Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants

Tropical refined curve counting

Lothar Göttsche

Joint works with Vivek Shende, Florian Block, Franziska Schroeter

Oberwolfach 3.5.2019

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants

Topics:

- Introduction: Severi degrees, refined invariants
- Tropical curve counting and tropical refined Severi degrees
- Fock spaces and refined curve counting
- Logarithmic Gromov-Witten invariants with λ-classes and refined Severi degrees
- Refined descendent invariants

Severi degree:

S smooth proj. alg. surface, L line bundle on S

$$|L| = \left\{ C = Z(s) \mid s \text{ section of } L \right\} = \mathbb{P}^{h^0(L)-1}$$

 $\mathbb{P}^{\delta} \subset |L|$ gen. δ -dim. lin. subsp. (curves through dim $|L| - \delta$ pts) Severi degree: $n_{(S,L),\delta} := \#\{\delta$ -nodal curves in $\mathbb{P}^{\delta} \subset |L|\}$

Severi degree:

S smooth proj. alg. surface, L line bundle on S

$$|L| = \left\{ C = Z(s) \mid s \text{ section of } L
ight\} = \mathbb{P}^{h^0(L)-1}$$

 $\mathbb{P}^{\delta} \subset |L|$ gen. δ -dim. lin. subsp. (curves through dim $|L| - \delta$ pts) Severi degree: $n_{(S,L),\delta} := \#\{\delta$ -nodal curves in $\mathbb{P}^{\delta} \subset |L|\}$

Kool-Shende-Thomas compute $n^{(S,L),\delta}$ using relative Hilbert schemes of points on the universal curve C/\mathbb{P}^{δ} Note: The Pandharipande-Thomas moduli space of stable pairs is isomorphic to the relative Hilbert scheme of points.

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
000				
Refined invaria	ants			

Refinement: $\mathbb{P}^{\delta} \subset |L|$ general δ -dimensional linear subspace $\mathcal{C}^{[n]}$ relative Hilbert scheme of universal curve \mathcal{C} over \mathbb{P}^{δ} parametrizes sets of *n*-points on the curves of \mathbb{P}^{δ}

 Introduction
 Refined tropical curve counting
 Fock space
 Log GW inv. with λ classes
 Refined Descendent invariants

 •••
 •••
 •••
 •••
 •••
 •••
 •••

Refinement: $\mathbb{P}^{\delta} \subset |L|$ general δ -dimensional linear subspace $\mathcal{C}^{[n]}$ relative Hilbert scheme of universal curve \mathcal{C} over \mathbb{P}^{δ} parametrizes sets of *n*-points on the curves of \mathbb{P}^{δ} χ_{-y} -genus: $\chi_{-y}(X) = \sum_{p,q} (-1)^{p+q} h^{p,q}(X) y^q$

Write

$$\sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]}) t^{n-g(L)+1} = \sum_{l\geq 0}^{\infty} N_l^{\mathcal{C}}(y) \left(\frac{t}{(1-t)(1-yt)}\right)^{l-g(L)+1}$$

g(L) =genus of smooth curve in |L|

 Introduction
 Refined tropical curve counting
 Fock space
 Log GW inv. with λ classes
 Refined Descendent invariants

 o●o
 oooo
 oooo
 oooo
 oooo
 oooo
 oooo

Refinement: $\mathbb{P}^{\delta} \subset |L|$ general δ -dimensional linear subspace $\mathcal{C}^{[n]}$ relative Hilbert scheme of universal curve \mathcal{C} over \mathbb{P}^{δ} parametrizes sets of *n*-points on the curves of \mathbb{P}^{δ} \mathcal{V} u-genus: \mathcal{V} u(X) = $\sum_{n=1}^{\infty} (-1)^{p+q} h^{p,q}(X) v^{q}$

$$\chi_{-y}$$
-genus: $\chi_{-y}(X) = \sum_{p,q} (-1)^{p+q} n^{p,q}(X) y^{q}$
Write

$$\sum_{n\geq 0} \chi_{-y}(\mathcal{C}^{[n]}) t^{n-g(L)+1} = \sum_{l\geq 0}^{\infty} N_l^{\mathcal{C}}(y) \left(\frac{t}{(1-t)(1-yt)}\right)^{l-g(L)+1}$$

g(L) =genus of smooth curve in |L|

Refined invariants: $N^{(S,L),\delta}(y) := N^{\mathcal{C}}_{\delta}(y)/y^{\delta}$ **Note:** $N^{(S,L),\delta}(1) = n_{(S,L),\delta}$ (if L suff. ample), so refinement of Severi degrees *More workingly observe* $N^{(S,W),S}(-1) = Webschrigt's number.$

Introduction ○○●	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
Refined invaria	ante			

Interpretation as refined *K*-theoretic PT invariants (Afgani) *X* total space of K_S

X is noncompact CY with \mathbb{C}^* action by rescaling the fibres

 $i: S \hookrightarrow X$, zero section, image $S = X^{\mathbb{C}^*}$.

