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Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Let S smooth projective surface
Hilbert scheme of points:
S[n] = Hilbn(S) = {zero dim. subschemes of degree n on S}
Vector bundle V on S =⇒ tautological vb V [n] on S[n]

Marian-Oprea-Pandharipande:
generating functions for Segre integrals

∫
S[n] c2n(V [n])

+ their conj. relation to Verlinde numbers χ(S[n], µ(L)⊗ E⊗r ).
Hilbn(S) is a moduli space of rank 1 stable sheaves on S
Aim: Extend above results to moduli spaces of sheaves
MH

S (ρ, c1, c2) of higher rank:
Use Mochizuki’s formula computing virtual inters. numbers on
MH

S (ρ, c1, c2) in terms of inters. numbers on S[n].
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Hilbert scheme of points

Let S smooth projective surface
Hilbert scheme of points:

S[n] = Hilbn(S) = {zero dim. subschemes of degree n on S}

S[n] is smooth projective, of dimension 2n
Closely related to symmetric power
S(n) = Sn/(perm. of factors)
π : S[n] → S(n), Z 7→ supp(Z ) is a crepant resolution.

Universal subscheme:

Zn(S) =
{

(x , [Z ])
∣∣ x ∈ Z

}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections
Fibre p−1([Z ]) = Z .
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Hilbert scheme of points

Zn(S) =
{

(x , [Z ])
∣∣ x ∈ Z

}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ )

Line bundles on S[n]: Pic(S[n]) = µ(Pic(S))⊕ ZE with
E = det(O[n]

S and µ(L) pullback from S(n) of equiva.
pushforward of L � . . . ,�L from Sn to S(n). We have

det(V [n]) = µ(det(V ))⊗ E⊗ rk(V ), V ∈ K (S)

Want formulas for

χ(S[n], µ(L)⊗ E⊗r ) Verlinde formula∫
S[n]

c2n(V [n]) Lehn formula
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Cobordism invariance

Tool:

Theorem (Ellingsrud-G-Lehn)
Let P(x1, . . . , x2n, y1, . . . , yn) polynomial. Put

P[S[n],L] :=

∫
S[n]

P(c1(S[n]), ..., c2n(S[n]), c1(L[n]), . . . , cn(L[n]))

There is a polynomial P̃(x , y , z,w), such that for all surfaces S,
all line bundles L on S we have

P[S[n],L] = P̃(K 2
S , χ(OS),LKS,K 2

S).

Usually have sequence of polynomials
Pn(x1, ...x2n, y1, . . . , yn), n ≥ 0, "nicely organized", then∑

n≥0

Pn[S[n],L]xn = A1(x)L2
A2(x)LKS A3(x)K 2

S A4(x)χ(OS)

for universal power series A1, . . . ,A4 ∈ Q[[x ]]
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Lehn’s conjecture

For L a line bundle on S consider the top Segre class∫
S[n]

s2n(L[n]) =

∫
S[n]

c2n((−L)[n])

Conjecture (Lehn 1999)
∞∑

n=0

∫
S[n]

s2n(L[n])zn =
(1− w)a(1− 2w)b

(1− 6w + 6w2)c ,

with the change of variable

z =
w(1− w)(1− 2w)4

(1− 6w + 6w2)3 ,

with a = LKS − 2K 2
S , b = (L− KS)2 + 3χ(OS),

c = χ(S,L) = 1
2 L(L− KS) + χ(OS)

Theorem (Marian-Oprea-Pandharipande, Voisin)
Lehn’s conjecture is true.
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Lehn’s conjecture

Marian-Oprea-Pandharipande consider a generalized Lehn formula:
a formula for

∑
n≥0

∫
S[n] c2n(α[n])zn, α ∈ K (S)

Theorem (Marian-Oprea-Pandharipande)

For any s ∈ Z, there exist Vs, Ws, Xs, Ys, Zs ∈ Q[[z]] s.th. for any
α ∈ K (S) of rank s on S, we have

∞∑
n=0

zn
∫

S[n]
c(α[n]) = V c2(α)

s W c1(α)
2

s Xχ(OS)
s Y c1(α)KS

s Z K 2
S

s .

