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Curve counting

Severi degree:
S smooth proj. alg. surface, L line bundle on S

|L| =
{

C = Z (s)
∣∣ s section of L

}
= Ph0(L)−1

Pδ ⊂ |L| gen. δ-dim. lin. subsp. (curves through dim |L| − δ pts)
Severi degree: n(S,L),δ := #

{
δ-nodal curves in Pδ ⊂ |L|

}

Kool-Shende-Thomas compute n(S,L),δ using relative Hilbert
schemes of points on the universal curve C/Pδ
Note: The Pandharipande-Thomas moduli space of stable pairs
is isomorphic to the relative Hilbert scheme of points.
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Refined invariants

Refinement: Pδ ⊂ |L| general δ-dimensional linear subspace
C[n] relative Hilbert scheme of universal curve C over Pδ
parametrizes sets of n-points on the curves of Pδ

χ−y -genus: χ−y (X ) =
∑

p,q(−1)p+qhp,q(X )yq

Write

∑
n≥0

χ−y (C[n])tn−g(L)+1 =
∞∑

l≥0

NCl (y)

(
t

(1− t)(1− yt)

)l−g(L)+1

g(L) =genus of smooth curve in |L|

Refined invariants: N(S,L),δ(y) := NCδ (y)/yδ

Note: N(S,L),δ(1) = n(S,L),δ (if L suff. ample), so refinement of
Severi degrees
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Refined invariants

Interpretation as refined K -theoretic PT invariants (Afgani)
X total space of KS
X is noncompact CY with C∗ action by rescaling the fibres
i : S ↪→ X , zero section, image S = XC∗ .

Let Pχ(X , i∗β) moduli space of stable pairs
(F dim 1 sheaf on X , s : OX → F section with 0 dim coker)
χ(F) = χ, [supp(F)] = β
Pχ = Pχ(X , i∗β) carries self-dual C∗ equiv obstr theory
For s1, . . . , sm ∈ S compute via virtual localization

Mχ := χ
(
Ovir

Pχ ⊗ (K vir
Pχ)1/2 ⊗

m∏
i=1

γ(Osi )
)
∈ Z [t , t−1]

t is the equivariant parameter of the action. Under suitable
assumptions N(S,L),δ(y) expressed in terms gen. fct of Mχ

∣∣
t=y ,

by BPS like formula
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Welschinger invariants

Let S real algebraic surface; P configuration of dim |L| − δ real
points of S
Welschinger numbers: W(S,L),δ(P) =

∑
C

(−1)s(C)

sum is over all real δ-nodal curves C in |L| though P
s(C) = #{isolated real nodes of C}
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Tropical curve counting

Curves can be counted by counting piecewise linear objects:
the tropical curves

A lattice polygon ∆ in R2 is a polygon with vertices with
integer coordinates
To a convex lattice polygon ∆ one can associate a pair
(S(∆),L(∆)) of a toric surface and a toric line bundle on S

S is defined by the fan given by the outer normal vectors of ∆
h0(S,L) = #(∆ ∩ Z2), arithmetic genus #int(∆ ∩ Z2)

Examples:
1 (P2,O(d))

2 (P1 × P1,O(d1,d2))
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Tropical curve counting

plane tropical curve of degree ∆:
piecewise linear graph Γ immersed in R2 s.t.

1 the edges e of Γ have rational slope
2 they have weight w(e) ∈ Z>0

3 balancing condition:
let p(e) primitive integer vector in direction of e;
for all vertices v of Γ:∑

e at v

p(e)w(e) = 0.

4 For every edge of ∆ (of lattice length n) Γ has n unbounded
edges in corresponding outer normal direction
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Tropical curve counting

Simple tropical curves: analogues of nodal curves, trivalent

genus of Γ→ R2 is g(Γ) = h1(Γ)− h0(Γ) + 1
Number of nodes #int(∆)− g(Γ)
through #(∆ ∩ Z2)− 1− δ general points in R2, there are
finitely many δ-nodal degree ∆ tropical curves, all simple

Count these curves with certain multiplicities

Different counts; same principle:
1 for every vertex v of Γ define vertex multiplicity u(v)

2 multiplicity of Γ is u(Γ) =
∏

v vertex u(v)

3 corresponding curve count is

u(∆, δ) :=
∑

Γ

u(Γ)

(sum over all δ-nodal, degree ∆ tropical curves through
#(∆ ∩ Z2)− 1− δ general points in R2)
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Tropical curve counting

1 v vertex of Γ, e1,e2,e3 edges at v . vertex multiplicity

m(v) := w(e1)w(e2)|det(p(e1),p(e2))|, m(Γ) =
∏

v vertex

m(v)

Tropical Severi degree ntrop
∆,δ :=

∑
Γ

m(Γ)