Log GW inv. with λ classes Introduction Refined tropical curve counting Fock space Refined Descendent invariants 000 **Refined** invariants Interpretation as refined K-theoretic PT invariants (Afgani) X total space of $K_{\rm S}$ X is noncompact CY with \mathbb{C}^* action by rescaling the fibres $i: S \hookrightarrow X$, zero section, image $S = X^{\mathbb{C}^*}$. Let $P_{\gamma}(X, i_*\beta)$ moduli space of stable pairs (\mathcal{F} dim 1 sheaf on $X, s: \mathcal{O}_X \to \mathcal{F}$ section with 0 dim coker) $\chi(\mathcal{F}) = \chi$, $[supp(\mathcal{F})] = \beta$ $P_{\gamma} = P_{\gamma}(X, i_*\beta)$ carries self-dual \mathbb{C}^* equiv obstr theory For $s_1, \ldots, s_m \in S$ compute via virtual localization

Introduction Refined tropical curve counting Fock space Log GW inv. with λ classes Refined Descendent invariants 000 **Refined** invariants Interpretation as refined K-theoretic PT invariants (Afgani) X total space of $K_{\rm S}$ X is noncompact CY with \mathbb{C}^* action by rescaling the fibres $i: S \hookrightarrow X$, zero section, image $S = X^{\mathbb{C}^*}$. Let $P_{\gamma}(X, i_*\beta)$ moduli space of stable pairs (\mathcal{F} dim 1 sheaf on $X, s: \mathcal{O}_X \to \mathcal{F}$ section with 0 dim coker) $\chi(\mathcal{F}) = \chi$, $[supp(\mathcal{F})] = \beta$ $P_{\gamma} = P_{\gamma}(X, i_*\beta)$ carries self-dual \mathbb{C}^* equiv obstr theory For $s_1, \ldots, s_m \in S$ compute via virtual localization

$$M_{\chi} := \chi \Big(\mathcal{O}_{P_{\chi}}^{\textit{vir}} \otimes (K_{P_{\chi}}^{\textit{vir}})^{1/2} \otimes \prod_{i=1}^{m} \gamma(\mathcal{O}_{s_i}) \Big) \in Z[t, t^{-1}]$$

t is the equivariant parameter of the action. Under suitable assumptions $N^{(S,L),\delta}(y)$ expressed in terms gen. fct of $M_{\chi}|_{t=y}$, by BPS like formula

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
Welschinger inv	variants			

Let *S* real algebraic surface; *P* configuration of dim $|L| - \delta$ real points of *S* **Welschinger numbers:** $W_{(S,L),\delta}(P) = \sum_{C} (-1)^{s(C)}$ sum is over all real δ -nodal curves *C* in |L| though *P*

 $s(C) = #\{\text{isolated real nodes of } C\}$

 $\cdot < \circ$

Tropical curve counting

Curves can be counted by counting piecewise linear objects: the tropical curves

A lattice polygon Δ in \mathbb{R}^2 is a polygon with vertices with integer coordinates

To a convex lattice polygon Δ one can associate a pair $(S(\Delta), L(\Delta))$ of a toric surface and a toric line bundle on *S*

Log GW inv. with λ classes $_{\rm OOOOO}$

Refined Descendent invariants

Tropical curve counting

Curves can be counted by counting piecewise linear objects: the tropical curves

A **lattice polygon** Δ in \mathbb{R}^2 is a polygon with vertices with integer coordinates To a convex lattice polygon Δ one can associate a pair $(S(\Delta), L(\Delta))$ of a toric surface and a toric line bundle on *S*

S is defined by the fan given by the outer normal vectors of Δ $h^0(S, L) = #(\Delta \cap \mathbb{Z}^2)$, arithmetic genus $#int(\Delta \cap \mathbb{Z}^2)$

