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Curve counting

This talk: Curve counting on algebraic surfaces
What does it mean to count courves?

We work over C. Always deal with projective varieties
Smooth algebraic curve C over C has a genus
g(C) = H0(C,KC) = number of handles.
Nonsingular curve of degree d in P2 has genus g(d) =

(d−1
2

)
.

If C singular curve: (geometric) genus g(C) genus of
normalization
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Curve counting

Example: Count (singular) curves of degree d , genus g in P2:
Severi degrees

|O(d)| = P(d+2
2 )−1 =space of curves of degree d .

curves with δ-nodes lie in codimension δ in |O(d)|.
general curve of genus g(d)− δ has precisely δ-nodes
curves through a given point in P2 form a hyperplane in |O(d)|.
Severi degrees:
nd ,g := #{curves of degree d , genus g in P2 through

3d − 1 + g general points}
n1,0 = n2,0 = 1, n3,0 = 12
Caporaso-Harris recursion: A recursion formula that
determines all nd ,g recursively.
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Curve counting

Why care?
These are classical questions, but for me the most important
reason is the following:
These and similar numbers come up in physics, and there they
are closely related to each other and to other subjects of
mathematics
These relations will be reflected and are in some sense most
visible in the generating functions of curve counting and other
invariants.
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Curve counting

There are different ways to count curves in varieties
Usually there are several steps:

1 Find the correct compact moduli space M, parametrizing
the curves and the degenerations one wants to allow.

2 On wants to count curves satisfying certain conditions, this
will be an intersection number on M.

3 Often one needs to use a virtual fundamental class and
count "virtual numbers of curves".

(0) For Severi degrees: curves are elements of |O(d)|
Count curves with given genus through correct number of
points as points in proj. space |O(d)|
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Curve counting

(1) Gromov-Witten invariants: Count maps f : C → X .

Look at moduli space
Mg(X , β) = {(C, f ) stable map f : C → X , C nodal curve of

genus g, f∗([C]) = β ∈ H2(X ,Z)}
e.g. Let X quintic 3-fold in P4

Nd :="#{ rational curves of degree d in X}"
:= deg([M0(X ,dl)]vir )

N1 = 5, N2 = 2875, N3 = 609250, . . .
First computed by physicists using Mirror symmetry
(There are pairs X ,X ′ of Calabi-Yau 3-folds (i.e. KX = OX )
which are closely related. By physics counting curves on X is
equivalent to variations of Hodge structures on X ′)
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Curve counting

(2) Gopakumar-Vafa (BPS)-invariants:
Gromov-Witten invariants count maps
=⇒ complicated formulas for multiple covers
Gopakumar-Vafa invariants: conjectural invariants from physics
that count actual (virtual) curves

More conjecturally: there should be refined BPS invariants:
GV invariants should be something like the Euler number of
some physics moduli space and the refined invariants should
be something like Betti numbers
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Curve counting

(3) Pandharipande-Thomas invariants:
These count possibly degenerate curves in C ⊂ X ,
by counting their structure sheaves on OX → OC

P-T moduli space:
Pn(X , β) :=

{
(F , s)

∣∣ F pure 1-dimensional sheaf on X ,
s : OX → F section, dim(coker(s)) = 0, c2(F ) = β, χ(F ) = n

}
If X is CY 3-fold the expected dimension of Pn(X , β) is 0 and
the PT-invariant is deg([Pn(X ,n)]vir).
Conjectural PT-GW correspondence:
PT and GW invariants conjectured equivalent (generating
functions related by explicit change of variables)
PT have conjecturally defined GV-inv. in terms of PT-inv.
So all 3 sets of invariants are conjectured to be equivalent.



Introduction Curve counting conj. Refined curve counting Interpretation of invariants Relation to Welschinger invariants Localization calculation

Curve counting

(3) Pandharipande-Thomas invariants:
These count possibly degenerate curves in C ⊂ X ,
by counting their structure sheaves on OX → OC
P-T moduli space:
Pn(X , β) :=

{
(F , s)

∣∣ F pure 1-dimensional sheaf on X ,
s : OX → F section, dim(coker(s)) = 0, c2(F ) = β, χ(F ) = n

}

If X is CY 3-fold the expected dimension of Pn(X , β) is 0 and
the PT-invariant is deg([Pn(X ,n)]vir).
Conjectural PT-GW correspondence:
PT and GW invariants conjectured equivalent (generating
functions related by explicit change of variables)
PT have conjecturally defined GV-inv. in terms of PT-inv.
So all 3 sets of invariants are conjectured to be equivalent.



