Moduli spaces and Modular Forms

Lothar Göttsche

RIMUT day, 19.10.2009, Trieste

Aim of this talk: Relate generating functions of invariants of moduli spaces in algebraic geometry to modular forms

What do all these words mean?

Generating functions: Assume $\left(a_{n}\right) \geq 0$ are interesting numbers. Their generating function is

$$
f(t):=\sum_{n \geq 0} a_{n} t^{n}
$$

Want a nice closed formula for $f(t)$

Example

$p_{n}=$ number of Partitions of $n . p_{0}=1, p_{1}=1, p_{2}=2, p_{3}=3$ $((3),(2,1),(1,1,1))$

$$
\sum_{n \geq 0} p_{n} t^{n}=\prod_{k \geq 1} \frac{1}{1-t^{k}}
$$

Study (projective) algebraic Varieties:
Projective space: $\mathbb{P}^{n}=\mathbb{C}^{n+1} \backslash\{0\} / \sim, v \sim \lambda v$ for $\lambda \in \mathbb{C}$
Algebraic variety: Let $F_{1}, \ldots, F_{r} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ homogeneous polynomials

$$
Z\left(F_{1}, \ldots, F_{r}\right)=\left\{\left(p_{0}, \ldots, p_{n}\right) \mid F_{i}\left(p_{0}, \ldots, p_{n}\right)=0, i=1, \ldots, r\right\}
$$

A variety X is called smooth if it is a complex manifold. Dimension is the dimension as complex manifold, i.e. a curve (dimension 1) is a Riemann surface. Varieties can be singular.

Moduli space: A variety M parametrizing interesting objects

Example

Elliptic curve $=(E$ curve of genus 1, point $0 \in E)$
Then $E \simeq E_{\tau}=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z}), \tau \in \mathbb{H}:=\{\tau \in \mathbb{C} \mid \Im(\tau)>0\}$

$$
E_{\tau} \simeq E_{\frac{a \tau+b}{},}, \quad \text { for }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S I(2, \mathbb{Z})
$$

$\Longrightarrow M_{1,1}=\{$ Moduli space of elliptic curves $\}=\mathbb{H} / S I(2, \mathbb{Z})$
Compactify: $\bar{M}_{1,1}=M_{1,1} \cup \infty$

Modular forms: "Functions" (sections of line bundles) on moduli space $\bar{M}_{1,1}$ of elliptic curves

Definition

Modular form of weight k on $S I(2, \mathbb{Z})$: holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ s.th
(1) $f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau) \quad \forall\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S I(2, \mathbb{Z})$.
(2) f is "holomorphic at ∞ ":

$$
f(\tau)=\sum_{n \geq 0} a_{n} q^{n} \quad q=e^{2 \pi i \tau}, a_{n} \in \mathbb{C}
$$

f is a cusp form, if also $a_{0}=0$
Similar definition for modular forms on subgroups of $S I(2, \mathbb{Z})$ of finite index, maybe also with character

Example

Eisenstein series: $G_{k}(\tau)=-\frac{B_{k}}{2 k}+\sum_{n \geq 1}\left(\sum_{d \mid n} d^{k-1}\right) q^{n}, \quad k>2$ even modular form of weight k
Discriminant: $\Delta(\tau)=q \prod\left(1-q^{n}\right)^{24}$ cusp form of weight 12 $n \geq 1$

Ring of Modular forms: closed under multiplication $M_{*}=\mathbb{C}\left[G_{4}, G_{6}\right]$ Generalizations:
(1) Quasimod. forms: $Q M_{*}=\mathbb{C}\left[G_{2}, G_{4}, G_{6}\right]$ closed under $D=q \frac{d}{d q}$
(2) Mock modular forms: holom. parts of real analytic modular forms

Why should we care about modular forms?
(1) Come up in many different parts of mathematics and physics: q-development is generating function for interesting things
(2) There are very few modular forms $(\Longrightarrow$ relations between interesting numbers from different fields)