Log GW inv. with λ classes 00000

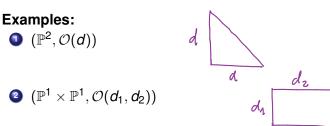
Refined Descendent invariants

Tropical curve counting

Curves can be counted by counting piecewise linear objects: the tropical curves

A **lattice polygon** Δ in \mathbb{R}^2 is a polygon with vertices with integer coordinates To a convex lattice polygon Δ one can associate a pair $(S(\Delta), L(\Delta))$ of a toric surface and a toric line bundle on *S*

S is defined by the fan given by the outer normal vectors of Δ $h^0(S, L) = \#(\Delta \cap \mathbb{Z}^2)$, arithmetic genus $\#int(\Delta \cap \mathbb{Z}^2)$



Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
Tropical curve	counting			

plane tropical curve of degree Δ :

piecewise linear graph Γ immersed in \mathbb{R}^2 s.t.

- the edges e of Γ have rational slope
- 2 they have weight $w(e) \in \mathbb{Z}_{>0}$

balancing condition:

let p(e) primitive integer vector in direction of e; for all vertices v of Γ :

$$\sum_{e \text{ at } v} p(e)w(e) = 0.$$

• For every edge of Δ (of lattice length *n*) Γ has *n* unbounded edges in corresponding outer normal direction

anie in 12

Refined tropical curve counting

Fock space

Log GW inv. with λ classes 00000

Refined Descendent invariants

Tropical curve counting

Simple tropical curves: analogues of nodal curves, trivalent

genus of $\Gamma \to \mathbb{R}^2$ is $g(\Gamma) = h^1(\Gamma) - h^0(\Gamma) + 1$ Number of nodes $\#int(\Delta) - g(\Gamma)$ through $\#(\Delta \cap \mathbb{Z}^2) - 1 - \delta$ general points in \mathbb{R}^2 , there are finitely many δ -nodal degree Δ tropical curves, all simple

Count these curves with certain multiplicities

Refined tropical curve counting

Fock space

Log GW inv. with λ classes 00000

Refined Descendent invariants

Tropical curve counting

Simple tropical curves: analogues of nodal curves, trivalent

genus of $\Gamma \to \mathbb{R}^2$ is $g(\Gamma) = h^1(\Gamma) - h^0(\Gamma) + 1$ Number of nodes $\#int(\Delta) - g(\Gamma)$ through $\#(\Delta \cap \mathbb{Z}^2) - 1 - \delta$ general points in \mathbb{R}^2 , there are finitely many δ -nodal degree Δ tropical curves, all simple

Count these curves with certain multiplicities Different counts; same principle:

- **(**) for every vertex v of Γ define vertex multiplicity u(v)
- **2** multiplicity of Γ is $u(\Gamma) = \prod_{v \text{ vertex}} u(v)$
- corresponding curve count is

$$u(\Delta, \delta) := \sum_{\Gamma} u(\Gamma)$$

(sum over all δ -nodal, degree Δ tropical curves through $\#(\Delta \cap \mathbb{Z}^2) - 1 - \delta$ general points in \mathbb{R}^2)

Refined tropical curve counting

Fock space

Log GW inv. with λ classes 00000

Refined Descendent invariants

Tropical curve counting

1 v vertex of Γ , e_1 , e_2 , e_3 edges at v. vertex multiplicity

$$m(v) := w(e_1)w(e_2)|\det(p(e_1), p(e_2))|, \quad m(\Gamma) = \prod_{v \text{ vertex}} m(v)$$

Tropical Severi degree
$$n_{\Delta,\delta}^{\mathrm{trop}} := \sum_{\Gamma} m(\Gamma)$$

Refined tropical curve counting

Fock space

Log GW inv. with λ classes 00000

Refined Descendent invariants

Tropical curve counting

1 v vertex of Γ , e_1 , e_2 , e_3 edges at v. vertex multiplicity

$$m(v) := w(e_1)w(e_2) |\det(p(e_1), p(e_2))|, \quad m(\Gamma) = \prod_{v \text{ vertex}} m(v)$$

