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Generating functions

Aim of this talk: Relate generating functions of
invariants of moduli spaces in algebraic geometry to
modular forms
What do all these words mean?

Generating functions: Assume (an)≥0 are interesting
numbers. Their generating function is

f (t) :=
∑
n≥0

antn

Want a nice closed formula for f (t)

Example
pn = number of Partitions of n. p0 = 1,p1 = 1,p2 = 2, p3 = 3
((3), (2,1), (1,1,1)) ∑

n≥0

pntn =
∏
k≥1

1
1− tk .
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Algebraic Geometry

Study (projective) algebraic Varieties:
Projective space: Pn = Cn+1 \ {0}/ ∼, v ∼ λv for λ ∈ C

Algebraic variety: Let F1, . . . ,Fr ∈ C[x0, . . . , xn] homogeneous
polynomials

Z (F1, . . . ,Fr ) =
{

(p0, . . . ,pn)
∣∣ Fi(p0, . . . ,pn) = 0, i = 1, . . . , r

}
A variety X is called smooth if it is a complex manifold.
Dimension is the dimension as complex manifold, i.e. a curve
(dimension 1) is a Riemann surface. Varieties can be singular.
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Moduli spaces

Moduli space: A variety M parametrizing interesting objects

Example
Elliptic curve= (E curve of genus 1, point 0 ∈ E)
Then E ' Eτ = C/(Z + τZ), τ ∈ H := {τ ∈ C

∣∣ =(τ) > 0}

Eτ ' E aτ+b
cτ+d

, for
(

a b
c d

)
∈ Sl(2,Z)

=⇒ M1,1 =
{

Moduli space of elliptic curves} = H/Sl(2,Z)

Compactify: M1,1 = M1,1 ∪∞
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Modular forms

Modular forms: "Functions" (sections of line bundles) on
moduli space M1,1 of elliptic curves

Definition
Modular form of weight k on Sl(2,Z): holomorphic function
f : H→ C s.th

1 f
(

aτ + b
cτ + d

)
= (cτ + d)k f (τ) ∀

(
a b
c d

)
∈ Sl(2,Z).

2 f is "holomorphic at∞":

f (τ) =
∑
n≥0

anqn q = e2πiτ , an ∈ C

f is a cusp form, if also a0 = 0
Similar definition for modular forms on subgroups of Sl(2,Z)
of finite index, maybe also with character
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Modular forms

Example

Eisenstein series: Gk (τ) = −Bk

2k
+
∑
n≥1

(∑
d|n

dk−1
)

qn, k > 2 even

modular form of weight k

Discriminant: ∆(τ) = q
∏
n≥1

(1− qn)24 cusp form of weight 12

Ring of Modular forms: closed under multiplication M∗ = C[G4,G6]

Generalizations:
1 Quasimod. forms: QM∗ = C[G2,G4,G6] closed under D = q d

dq

2 Mock modular forms: holom. parts of real analytic modular forms

Why should we care about modular forms?
1 Come up in many different parts of mathematics and physics:

q-development is generating function for interesting things
2 There are very few modular forms (=⇒ relations between

interesting numbers from different fields)
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Topological invariants

Topological invariants: Betti numbers bi (M) = dimH i (M), Euler
number e(M) =

∑
(−1)ibi (M),

intersection numbers∫
[M]

α1 ∪ . . . ∪ αs, αi ∈ Hni (M)

Examples of the last: Donaldson invariants, Donaldson-Thomas
invariants, Gromov-Witten invariants
What are Cohomology, Betti numbers (extremely roughly):
bi (X ) ="number of holes of codim i"

="essentially different i-codim ’submanifolds’ of X "
If αi ∈ H i (X ) are represented by submanifolds Vi then∫

[M]

α1 ∪ . . . ∪ αs = "#intersection points
⋂

i Vi "

Can also thing of deRham cohomology: H i (X ) = Ker(d
∣∣Ωi

X )
/

d(Ωi−1
X )

Then intersection number is
∫

[M]
α1 ∧ . . . ∧ αs.
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Generating functions of invariants of moduli spaces

Generating functions of invariants of moduli spaces
Moduli spaces Mn depending on n ≥ 0, find a
nice formula for the invariants of all at the same time

Example

Pn = moduli space of 1-dim subvectorspaces in Cn+1

e(Pn) = n + 1, thus
∑

n e(Pn)tn = 1
(1−t)2

In general would think: hard enough to compute for one Mn
But: often easier for generating functions: relations between
different Mn give differential equation for generating function
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Symmetric powers

Aim: Compute generating functions of invariants of moduli spaces
Mn depending on n ≥ 0. Show they are modular forms
Too simple example: Euler numbers of symmetric powes:
S smooth surface, symm. grp G(n) acts on Sn permuting factors
S(n) = Sn/G(n) symm. power: (singular) projective variety
Moduli space of n points on S with multipl.: points of S(n) = sets{

