q^{g-1} = \frac{\widetilde{DG}_{2}(y,q)^{k}}{\Delta(y,q)}$

Interpretation of the $N_{q(L)-\delta}^{L}(y)$: what do they count?

 $n_{g(L)-\delta}^{L}$ are the BPS (Gopakumar-Vafa)-invariants from Physics **Hope:** $N_{g(L)-\delta}^{L}(y)$ are refined BPS-invariants At any rate we hope that they count curves on *S* in some refined sense

Case of a K3 surface: Let *S K*3-surface, e.g. quartic in \mathbb{P}^3 , *L* primitive line bundle on *S*

Write $\overline{N}_{g(L)-\delta}^{g(L)}(y) := \overline{N}_{g(L)-\delta}^{L}(y)$ (depends only on g(L)).

Conjecture says:
$$\sum_{g \ge 0} \overline{N}_k^g(y) q^{g-1} = rac{DG_2(y,q)^k}{\Delta(y,q)}$$

The Gromov-Witten and Pandharipande-Thomas invariants were computed in this case by Maulik-Pandharipande-Thomas By the GW-PT correspondence (proven in this case) both are equivalent, so we only state PT invariants. Introduction Curve counting conj. Refined curve counting ocococo ococo ocococo ocococo ocococo ocococo ococo oco ococo oco ococo oco oco ococo oco oco

Comparison with BPS states on K3 surfaces

Pandharipande-Thomas invariants:

C universal curve over |L|. **P-T moduli space:** $P_n(S,L) \simeq C^{[n+g(L)-1]}/|L|$. H pullback of hyperplane class on |L|. PT invariants with point insertions: C^k of $Q > U^k$ for $g = g(L) = L^2$.

 $C_{n,g}^k := \int_{P_n(S,L)} c(\Omega_P) H^k$ for $g = g(L) = \frac{L^2}{2} + 1$.

 Introduction
 Curve counting conj.
 Refined curve counting oco
 Interpretation of invariants
 Relation to Welschinger invariants
 Localization

 0000000
 000000
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Comparison with BPS states on K3 surfaces

Pandharipande-Thomas invariants:

C universal curve over |L|. **P-T moduli space:** $P_n(S,L) \simeq C^{[n+g(L)-1]}/|L|.$

H pullback of hyperplane class on |L|.

PT invariants with point insertions:

$$C_{n,g}^k := \int_{P_n(S,L)} c(\Omega_P) H^k$$
 for $g = g(L) = \frac{L^2}{2} + 1$.

Theorem (MPT)

$$\sum_{n\geq 0}\sum_{g\geq 0}C_{n,g}^{k}(-y)^{n}q^{g-1}=(-1)^{k-1}(y-2+y^{-1})^{k-1}\frac{\widetilde{DG}_{2}(y,q)^{k}}{\Delta(y,q)}$$

Modulo the conjecture this says $\overline{N}_{k}^{g}(y) = (-1)^{k-1}(y-2+y^{-1})^{k-1}\sum_{n\geq 0}C_{n,g}^{k}(-y)^{n}$ Thus $N_{k}^{g}(y)$ counts PT invariants with k point insertions. Let *S* be a real toric surface (*S* defined over \mathbb{R} , $\mathbb{C}^* \times \mathbb{C}^*$ -action defined over \mathbb{R} , fixed points real (for simplicity assume $S = \mathbb{P}^2$, but what follows works more generally). We conjecture that the refined invariants $N_g^L(y)$ specialized at y = -1 compute the Welschinger invariants, counting real algebraic curves

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o				
Relation to Welschinger invariants									

Let *S* be a real toric surface (*S* defined over \mathbb{R} , $\mathbb{C}^* \times \mathbb{C}^*$ -action defined over \mathbb{R} , fixed points real (for simplicity assume $S = \mathbb{P}^2$, but what follows works more generally).

We conjecture that the refined invariants $N_g^L(y)$ specialized at y = -1 compute the Welschinger invariants, counting real algebraic curves

Severi degree:

 $n_{d,g(d)-\delta} := #\{ \text{curves of degree } d, \text{ genus } g(d) - \delta \text{ through} \ \binom{d+2}{2} - 1 - \delta \text{ points} \}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o			
Relation to Welschinger invariants								

Let *S* be a real toric surface (*S* defined over \mathbb{R} , $\mathbb{C}^* \times \mathbb{C}^*$ -action defined over \mathbb{R} , fixed points real (for simplicity assume $S = \mathbb{P}^2$, but what follows works more generally).