2 vertex multiplicity ω(v) :=

{
(−1)(m(v)−1)/2 m(v) odd
0 m(v) even

,

ω(Γ) =
∏

v vertex ω(v)

Tropical Welschinger inv. W trop
∆,δ :=

∑
Γ

ω(Γ)

Mikhalkin: The Severi degree is equal to the tropical Severi
degree and the Welschinger numbers are equal to the tropical
Welschinger invariants.

n(S(∆),L(∆)),δ = ntrop
∆,δ, W(S(∆),L(∆)),δ(P) = W trop

∆,δ for suitable P
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Refined Severi degree

quantum number: [n]y := yn/2−y−n/2

y1/2−y−1/2

By definition [n]1 = n, [n]−1 =

{
(−1)(n−1)/2 n odd
0 n even

Let Γ simple tropical curve, v vertex

M(v) := [m(v)]y , M(Γ) =
∏

v vertex

M(v)

Refined Severi degree: N trop
∆,δ(y) :=

∑
Γ M(Γ) sum as above

N trop
∆,δ(1) = ntrop

∆,δ, N trop
∆,δ(−1) = W trop

∆,δ

Itenberg-Mikhalkin: N trop
∆,δ(y) is a tropical invariant, i.e.

independent of the position of the points
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Refined Severi degree

Conjecture (Tropical refined = χy (Hilbert scheme) refined)

If L(∆) is sufficiently ample (δ-very ample), then

N trop
∆,δ(y) = N(S(∆),L(∆)),δ(y)
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Heisenberg algebra

The refined Severi degrees can for many toric surfaces
(h-transversal lattice polygon) be computed in terms of the
action of Fock space

Heisenberg algebra gen. by an,bn, n ∈ Z
commutation relations

[an,am] = 0 = [bn,bm], [an,bm] = [n]yδn,−m, [n]y =
yn/2 − y−n/2

y1/2 − y−1/2

Fock space: F generated by creation operators a−n, b−n
acting on vacuum vector v∅
elements of F are f v∅, where f is a polynomial
(with coefficients in y±1/2 in the a−n, b−n)
H-module by anv∅ := 0, bnv∅ := 0 for n ≥ 0
(concatenate and apply commutation relations) e.g.
a2(a−1b−2v∅) = a−1(b−2a2 + [2]ya−1)v∅ = (y1/2 + y−1/2)a−1v∅.



Introduction Refined tropical curve counting Fock space Log GW inv. with λ classes Refined Descendent invariants

Heisenberg algebra

The refined Severi degrees can for many toric surfaces
(h-transversal lattice polygon) be computed in terms of the
action of Fock space

Heisenberg algebra gen. by an,bn, n ∈ Z
commutation relations

[an,am] = 0 = [bn,bm], [an,bm] = [n]yδn,−m, [n]y =
yn/2 − y−n/2

y1/2 − y−1/2

Fock space: F generated by creation operators a−n, b−n
acting on vacuum vector v∅
elements of F are f v∅, where f is a polynomial
(with coefficients in y±1/2 in the a−n, b−n)
H-module by anv∅ := 0, bnv∅ := 0 for n ≥ 0
(concatenate and apply commutation relations) e.g.
a2(a−1b−2v∅) = a−1(b−2a2 + [2]ya−1)v∅ = (y1/2 + y−1/2)a−1v∅.



Introduction Refined tropical curve counting Fock space Log GW inv. with λ classes Refined Descendent invariants

Heisenberg algebra

The refined Severi degrees can for many toric surfaces
(h-transversal lattice polygon) be computed in terms of the
action of Fock space

Heisenberg algebra gen. by an,bn, n ∈ Z
commutation relations

[an,am] = 0 = [bn,bm], [an,bm] = [n]yδn,−m, [n]y =
yn/2 − y−n/2

y1/2 − y−1/2

Fock space: F generated by creation operators a−n, b−n
acting on vacuum vector v∅
elements of F are f v∅, where f is a polynomial
(with coefficients in y±1/2 in the a−n, b−n)
H-module by anv∅ := 0, bnv∅ := 0 for n ≥ 0
(concatenate and apply commutation relations) e.g.
a2(a−1b−2v∅) = a−1(b−2a2 + [2]ya−1)v∅ = (y1/2 + y−1/2)a−1v∅.



Introduction Refined tropical curve counting Fock space Log GW inv. with λ classes Refined Descendent invariants

Heisenberg algebra

Basis paramtr. by pairs of partitions
µ = (1µ1 ,2µ2 , . . .), ν = (1ν1 ,2ν2 , . . .)

aµ :=
∏

i
aµi

i
µi !

, a−µ :=
∏

i
aµi
−i
µi !

