Introduction 0000000	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting

Moduli spaces and Modular Forms

Lothar Göttsche

RIMUT day, 19.10.2009, Trieste

Introduction ●○○○○○○	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
Generating functions	3			

Aim of this talk: Relate generating functions of invariants of moduli spaces in algebraic geometry to modular forms

What do all these words mean?

Generating functions: Assume $(a_n)_{\geq 0}$ are interesting numbers. Their generating function is

$$f(t):=\sum_{n\geq 0}a_nt^n$$

Want a nice closed formula for f(t)

Example

 p_n = number of Partitions of *n*. $p_0 = 1, p_1 = 1, p_2 = 2, p_3 = 3$ ((3), (2, 1), (1, 1, 1))

$$\sum_{n\geq 0}p_nt^n=\prod_{k\geq 1}\frac{1}{1-t^k}.$$

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
Algebraic Geometry	,			

Study (projective) algebraic Varieties: **Projective space:** $\mathbb{P}^n = \mathbb{C}^{n+1} \setminus \{0\} / \sim, v \sim \lambda v$ for $\lambda \in \mathbb{C}$

Algebraic variety: Let $F_1, \ldots, F_r \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous polynomials

$$Z(F_1,...,F_r) = \{(p_0,...,p_n) \mid F_i(p_0,...,p_n) = 0, i = 1,...,r\}$$

A variety X is called smooth if it is a complex manifold. Dimension is the dimension as complex manifold, i.e. a curve (dimension 1) is a Riemann surface. Varieties can be singular.

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
Moduli spaces				

Moduli space: A variety M parametrizing interesting objects

Example

Elliptic curve = (*E* curve of genus 1, point $0 \in E$) Then $E \simeq E_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z}), \tau \in \mathbb{H} := \{\tau \in \mathbb{C} \mid \Im(\tau) > 0\}$

$$E_ au \simeq E_{rac{a au+b}{c au+d}}, \quad ext{for } egin{pmatrix} a & b \ c & d \end{pmatrix} \in Sl(2,\mathbb{Z})$$

 $\implies M_{1,1} = \{ \text{Moduli space of elliptic curves} \} = \mathbb{H}/Sl(2,\mathbb{Z}) \\ \text{Compactify: } \overline{M}_{1,1} = M_{1,1} \cup \infty$

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
Modular forms				
Modula moduli	ar forms: "Function space $\overline{M}_{1,1}$ of ellipti	s" (sections of I c curves	ine bundles) on	

Definition

Modular form of weight *k* on $Sl(2, \mathbb{Z})$: holomorphic function $f : \mathbb{H} \to \mathbb{C}$ s.th

•
$$f\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^kf(\tau)\quad\forall\begin{pmatrix}a&b\\c&d\end{pmatrix}\in Sl(2,\mathbb{Z}).$$

2 *f* is "holomorphic at ∞ ":

$$f(au) = \sum_{n \ge 0} a_n q^n \quad q = e^{2\pi i au}, \ a_n \in \mathbb{C}$$

f is a cusp form, if also $a_0 = 0$

Similar definition for modular forms on subgroups of $SI(2,\mathbb{Z})$ of finite index, maybe also with character

rod	uction ●●○○	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counti
odu	lar forms				
	Exam	ple			
	Eisen	stein series: $G_k(au) =$	$=-\frac{B_k}{2k}+\sum_{n\geq 1}\Big(\sum_{d\mid r}$	$\left(\int_{0}^{k} d^{k-1} \right) q^{n}, k > 2$	even
	modu	lar form of weight <i>k</i>			
	Discri	minant: $\Delta(au) = q \prod$	$(1-q^n)^{24}$ cusp i	form of weight 12	
		<i>n</i> ≥1			

Ring of Modular forms: closed under multiplication $M_* = \mathbb{C}[G_4, G_6]$ Generalizations:

① Quasimod. forms: $QM_* = \mathbb{C}[G_2, G_4, G_6]$ closed under $D = q \frac{d}{dq}$

Ø Mock modular forms: holom. parts of real analytic modular forms

Why should we care about modular forms?