We conjecture that the refined invariants $N_g^L(y)$ specialized at y = -1 compute the Welschinger invariants, counting real algebraic curves

Severi degree:

 $n_{d,g(d)-\delta} := #\{ \text{curves of degree } d, \text{ genus } g(d) - \delta \text{ through} \ \binom{d+2}{2} - 1 - \delta \text{ points} \}$

Caporaso-Harris recursion: $n_{d,g}$ computed by recursion. The recursion involves relative Severi degrees $n_{d,g}(\alpha,\beta)$ $(\alpha = (\alpha_1, \alpha_2, \ldots), \beta = (\beta_1, \beta_2, \ldots), \alpha_i, \beta_j \in \mathbb{Z}_{\geq 0})$ (tangency conditions along fixed line) $n_{d,g}((d), (0)) = n_{d,g}$.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Relation to Welschinger invariants

X real algebraic surface, complex surface defined over \mathbb{R} Complex conjugation maps *X* to itself and $X^{\mathbb{R}}$ is fixpoint locus Real algebraic curve in *X*: complex curve inv. under conjugation

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Relation to Welschinger invariants

X real algebraic surface, complex surface defined over \mathbb{R} Complex conjugation maps *X* to itself and $X^{\mathbb{R}}$ is fixpoint locus Real algebraic curve in *X*: complex curve inv. under conjugation **Welschinger invariants:**

 $w_{L,g(L)-\delta} = (\text{signed}) \# \{ \text{real } \delta \text{-nodal curves in } X \text{ through} \ dim |L| - \delta \text{ real points} \}$

sign: $(-1)^s$, $s = #\{\text{isolated nodes in } C^{\mathbb{R}}\}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Relation to Welschinger invariants

X real algebraic surface, complex surface defined over \mathbb{R} Complex conjugation maps *X* to itself and $X^{\mathbb{R}}$ is fixpoint locus Real algebraic curve in *X*: complex curve inv. under conjugation **Welschinger invariants:**

 $w_{L,g(L)-\delta} = (\text{signed}) \# \{ \text{real } \delta \text{-nodal curves in } X \text{ through} \ dim |L| - \delta \text{ real points} \}$

sign: $(-1)^s$, $s = #\{\text{isolated nodes in } C^{\mathbb{R}}\}$

Theorem (Itenberg-Kharlamov-Shustin)

There is a Caporaso-Harris type recursion for $w_{d,g}$.

The recursion uses tropical geometry.

Introduction ocono Curve counting conj. Refined curve counting interpretation of invariants ocoo control ocono control interpretation of invariants ocoo control interpretation ocoo control interpret

Relation to Welschinger invariants

X real algebraic surface, complex surface defined over \mathbb{R} Complex conjugation maps *X* to itself and $X^{\mathbb{R}}$ is fixpoint locus Real algebraic curve in *X*: complex curve inv. under conjugation **Welschinger invariants:**

 $w_{L,g(L)-\delta} = (\text{signed}) \# \{ \text{real } \delta \text{-nodal curves in } X \text{ through} \ dim |L| - \delta \text{ real points} \}$

sign: $(-1)^s$, $s = #\{\text{isolated nodes in } C^{\mathbb{R}}\}$

Theorem (Itenberg-Kharlamov-Shustin)

There is a Caporaso-Harris type recursion for $w_{d,g}$.

The recursion uses tropical geometry.

Conjecture

$$w_{d,g(d)-\delta} = (-1)^{\delta} N^{dH}_{g(d)-\delta}(-1) (= \overline{N}^{dH}_{g(d)-\delta}(-1))$$
, if $\delta \leq 3d-3$

(using the recursion this is checked for d < 15, $\delta < 11$).

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees:

Found recursion defining polynomials $N_{d,g}(\alpha,\beta) \in \mathbb{Z}_{\geq 0}[y]$,

s.th. $N_{d,g}(\alpha,\beta)(1) = n_{d,g}(\alpha,\beta), N_{d,g}(\alpha,\beta)(-1) = \pm w_{d,g}(\alpha,\beta).$

Definition

Call $N_{d,g}(y)$ refined Severi degrees

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees:

Found recursion defining polynomials $N_{d,g}(\alpha,\beta) \in Z_{\geq 0}[y]$,

s.th. $N_{d,g}(\alpha,\beta)(1) = n_{d,g}(\alpha,\beta), N_{d,g}(\alpha,\beta)(-1) = \pm w_{d,g}(\alpha,\beta).$

Definition

Call $N_{d,g}(y)$ refined Severi degrees

Conjecture

$$N_{d,g(d)-\delta}(y) = N_{g(d)-\delta}^{dH}(y)$$
 for $\delta \leq 2d-2$.