, similarly for bν , b−ν
vµ,ν := a−µb−νv∅ basis for F

inner product 〈v∅|v∅〉 = 1; an, bn adjoint to a−n, b−n

Example: cases P2, P1 × P1:
Hm(t) :=

∑
k>0

b−k bk + t
∑

‖µ‖=‖ν‖−m

a−µaν , ‖µ‖ :=
∑

i iµi

Theorem

∑
d≥0

∑
δ≥0

tdqd(d+3)/2−δ

(d(d + 3)/2− δ)!
N trop

d,δ (y) = 〈v∅|exp(qH1(t)) exp(a−1)v∅〉

∑
d1,d2≥0

∑
δ≥0

sd1 td2qd1d2+d1+d2−δ

(d1d2 + d1 + d2 − δ)!
N trop

d1,d2,δ
(y)

= 〈v∅|exp(a1s) exp(qH0(t)) exp(a−1)v∅〉
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Heisenberg algebra

Idea of proof: The tropical Severi degrees can be computed
using floor diagrams, encoding the combinatorics of
"horizontally stretched" tropical curves.

The commutation of the operators in expressions in Heisenberg
operators can be encoded in Feynman diagrams.

Now show that Feynman diagrams and floor diagrams are the
same.
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Heisenberg algebra

To Γ tropical curve through horizontally stretched conf. of points
associate marked floor diagram.

escalators: horizontal segments of Γ
floors: conn. comp. of complem. of
escalators. One marked point on every floor
and escalator
Floor diagram: black vertex for escalator
white vertex for floor
connect if escalator connects to floor, keep
weight

Put m(Λ) :=
∏

e edges[w(e)]y

Proposition

N trop
d ,δ (y) =

∑
Λ floor diagrams

m(Λ)
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Logarithmic Gromov-Witten invariants of toric surfaces

Bousseau relates refined Severi deg. to log-Gromov-Witten inv.

Let ∆ be a lattice polygon and S = S(∆),L = L(∆) corresp.
toric surface with toric line bundle. S is naturally a log scheme

Let M = M log
g,n(∆) = {(C,p1, . . . ,pn, f )}

moduli space log-stable maps of genus g to S of class L
Deligne-Mumford stack of expected dimension g − 1 + n + KSL
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Logarithmic Gromov-Witten invariants of toric surfaces

M log
g,n(∆) comes with the following data:
1 evaluation maps: evi : M → S(∆); (C,p1, . . . ,pn) 7→ f (pi)

2 virtual fundamental class [M]vir ∈ Ag−1+n+KSL(M)

3 λ-classes: Let π : C → M be the universal curve
ΩC/M the relative dualizing sheaf E = π∗(ΩC/M)
The λ-classes are λi = ci(E).

If n = g − 1 + KSL, the log Gromov-Witten invariants are

nlog
∆,g = 〈τ0(pt)n〉g,∆ =

∫
[M]vir

n∏
i=1

ev∗i (pt).
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Logarithmic Gromov-Witten invariants of toric surfaces
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g,n(∆) comes with the following data:
1 evaluation maps: evi : M → S(∆); (C,p1, . . . ,pn) 7→ f (pi)
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Correspondence theorem, Ranganathan, Mandel-Ruddat

Severi degrees of toric varieties are log GW-invariants
write n∆,g := ntrop

∆,δ, N∆,g(y) = N trop
∆,δ(y)

with δ + g = g(L) arithmetic genus

Theorem (log-trop Corresp. theorem, Ranganathan,
Mandel-Ruddat)

nlog
∆,g = ntrop

∆,g
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Refined correspondence theorem

Bousseau extends this to refined invariants, using λ-classes:

The refined Severi degree N trop
∆,g(y) counts curves of all genera

g′ ≥ g through n = g − 1 + KSL points

Expected dimension of space of these curves is g′ − g > 0
Use the lambda class λg′−g to cut down to a finite number

nlog
∆,g′,λg′−g

=

∫
[M log

g′,n(∆)]vir
(−1)g′−gλg′−g

n∏
i=1

ev∗i (pt).

Theorem (Refined correspondence theorem, Boisseau)

∑
g′≥g

nlog
∆,g′,λg′−g

u2g′−2−LKS = N trop
∆,g(y)

(
(−i)(y

1
2 − y−

1
2 )
)2g−2−LKS

with the identification y = eiu.
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Refined correspondence theorem

∑
g′≥g

nlog
∆,g′,λg′−g

u2g′−2−LKS = N trop
∆,g(y)

(
(−i)(y

1
2 − y−

1
2 )
)2g−2−LKS , y = eiu

Remark

1 This gives a nontropical meaning to the N trop
∆,g(y), and makes

them manifestly invariant.