Introduction Curve counting conj. Refined curve counting Interpretation of invariants Relation to Welschinger invariants Localization calculation

Curve counting

(3) Pandharipande-Thomas invariants:
These count possibly degenerate curves in C ⊂ X ,
by counting their structure sheaves on OX → OC
P-T moduli space:
Pn(X , β) :=

{
(F , s)

∣∣ F pure 1-dimensional sheaf on X ,
s : OX → F section, dim(coker(s)) = 0, c2(F ) = β, χ(F ) = n

}
If X is CY 3-fold the expected dimension of Pn(X , β) is 0 and
the PT-invariant is deg([Pn(X ,n)]vir).

Conjectural PT-GW correspondence:
PT and GW invariants conjectured equivalent (generating
functions related by explicit change of variables)
PT have conjecturally defined GV-inv. in terms of PT-inv.
So all 3 sets of invariants are conjectured to be equivalent.



Introduction Curve counting conj. Refined curve counting Interpretation of invariants Relation to Welschinger invariants Localization calculation

Curve counting

(3) Pandharipande-Thomas invariants:
These count possibly degenerate curves in C ⊂ X ,
by counting their structure sheaves on OX → OC
P-T moduli space:
Pn(X , β) :=

{
(F , s)

∣∣ F pure 1-dimensional sheaf on X ,
s : OX → F section, dim(coker(s)) = 0, c2(F ) = β, χ(F ) = n

}
If X is CY 3-fold the expected dimension of Pn(X , β) is 0 and
the PT-invariant is deg([Pn(X ,n)]vir).
Conjectural PT-GW correspondence:
PT and GW invariants conjectured equivalent (generating
functions related by explicit change of variables)
PT have conjecturally defined GV-inv. in terms of PT-inv.
So all 3 sets of invariants are conjectured to be equivalent.



Introduction Curve counting conj. Refined curve counting Interpretation of invariants Relation to Welschinger invariants Localization calculation

Curve counting conjecture

S smooth projective surface over C
L ∈ Pic(S) very ample line bundle
|L| = P(H0(S,L)) complete linear system
g(L) = L(L+KS)

2 + 1 genus of smooth curve in |L|

Count curves curves of given geometric genus in |L|:
Let Vδ ⊂ |L| general δ-dimensional linear subspace
Severi degree:
nL,g(L)−δ := #{δ-nodal curves in Vδ}

= #{ curves of genus g(L)− δ in Vδ}
(L sufficiently ample).
Formulas for this as polynomial in L2,LKS,K 2

S , c2(S) computed
by Avritzer-Vainsencher for δ ≤ 6 and by Kleimann-Piene for
larger δ.
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Curve counting conjecture

Yau-Zaslow formula from physics: Let S K3-surface, L line
bundle on S, then the number nL2 of rational curves in |L|
depends only on L2 and∑

d

ndqd =
1

∆(q)

(∆(q) = q
∏

n≥1(1− qn)24).

Conjecture (G 1997)

(1) Exists universal polynomial nL
g(L)−δ in L2,LKS,K 2

S , c2(S),
such that nL,g(L)−δ = nL

g(L)−δ for L is sufficiently ample wrt δ.
(2) Conjectural generating function for the nL

g(L)−δ.

Part (1) of the conjecture (existence of univ. polyn. nL
g(L)−δ) was

proven by Tzeng, Kool-Shende-Thomas (2010)
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Curve counting conjecture

Aim: Give a refined version of conj, inspired by KST proof.
Replace nL

g(L)−δ by polynomials Ng(L)−δ(y) ∈ Z[y ]

"Refined curve counting invariants"
such that NL

g(L)−δ)(1) = nL
g(L)−δ.

What do they count?
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Review of Hilbert schemes of points

X projective variety. Hilbert scheme X [n] of n points on X
parametrizes zero dimensional subschemes of length n on X ,
i.e. generically sets of n points on X .