With the change of variables z = t(1 + (1− s)t)1−s, one has

Vs(z)=(1 + (1− s)t)1−s(1 + (2− s)t)s,

Ws(z)=(1 + (1− s)t)
1
2 s−1(1 + (2− s)t)

1
2 (1−s),

Xs(z)=(1 + (1− s)t)
1
2 s2−s(1 + (2− s)t)−

1
2 s2+ 1

2 (1 + (2− s)(1− s)t)−
1
2 .

They showed explicit expressions for Ys, Zs for s ∈ {−2,−1,0,1,2},
and conjecture that Ys,Zs are algebraic functions for all s ∈ Z
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Verlinde formula for Hilbert schemes

Consider the generating series
∑∞

n=0 wn χ(S[n], µ(L)⊗ E⊗r ).

Theorem (Ellingsrud-G-Lehn)
For any r ∈ Z, there exist gr , fr ,Ar ,Br ∈ Q[[w ]] such that for any
L ∈ Pic(S), we have

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r B

K 2
S

r .

With the change of variables w = v(1 + v)r2−1, we have

gr (w) = 1 + v , fr (w) =
(1 + v)r2

1 + r2v
.

Serre duality implies Ar = B−r/Br for all r . Furthermore,
Ar = Br = 1 for r = 0,±1. In general the Ar , Br are unknown.
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Segre-Verlinde correspondence

We have seen
∞∑

n=0

zn
∫

S[n]
c(α[n]) = V c2(α)

s W c1(α)
2

s Xχ(OS)
s Y c1(α)KS

s Z K 2
S

s , s = rk(α)

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r BK 2

S
r ,

with Vs, Ws, Xs ∈ Q[[z]], fr , gr ∈ Q[[w ]] known algebraic functions,
and Ys, Zs ∈ Q[[z]], Ar , Br ∈ Q[[w ]] unknown

Based on strange duality there is a conjectural relation between these
two generating functions

Conjecture (Johnson, Marian-Oprea-Pandharipande)
For any r ∈ Z, we have

Ar (w) = Ws(z) Ys(z), Br (w) = Zs(z),

where s = 1− r and w = v(1 + v)r2−1, z = t(1 + (1− s)t)1−s, and
v = t(1 + rt)−1.
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Moduli spaces of sheaves

Aim: Find analogues of all these results for higher rank moduli
spaces
Let (S,H) polarized surface. A torsion free coherent sheaf E on
S is called H-semistable, if for all subsheaves F ⊂ E , we have

χ(S,F ⊗ H⊗n)

rk(F)
≤ χ(S, E ⊗ H⊗n)

rk(E)
, n� 0

For ρ ∈ Z>0, c1 ∈ H2(S,Z), and c2 ∈ H4(S,Z), let
M := MH

S (ρ, c1, c2) moduli space of rank ρ H-semistable
sheaves on S with Chern classes c1, c2

Note: via Z 7→ IZ , we have S[n] = MH
S (1,0,n).

Assume M contains no strictly semistable sheaves
For simplicity also assume there exists a universal sheaf E on
S ×M, (i.e. E|S×{[E ]} = E)
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Moduli spaces of sheaves

For simplicity we assume in the following that pg(S) > 0,
b1(S) = 0 and S has a smooth connected canonical divisor

M = MH
S (ρ, c1, c2) has a perfect obstruction theory of expected

dimension

vd(M) := 2ρc2 − (ρ− 1)c2
1 − (ρ2 − 1)χ(OS)

In particular
it carries a virtual class [M]vir ∈ H2vd(M)(M)

has a virtual Tangent bundle T vir
M ∈ K 0(M)

has a virtual structure sheaf Ovir
M ∈ K0(S)

For any V ∈ K 0(M) the virtual holomorphic Euler
characteristic of V is χvir(M,V ) = χ(M,V ⊗Ovir

M )
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Virtual Segre numbers of moduli spaces

For any class α ∈ K 0(S), we define

ch(αM) := −ch(πM!(π
∗
Sα · E · det(E)−

1
ρ ))

On M := MH
S (1,0,n) ∼= S[n], we have αM = α[n]