Topological invariants: Betti numbers $b_{i}(M)=\operatorname{dimH} H^{i}(M)$, Euler number $e(M)=\sum(-1)^{i} b_{i}(M)$, intersection numbers

$$
\int_{[M]} \alpha_{1} \cup \ldots \cup \alpha_{s}, \quad \alpha_{i} \in H^{n_{i}}(M)
$$

Examples of the last: Donaldson invariants, Donaldson-Thomas invariants, Gromov-Witten invariants
What are Cohomology, Betti numbers (extremely roughly):
$b_{i}(X)=$ "number of holes of codim i"
$=$ "essentially different i-codim 'submanifolds' of X "
If $\alpha_{i} \in H^{i}(X)$ are represented by submanifolds V_{i} then

$$
\int_{[M]} \alpha_{1} \cup \ldots \cup \alpha_{s}=" \# \text { intersection points } \bigcap_{i} V_{i} "
$$

Can also thing of deRham cohomology: $H^{i}(X)=\operatorname{Ker}\left(d \mid \Omega_{X}^{i}\right) / d\left(\Omega_{X}^{i-1}\right)$ Then intersection number is $\int_{[M]} \alpha_{1} \wedge \ldots \wedge \alpha_{s}$.

Generating functions of invariants of moduli spaces Moduli spaces M_{n} depending on $n \geq 0$, find a nice formula for the invariants of all at the same time

Example

$\mathbb{P}^{n}=$ moduli space of 1 -dim subvectorspaces in \mathbb{C}^{n+1}
$e\left(\mathbb{P}^{n}\right)=n+1$, thus $\sum_{n} e\left(\mathbb{P}^{n}\right) t^{n}=\frac{1}{(1-t)^{2}}$
In general would think: hard enough to compute for one M_{n}
But: often easier for generating functions: relations between different M_{n} give differential equation for generating function

Symmetric powers

Aim: Compute generating functions of invariants of moduli spaces M_{n} depending on $n \geq 0$. Show they are modular forms
Too simple example: Euler numbers of symmetric powes:
S smooth surface, symm. grp $G(n)$ acts on S^{n} permuting factors $S^{(n)}=S^{n} / G(n)$ symm. power: (singular) projective variety Moduli space of n points on S with multipl.: points of $S^{(n)}=$ sets $\left\{\left(p_{1}, n_{1}\right), \ldots,\left(p_{r}, n_{r}\right)\right\}, p_{i} \in S$ distinct, $n_{i}>0, \sum n_{i}=n$
Betti numbers: $b_{i}(X):=\operatorname{dim} H^{i}(X, \mathbb{Q}), p(X, z):=\sum_{i=0}^{\operatorname{dim} X} b_{i}(X) z^{i}$, $e(X)=\sum_{i=0}^{n}(-1)^{i} b_{i}(X)=p(X,-1)$ Euler number

Theorem (MacDonald formula)

$$
\sum_{n \geq 0} p\left(S^{(n)}, z\right) t^{n}=\frac{(1+z t)^{b_{1}(S)}\left(1+z^{3} t\right)^{b_{3}(S)}}{(1-t)^{b_{0}(S)}\left(1-z^{2} t\right)^{b_{2}(S)}\left(1-z^{4} t\right)^{b_{4}(S)}}
$$

Corollary

$$
\sum_{n \geq 0} e\left(S^{(n)}\right) t^{n}=\frac{1}{(1-t)^{e(S)}}
$$

$S^{[n]}=$ Hilbert scheme of n points on S, different moduli of n pts on S Points of $\mathcal{S}^{[n]}:\left\{\left(p_{1}, \mathcal{O}_{1}\right), \ldots,\left(p_{r}, \mathcal{O}_{r}\right)\right\}, p_{i} \in S, \mathcal{O}_{i}$ quotient of dim. n_{i} of holom. fcts near $p_{i}, S^{[n]}$ is nonsingular Morphism: $\omega_{n}: S^{[n]} \rightarrow S^{(n)},\left\{\left(p_{i}, \mathcal{O}_{i}\right)\right\} \mapsto\left\{\left(p_{i}, n_{i}\right)\right\}$
Study this map, its fibres ...