On a smooth curve C a subscheme of length n is a set of n
points counted with multiplicity.
Thus C[n] = C(n) is just the symmetric power.
If C is a singular curve then C[n] 6= C(n).
If S is a smooth projective surface, then S[n] is smooth
projective variety of dimension 2n.
For any line bundle L ∈ Pic(S) have a tautological vector
bundle L[n] of rank n on S[n] with fibre L[n]([Z ]) = H0(L|Z ).
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Sketch of KST proof

Recall L ∈ Pic(S) suff. ample, Vδ ⊂ |L| general linear subspace
C :=

{
(p, [C]) ∈ S × Vδ

∣∣ p ∈ C
}

universal curve
C[n] :=

{
([Z ], [C]) ∈ S[n] × Vδ

∣∣Z ⊂ C
}

rel. Hilbert scheme

KST show:
1 ∃nl∈Z, l = g(L)− δ, . . . ,g(L) s.th.∑

n≥0

e(C[n])qn =

g(L)∑
l=g(L)−δ

nlqg(L)−l(1− q)2l−2.

e(X ) =

2dim(X)∑
i=0

(−1)i rk(H i(X ,Z)) topological Euler number

2 nL
g−δ = ng−δ.

Note: This computes nL
g−δ as a BPS invariant:

Pandharipande-Thomas defined BPS-invariants by formula (1).
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nlqg(L)−l(1− q)2l−2.

e(X ) =

2dim(X)∑
i=0

(−1)i rk(H i(X ,Z)) topological Euler number

2 nL
g−δ = ng−δ.

Note: This computes nL
g−δ as a BPS invariant:

Pandharipande-Thomas defined BPS-invariants by formula (1).
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Sketch of KST proof

Why does this prove the conjecture?

e(C[n]) is tautological intersection number on S[n]:
L[n] tautological vector bundle on S[n], L[n]([Z ]) = H0(L|Z ).
Let H pullback of O(1) from Vδ = Pδ.
L[n] � H has section s with zero set Z (s) = C[n].
This allows to compute e(C[n]) as intersection number on S[n]:

e(C[n]) =

∫
S[n]×Vδ

c(TS[n])cn(L[n] ⊗ H)

c(L[n] ⊗ H)

(c(E) = 1 + c1(E) + . . .+ crk(E)(E) Chern class).
Ellingsrud-G-Lehn: such "tautological" integrals are always
given by universal polynomials in L2,LKS,K 2

S , c2(S).
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Refined curve counting conjecture

Refinement: L ∈ Pic(S) suff ample, Vδ ⊂ |L| general δ-dim
linear subspace.
Recall: defined nL

g(L)−δ by∑
n≥0

e(C[n])qn =

g(L)∑
l=g(L)−δ

nlqg(L)−l(1− q)2l−2.

Note: (1− q)2l−2 =
∑

n≥0 e(C[n])qn for C smooth, g(C) = l .

Idea: Replace everywhere Euler number by χ−y -genus
χ−y (X ) =

∑
p,q

(−1)p+qyqhpq(X ) =
∑

q

(−y)qχ(X ,Ωq(X ))

Note: χ−1(X ) = e(X )

Conjecture
∃Nl (y)∈Z[y ], l = g(L)− δ, . . . ,g(L) s.th.∑

n≥0 χ−y (C[n])qn =
∑g(L)

l=g(L)−δ Nl(y)qg(L)−l((1− q)(1− qy)
)l−1

Obvious if one allows
∑g(L)

l=−∞
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Refined curve counting conjecture

Conjecture
∃Nl (y)∈Z[y ], l = g(L)− δ, . . . ,g(L) s.th.∑

n≥0 χ−y (C[n])qn =
∑g(L)

l=g(L)−δ Nl(y)qg(L)−l((1− q)(1− qy)
)l−1

.

Definition

NL
g(L)−δ := Ng(L)−δ is the refined curve counting invariant of

curves of genus g(L)− δ in |L|. (Do not need conjecture for
this).

Example

Nodal cubics in P2: C/P1 pencil of cubics
n3H

0 = #{rational curves in pencil}=12,
N3H

0 (y) = χ−y (C) = 1 + 10y + y2
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Refined curve counting conjecture

Check of Conjecture: χ−y (C[n]) computed by very similar
integral on S[n] as e(C[n]).
EGL: coeff. of χ−y (C[n]) are univ. polyn. in L2,LKS,K 2

S , c2(S).