For any σ ∈ Hk (S,Q) the µ-class of Donaldson theory is

µ(σ) :=
(

c2(E)− ρ− 1
2ρ

c1(E)2
)
/PD(σ) ∈ Hk (M,Q),

For α ∈ K 0(S),L ∈ H2(S,Z), and pt ∈ H4(S,Z) the Poincaré
dual of a point, the virtual Segre number of M is∫

[M]vir
c(αM) exp

(
µ(L) + uµ(pt)

)
∈ Q[u]



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Virtual Segre numbers of moduli spaces

For any class α ∈ K 0(S), we define

ch(αM) := −ch(πM!(π
∗
Sα · E · det(E)−

1
ρ ))

On M := MH
S (1,0,n) ∼= S[n], we have αM = α[n]

For any σ ∈ Hk (S,Q) the µ-class of Donaldson theory is

µ(σ) :=
(

c2(E)− ρ− 1
2ρ

c1(E)2
)
/PD(σ) ∈ Hk (M,Q),

For α ∈ K 0(S),L ∈ H2(S,Z), and pt ∈ H4(S,Z) the Poincaré
dual of a point, the virtual Segre number of M is∫

[M]vir
c(αM) exp

(
µ(L) + uµ(pt)

)
∈ Q[u]
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Virtual Segre numbers of moduli spaces

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture

Let ρ ∈ Z>0 and s ∈ Z. There exist Vs, Ws, Xs, Qs, Rs, Ts ∈ C[[z]],
YJ,s, ZJ,s, SJ,s ∈ C[[z

1
2 ]], s.th. for all J ⊂ [ρ− 1] for all S as above, any

α ∈ K 0(S) with rk(α) = s and L ∈ Pic(S) we have that∫
[MH

S (ρ,c1,c2)]vir
c(αM) exp(µ(L) + u µ(pt))

is the coefficient of z
1
2 vd(M) of

ρ2−χ(OS)+K 2
S V c2(α)

s W c1(α)
2

s Xχ(OS)
s eL2Qs+(c1(α)L)Rs+u Ts∑

J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ Y c1(α)KS

J,s Z K 2
S

J,s e(KSL)SJ,s .
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Virtual Segre numbers of moduli spaces
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With z = t(1 + (1− s
ρ )t)1− s

ρ , we have

Vs(z) = (1 + (1− s
ρ
)t)ρ−s(1 + (2− s

ρ
)t)s,

Ws(z) = (1 + (1− s
ρ
)t)

1
2 (s−1−ρ)(1 + (2− s

ρ
)t)

1
2 (1−s),

Xs(z) = (1 + (1− s
ρ
)t)

1
2 (s

2−(ρ+ 1
ρ
)s)(1 + (2− s

ρ
)t)−

1
2 s2+ 1

2 (1 + (1− s
ρ
)(2− s

ρ
)t)−

1
2 ,

Qs(z) = 1
2 t(1 + (1− s

ρ
)t), Rs(z) = t , Ts(z) = ρt(1 + 1

2 (1−
s
ρ
)(2− s

ρ
)t).

Furthermore, YJ,s, ZJ,s, SJ,s are all algebraic functions

The fact that Rs(z) = t explains the variable change: z counts the
virtual dimension; t counts c1(α)L
For S[n] we have Ys = Y∅,s, Zs = Z∅,s
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Virtual Verlinde formula

Determinant bundles: Let c ∈ K (S) be the class of
E ∈ M = MH

S (ρ, c1, c2) and Kc := {v ∈ K (S) : χ(S, c ⊗ v) = 0}
For α ∈ Kc put with πS : S ×M → S, πM : S ×M → M
projections

λ(α) := det
(
πM!

(
π∗Sα · [E ]

))−1 ∈ Pic(M)

Fix r ∈ Z, L ∈ Pic(S)⊗Q with L := L⊗ det(c)−
r
ρ ∈ Pic(S)

take v ∈ Kc such that rk(v) = r and c1(v) = L, put

µ(L)⊗ E⊗r := λ(v) ∈ Pic(M).