Theorem (G)

$$
\sum_{n \geq 0} p\left(S^{[n]}, z\right) t^{n}=\prod_{k \geq 1} \frac{\left(1+z^{2 k-1} t^{k}\right)^{b_{1}(S)}\left(1+z^{2 k+1} t^{k}\right)^{b_{3}(S)}}{\left(1-z^{2 k-2} t^{k}\right)^{b_{0}(S)}\left(1-z^{2 k} t^{k}\right)^{b_{2}(S)}\left(1-z^{2 k+2} t^{k}\right)^{b_{4}(S)}}
$$

Corollary

$$
\sum_{n \geq 0} e\left(S^{[n]}\right) q^{n}=\prod_{k \geq 1} \frac{1}{\left(1-q^{k}\right)^{e(S)}}=\left(\frac{q}{\Delta(\tau)}\right)^{e(S) / 24}
$$

Later developments:

(1) One of the motivating examples of S-duality conjecture of Vafa-Witten: Generating fct for Euler numbers of moduli spaces of stable sheaves should be modular forms. (Explain later)
(2) Vafa-Witten also say: formula means: $\bigoplus_{n} H^{*}\left(S^{[n]}, \mathbb{Q}\right)$ is irreducible representation of Heisenberg algebra.
Essentially this means: \exists very nice way to make $\bigoplus_{n} H^{*}\left(S^{[n]}, \mathbb{Q}\right)$ out of $H^{*}(S, \mathbb{Q})$. Proved by Nakajima, Groijnowsky
Lehn, Lehn-Sorger, ... Carlsson-Okounkov: rich algebraic structure on $\bigoplus_{n} H^{*}\left(S^{[n]}, \mathbb{Q}\right)$

Generalization to dimension $3 X$ smooth 3 -fold. Cheah proves

$$
\sum_{n \geq 0} e\left(X^{[n]}\right) q^{n}=\prod_{k \geq 1}\left(\frac{1}{\left(1-q^{k}\right)^{k}}\right)^{e(X)}
$$

This is related to Donaldson-Thomas invariants
(Maulik-Nekrasov-Okounkov-Pandharipande, Behrend-Fantechi, ...).
S proj. alg. surface. This means S has embedding in some \mathbb{P}^{N} Usually do not care about embedding (as long as it exists) Let H ample on S (=hyperpl. section of embed. $S \subset \mathbb{P}^{n}$). Fixing H essentially means fixing embedding of S in \mathbb{P}^{n}

A vector bundle of rank r on S "is" $\pi: E \rightarrow S$, such that all fibres are complex vector spaces of rank r
The Chern classes $c_{1}(E) \in H^{2}(S, \mathbb{Z}), c_{2}(E) \in H^{4}(S, \mathbb{Z})$ measure how different E is from $\mathbb{C}^{r} \times S$.

Fix $c_{1} \in H^{2}(S, \mathbb{Z}), c_{2} \in H^{4}(S, \mathbb{Z})$ Chern classes

$$
M:=M_{S}^{H}\left(c_{1}, c_{2}\right)
$$

$=$ moduli space of H-stable rk 2 sheaves on S with c_{1}, c_{2}
sheaf="vector bundle with singularities"
H-stable: "all subsheaves of \mathcal{E} are small"; depends on H
$M \supset N=$ stable vector bundles (open subset).
Look at generating functions:

$$
\begin{aligned}
& Z_{c_{1}}^{S, H}:=\sum_{n} e\left(M_{S}^{H}\left(c_{1}, n\right)\right) q^{n-c_{1}^{2} / 4} \\
& Y_{c_{1}}^{S, H}:=\sum_{n} e\left(N_{S}^{H}\left(c_{1}, n\right)\right) q^{n-c_{1}^{2} / 4}
\end{aligned}
$$

S-duality conj. (Vafa-Witten): $Z_{C_{1}}^{S, H}, Y_{C_{1}}^{S, H}$ are (almost) modular forms

Theorem (Compatibilty results (Yoshioka, G, Qin-Li-Wang ...))