- Come up in many different parts of mathematics and physics: q-development is generating function for interesting things
- ② There are very few modular forms (⇒ relations between interesting numbers from different fields)

ntroduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
000000				

Topological invariants

Topological invariants: Betti numbers $b_i(M) = dimH^i(M)$, Euler number $e(M) = \sum (-1)^i b_i(M)$, intersection numbers

$$\int_{[M]} \alpha_1 \cup \ldots \cup \alpha_s, \quad \alpha_i \in H^{n_i}(M)$$

Examples of the last: Donaldson invariants, Donaldson-Thomas invariants, Gromov-Witten invariants

What are Cohomology, Betti numbers (extremely roughly): $b_i(X) =$ "number of holes of codim i" ="essentially different *i*-codim 'submanifolds' of X" If $\alpha_i \in H^i(X)$ are represented by submanifolds V_i then

$$\int_{[M]} \alpha_1 \cup \ldots \cup \alpha_s = "\# \text{intersection points} \bigcap_i V_i"$$

Can also thing of deRham cohomology: $H^{i}(X) = Ker(d|\Omega_{X}^{i})/d(\Omega_{X}^{i-1})$ Then intersection number is $\int_{IMI} \alpha_{1} \wedge \ldots \wedge \alpha_{s}$.

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
Generating functions	s of invariants of moduli spaces			

Generating functions of invariants of moduli spaces Moduli spaces M_n depending on $n \ge 0$, find a nice formula for the invariants of all at the same time

Example

 $\mathbb{P}^n =$ moduli space of 1-dim subvectorspaces in \mathbb{C}^{n+1} $e(\mathbb{P}^n) = n+1$, thus $\sum_n e(\mathbb{P}^n)t^n = \frac{1}{(1-t)^2}$

In general would think: hard enough to compute for one M_n **But:** often easier for generating functions: relations between different M_n give differential equation for generating function Introduction Hilbert schemes of points Moduli of sheaves Donaldson invariants 000 Symmetric powers Aim: Compute generating functions of invariants of moduli spaces M_n depending on n > 0. Show they are modular forms Too simple example: Euler numbers of symmetric powes: S smooth surface, symm. grp G(n) acts on S^n permuting factors $S^{(n)} = S^n/G(n)$ symm. power: (singular) projective variety Moduli space of *n* points on *S* with multipl.: points of $S^{(n)}$ = sets $\{(p_1, n_1), \dots, (p_r, n_r)\}, p_i \in S \text{ distinct}, n_i > 0, \sum n_i = n$ **Betti numbers:** $b_i(X) := \dim H^i(X, \mathbb{Q}), p(X, z) := \sum_{i=0}^{\dim X} b_i(X) z^i$, $e(X) = \sum_{i=0}^{n} (-1)^{i} b_{i}(X) = p(X, -1)$ Euler number

Theorem (MacDonald formula)

$$\sum_{n\geq 0} p(S^{(n)}, z)t^n = \frac{(1+zt)^{b_1(S)}(1+z^3t)^{b_3(S)}}{(1-t)^{b_0(S)}(1-z^2t)^{b_2(S)}(1-z^4t)^{b_4(S)}}$$

Corollary

$$\sum_{n\geq 0} e(S^{(n)})t^n = \frac{1}{(1-t)^{e(S)}}$$

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting	
	0.0				
Hilbert scheme of points					

 $S^{[n]}$ =Hilbert scheme of *n* points on *S*, different moduli of *n* pts on *S* Points of $S^{[n]}$: { $(p_1, \mathcal{O}_1), \ldots, (p_r, \mathcal{O}_r)$ }, $p_i \in S$, \mathcal{O}_i quotient of dim. n_i of holom. fcts near p_i , $S^{[n]}$ is nonsingular Morphism: $\omega_n : S^{[n]} \to S^{(n)}$, { (p_i, \mathcal{O}_i) } \mapsto { (p_i, n_i) } Study this map, its fibres ...