Tropical Severi degree
$$n_{\Delta,\delta}^{\text{trop}} := \sum_{\Gamma} m(\Gamma)$$

vertex multiplicity $\omega(v) := \begin{cases} (-1)^{(m(v)-1)/2} & m(v) \text{ odd} \\ 0 & m(v) \text{ even} \end{cases}$
 $\omega(\Gamma) = \prod_{v \text{ vertex }} \omega(v)$
Tropical Welschinger inv. $W_{\Delta,\delta}^{\text{trop}} := \sum_{\Gamma} \omega(\Gamma)$

Refined tropical curve counting

Fock space

Log GW inv. with λ classes $_{\rm OOOOO}$

Refined Descendent invariants

Tropical curve counting

1 v vertex of Γ , e_1 , e_2 , e_3 edges at v. vertex multiplicity

$$m(v) := w(e_1)w(e_2) |\det(p(e_1), p(e_2))|, \quad m(\Gamma) = \prod_{v \text{ vertex}} m(v)$$

Tropical Severi degree
$$n_{\Delta,\delta}^{\text{trop}} := \sum_{\Gamma} m(\Gamma)$$

vertex multiplicity $\omega(v) := \begin{cases} (-1)^{(m(v)-1)/2} & m(v) \text{ odd} \\ 0 & m(v) \text{ even} \end{cases}$
 $\omega(\Gamma) = \prod_{v \text{ vertex }} \omega(v)$
Tropical Welschinger inv. $W_{\Delta,\delta}^{\text{trop}} := \sum_{\Gamma} \omega(\Gamma)$

Mikhalkin: The Severi degree is equal to the tropical Severi degree and the Welschinger numbers are equal to the tropical Welschinger invariants.

$$n_{(S(\Delta),L(\Delta)),\delta} = n_{\Delta,\delta}^{\text{trop}}, \qquad W_{(S(\Delta),L(\Delta)),\delta}(P) = W_{\Delta,\delta}^{\text{trop}}$$
 for suitable P

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
	0000000			

Refined Severi degree

quantum number:
$$[n]_y := \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$$

By definition $[n]_1 = n$, $[n]_{-1} = \begin{cases} (-1)^{(n-1)/2} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$
Let Γ simple tropical curve, v vertex

$$M(v) := [m(v)]_y, \qquad M(\Gamma) = \prod_{v \text{ vertex}} M(v)$$

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
	0000000			

Refined Severi degree

quantum number:
$$[n]_y := \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$$

By definition $[n]_1 = n$, $[n]_{-1} = \begin{cases} (-1)^{(n-1)/2} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$
Let Γ simple tropical curve, v vertex

$$M(v) := [m(v)]_{y}, \qquad M(\Gamma) = \prod_{v \text{ vertex}} M(v)$$

Refined Severi degree: $N_{\Delta,\delta}^{\text{trop}}(y) := \sum_{\Gamma} M(\Gamma)$ sum as above

$$N^{\mathrm{trop}}_{\Delta,\delta}(1) = n^{\mathrm{trop}}_{\Delta,\delta}, \quad N^{\mathrm{trop}}_{\Delta,\delta}(-1) = W^{\mathrm{trop}}_{\Delta,\delta}$$

Itenberg-Mikhalkin: $N_{\Delta,\delta}^{\text{trop}}(y)$ is a tropical invariant, i.e. independent of the position of the points

Introduction	Refined tropical curve counting ○○○○○○●	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
Refined Sever	ri degree			

Conjecture (Tropical refined = χ_y (Hilbert scheme) refined)

If $L(\Delta)$ is sufficiently ample (δ -very ample), then $S(\mathbb{B})$ nonunquilar $N_{\Delta,\delta}^{\text{trop}}(y) = N^{(S(\Delta),L(\Delta)),\delta}(y)$

	lefined Descende
000 000000 0000 00000 00	

Heisenberg algebra

The refined Severi degrees can for many toric surfaces (h-transversal lattice polygon) be computed in terms of the action of Fock space lent invariants

Introduction	Refined tropical curve counting		Log GW inv. with λ classes	Refined Descendent invariants	

The refined Severi degrees can for many toric surfaces (h-transversal lattice polygon) be computed in terms of the action of Fock space

Heisenberg algebra gen. by $a_n, b_n, n \in \mathbb{Z}$ commutation relations

$$[a_n, a_m] = 0 = [b_n, b_m], \quad [a_n, b_m] = [n]_y \delta_{n, -m}, \quad [n]_y = \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$$

Introduction	Refined tropical curve counting	Fock space ●000	Log GW inv. with λ classes	Refined Descendent invariants	