(1) $Z_{C_{1}}^{S, H}=\left(\frac{q}{\Delta(\tau)}\right)^{e(S) / 12} Y_{C_{1}}^{S, H}$
(2) (Blowup formula:) $\hat{S} \rightarrow S$ blowup of S in a point (replace p by a \mathbb{P}^{1}).

$$
Z_{c_{1}}^{\widehat{S}, H}=\theta(\tau)\left(\frac{q}{\Delta(\tau)}\right)^{1 / 12} Z_{c_{1}}^{S, H}, \quad \theta(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2}}
$$

(for both formulas relate difference of both sides to Hilbert scheme of points)

Special surfaces:

K3 surfaces: 1-connected proj. surface with nowhere vanishing holomorphic 2 form, e.g quartic in P^{3}

Theorem (G-Huybrechts, Yoshioka,...)

Let S be a $K 3$ surface, if c_{1} is not divisible by 2 in $H^{2}(S, \mathbb{Z})$, then $e(M)=e\left(S^{[\operatorname{dim}(M) / 2]}\right)$

For the proof relate the moduli space to Hilbert schemes, in fact they are shown to be diffeomorphic

S-duality

Projective plane:

$H(n)=\#\left\{\right.$ quadrat. forms $a x^{2}+b x y+c y^{2}, a, b, c \in \mathbb{Z}$ with $\left.b^{2}-a c=-n\right\} /$ iso
$G_{3 / 2}(\tau):=\sum_{n \geq 0} H(n) q^{n}=\frac{-1}{12}+\frac{1}{3} q^{3}+\frac{1}{2} q^{4}+\ldots$ Mock modular form

Theorem (Klyachko)

$e\left(N_{\mathbb{P}^{2}}(H, n)\right)=3 H(4 n-1)$, thus

$$
Y_{H}^{\mathbb{P}^{2}}=\frac{3}{2}\left(G_{3 / 2}(\tau / 4)-G_{3 / 2}((\tau+2) / 4)\right)
$$

$N_{\mathbb{P}^{2}}(H, n)$ has a \mathbb{C}^{*} action, $e(N)=\#$ fixpoints

Wallcrossing:

Let S rational surf., e.g. (multiple) blowup of \mathbb{P}^{2} $M_{X}^{H}\left(c_{1}, c_{2}\right)$ depends on $H \in C_{S}=\left\{H \in \mathbb{H}^{2}(S, \mathbb{R}) \mid H^{2}>0\right\}$ There are walls (=hyperplanes) dividing C_{X} into chambers $M_{X}^{H}\left(c_{1}, c_{2}\right)$ const. on chambers, changes when H crosses wall
Change: replace \mathbb{P}^{k} bundles over $S^{[n]}$ by \mathbb{P}^{l}-bundles everything understood in terms of Hilbert schemes

Theorem (G)

Let S rational surface, H ample on $S \Longrightarrow$
$Z_{c_{1}}^{S, H}$ is a mock modular form.

Donaldson invariants: \mathbb{C}^{∞} invariants of X diff. 4-manifold def. using moduli spaces of asd connections (solutions of PDE)
Now S proj. alg. surface. D-invariants can be defined using moduli spaces $M=M_{S}^{H}\left(c_{1}, c_{2}\right)$ of stable sheaves on S
$\mathcal{E} / S \times M$ universal sheaf (i.e. restriction to $S \times[E]$ is E)
Let $L \in H_{2}(S, \mathbb{Q})$. Put $\mu(L):=4 c_{2}(\mathcal{E})-c_{1}(\mathcal{E})^{2} / L \in H^{2}(M, \mathbb{Q})$.
Donaldson invariant

$$
\Phi_{X, c_{1}}^{H}\left(L^{d}\right)=\int_{X} \mu(L)^{d}, \quad d=\operatorname{dim}(M)
$$

Generating function: $\Phi_{X, c_{1}}^{H}\left(e^{L z}\right)=\sum_{d} \Phi_{X, c_{1}}^{H}\left(L^{d}\right) \frac{z^{d}}{d!}$
Rational surfaces: Seen: $M_{S}^{H}\left(c_{1}, c_{2}\right)$ subject to wallcrossing
G,G-Nakajima-Yoshioka: Generating function for wallcrossing of Donaldson invariants in terms of modular forms \Longrightarrow generating function for invariants for rational surfaces in terms of modular forms