This conjecture is confirmed for d < 15, $\delta < 11$).

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				00000	

Severi degrees and Welschinger invariants satisfy similar Caporaso-Harris type recursion, do they have common refinement?

Refined Severi degrees:

Found recursion defining polynomials $N_{d,g}(\alpha,\beta) \in Z_{\geq 0}[y]$,

s.th. $N_{d,g}(\alpha,\beta)(1) = n_{d,g}(\alpha,\beta), N_{d,g}(\alpha,\beta)(-1) = \pm w_{d,g}(\alpha,\beta).$

Definition

Call $N_{d,g}(y)$ refined Severi degrees

Conjecture

$$N_{d,g(d)-\delta}(y) = N_{g(d)-\delta}^{dH}(y)$$
 for $\delta \leq 2d-2$.

This conjecture is confirmed for d < 15, $\delta < 11$).

Example

$$N_{3,0}(y) = N_0^{3H}(y) = 1 + 10y + y^2, \ n_{3,0} = 12, \ w_{3,0} = 8.$$
Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				000000	

Refined Severi degrees

Other specialization:
$$y = 0$$
: $\chi_0(X) = \chi(X, \mathcal{O}_X)$.

Proposition

$$N_{d,g(d)-\delta}(0) = \binom{g(d)}{\delta}$$

Introduction Curve counting con. Refined curve counting interpretation of invariants oo

Refined Severi degrees

Other specialization:
$$y = 0$$
: $\chi_0(X) = \chi(X, \mathcal{O}_X)$.

Proposition

$$N_{d,g(d)-\delta}(0) = \left(egin{smallmatrix} g(d) \ \delta \end{pmatrix}$$

Theorem

S surface,
$$L \in Pic(S)$$
, then $N_{g(L)-\delta}^L = \begin{pmatrix} g(L)-1+\chi(\mathcal{O}_X) \\ \delta \end{pmatrix}$.

Introduction Curve counting conj. Refined curve counting Interpretation of invariants oo

Refined Severi degrees

Other specialization:
$$y = 0$$
: $\chi_0(X) = \chi(X, \mathcal{O}_X)$.

Proposition

$$N_{d,g(d)-\delta}(0) = \left(egin{smallmatrix} g(d) \ \delta \end{pmatrix}$$

Theorem

S surface,
$$L \in \textit{Pic}(S)$$
, then $N^L_{g(L)-\delta} = inom{g(L)-1+\chi(\mathcal{O}_X)}{\delta}$

Question

- What is the enumerative meaning of $N_{d,g}(y)$?
- 2 Are the $N_{d,g}(y)$ related to tropical geometry?
- Solution For general surfaces, is there an interpretation of $N^{L}_{g(L)-\delta}(-1)$?
- Can the $N_{g(L)-\delta}^{L}(y)$ be related to open Gromov-Witten invariants?

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz: o
Refined Seve	eri degrees				

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz		
				000000			
Defined Count demons							

(ad(3)): Let (X, τ) is surface with an antisymplectic involution Corresponding open Gromov-Witten invariants:

Let $X^{\tau} \subset X$ fixpoint set of τ

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz o		
Polined Soveri degrees							

(ad(3)): Let (X, τ) is surface with an antisymplectic involution Corresponding open Gromov-Witten invariants:

Let $X^{\tau} \subset X$ fixpoint set of τ

Open Gromov-Witten invariants count maps from Riemann surfaces with boundary (C, B) to X, s.th. boundary B is mapped to X^{τ} .

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				000000	
D (10					

(ad(3)): Let (X, τ) is surface with an antisymplectic involution Corresponding open Gromov-Witten invariants:

Let $X^{\tau} \subset X$ fixpoint set of τ

Open Gromov-Witten invariants count maps from Riemann surfaces with boundary (C, B) to X, s.th. boundary B is mapped to X^{τ} .

Welschinger invariants are a special case of this: Given $\underline{f}: (C, B) \to (X, X^{\tau})$ by the Schwarz reflection principle get $\overline{f}: \overline{C} \to X$, where \overline{C} is the curve obtained by gluing *C* to *C* along *B*. If τ is complex conjugation, real algebraic curve.