The refined Severi degrees can for many toric surfaces (h-transversal lattice polygon) be computed in terms of the action of Fock space

Heisenberg algebra gen. by $a_n, b_n, n \in \mathbb{Z}$ commutation relations

$$[a_n, a_m] = 0 = [b_n, b_m], \quad [a_n, b_m] = [n]_y \delta_{n, -m}, \quad [n]_y = \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$$

Fock space: *F* generated by **creation operators** a_{-n} , b_{-n} acting on vacuum vector v_{\emptyset} elements of *F* are $f v_{\emptyset}$, where *f* is a polynomial (with coefficients in $y^{\pm 1/2}$ in the a_{-n} , b_{-n}) *H*-module by $a_n v_{\emptyset} := 0$, $b_n v_{\emptyset} := 0$ for $n \ge 0$ (concatenate and apply commutation relations) e.g. $a_2(a_{-1}b_{-2}v_{\emptyset}) = a_{-1}(b_{-2}a_2 + [2]_ya_{-1})v_{\emptyset} = (y^{1/2} + y^{-1/2})a_{-1}v_{\emptyset}$.

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	F
		0000		

Refined Descendent invariants

Heisenberg algebra

Basis paramtr. by pairs of partitions

$$\begin{split} & \mu = (1^{\mu_1}, 2^{\mu_2}, \ldots), \, \nu = (1^{\nu_1}, 2^{\nu_2}, \ldots) \\ & a_{\mu} := \prod_i \frac{a_i^{\mu_i}}{\mu_i!}, \, a_{-\mu} := \prod_i \frac{a_{-i}^{\mu_i}}{\mu_i!}, \, \text{similarly for } b_{\nu}, \, b_{-\nu} \\ & v_{\mu,\nu} := a_{-\mu} b_{-\nu} v_{\emptyset} \text{ basis for } F \end{split}$$

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descende
		0000		

lent invariants

Heisenberg algebra

Basis paramtr. by pairs of partitions

$$\begin{split} & \mu = (1^{\mu_1}, 2^{\mu_2}, \ldots), \, \nu = (1^{\nu_1}, 2^{\nu_2}, \ldots) \\ & a_{\mu} := \prod_i \frac{a_i^{\mu_i}}{\mu_i !}, \, a_{-\mu} := \prod_i \frac{a_{-i}^{\mu_i}}{\mu_i !}, \, \text{similarly for } b_{\nu}, \, b_{-\nu} \\ & v_{\mu,\nu} := a_{-\mu} b_{-\nu} v_{\emptyset} \text{ basis for } F \end{split}$$

inner product $\langle v_{\emptyset} | v_{\emptyset} \rangle = 1$; a_n , b_n adjoint to a_{-n} , b_{-n}

Refined Descendent invariants

Heisenberg algebra

Basis paramtr. by pairs of partitions

$$\begin{split} & \mu = (1^{\mu_1}, 2^{\mu_2}, \ldots), \, \nu = (1^{\nu_1}, 2^{\nu_2}, \ldots) \\ & a_{\mu} := \prod_i \frac{a_i^{\mu_i}}{\mu_i !}, \, a_{-\mu} := \prod_i \frac{a_{-i}^{\mu_i}}{\mu_i !}, \text{ similarly for } b_{\nu}, \, b_{-\nu} \\ & v_{\mu,\nu} := a_{-\mu} b_{-\nu} v_{\emptyset} \text{ basis for } F \end{split}$$

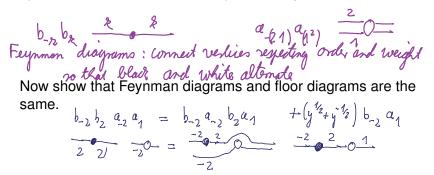
inner product
$$\langle v_{\emptyset} | v_{\emptyset} \rangle = 1$$
; a_n , b_n adjoint to a_{-n} , b_{-n}
Example: cases \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$:
 $H_m(t) := \sum_{k>0} b_{-k} b_k + t \sum_{\|\mu\| = \|\nu\| - m} a_{-\mu} a_{\nu}$, $\|\mu\| := \sum_i i \mu_i$