(p1,n1), . . . , (pr ,nr )
}

, pi ∈ S distinct, ni > 0,
∑

ni = n
Betti numbers: bi (X ) := dim H i (X ,Q), p(X , z) :=

∑dim X
i=0 bi (X )z i ,

e(X ) =
∑n

i=0(−1)ibi (X ) = p(X ,−1) Euler number

Theorem (MacDonald formula)∑
n≥0

p(S(n), z)tn =
(1 + zt)b1(S)(1 + z3t)b3(S)

(1− t)b0(S)(1− z2t)b2(S)(1− z4t)b4(S)

Corollary ∑
n≥0

e(S(n))tn =
1

(1− t)e(S)
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Hilbert scheme of points

S[n] =Hilbert scheme of n points on S, different moduli of n pts on S
Points of S[n]:

{
(p1,O1), . . . , (pr ,Or )

}
, pi ∈ S, Oi quotient of dim. ni of

holom. fcts near pi , S[n] is nonsingular
Morphism: ωn : S[n] → S(n), {(pi ,Oi )} 7→ {(pi ,ni )}
Study this map, its fibres . . .

Theorem (G)

∑
n≥0

p(S[n], z)tn =
∏
k≥1

(1 + z2k−1tk )b1(S)(1 + z2k+1tk )b3(S)

(1− z2k−2tk )b0(S)(1− z2k tk )b2(S)(1− z2k+2tk )b4(S)

Corollary∑
n≥0

e(S[n])qn =
∏
k≥1

1
(1− qk )e(S)

=

(
q

∆(τ)

)e(S)/24
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Hilbert scheme of points

Later developments:

1 One of the motivating examples of S-duality conjecture of
Vafa-Witten: Generating fct for Euler numbers of moduli spaces
of stable sheaves should be modular forms. (Explain later)

2 Vafa-Witten also say: formula means:
⊕

n H∗(S[n],Q) is
irreducible representation of Heisenberg algebra.
Essentially this means: ∃ very nice way to make

⊕
n H∗(S[n],Q)

out of H∗(S,Q). Proved by Nakajima, Groijnowsky
Lehn, Lehn-Sorger, . . . Carlsson-Okounkov: rich algebraic
structure on

⊕
n H∗(S[n],Q)

Generalization to dimension 3 X smooth 3-fold. Cheah proves

∑
n≥0

e(X [n])qn =
∏
k≥1

(
1

(1− qk )k

)e(X)

.

This is related to Donaldson-Thomas invariants
(Maulik-Nekrasov-Okounkov-Pandharipande, Behrend-Fantechi, . . . ).
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Stable sheaves

S proj. alg. surface. This means S has embedding in some PN

Usually do not care about embedding (as long as it exists)
Let H ample on S (=hyperpl. section of embed. S ⊂ Pn).
Fixing H essentially means fixing embedding of S in Pn

A vector bundle of rank r on S "is" π : E → S, such that all
fibres are complex vector spaces of rank r
The Chern classes c1(E) ∈ H2(S,Z), c2(E) ∈ H4(S,Z)
measure how different E is from Cr × S.
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Stable sheaves

Fix c1 ∈ H2(S,Z), c2 ∈ H4(S,Z) Chern classes

M := MH
S (c1, c2)

= moduli space of H-stable rk 2 sheaves on S with c1, c2

sheaf="vector bundle with singularities"
H-stable: "all subsheaves of E are small"; depends on H

M ⊃ N =stable vector bundles (open subset).
Look at generating functions:

Z S,H
c1

:=
∑

n

e(MH
S (c1,n))qn−c2

1/4

Y S,H
c1

:=
∑

n

e(NH
S (c1,n))qn−c2

1/4
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S-duality

S-duality conj. (Vafa-Witten): Z S,H
c1 , Y S,H

c1 are (almost) modular
forms

Theorem (Compatibilty results (Yoshioka, G, Qin-Li-Wang ...))

1 Z S,H
c1 =

(
q

∆(τ)

)e(S)/12
Y S,H

c1

2 (Blowup formula:) Ŝ → S blowup of S in a point (replace p by a
P1).

Z Ŝ,H
c1 = θ(τ)

(
q

∆(τ)

)1/12

Z S,H
c1 , θ(τ) =

∑
n∈Z

qn2

(for both formulas relate difference of both sides to Hilbert scheme of
points)
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S-duality

Special surfaces:
K3 surfaces: 1-connected proj. surface with nowhere
vanishing holomorphic 2 form, e.g quartic in P3

Theorem (G-Huybrechts, Yoshioka,...)