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				000000	

Recursion formula

$$\begin{split} N_{d,g}(\alpha,\beta)(y) &= \sum_{k|\beta_k>0} \frac{1-y^k}{1-y} N_{d,g}(\alpha+e_k,\beta-e_k)(y) \\ &+ \sum_{\beta',\alpha',g'} y^{l_\beta+l_{\alpha'}} \prod_i \left(\frac{1-y^i}{1-y}\right)^{\beta_i'-\beta_i} \binom{\alpha}{\alpha'} \binom{\beta'}{\beta} N_{d-1,g'}(\alpha',\beta')(y) \end{split}$$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				000000	

Recursion formula

$$\begin{split} N_{d,g}(\alpha,\beta)(y) &= \sum_{k|\beta_k>0} \frac{1-y^k}{1-y} N_{d,g}(\alpha+e_k,\beta-e_k)(y) \\ &+ \sum_{\beta',\alpha',g'} y^{I_\beta+I_{\alpha'}} \prod_i \left(\frac{1-y^i}{1-y}\right)^{\beta_i'-\beta_i} \binom{\alpha}{\alpha'} \binom{\beta'}{\beta} N_{d-1,g'}(\alpha',\beta')(y) \end{split}$$

 $\begin{aligned} \alpha &= (\alpha_1, \alpha_2, \ldots), \ \beta = (\beta_1, \beta_2, \ldots), \ I_{\alpha} = \sum_i i \alpha_i, \ \binom{\alpha}{\beta} = \prod_i \binom{\alpha_i}{\beta_i}, \\ e_k &= (0, \ldots, 0, 1, 0, \ldots): \ 1 \text{ in position } k. \end{aligned}$

Introduction	Curve counting conj.	Refined curve counting	Interpretation of invariants	Relation to Welschinger invariants	Localiz
				000000	

Recursion formula

$$N_{d,g}(\alpha,\beta)(y) = \sum_{k|\beta_k>0} \frac{1-y^k}{1-y} N_{d,g}(\alpha+e_k,\beta-e_k)(y) + \sum_{\beta',\alpha',g'} y^{I_{\beta}+I_{\alpha'}} \prod_i \left(\frac{1-y^i}{1-y}\right)^{\beta'_i-\beta_i} \binom{\alpha}{\alpha'} \binom{\beta'}{\beta} N_{d-1,g'}(\alpha',\beta')(y)$$

 $\alpha = (\alpha_1, \alpha_2, \ldots), \ \beta = (\beta_1, \beta_2, \ldots), \ I_{\alpha} = \sum_i i \alpha_i, \ \binom{\alpha}{\beta} = \prod_i \binom{\alpha_i}{\beta_i}, \ e_k = (0, \ldots, 0, 1, 0, \ldots): 1 \text{ in position } k.$ Second sum is over all $\alpha' \leq \alpha, \ \beta' \geq \beta$ and g' such that

$$I_{lpha'}+I_{eta'}=d-1, \quad g-g'=\sum_i(eta'_i-eta_i).$$

y = 1 gives Caporaso-Harris recursion, y = -1 gives recursion for Welschinger invariants.

Let *X* variety with \mathbb{C}^* -action by with fixpointset $\{p_1, \ldots, p_e\}$ finite Let *t* be the coordinate on \mathbb{C}^* . Let ε be a variable. Let *E* vector bundle on *X* to which action lifts. (True for $E = T_X$ tangent bundle)

Let *X* variety with \mathbb{C}^* -action by with fixpointset $\{p_1, \ldots, p_e\}$ finite Let *t* be the coordinate on \mathbb{C}^* . Let ε be a variable. Let *E* vector bundle on *X* to which action lifts. (True for $E = T_X$ tangent bundle)

 $E(p_i)$ vector space with \mathbb{C}^* action, has basis of eigenvectors $E(p_i) = \sum_{i=1}^r \mathbb{C}e_i, \quad t \cdot e_i = t^{w_i}e_i, \text{ put } w(e_i) := w_i\varepsilon$

Let *X* variety with \mathbb{C}^* -action by with fixpointset $\{p_1, \ldots, p_e\}$ finite Let *t* be the coordinate on \mathbb{C}^* . Let ε be a variable.

Let *E* vector bundle on *X* to which action lifts. (True for $E = T_X$ tangent bundle)

 $E(p_i)$ vector space with \mathbb{C}^* action, has basis of eigenvectors $E(p_i) = \sum_{i=1}^r \mathbb{C}e_i$, $t \cdot e_i = t^{w_i}e_i$, put $w(e_i) := w_i\varepsilon$ Write

 $\prod_{i=1}^{r} (1 + w(e_i)) =: (1 + c_1(E(p_i)) + c_2(E(p_i)) + \ldots + c_n(E(p_i))).$ Let $P(c_1(E), \ldots, c_r(E))$ polynomial of weight d = dim(X) in Chern classes of E. Then $\int_X P(c_1(E), \ldots, c_r(E)) = \sum_{i=1}^{e} \frac{P(c_1(E(p_i)), \ldots, c_r(E(p_i)))}{c_r(T_X(p_i))}$