Theorem

$$\begin{split} \sum_{d \ge 0} \sum_{\delta \ge 0} \frac{t^d q^{d(d+3)/2-\delta}}{(d(d+3)/2-\delta)!} \mathcal{N}_{d,\delta}^{\text{trop}}(y) &= \langle v_{\emptyset} | \exp(q\mathcal{H}_1(t)) \exp(a_{-1}) v_{\emptyset} \rangle \\ \sum_{d_1, d_2 \ge 0} \sum_{\delta \ge 0} \frac{s^{d_1} t^{d_2} q^{d_1 d_2 + d_1 + d_2 - \delta}}{(d_1 d_2 + d_1 + d_2 - \delta)!} \mathcal{N}_{d_1, d_2, \delta}^{\text{trop}}(y) \\ &= \langle v_{\emptyset} | \exp(a_1 s) \exp(q\mathcal{H}_0(t)) \exp(a_{-1}) v_{\emptyset} \rangle \end{split}$$

Idea of proof: The tropical Severi degrees can be computed using floor diagrams, encoding the combinatorics of "horizontally stretched" tropical curves.

The commutation of the operators in expressions in Heisenberg operators can be encoded in Feynman diagrams.



Log GW inv. with λ classes 00000

Refined Descendent invariants

Heisenberg algebra

To Γ tropical curve through horizontally stretched conf. of points associate marked floor diagram.

escalators: horizontal segments of Γ **floors:** conn. comp. of complem. of escalators. One marked point on every floor and escalator

Floor diagram: black vertex for escalator white vertex for floor

connect if escalator connects to floor, keep weight

Put $m(\Lambda) := \prod_{e \text{ edges}} [w(e)]_y$

Proposition

Ν

$$\sum_{d,\delta}^{ ext{trop}}(y) = \sum_{\Lambda ext{ floor diagrams}} m(\Lambda)$$

(nome as multiplicity of terman

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants		
Logarithmic Gromov-Witten invariants of toric surfaces						

Bousseau relates refined Severi deg. to log-Gromov-Witten inv.

Let Δ be a lattice polygon and $S = S(\Delta), L = L(\Delta)$ corresp. toric surface with toric line bundle. *S* is naturally a log scheme

Let
$$M = M_{g,n}^{\log}(\Delta) = \{(C, p_1, \dots, p_n, f)\}$$

moduli space log-stable maps of genus *g* to *S* of class *L* Deligne-Mumford stack of expected dimension $g - 1 + n + K_S L$

 $M_{g,n}^{\log}(\Delta)$ comes with the following data:

- evaluation maps: $ev_i : M \to S(\Delta); (C, p_1, \dots, p_n) \mapsto f(p_i)$
- **2** virtual fundamental class $[M]^{vir} \in A_{g-1+n+K_SL}(M)$
- λ-classes: Let $\pi : C \to M$ be the universal curve $\Omega_{C/M}$ the relative dualizing sheaf $\mathbb{E} = \pi_*(\Omega_{C/M})$ The λ-classes are $\lambda_i = c_i(\mathbb{E})$.

 $M_{g,n}^{\log}(\Delta)$ comes with the following data:

- evaluation maps: $ev_i : M \to S(\Delta); (C, p_1, \dots, p_n) \mapsto f(p_i)$
- **2** virtual fundamental class $[M]^{vir} \in A_{g-1+n+K_{SL}}(M)$
- **3** λ -classes: Let $\pi : C \to M$ be the universal curve $\Omega_{C/M}$ the relative dualizing sheaf $\mathbb{E} = \pi_*(\Omega_{C/M})$ The λ -classes are $\lambda_i = c_i(\mathbb{E})$.

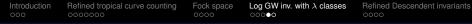
If $n = g - 1 + K_S L$, the log Gromov-Witten invariants are

$$n_{\Delta,g}^{\log} = \langle au_0(pt)^n
angle_{g,\Delta} = \int_{[M]^{\mathrm{vir}}} \prod_{i=1}^n e v_i^*(pt).$$

Severi degrees of toric varieties are log GW-invariants write $n_{\Delta,g} := n_{\Delta,\delta}^{\text{trop}}$, $N_{\Delta,g}(y) = N_{\Delta,\delta}^{\text{trop}}(y)$ with $\delta + g = g(L)$ arithmetic genus

Theorem (log-trop Corresp. theorem, Ranganathan, Mandel-Ruddat)

$$n_{\Delta,g}^{\log} = n_{\Delta,g}^{\mathrm{trop}}$$



Refined correspondence theorem

Bousseau extends this to refined invariants, using λ -classes:

The refined Severi degree $N_{\Delta,g}^{\text{trop}}(y)$ counts curves of all genera $g' \ge g$ through $n = g - 1 + K_S L$ points

Refined correspondence theorem

Bousseau extends this to refined invariants, using λ -classes:

The refined Severi degree $N_{\Delta,g}^{\text{trop}}(y)$ counts curves of all genera $g' \ge g$ through $n = g - 1 + K_S L$ points Expected dimension of space of these curves is g' - g > 0Use the lambda class $\lambda_{q'-q}$ to cut down to a finite number

$$n_{\Delta,g',\lambda_{g'-g}}^{\log} = \int_{[M_{g',n}^{\log}(\Delta)]^{\mathrm{vir}}} (-1)^{g'-g} \lambda_{g'-g} \prod_{i=1}^{n} ev_i^*(pt).$$

Refined correspondence theorem

Bousseau extends this to refined invariants, using λ -classes:

The refined Severi degree $N_{\Delta,g}^{\text{trop}}(y)$ counts curves of all genera $g' \ge g$ through $n = g - 1 + K_S L$ points Expected dimension of space of these curves is g' - g > 0Use the lambda class $\lambda_{q'-q}$ to cut down to a finite number

$$n_{\Delta,g',\lambda_{g'-g}}^{\log} = \int_{[M_{g',n}^{\log}(\Delta)]^{\mathrm{vir}}} (-1)^{g'-g} \lambda_{g'-g} \prod_{i=1}^{n} ev_i^*(pt).$$

Theorem (Refined correspondence theorem, Boisseau)

$$\sum_{g' \ge g} n_{\Delta,g',\lambda_{g'-g}}^{\log} u^{2g'-2-LK_S} = N_{\Delta,g}^{trop}(y) \left((-i)(y^{\frac{1}{2}} - y^{-\frac{1}{2}}) \right)^{2g-2-LK_S}$$

with the identification $y = e^{iu}$.

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants		
Refined correspondence theorem						

$$\sum_{g' \ge g} n_{\Delta,g',\lambda_{g'-g}}^{\log} u^{2g'-2-LK_S} = N_{\Delta,g}^{trop}(y) \left((-i)(y^{\frac{1}{2}} - y^{-\frac{1}{2}}) \right)^{2g-2-LK_S}, \quad y = e^{iu}$$

Introduction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants
Refined corres	spondence theorem			

$$\sum_{g' \ge g} n_{\Delta,g',\lambda_{g'-g}}^{\log} u^{2g'-2-LK_S} = N_{\Delta,g}^{trop}(y) \left((-i)(y^{\frac{1}{2}} - y^{-\frac{1}{2}}) \right)^{2g-2-LK_S}, \quad y = e^{iu}$$

Remark

- This gives a nontropical meaning to the $N_{\Delta,g}^{\text{trop}}(y)$, and makes them manifestly invariant.
- 2 The change of variables $y = e^{iu}$ means knowing $N_{\Delta,g}^{trop}(y)$ is eq. to knowing the infinitely many log-GW invariants $n_{\Delta,g',\lambda_{g'-g}}$

Welschinger invariants: For simplicity work on \mathbb{P}^2 Until now only considered **totally real** Welschinger invariants, i.e. the curves are required to pass through real points Now allow pairs of complex conjugate points

Count irreducible curves of genus 0, i.e. $\delta = (d-1)(d-2)/2$ *P* configuration of *r* real points in \mathbb{P}^2 and *s* pairs of complex conjugate points with (r+2s) = 3d-1

Welschinger invariants:
$$W_{d,r,s}^0 = \sum_{n=0}^{\infty} (-1)^{s(C)}$$

sum over all real nodal rational degree d curves C though P $s(C) = \#\{\text{isolated real nodes of } C\}$ Introduction
coordRefined tropical curve counting
coordFock space
coordLog GW inv. with λ classes
coordRefined Descendent invariantsRefined descendent invariantsThe $W^0_{d,r,s}$ can be computed via tropical geometry
Make refinement, replacing the number by polynomial $N^{0,trop}_{d,r,s}(y)$
Just count degree d tropical curves in \mathbb{R}^2 as before
But point conditions change:

0000 **Befined** descendent invariants The W_{drs}^0 can be computed via tropical geometry Make refinement, replacing the number by polynomial $N_{d,r,s}^{0,trop}(y)$ Just count degree *d* tropical curves in \mathbb{R}^2 as before But point conditions change: Let P configuration of r thin and s fat points in \mathbb{R}^2 We say a tropical curve Γ passes through P, if the thin points lie on Γ,

Log GW inv. with λ classes

Refined Descendent invariants

Fock space

2 the fat points are vertices of Γ.