=⇒ determined by values for
(S,L) = (P2,O), (P2,O(1)), (P2,O(−1)), (P1 × P1,O).
These are toric surface: action of T = C∗ × C∗ on S with finitely
many fixpoints. Action lifts to S[n] with finitely many fixpoints
p1, . . . ,pe.
Bott Residue formula: Integral for χ−y (C[n]) on S[n] can be
computed in terms of the weights of action of T on the fibres
TS[n](pi), L[n](pi). Programmed on computer:
Result: Conjecture is true modulo q11.∑
n≥0

χ−y (C[n])qn ≡
g(L)∑

l=g(L)−δ

Nl(y)qg(L)−l((1− q)(1− qy)
)l−1
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Refined curve counting conjecture

The computation gives conjectural generating function for
refined invariants NL

g(L)−δ(y). Let N
L
g(L)−δ(y) := NL

g(L)−δ(y)/yδ

D := q q
dq

∆(y ,q) = q
∏

n≥1(1− qn)20(1− yqn)2(1− y−1qn)2,

D̃G2(y ,q) =
∑

n≥1 qn
(∑

d|n
n
d

yd−2+y−d

y−2+y

)
B1(y ,q) = 1− q − (y + 3 + y−1)q2 + . . .,
B2(y ,q) = 1 + (y + 3 + y−1)q + (y2 + y−2)q2 + . . .

Conjecture

∑
δ

N
L
g(L)−δ(y)(D̃G2(y ,q))δ =

(D̃G2(y ,q)/q)χ(L)B1(y ,q)K 2
X B2(y ,q)LKX(

∆(y ,q) DD̃G2(y ,q)/q2
)χ(OX )/2

Putting y = 1 recovers the previous conjecture
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Comparison with BPS states on K3 surfaces

Interpretation of the NL
g(L)−δ(y): what do they count?

nL
g(L)−δ are the BPS (Gopakumar-Vafa)-invariants from Physics

Hope: NL
g(L)−δ(y) are refined BPS-invariants

At any rate we hope that they count curves on S in some
refined sense

Case of a K3 surface: Let S K 3-surface, e.g. quartic in P3,
L primitive line bundle on S
Write N

g(L)
g(L)−δ(y) := N

L
g(L)−δ(y) (depends only on g(L)).

Conjecture says:
∑
g≥0

N
g
k (y)qg−1 =

D̃G2(y ,q)k

∆(y ,q)

The Gromov-Witten and Pandharipande-Thomas invariants
were computed in this case by Maulik-Pandharipande-Thomas
By the GW-PT correspondence (proven in this case) both are
equivalent, so we only state PT invariants.
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Comparison with BPS states on K3 surfaces

Pandharipande-Thomas invariants:
C universal curve over |L|.
P-T moduli space:
Pn(S,L) ' C[n+g(L)−1]/|L|.
H pullback of hyperplane class on |L|.
PT invariants with point insertions:
Ck

n,g :=
∫

Pn(S,L) c(ΩP)Hk for g = g(L) = L2

2 + 1.

Theorem (MPT)

∑
n≥0

∑
g≥0

Ck
n,g(−y)nqg−1 = (−1)k−1(y − 2 + y−1)k−1 D̃G2(y ,q)k

∆(y ,q)

Modulo the conjecture this says
N

g
k (y) = (−1)k−1(y − 2 + y−1)k−1∑

n≥0 Ck
n,g(−y)n

Thus Ng
k (y) counts PT invariants with k point insertions.
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Relation to Welschinger invariants

Let S be a real toric surface (S defined over R, C∗ × C∗-action
defined over R, fixed points real (for simplicity assume S = P2,
but what follows works more generally).
We conjecture that the refined invariants NL

g (y) specialized at
y = −1 compute the Welschinger invariants, counting real
algebraic curves

Severi degree:
nd ,g(d)−δ := #{curves of degree d , genus g(d)− δ through(d+2

2

)
− 1− δ points}

Caporaso-Harris recursion: nd ,g computed by recursion.
The recursion involves relative Severi degrees nd ,g(α, β)
(α = (α1, α2, . . .), β = (β1, β2, . . .), αi , βj ∈ Z≥0)
(tangency conditions along fixed line)
nd ,g((d), (0)) = nd ,g .
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Relation to Welschinger invariants

X real algebraic surface, complex surface defined over R
Complex conjugation maps X to itself and XR is fixpoint locus
Real algebraic curve in X : complex curve inv. under conjugation

Welschinger invariants:
wL,g(L)−δ =(signed)#{real δ-nodal curves in X through

dim|L| − δ real points}
sign: (−1)s, s = #{isolated nodes in CR}

Theorem (Itenberg-Kharlamov-Shustin)
There is a Caporaso-Harris type recursion for wd ,g .

The recursion uses tropical geometry.