On MH
S (1,0,n) ∼= S[n] this is previous definition of µ(L)⊗ E⊗r

Relation to Donaldson µ class in cohom.: µ(c1(L)) = c1(µ(L))
Denote by Ovir

M the virtual structure sheaf of M
The virtual Verlinde numbers of S are the virtual holomorphic
Euler characteristics

χvir(M, µ(L)⊗ E⊗r ) := χ(M, µ(L)⊗ E⊗r ⊗Ovir
M )
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Virtual Verlinde formula

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture

Let ρ ∈ Z>0 and r ∈ Z. There exist AJ,r , BJ,r ∈ C[[w
1
2 ]] for all

J ⊂ [ρ− 1] such that χvir(M, µ(L)⊗ E⊗r ) equals the coefficient of
w

1
2 vd(M) of

ρ2−χ(OS)+K 2
S Gχ(L)

r F
1
2χ(OS)

r

∑
J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ AKSL

J,r BK 2
S

J,r .

Here Gr (w) = 1 + v , Fr (w) =
(1 + v)

r2

ρ2

1 + r2

ρ2 v
with w = v(1 + v)

r2

ρ2−1

Furthermore, AJ,r , BJ,r are all algebraic functions.

This conjecture is true for K 3 surfaces



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Virtual Verlinde formula

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture

Let ρ ∈ Z>0 and r ∈ Z. There exist AJ,r , BJ,r ∈ C[[w
1
2 ]] for all

J ⊂ [ρ− 1] such that χvir(M, µ(L)⊗ E⊗r ) equals the coefficient of
w

1
2 vd(M) of

ρ2−χ(OS)+K 2
S Gχ(L)

r F
1
2χ(OS)

r

∑
J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ AKSL

J,r BK 2
S

J,r .

Here Gr (w) = 1 + v , Fr (w) =
(1 + v)

r2

ρ2

1 + r2

ρ2 v
with w = v(1 + v)

r2

ρ2−1

Furthermore, AJ,r , BJ,r are all algebraic functions.

This conjecture is true for K 3 surfaces



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Virtual Verlinde formula

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture

Let ρ ∈ Z>0 and r ∈ Z. There exist AJ,r , BJ,r ∈ C[[w
1
2 ]] for all

J ⊂ [ρ− 1] such that χvir(M, µ(L)⊗ E⊗r ) equals the coefficient of
w

1
2 vd(M) of

ρ2−χ(OS)+K 2
S Gχ(L)

r F
1
2χ(OS)

r

∑
J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ AKSL

J,r BK 2
S

J,r .

Here Gr (w) = 1 + v , Fr (w) =
(1 + v)

r2

ρ2

1 + r2

ρ2 v
with w = v(1 + v)

r2

ρ2−1

Furthermore, AJ,r , BJ,r are all algebraic functions.

This conjecture is true for K 3 surfaces



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Virtual Verlinde formula

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture

Let ρ ∈ Z>0 and r ∈ Z. There exist AJ,r , BJ,r ∈ C[[w
1
2 ]] for all

J ⊂ [ρ− 1] such that χvir(M, µ(L)⊗ E⊗r ) equals the coefficient of
w

1
2 vd(M) of

ρ2−χ(OS)+K 2
S Gχ(L)

r F
1
2χ(OS)

r

∑
J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ AKSL

J,r BK 2
S

J,r .

Here Gr (w) = 1 + v , Fr (w) =
(1 + v)

r2

ρ2

1 + r2

ρ2 v
with w = v(1 + v)

r2

ρ2−1

Furthermore, AJ,r , BJ,r are all algebraic functions.

This conjecture is true for K 3 surfaces



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Virtual Serre duality

Virtual Serre duality χvir(M,L) = (−1)vd(M)χvir(M,K vir
M ⊗ L−1)

gives

Conjecture
For any ρ > 0, we have

BJ,−r (w
1
2 )

BJ,r (−w
1
2 )

= Gr (w)(ρ2)AJ,r (−w
1
2 )ρ

AJ,−r (w
1
2 ) =

1

AJ,r (−w
1
2 )Gr (w)ρ−1

for all J ⊂ [ρ− 1] and r ∈ Z.