Refined tropical curve counting

Introduction

For *P* general, there are finitely many δ -nodal degree *d* tropical curves through *P*. Count them with multiplicities

Count them again with a vertex multiplicity Two kinds of vertices:

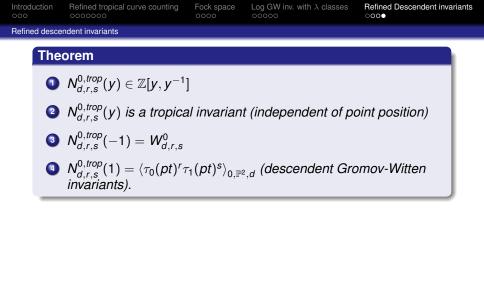
Standard vertex:
$$M(v) = [m(v)]_y$$
, $[n]_y = \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$
Fat vertex: $M(v) = \{m(v)\}_y$, $\{n\}_y = \frac{y^{n/2} + y^{-n/2}}{y^{1/2} + y^{-1/2}}$

Count them again with a vertex multiplicity Two kinds of vertices:

Standard vertex:
$$M(v) = [m(v)]_y$$
, $[n]_y = \frac{y^{n/2} - y^{-n/2}}{y^{1/2} - y^{-1/2}}$
Fat vertex: $M(v) = \{m(v)\}_y$, $\{n\}_y = \frac{y^{n/2} + y^{-n/2}}{y^{1/2} + y^{-1/2}}$

$$M(\Gamma) = \prod_{v \text{ vertex}} M(v),$$
$$N_{d,r,s}^{0,trop}(y) = \sum_{\Gamma} M(\Gamma)$$

sum over all genus 0 degree d simple tropical curves through P



Introduc	ction	Refined tropical curve counting	Fock space	Log GW inv. with λ classes	Refined Descendent invariants			
Refined	Refined descendent invariants							
	The	orem						
	1	$N^{0,trop}_{d,r,s}(y)\in\mathbb{Z}[y,y^{-1}]$						
	2 $N_{d,r,s}^{0,trop}(y)$ is a tropical invariant (independent of point position)							
	3 $N_{d,r,s}^{0,trop}(-1) = W_{d,r,s}^{0}$							
	(a) $N_{d,r,s}^{0,trop}(1) = \langle \tau_0(pt)^r \tau_1(pt)^s \rangle_{0,\mathbb{P}^2,d}$ (descendent Gromov-Witten invariants).							
	$\langle \tau_{a_1}(\boldsymbol{\rho}t)\cdots \tau_{a_n}(\boldsymbol{\rho}t) angle_{0,\mathbb{P}^2,d} = \int_{M_{0,n}(\mathbb{P}^2,d)} \psi_1^{a_1} \boldsymbol{ev}_1^*(\boldsymbol{\rho}t)\cdots \psi_n^{a_n} \boldsymbol{ev}_n^*(\boldsymbol{\rho}t)$							
	$M_{0,n}(\mathbb{P}^2, d) = \{f : (C, x_1, \dots, x_n) \to \mathbb{P}^2\}, ev_i(f, C, \underline{x}) = f(x_i), \psi_i = c_1(L_i), L_i \text{ line bundle on } M \text{ with fibre } T^*_{C, x_i}, \text{ at } (f, C, \underline{x})$							
	Boisseau: hints that $N_{d,r,s}^{0,trop}(e^{iu})$ is in same way gener. function of the							
	$\langle \tau_0(\boldsymbol{\rho}t)^r \tau_1(\boldsymbol{\rho}t)^s \lambda_{g'} \rangle_{\mathcal{A}_{s'}} = \int_{[M_g'_{r+s}(\Delta)^{\log}]^{\operatorname{vir}}} \psi_1 \cdots \psi_s ev_1^*(\boldsymbol{\rho}t) \cdots ev_{r+s}^*(\boldsymbol{\rho}t)(-1)^g \lambda_{g'} \rangle_{\mathcal{A}_{s'}}$							