Theorem (G)

$$\sum_{n\geq 0} p(S^{[n]}, z)t^n = \prod_{k\geq 1} \frac{(1+z^{2k-1}t^k)^{b_1(S)}(1+z^{2k+1}t^k)^{b_3(S)}}{(1-z^{2k-2}t^k)^{b_0(S)}(1-z^{2k}t^k)^{b_2(S)}(1-z^{2k+2}t^k)^{b_4(S)}}$$

Corollary

$$\sum_{n \ge 0} e(S^{[n]})q^n = \prod_{k \ge 1} \frac{1}{(1 - q^k)^{e(S)}} = \left(\frac{q}{\Delta(\tau)}\right)^{e(S)/24}$$

Introduction	Hilbert schemes of points ○○●	Moduli of sheaves	Donaldson invariants	Curve counting
Hilbert scheme of po	pints			

Later developments:

- One of the motivating examples of S-duality conjecture of Vafa-Witten: Generating fct for Euler numbers of moduli spaces of stable sheaves should be modular forms. (Explain later)
- Vafa-Witten also say: formula means: ⊕_n H^{*}(S^[n], Q) is irreducible representation of Heisenberg algebra. Essentially this means: ∃ very nice way to make ⊕_n H^{*}(S^[n], Q) out of H^{*}(S, Q). Proved by Nakajima, Groijnowsky Lehn, Lehn-Sorger, ... Carlsson-Okounkov: rich algebraic structure on ⊕_n H^{*}(S^[n], Q)

Generalization to dimension 3 X smooth 3-fold. Cheah proves

$$\sum_{n \ge 0} e(X^{[n]})q^n = \prod_{k \ge 1} \left(\frac{1}{(1-q^k)^k}\right)^{e(X)}$$

This is related to Donaldson-Thomas invariants (Maulik-Nekrasov-Okounkov-Pandharipande, Behrend-Fantechi, ...).

Introduction	Hilbert schemes of points	Moduli of sheaves ●00000	Donaldson invariants	Curve counting
Stable sheaves				

S proj. alg. surface. This means *S* has embedding in some \mathbb{P}^N Usually do not care about embedding (as long as it exists) Let *H* ample on *S* (=hyperpl. section of embed. $S \subset \mathbb{P}^n$). Fixing *H* essentially means fixing embedding of *S* in \mathbb{P}^n

A **vector bundle** of rank *r* on *S* "is" $\pi : E \to S$, such that all fibres are complex vector spaces of rank *r* The Chern classes $c_1(E) \in H^2(S, \mathbb{Z}), c_2(E) \in H^4(S, \mathbb{Z})$ measure how different *E* is from $\mathbb{C}^r \times S$.

Introduction	Hilbert schemes of points	Moduli of sheaves ○●○○○○	Donaldson invariants	Curve counting
Stable sheaves				

Fix
$$c_1 \in H^2(S, \mathbb{Z})$$
, $c_2 \in H^4(S, \mathbb{Z})$ Chern classes

$$M:=M_S^H(c_1,c_2)$$

= moduli space of *H*-stable rk 2 sheaves on *S* with c_1, c_2

sheaf="vector bundle with singularities" H-stable: "all subsheaves of \mathcal{E} are small"; depends on H

 $M \supset N$ =stable vector bundles (open subset). Look at generating functions:

$$Z_{c_1}^{S,H} := \sum_{n} e(M_S^H(c_1, n))q^{n-c_1^2/4}$$
$$Y_{c_1}^{S,H} := \sum_{n} e(N_S^H(c_1, n))q^{n-c_1^2/4}$$

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting
S-duality				

S-duality conj. (Vafa-Witten): $Z_{c_1}^{S,H}$, $Y_{c_1}^{S,H}$ are (almost) modular forms

Theorem (Compatibilty results (Yoshioka, G, Qin-Li-Wang ...))

$$Z^{S,H}_{c_1} = \left(\frac{q}{\Delta(\tau)}\right)^{e(S)/12} Y^{S,H}_{c_1}$$

(Blowup formula:) $\hat{S} \to S$ blowup of S in a point (replace p by a \mathbb{P}^1).

$$Z_{c_1}^{\widehat{S},H}= heta(au)\left(rac{m{q}}{\Delta(au)}
ight)^{1/12}Z_{c_1}^{\mathcal{S},H},\quad heta(au)=\sum_{m{n}\in\mathbb{Z}}m{q}^{m{n}^2}$$

(for both formulas relate difference of both sides to Hilbert scheme of points)

Introduction	Hilbert schemes of points	Moduli of sheaves ○○○●○○	Donaldson invariants	Curve counting
S-duality				

Special surfaces:

K3 surfaces: 1-connected proj. surface with nowhere vanishing holomorphic 2 form, e.g quartic in P^3

Theorem (G-Huybrechts, Yoshioka,...)