2 The change of variables y = eiu means knowing N trop
∆,g(y) is

eq. to knowing the infinitely many log-GW invariants n∆,g′,λg′−g
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Refined correspondence theorem
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Welschinger invariants

Welschinger invariants: For simplicity work on P2

Until now only considered totally real Welschinger invariants,
i.e. the curves are required to pass through real points
Now allow pairs of complex conjugate points
Count irreducible curves of genus 0, i.e. δ = (d − 1)(d − 2)/2
P configuration of r real points in P2 and s pairs of complex
conjugate points with (r + 2s) = 3d − 1

Welschinger invariants: W 0
d ,r ,s =

∑
C

(−1)s(C)

sum over all real nodal rational degree d curves C though P
s(C) = #{isolated real nodes of C}



Introduction Refined tropical curve counting Fock space Log GW inv. with λ classes Refined Descendent invariants

Refined descendent invariants

The W 0
d ,r ,s can be computed via tropical geometry

Make refinement, replacing the number by polynomial N0,trop
d ,r ,s (y)

Just count degree d tropical curves in R2 as before
But point conditions change:

Let P configuration of r thin and s fat points in R2

We say a tropical curve Γ passes through P, if
1 the thin points lie on Γ,
2 the fat points are vertices of Γ.

For P general, there are finitely many δ-nodal degree d
tropical curves through P. Count them with multiplicities
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Refined descendent invariants

Count them again with a vertex multiplicity
Two kinds of vertices:

Standard vertex: M(v) = [m(v)]y , [n]y =
yn/2 − y−n/2

y1/2 − y−1/2

Fat vertex: M(v) = {m(v)}y , {n}y =
yn/2 + y−n/2

y1/2 + y−1/2

M(Γ) =
∏

v vertex

M(v),

N0,trop
d ,r ,s (y) =

∑
Γ

M(Γ)

sum over all genus 0 degree d simple tropical curves through P
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Refined descendent invariants

Theorem

1 N0,trop
d,r ,s (y) ∈ Z[y , y−1]

2 N0,trop
d,r ,s (y) is a tropical invariant (independent of point position)

3 N0,trop
d,r ,s (−1) = W 0

d,r ,s

4 N0,trop
d,r ,s (1) = 〈τ0(pt)rτ1(pt)s〉0,P2,d (descendent Gromov-Witten

invariants).

〈τa1 (pt) · · · τan (pt)〉0,P2,d =

∫
M0,n(P2,d)

ψa1
1 ev∗1 (pt) · · ·ψan

n ev∗n (pt)

M0,n(P2,d) = {f : (C, x1, . . . , xn)→ P2}, evi (f ,C, x) = f (xi ),
ψi = c1(Li ), Li line bundle on M with fibre T ∗C,xi

, at (f ,C, x)

Boisseau: hints that N0,trop
d,r ,s (eiu) is in same way gener. function of the

〈τ0(pt)rτ1(pt)sλg〉g,∆ =

∫
[Mg,r+s(∆)log]vir

ψ1 · · ·ψsev∗1 (pt) · · · ev∗r+s(pt)(−1)gλg



Introduction Refined tropical curve counting Fock space Log GW inv. with λ classes Refined Descendent invariants

Refined descendent invariants

Theorem

1 N0,trop
d,r ,s (y) ∈ Z[y , y−1]

2 N0,trop
d,r ,s (y) is a tropical invariant (independent of point position)

3 N0,trop
d,r ,s (−1) = W 0

d,r ,s

4 N0,trop
d,r ,s (1) = 〈τ0(pt)rτ1(pt)s〉0,P2,d (descendent Gromov-Witten

invariants).

〈τa1 (pt) · · · τan (pt)〉0,P2,d =

∫
M0,n(P2,d)

ψa1
1 ev∗1 (pt) · · ·ψan

n ev∗n (pt)

M0,n(P2,d) = {f : (C, x1, . . . , xn)→ P2}, evi (f ,C, x) = f (xi ),
ψi = c1(Li ), Li line bundle on M with fibre T ∗C,xi

, at (f ,C, x)

Boisseau: hints that N0,trop
d,r ,s (eiu) is in same way gener. function of the

〈τ0(pt)rτ1(pt)sλg〉g,∆ =

∫
[Mg,r+s(∆)log]vir

ψ1 · · ·ψsev∗1 (pt) · · · ev∗r+s(pt)(−1)gλg


	Introduction
	Curve counting
	Refined invariants

	Refined tropical curve counting
	Welschinger invariants
	Tropical curve counting
	Refined Severi degree

	Fock space
	Heisenberg algebra

	Log GW inv. with  classes
	Logarithmic Gromov-Witten invariants of toric surfaces
	Correspondence theorem, Ranganathan, Mandel-Ruddat
	Refined correspondence theorem

	Refined Descendent invariants
	Welschinger invariants
	Refined descendent invariants