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Virtual Segre-Verlinde correspondence

We get the following analogue of the Segre-Verlinde
correspondence for Hilbert schemes

Conjecture

For any ρ ∈ Z>0 and r ∈ Z, for all J ⊂ [ρ− 1], we have

AJ,r (w
1
2 ) = Wρ−r (z) YJ,ρ−r (z

1
2 ), BJ,r (w

1
2 ) = ZJ,ρ−r (z

1
2 ),

with

w = v(1 + v)
r2

ρ2−1
, z = t(1 + (1− s

ρ)t)1− s
ρ , v = t(1 + r

ρ t)−1.
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Algebraicity

We conjecturally determined the YJ,s, ZJ,s, SJ,s as algebraic
functions for ρ = 2, s = −1, . . . ,5, ρ = 3, s = 0, . . . ,6, and
ρ = 4, s = 0,4, and the AJ,s ,BJ,s corresponding to them under
the Segre-Verlinde correspondence

Below we list these functions for MH
S (ρ, c1, c2), and rk(α) = s

with
ρ = 2, s = 1,−1 ρ = 3, s = 1, ρ = 4, s = 0.
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Rank ρ = 2

for W = Y ,Z ,S we have W∅,s(−z
1
2 ) = W{1},s(z

1
2 )

We write Ws := W∅,s

s=1: For z = t(1 + 1
2 t)

1
2 , we have

Y1 = (1+t)+t
1
2 (1+

3
4

t)
1
2 , Z1 =

1 + 3
4 t − 1

2 t
1
2 (1 + 3

4 t)
1
2

1 + 1
2 t

, S1 = − 1
2 t+t

1
2 (1+ 3

4 t)
1
2 .

s=-1: For z = t(1 + 3
2 t)

3
2 put

x =
Y−1

(1 + 3
2 t)2

, y =
(1 + 3

2 t)3Z−1

Y 2
−1

They are solutions of

t4x4 − 2t2(1 + 2t)x3 + (1 + 3
2 t)2x2 − 2(1 + 2t)x + 1 = 0

y4 − 2(1 + 15
4 t)y3 + (1 + 5

2 t)(1 + 15
4 t)y2 − t(1− 5

2 t)(1 + 15
4 t)2 = 0
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Rank ρ = 3

s=1: For z = t(1 + 2
3 t)

2
3 , the power series S∅,1, S{1,2},1, S{1},1, S{2},1

are the four solutions of

x4 + 2tx3 − (3t + t2)x2 − (3t2 + 2t3)x − (t3 + 2
3 t4) = 0.

Y∅,1, Y{1,2},1, Y{1},1, Y{2},1 are the four solutions of

x4 − (4 + 17
3 t)(1 + 2

3 t)
1
2 x3 + (6 + 18t + 16t2 + 31

9 t3)x2

− (4 + 17
3 t)(1 + 2

3 t)
7
2 x + (1 + 2

3 t)6 = 0.

Z∅,1, Z{1,2},1, Z{1},1, Z{2},1 are the four solutions of

x4 − 6
1 + 10

9 t
1 + 2

3 t
x3 +

(13 + 58
3 t + 55

9 t2)(1 + 10
9 t)

(1 + 2
3 t)3

x2

+
(4 + 5

3 t)(1 + 10
9 t)2

(1 + 2
3 t)3

(−3x + 1) = 0.
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Rank ρ = 4

s=0: For z = t(1 + t), we conjecturally have

S∅,0 = (1 + 2
1
2 )t

1
2 (1 + t)

1
2 , S{1},0 = t

1
2 (1 + t)

1
2 ,

Z∅,0 = 2(2 + 2
1
2 ), Z{1},0 = 2,

Y∅,0 =
(1 + t)4((1 + t)

1
2 + t

1
2 )

(1 + 2t)
1
2
(
(1 + 2t)− 2

1
2 t

1
2 (1 + t)

1
2
) ,

Y{1},0 =
(1 + t)4((1 + t)

1
2 + t

1
2 )

(1 + 2t)
1
2 (1 + (1− i)t)

.

The other power series are obtained by z
1
2 7→ −z

1
2 , 2

1
2 7→ −2

1
2

and i 7→ −i
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Mochizuki formula

Main tool: Mochizuki’s formula:
Compute intersection numbers on M = MH

S (ρ, c1, c2) in terms of
intersection numbers on Hilbert scheme of points.