Let S be a K3 surface, if c_1 is not divisible by 2 in $H^2(S, \mathbb{Z})$, then $e(M) = e(S^{[\dim(M)/2]})$

For the proof relate the moduli space to Hilbert schemes, in fact they are shown to be diffeomorphic

	Hilbert schemes of points	Moduli of sheaves ○○○○●○	Donaldson invariants	OO
S-duality Proiective	plane:			

$$H(n) = #\{$$
 quadrat. forms $ax^2 + bxy + cy^2$, $a, b, c \in \mathbb{Z}$
with $b^2 - ac = -n\}/iso$
 $G_{3/2}(\tau) := \sum_{n \ge 0} H(n)q^n = \frac{-1}{12} + \frac{1}{3}q^3 + \frac{1}{2}q^4 + \dots$ Mock modular form

Theorem (Klyachko)

$$e(N_{\mathbb{P}^{2}}(H, n)) = 3H(4n - 1)$$
, thus

$$Y_{H}^{\mathbb{P}^{2}} = rac{3}{2} \Big(G_{3/2}(\tau/4) - G_{3/2}((\tau+2)/4) \Big)$$

 $N_{\mathbb{P}^2}(H, n)$ has a \mathbb{C}^* action, e(N) = #fixpoints

Introduction	Hilbert schemes of points	Moduli of sheaves ○○○○○●	Donaldson invariants	Curve counting
S-duality				
Wallcross	ing:			

Let *S* rational surf., e.g. (multiple) blowup of \mathbb{P}^2 $M_X^H(c_1, c_2)$ depends on $H \in C_S = \{H \in \mathbb{H}^2(S, \mathbb{R}) \mid H^2 > 0\}$ There are walls (=hyperplanes) dividing C_X into chambers $M_X^H(c_1, c_2)$ const. on chambers, changes when *H* crosses wall **Change:** replace \mathbb{P}^k bundles over $S^{[n]}$ by \mathbb{P}^l -bundles everything understood in terms of Hilbert schemes

Theorem (G)

Let S rational surface, H ample on $S \Longrightarrow Z_{c_1}^{S,H}$ is a mock modular form.

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants ●○	Curve counting
Donaldson invariants	;			

Donaldson invariants: \mathbb{C}^{∞} invariants of *X* diff. 4-manifold def. using moduli spaces of asd connections (solutions of PDE) Now *S* proj. alg. surface. D-invariants can be defined using moduli spaces $M = M_S^H(c_1, c_2)$ of stable sheaves on *S* $\mathcal{E}/S \times M$ universal sheaf (i.e. restriction to $S \times [E]$ is *E*) Let $L \in H_2(S, \mathbb{Q})$. Put $\mu(L) := 4c_2(\mathcal{E}) - c_1(\mathcal{E})^2/L \in H^2(M, \mathbb{Q})$. Donaldson invariant

$$\Phi^{H}_{X,c_1}(L^d) = \int_X \mu(L)^d, \quad d = \dim(M)$$

Generating function: $\Phi_{X,c_1}^H(e^{Lz}) = \sum_d \Phi_{X,c_1}^H(L^d) \frac{z^d}{d!}$ **Rational surfaces:** Seen: $M_S^H(c_1, c_2)$ subject to wallcrossing **G,G-Nakajima-Yoshioka:** Generating function for wallcrossing of Donaldson invariants in terms of modular forms \implies generating function for invariants for rational surfaces in terms of modular forms

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants o●	Curve counting
Donaldson invariants	3			

Case of \mathbb{P}^2 :