Case of \mathbb{P}^{2} :

Theorem (G, G-Nakajima-Yoshioka)

$$
\begin{aligned}
& \Phi_{H}^{\mathbb{P}^{2}}(\exp (H z))=\sum_{0<n \leq m} \operatorname{Coeff}\left[\frac{q^{\frac{4 n^{2}-(2 n-1)^{2}}{8}}}{\sqrt{-1^{6 n-2 m+5}}} \exp \left((n-1 / 2) h z+T z^{2}\right) \theta_{01}^{9} h^{3}\right] \\
& u:=-\frac{\theta_{0}^{4}+\theta_{10}^{9}}{\theta_{00}^{9} \theta_{10}^{0}}, h:=\frac{2 \sqrt{-1}}{\theta_{00} \theta_{10}}, T:=-h^{2} G_{2}-\frac{u}{6}, \\
& \theta_{00}:=\sum_{n \in \mathbb{Z}} q^{\frac{\sigma^{2}}{2}}, \theta_{10}=\sum_{n \in \mathbb{Z}} q^{\frac{\left(n+\frac{1}{2}\right)^{2}}{2}}
\end{aligned}
$$

G uses (unproven) Kotschick-Morgan conjecture: wallcrossing term should only depend on topology G-N-Y uses instanton counting (maybe see Bruzzo's talk) A different formula in terms of modular forms was proposed (based on physics arguments) by Moore-Witten. Ono-Malmendier recently proved both formulas are equal

Let S proj. surface, L holom. line bundle on S, $s: S \rightarrow L$ section Zero set $Z(s)$ is (possibly singular) curve on S denote $|L|$ set of all such curves A curve $C \subset S$ is rational, if image of a map $\mathbb{P}^{1} \rightarrow X$
K3 surfaces: Let S a $K 3$ surface (e.g. quartic in \mathbb{P}^{3}) $L \mathrm{lb}$ on S, s.th all $Z(s) \in|L|$ are irreducible (not union of curves)

Theorem (Yau-Zaslow, Beauville, Fantechi-G-van Straten)

\# rational curves in $|L|$ (with multipl.) depends only on $c_{1}(L)^{2} \in 2 \mathbb{Z}$
Denote it $n_{c_{1}(L)^{2} / 2}$. Then

$$
\sum_{k \in \mathbb{Z}} n_{k} q^{k}=\frac{1}{\Delta(\tau)}
$$

Proof again consist in relating this to Hilbert schemes of points

Let S proj. surface, L line bundle on S $a_{\delta}(S, L)=\# \delta$-nodal curves in $|L|$ through $h^{0}(L)-1-\delta$-points on S

Conjecture (G)

(1) \exists polynomials $T_{\delta}(x, y, z, w)$ s.th $\forall S$, all sufficiently ample L $\mathrm{a}_{\delta}(S, L)=T_{\delta}\left(h^{0}(L), \chi\left(\mathcal{O}_{S}\right), c_{1}(L) K_{S}, K_{S}^{2}\right)$
(2) \exists power series $B_{1}, B_{2} \in \mathbb{Z}[[q]]$ s.th.

$$
\sum_{\delta \geq 0} T_{\delta}(x, y, z, w)\left(D G_{2}\right)^{\delta}=\frac{\left(D G_{2} / q\right)^{x} B_{1}^{z} B_{2}^{w}}{\left(\Delta(\tau) D^{2} G_{2} / q^{2}\right)^{y / 2}}
$$

A line bundle L on S is ample if $c_{1}(L)$ is the hyperplane section of a projective embedding. Then $c_{1}(L)^{2}>0, c_{1}(L) C>0$ for all curves in S Sufficiently ample: these numbers are large enough wrt δ ($h^{0}(L)=\operatorname{dim}$ (space of sections of L), $K_{S}=$ zero set of holom.2-form, $\left.\chi\left(\mathcal{O}_{S}\right)=1-h^{0}\left(\Omega^{1}\right)+h^{0}\left(\Omega^{2}\right)\right)$