On S ×M have E universal sheaf
i.e. if [E ] ∈ M corresponds to a sheaf E on S then E|S×[E ] = E .
For α ∈ Hk (S), put

τi(α) := πM∗(ci(E)π∗S(α)) ∈ H2i−4+k (M)

Let P(E) be any polynomial in the τi(α)
Mochizuki’s formula expresses

∫
[M]vir P(E) in terms of intersec.

numbers on S[n1] × S[n2] × . . .× S[nρ], and Seiberg-Witten
invariants.
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Mochizuki formula

∫
[M]vir

c(αM) exp(µ(L) + uµ(pt)), χvir
−y (M, µ(L) + E⊗r )

can both be expressed as
∫
[M]vir P(E), for suitable polyn. P, so

can reduce computation to Hilbert schemes.

For χvir
−y (M, µ(L) + E⊗r ) use virtual Riemann-Roch formula

Theorem (Fantechi-G., Kapronov Ciocan-Fontanine)

For V ∈ K 0(M) have

χvir(M,V ) =

∫
[M]vir

ch(V )td(T vir
M ).
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Mochizuki formula

Seiberg-Witten invariants:
invariants of differentiable 4-manifolds
S projective algebraic surface H2(S,Z) 3 a 7→ SW (a) ∈ Z, a is
called SW class if SW (a) 6= 0.

In general for alg. surfaces they are easy to compute, e.g.
if b1(S) = 0, pg(S) > 0 and |KS| contains smooth connected
curve, then SW cl. of S are 0,KS with

SW (0) = 1, SW (KS) = (−1)χ(OS)

This is the reason for assumption |KS| contains smooth
connected curve, otherwise our results look more complicated:
They are expressed in terms of the Seiberg-Witten inv. of S
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Mochizuki formula

For simplicity look at case ρ = 2, s = 1, α = L ∈ Pic(S) and
compute

∫
[M]vir c(LM).

S[n1] × S[n2] = {pairs (Z1,Z2) of subsch. of deg. (n1,n2) on S}

Work on S × S[n1] × S[n2], projection p to S[n1] × S[n2]

Two universal sheaves: Let a ∈ Pic(S)

1 Ii (a) sheaf on S × S[n1] × S[n2] with Ii(a)|S×(Z1,Z2) = IZi ⊗ a
2 Oi(a), vector bundle of rank ni on S[n1] × S[n2], with fibre
Oi(a)(Z1,Z2) = H0(OZi ⊗ a)

For a vector bundle E of rank r and variable s put

ci(E ⊗ s) =
i∑

k=0

(
r − i

k

)
si−kck (E), Eu(E) = cr (E)
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Mochizuki formula

For sheaves E1, E2 on S × S[n1] × S[n2] put

Q(E1, E2) = Eu(−RHomp(E1, E2)− RHomp(E2, E1))

For a1,a2 ∈ Pic(S) put

Ψ(a1,a2,L,n1,n2, s)=
P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
Eu(O1(a1))Eu(O2(a2)⊗s2)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s) · (2s)n1+n2−χ(OS)

A(a1,a2,L, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1 ]×S[n2 ]

Ψ(a1,a2,n1,n2, s) ∈ Q[s, s−1]

In our case
∫
[M]vir c(LM), we have essentially

P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
= c(O1((a1−a2)/2+L)⊗s−1)c(O2((a2−a1)/2+L)⊗s)

Theorem (Mochizuki)

Assume χ(E) > 0 for E ∈ MS
H (c1, c2). Then∫

[MH
S (c1,c2)]

vir
P(E) =

∑
c1=a1+a2
a1H<a2H

SW (a1)Coeffs0 A(a1, a2, L, c2, s)



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Mochizuki formula

For sheaves E1, E2 on S × S[n1] × S[n2] put

Q(E1, E2) = Eu(−RHomp(E1, E2)− RHomp(E2, E1))

For a1,a2 ∈ Pic(S) put

Ψ(a1,a2,L,n1,n2, s)=
P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
Eu(O1(a1))Eu(O2(a2)⊗s2)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s) · (2s)n1+n2−χ(OS)

A(a1,a2,L, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1 ]×S[n2 ]

Ψ(a1,a2,n1,n2, s) ∈ Q[s, s−1]

In our case
∫
[M]vir c(LM), we have essentially

P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
= c(O1((a1−a2)/2+L)⊗s−1)c(O2((a2−a1)/2+L)⊗s)

Theorem (Mochizuki)