Theorem (G, G-Nakajima-Yoshioka)

$$\Phi_{H}^{\mathbb{P}^{2}}(\exp(Hz)) = \sum_{0 < n \le m} \operatorname{Coeff}_{q^{0}} \left[\frac{q^{\frac{4m^{2} - (2n-1)^{2}}{8}}}{\sqrt{-1}^{6n-2m+5}} \exp\left((n-1/2)hz + Tz^{2}\right) \theta_{01}^{9}h^{3} \right]$$

$$\begin{split} u &:= -\frac{\theta_{00}^* + \theta_{10}^*}{\theta_{00}^2 \theta_{10}^2}, \ h &:= \frac{2\sqrt{-1}}{\theta_{00} \theta_{10}}, \ T &:= -h^2 G_2 - \frac{u}{6}, \\ \theta_{00} &:= \sum_{p \in \mathbb{Z}} q^{\frac{n^2}{2}}, \ \theta_{10} = \sum_{p \in \mathbb{Z}} q^{\frac{(n+\frac{1}{2})^2}{2}} \end{split}$$

G uses (unproven) Kotschick-Morgan conjecture: wallcrossing term should only depend on topology

G-N-Y uses instanton counting (maybe see Bruzzo's talk)

A different formula in terms of modular forms was proposed (based on physics arguments) by Moore-Witten. Ono-Malmendier recently proved both formulas are equal

Introduction	Hilbert schemes of points	Moduli of sheaves	Donaldson invariants	Curve counting ●○		
Rational curves on K3 surfaces						

Let *S* proj. surface, *L* holom. line bundle on *S*, $s : S \to L$ section Zero set *Z*(*s*) is (possibly singular) curve on *S* denote |L| set of all such curves A curve $C \subset S$ is rational, if image of a map $\mathbb{P}^1 \to X$ **K3 surfaces:** Let *S* a *K*3 surface (e.g. quartic in \mathbb{P}^3) *L* lb on *S*, s.th all $Z(s) \in |L|$ are irreducible (not union of curves)

Theorem (Yau-Zaslow, Beauville, Fantechi-G-van Straten)

rational curves in |L| (with multipl.) depends only on $c_1(L)^2\in 2\mathbb{Z}$ Denote it $n_{c_1(L)^2/2}.$ Then

$$\sum_{k\in\mathbb{Z}}n_kq^k=\frac{1}{\Delta(\tau)}$$

Proof again consist in relating this to Hilbert schemes of points

0000000	000	000000	00	0
General conjectu	re			
Let ${\mathcal S}$ $a_\delta({\mathcal S},$	proj. surface, L line but $L)=\#\delta$ -nodal curves	undle on <i>S</i> s in <i>L</i> through <i>h</i>	$\mu^0(L) - 1 - \delta$ -points	on S
Conje	ecture (G)			
	polynomials $ extsf{T}_{\delta}(x,y,t_{\delta}(\mathcal{S},L)= extsf{T}_{\delta}(h^{0}(L),\chi(t_{\delta}))$	z, w) s.th∀S, a (O _S), c₁(L)K _S , K	Il sufficiently ample $\binom{2}{S}$	L
2 =	power series B ₁ , B ₂	$\in \mathbb{Z}[[q]]$ s.th.		
	$\sum_{\delta \geq 0} T_{\delta}(x,y,z)$	$(\mathbf{W})(\mathbf{DG}_2)^{\delta} = \overline{(2)}$	$\frac{(DG_2/q)^{x}B_1^{z}B_2^{w}}{\Delta(\tau)D^2G_2/q^2)^{y/2}}$	
A line projec Suffici	bundle <i>L</i> on <i>S</i> is amp tive embedding. Ther ently ample: these nu	ble if $c_1(L)$ is the $c_1(L)^2 > 0$, $c_1(L)^2 > 0$, $c_1(L)^2 > 0$	hyperplane section $(L)C > 0$ for all curve enough wrt δ	n of a ves in <i>S</i>

irve counting

 $(h^0(L) = \text{dim}(\text{space of sections of } L), K_S = \text{zero set of holom.2-form}, \chi(\mathcal{O}_S) = 1 - h^0(\Omega^1) + h^0(\Omega^2))$