Let S be a K 3 surface, if c1 is not divisible by 2 in H2(S,Z),
then e(M) = e(S[dim(M)/2])

For the proof relate the moduli space to Hilbert schemes, in fact
they are shown to be diffeomorphic
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S-duality

Projective plane:

H(n) = #{ quadrat. forms ax2 + bxy + cy2, a,b, c ∈ Z
with b2 − ac = −n}/iso

G3/2(τ) :=
∑

n≥0 H(n)qn = −1
12 + 1

3q3 + 1
2q4 + . . . Mock modular

form

Theorem (Klyachko)
e(NP2(H,n)) = 3H(4n − 1), thus

Y P2

H =
3
2

(
G3/2(τ/4)−G3/2

(
(τ + 2)/4

))
NP2(H,n) has a C∗ action, e(N) = #fixpoints
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S-duality

Wallcrossing:

Let S rational surf., e.g. (multiple) blowup of P2

MH
X (c1, c2) depends on H ∈ CS =

{
H ∈ H2(S,R)

∣∣ H2 > 0
}

There are walls (=hyperplanes) dividing CX into chambers
MH

X (c1, c2) const. on chambers, changes when H crosses wall
Change: replace Pk bundles over S[n] by Pl -bundles
everything understood in terms of Hilbert schemes

Theorem (G)
Let S rational surface, H ample on S =⇒
Z S,H

c1
is a mock modular form.
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Donaldson invariants

Donaldson invariants: C∞ invariants of X diff. 4-manifold
def. using moduli spaces of asd connections (solutions of PDE)
Now S proj. alg. surface. D-invariants can be defined using moduli
spaces M = MH

S (c1, c2) of stable sheaves on S
E/S ×M universal sheaf (i.e. restriction to S × [E ] is E)
Let L ∈ H2(S,Q). Put µ(L) := 4c2(E)− c1(E)2/L ∈ H2(M,Q).
Donaldson invariant

ΦH
X ,c1

(Ld ) =

∫
X
µ(L)d , d = dim(M)

Generating function: ΦH
X ,c1

(eLz) =
∑

d ΦH
X ,c1

(Ld ) zd

d!

Rational surfaces: Seen: MH
S (c1, c2) subject to wallcrossing

G,G-Nakajima-Yoshioka: Generating function for wallcrossing of
Donaldson invariants in terms of modular forms =⇒ generating
function for invariants for rational surfaces in terms of modular forms
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Donaldson invariants

Case of P2:

Theorem (G, G-Nakajima-Yoshioka)

ΦP2

H (exp(Hz))=
∑

0<n≤m

Coeff
q0

[ q
4m2−(2n−1)2

8

√
−1

6n−2m+5 exp
(

(n−1/2)hz+Tz2
)
θ9

01h3
]

u := − θ
4
00+θ4

10
θ2

00θ
2
10
, h := 2

√
−1

θ00θ10
, T := −h2G2 − u

6 ,

θ00 :=
∑

n∈Z q
n2
2 , θ10 =

∑
n∈Z q

(n+ 1
2 )2

2

G uses (unproven) Kotschick-Morgan conjecture: wallcrossing term
should only depend on topology
G-N-Y uses instanton counting (maybe see Bruzzo’s talk)
A different formula in terms of modular forms was proposed (based
on physics arguments) by Moore-Witten. Ono-Malmendier recently
proved both formulas are equal
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Rational curves on K3 surfaces

Let S proj. surface, L holom. line bundle on S, s : S → L section
Zero set Z (s) is (possibly singular) curve on S
denote |L| set of all such curves
A curve C ⊂ S is rational, if image of a map P1 → X
K3 surfaces: Let S a K 3 surface (e.g. quartic in P3)
L lb on S, s.th all Z (s) ∈ |L| are irreducible (not union of curves)

Theorem (Yau-Zaslow, Beauville, Fantechi-G-van Straten)

# rational curves in |L| (with multipl.) depends only on c1(L)2 ∈ 2Z
Denote it nc1(L)2/2. Then

∑
k∈Z

nk qk =
1

∆(τ)

Proof again consist in relating this to Hilbert schemes of points
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General conjecture

Let S proj. surface, L line bundle on S
aδ(S,L) = #δ-nodal curves in |L| through h0(L)− 1− δ-points on S

Conjecture (G)

1 ∃ polynomials Tδ(x , y , z,w) s.th ∀S, all sufficiently ample L
aδ(S,L) = Tδ(h0(L), χ(OS), c1(L)KS,K 2

S )

2 ∃ power series B1,B2 ∈ Z[[q]] s.th.∑
δ≥0

Tδ(x , y , z,w)(DG2)δ =
(DG2/q)xBz

1Bw
2

(∆(τ)D2G2/q2)y/2

A line bundle L on S is ample if c1(L) is the hyperplane section of a
projective embedding. Then c1(L)2 > 0, c1(L)C > 0 for all curves in S
Sufficiently ample: these numbers are large enough wrt δ
(h0(L) = dim(space of sections of L), KS =zero set of holom.2-form,
χ(OS) = 1− h0(Ω1) + h0(Ω2))
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