Assume χ(E) > 0 for E ∈ MS
H (c1, c2). Then∫

[MH
S (c1,c2)]

vir
P(E) =

∑
c1=a1+a2
a1H<a2H

SW (a1)Coeffs0 A(a1, a2, L, c2, s)



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Mochizuki formula

For sheaves E1, E2 on S × S[n1] × S[n2] put

Q(E1, E2) = Eu(−RHomp(E1, E2)− RHomp(E2, E1))

For a1,a2 ∈ Pic(S) put

Ψ(a1,a2,L,n1,n2, s)=
P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
Eu(O1(a1))Eu(O2(a2)⊗s2)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s) · (2s)n1+n2−χ(OS)

A(a1,a2,L, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1 ]×S[n2 ]

Ψ(a1,a2,n1,n2, s) ∈ Q[s, s−1]

In our case
∫
[M]vir c(LM), we have essentially

P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
= c(O1((a1−a2)/2+L)⊗s−1)c(O2((a2−a1)/2+L)⊗s)

Theorem (Mochizuki)

Assume χ(E) > 0 for E ∈ MS
H (c1, c2). Then∫

[MH
S (c1,c2)]

vir
P(E) =

∑
c1=a1+a2
a1H<a2H

SW (a1)Coeffs0 A(a1, a2, L, c2, s)



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Mochizuki formula

For sheaves E1, E2 on S × S[n1] × S[n2] put

Q(E1, E2) = Eu(−RHomp(E1, E2)− RHomp(E2, E1))

For a1,a2 ∈ Pic(S) put

Ψ(a1,a2,L,n1,n2, s)=
P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
Eu(O1(a1))Eu(O2(a2)⊗s2)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s) · (2s)n1+n2−χ(OS)

A(a1,a2,L, c2, s) =
∑

n1+n2=c2−a1a2

∫
S[n1 ]×S[n2 ]

Ψ(a1,a2,n1,n2, s) ∈ Q[s, s−1]

In our case
∫
[M]vir c(LM), we have essentially

P
(
I1(a1)⊗s−1⊕I2(a2)⊗s

)
= c(O1((a1−a2)/2+L)⊗s−1)c(O2((a2−a1)/2+L)⊗s)

Theorem (Mochizuki)

Assume χ(E) > 0 for E ∈ MS
H (c1, c2). Then∫

[MH
S (c1,c2)]

vir
P(E) =

∑
c1=a1+a2
a1H<a2H

SW (a1)Coeffs0 A(a1, a2, L, c2, s)



Introduction Hilbert scheme of points Moduli spaces of sheaves Algebraicity Checks

Universality

Universality: Put

ZS(a1,a2,L, s,q) =
∑

n1,n2≥0

∫
S[n1 ]×S[n2 ]

A(a1,a2,L,a1a2 + n1 + n2, s)qn1+n2

Proposition

There exist univ. functions A1(s,q), . . . ,A11(s,q) ∈ Q[s, s−1][[q]]
s.th. ∀S,a1,a2,L

ZS(a1,a2,L, s,q) =F0(a1,a2,L, s)Aa2
1

1 Aa1a2
2 Aa2

2
3 Aa1KS

4 Aa2KS
5 AK 2

S
6 Aχ(OS)

7

· AL2

8 ALKS
9 ALa1

10 ALa2
11 ,

(where F0(a1,a2,L, s) is some explicit elementary function).

Proof: Modification of the cobordism argument for Hilbert schemes of
points
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Reduction to P2 and P1 × P1.

A1(s,q), . . .A11(s,q) are determ. by value of ZS(a1,a2,L, s,q)
for 11 triples (S,a1,a2,L) (S surface, a1,a2,L ∈ Pic(S)) s.th.
corresponding 11-tuples

(a2
1,a1a2,a2

2,a1KS,a1KS,K 2
S , χ(OS)),L2,LKS,La1,La1)

are linearly independent.