Conjecture

wd ,g(d)−δ = (−1)δNdH
g(d)−δ(−1)(= N

dH
g(d)−δ(−1)), if δ ≤ 3d − 3

(using the recursion this is checked for d < 15, δ < 11).
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Complex conjugation maps X to itself and XR is fixpoint locus
Real algebraic curve in X : complex curve inv. under conjugation
Welschinger invariants:
wL,g(L)−δ =(signed)#{real δ-nodal curves in X through

dim|L| − δ real points}
sign: (−1)s, s = #{isolated nodes in CR}

Theorem (Itenberg-Kharlamov-Shustin)
There is a Caporaso-Harris type recursion for wd ,g .
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Refined Severi degrees

Severi degrees and Welschinger invariants satisfy similar
Caporaso-Harris type recursion, do they have common
refinement?

Refined Severi degrees:
Found recursion defining polynomials Nd ,g(α, β) ∈ Z≥0[y ],
s.th. Nd ,g(α, β)(1) = nd ,g(α, β), Nd ,g(α, β)(−1) = ±wd ,g(α, β).

Definition
Call Nd ,g(y) refined Severi degrees

Conjecture

Nd ,g(d)−δ(y) = NdH
g(d)−δ(y) for δ ≤ 2d − 2.

This conjecture is confirmed for d < 15, δ < 11).

Example

N3,0(y) = N3H
0 (y) = 1 + 10y + y2, n3,0 = 12, w3,0 = 8.
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Refined Severi degrees

Other specialization: y = 0: χ0(X ) = χ(X ,OX ).

Proposition

Nd ,g(d)−δ(0) =
(g(d)

δ

)

Theorem

S surface, L ∈ Pic(S), then NL
g(L)−δ =

(g(L)−1+χ(OX )
δ

)
.

Question
1 What is the enumerative meaning of Nd ,g(y)?
2 Are the Nd ,g(y) related to tropical geometry?
3 For general surfaces, is there an interpretation of

NL
g(L)−δ(−1)?

4 Can the NL
g(L)−δ(y) be related to open Gromov-Witten

invariants?
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Refined Severi degrees

(ad (2)): S a surface with an antisymplectic involution:
Welschinger invariants still defined, but usually different from
NL

g(L)−δ(−1).

(ad(3)): Let (X , τ) is surface with an antisymplectic involution
Corresponding open Gromov-Witten invariants:
Let X τ ⊂ X fixpoint set of τ
Open Gromov-Witten invariants count maps from Riemann
surfaces with boundary (C,B) to X , s.th. boundary B is
mapped to X τ .
Welschinger invariants are a special case of this: Given
f : (C,B)→ (X ,X τ ) by the Schwarz reflection principle get
f : C → X , where C is the curve obtained by gluing C to C
along B. If τ is complex conjugation, real algebraic curve.
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Recursion formula

Nd ,g(α, β)(y) =
∑

k |βk>0

1− yk

1− y
Nd ,g(α + ek , β − ek )(y)

+
∑

β′,α′,g′

y Iβ+Iα′
∏

i

(
1− y i

1− y

)β′
i−βi (α

α′

)(
β′

β

)
Nd−1,g′(α′, β′)(y)

α = (α1, α2, . . .), β = (β1, β2, . . .), Iα =
∑

i iαi ,
(
α
β

)
=
∏

i
(
αi
βi

)
,

ek = (0, . . . ,0,1,0, . . .): 1 in position k .
Second sum is over all α′ ≤ α, β′ ≥ β and g′ such that

Iα′ + Iβ′ = d − 1, g − g′ =
∑

i

(β′i − βi).

y = 1 gives Caporaso-Harris recursion,
y = −1 gives recursion for Welschinger invariants.
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Localization calculation

Let X variety with C∗-action by with fixpointset {p1, . . . ,pe} finite
Let t be the coordinate on C∗. Let ε be a variable.
Let E vector bundle on X to which action lifts. (True for E = TX
tangent bundle)

E(pi) vector space with C∗ action, has basis of eigenvectors
E(pi) =

∑r
i=1 Cej , t · ej = twj ej , put w(ej) := wjε

Write∏r
i=1(1 + w(ei)) =: (1 + c1(E(pi)) + c2(E(pi)) + . . .+ cn(E(pi))).

Let P(c1(E), . . . , cr (E)) polynomial of weight d = dim(X ) in
Chern classes of E .
Then

∫
X P(c1(E), . . . , cr (E)) =

∑e
i=1

P(c1(E(pi )),...,cr (E(pi )))
cd (TX (pi ))
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