We take

(P2,O,O,O), (P1 × P1,O,O,O), (P2,O(1),O,O), (P2,O,O(1),O),

(P2,O(1),O(1),O), (P1 × P1,O(1,0),O,O), (P1 × P1,O,O(1,0),O)

(P2,O,O,O(1)), (P1 × P1,O,O,O(1,0)), (P2,O(1),O,O(1)),

(P2,O,O(1),O(1)),

In this case S is a smooth toric, i.e. have an action of
T = C∗ × C∗ with finitely many fixpoints,
Action of T lifts to action on S[n] still with finitely many fixpoints
described by partitions, compute by equivariant localization.
This computes ZS(a1,a2,L, s,q) in terms of combinatorics of
partitions.
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Reduction to P2 and P1 × P1.

We determined ZS(a1,a2, . . . ,aρ, α, L, s,q)

for ρ = 2 modulo q11

for ρ = 3 modulo q9

for ρ = 4 modulo q8

This shows the conjectures e.g. for the blowup of a K3 surface
in a point for

for ρ = 2 up to virtual dimension 16
for ρ = 3 up to virtual dimension 14
for ρ = 4 up to virtual dimension 6
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Equivariant localization

Let X be a smooth projective variety with action of T = C∗ × C∗
with finitely many fixpoints, p1, . . . ,pe
Let E be equivariant vector bundle of rank r on X .

Fibre E(pi ) of X at fixp. pi has basis of eigenvect. for T -action
E(pi ) =

⊕r
k=1 Cvi , with action (t1, t2) · vi = tni

1 tmi
2 vi , ni ,mi ∈ Z

Equivariant chern class of fibre at fixpoint:

cT (E(pi )) = (1+cT
1 (E(pi ))+. . .+cT

r (E(pi )) =
r∏

i=1

(1+niε1+miε2) ∈ Z[ε1, ε2]

Let P(c(E)))polynomial in Chern classes of E , of degree d = dim(X )

Theorem (Bott residue formula)∫
[X ]

P
(
c(E)

)
=

e∑
k=1

P
(
cT (E(pk ))

)
cT

d (TX (pk ))

(does not depend on ε1, ε2)
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Let P(c(E)))polynomial in Chern classes of E , of degree d = dim(X )

Theorem (Bott residue formula)∫
[X ]

P
(
c(E)

)
=

e∑
k=1

P
(
cT (E(pk ))

)
cT

d (TX (pk ))

(does not depend on ε1, ε2)
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Equivariant localization

For simplicity S = P2. T = C∗ × C∗ acts on P2 by

(t1, t2) · (X0 : X1 : X2) = (X0 : t1X1 : t2X2)

Fixpoints are p0 = (1,0,0), p1 = (0,1,0), p2 = (0,0,1).

Local (equivariant) coordinates near p0 are x = X1
X0
, y = X2

X0
,

T action (t1, t2)(x , y) = (t1x , t2y), similar for the p1,p2

Z ∈ (P2)[n] is T -invariant =⇒ Z = Z0 t Z1 t Z2 supp(Zi) = pi .
=⇒ Reduce to case supp(Z ) = pi , e.g. p0

Easy: Z is T -invariant ⇐⇒ IZ ∈ k [x , y ] is gen. by monomials
Can write

IZ = (yn0 , xyn1 , ...., x r ynr , x r+1) (n0, . . . ,nr ) partition of n

Fixpoints on (P2)[n] are in bijections with triples (P0,P1,P2) of
partitions of 3 numbers adding up to n.
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Equivariant localization

Need to compute things like c(O[n])
O[n] vector bundle on (P2)[n] with fibre O[n](Z ) = H0(OZ )

If Z = Z0 t Z1 t Z2, supp(Zi ) = pi , then

O[n](Z ) = O[n0](Z0)⊕O[n1](Z1)⊕O[n2](Z2)

cT (O[n](Z )) = cT (O[n0](Z0))cT (O[n1](Z1))cT (O[n2](Z2))

Let e.g. Z = Z0, IZ = (y4, xy2, x2y , x3)
Then the fibre O[n](Z ) = H0(OZ ) = C[x , y ]/(y4, xy2, x2y , x3)
Thus basis of eigenvectors of fibre for T action is

1 y y2 y3

x xy
x2

with eigenvalues
1 t2 t2

2 t3
2

t1 t1t2
t2
1

Thus

cT (O[n](Z )) = (1 + ε2)(1 + 2ε2)(1 + 3ε2)(1 + ε1)(1 + ε1 + ε2)(1 + 2ε1).
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