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Let S smooth projective surface

Hilbert scheme of points:

Sl = Hilb"(S) = {zero dim. subschemes of degree non S}
Vector bundle V on S = tautological vb V!l on SI]
Marian-Oprea-Pandharipande:

generating functions for Segre integrals [g, Can( Vi)

+ their conj. relation to Verlinde numbers x(SI™, (L) @ E®").
Hilb"(S) is a moduli space of rank 1 stable sheaves on S
Aim: Extend above results to moduli spaces of sheaves

M (p, ¢1, c2) of higher rank:

Use Mochizuki’s formula computing virtual inters. numbers on
ME(p, c1, c2) in terms of inters. numbers on Sl
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Let S smooth projective surface
Hilbert scheme of points:

Sl = Hilb"(S) = {zero dim. subschemes of degree non S}

Sll is smooth projective, of dimension 2n

Closely related to symmetric power

S(M = S"/(perm. of factors)

7 8l — 8" 7 supp(Z) is a crepant resolution.
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Hilbert scheme of points

Let S smooth projective surface
Hilbert scheme of points:

Sl = Hilb"(S) = {zero dim. subschemes of degree non S}

Sll is smooth projective, of dimension 2n

Closely related to symmetric power

S(M = S"/(perm. of factors)

7 8l — 8" 7 supp(Z) is a crepant resolution.
Universal subscheme:

Zy(S)={(x,[2]) | x€ Z} c Sx 8"

p:Zny(S) — S q:2Z,(S) — S projections
Fibre p~1([2]) = Z.
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Hilbert scheme of points

Zy(S) = {(x,12]) | x € Z} c S x Sl
p:Z)(S) = Sl q:Z,(S) — S projections

Tautological sheaves: V vector bundle of rank r on S
VIl .= p,g*(V) vector bundle of rank rn on S

VIl((Z]) = HO(V|z), in particular O%)([2]) = HO(0z)
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Tautological sheaves: V vector bundle of rank r on S
VIl .= p,g*(V) vector bundle of rank rn on S

VIl((Z]) = HO(V|z), in particular O%)([2]) = HO(0z)
Line bundles on SIl: Pic(SI") = 1(Pic(S)) @ ZE with
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Hilbert scheme of points

Zy(S) = {(x,12]) | x € Z} c S x Sl
p:Z)(S) = Sl q:Z,(S) — S projections

Tautological sheaves: V vector bundle of rank r on S
VIl .= p,g*(V) vector bundle of rank rn on S

VIl((Z]) = HO(V|z), in particular O%)([2]) = HO(0z)

Line bundles on SIl: Pic(SI") = 1(Pic(S)) @ ZE with
E= det(O[é’] and p(L) pullback from S(" of equiva.
pushforward of L X ..., XL from S"to S("). We have

det(VIM) = pu(det(V)) @ E®™V) |V e K(S)
Want formulas for

x (S (L) ® E®)  Verlinde formula

/ con(VI)  Lehn formula
st



Hilbert scheme of points
[ ]
Cobordism invariance

Tool:
Theorem (Ellingsrud-G-Lehn)

Let P(xq,...,Xon, Y1,--.,Yn) polynomial. Put

PISl 1] .= P(ci (S, ..., con(SIM), ey (LI, . .., co(LIM)
Slnl

There is a polynomial ﬁ(x, y,z,w), such that for all surfaces S,
all line bundles L on S we have

P[S), L] = P(K3, x(Os), LKs, K3).
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Cobordism invariance

Tool:

Theorem (Ellingsrud-G-Lehn)
Let P(xq,...,Xon, Y1,--.,Yn) polynomial. Put

PISl 1] .= P(ci (S, ..., con(SIM), ey (LI, . .., co(LIM)
Slnl

There is a polynomial ﬁ(x, y,z,w), such that for all surfaces S,
all line bundles L on S we have

P[S), L] = P(K3, x(Os), LKs, K3).

Usually have sequence of polynomials

Pn(X1,...Xon, ¥1,---,¥n), N >0, "nicely organized", then
S Pa[ S, L]x™ = Aq(x) Ao (x) K5 Ag ()8 Aq (x)X(O9)
n>0

for universal power series A, ..., Ay € Q[[x]]
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Lehn’s conjecture

For L a line bundle on S consider the top Segre class

/S[n] SZ”(L[n]) B /S[n] CZH((fL)[n])
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Lehn’s conjecture

For L a line bundle on S consider the top Segre class

/S[n] SZ”(L[n]) B /S[n] CZH((fL)[n])

Conjecture (Lehn 1999)
& b

[nlyn _ (1 — W)a(1 — 2W)
g/sm senll)2" = T —gw T eur)e

with the change of variable

w(1 —w)(1 —2w)*
(1= 6w+ 6w2)

with a = LKs — 2K2, b = (L — Ks)2 + 3x(Os),
c=x(8,L) = L(L— Ks) + x(Os)




Hilbert scheme of points

e0

Lehn’s conjecture

For L a line bundle on S consider the top Segre class

/S[n] SZ”(L[n]) B /S[n] CZH((fL)[n])

Conjecture (Lehn 1999)

co b
[nlyn _ (1 — W)a(1 — 2W)
g/sm senll)2" = T —gw T eur)e

with the change of variable

w(1 —w)(1 —2w)*
(1= 6w+ 6w2)

with a = LKs — 2K2, b = (L — Ks)2 + 3x(Os),
c=x(8,L) = L(L— Ks) + x(Os)

Theorem (Marian-Oprea-Pandharipande, Voisin)
Lehn’s conjecture is true.
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Lehn’s conjecture

Marian-Oprea-Pandharipande consider a generalized Lehn formula:
aformulafor -, .o [gm Con(l™)2", € K(S)

Theorem (Marian-Oprea-Pandharipande)

For any s € Z, there exist Vs, Ws, Xs, Ys, Zs € Q[[Z]] s.th. for any
a € K(S) of rank s on S, we have

2
Zz /3[] a[n] ng(a) WSC1(04)2 X;((Os) YSC1(04)KS ZSKS.




Hilbert scheme of points
oe

Lehn’s conjecture

Marian-Oprea-Pandharipande consider a generalized Lehn formula:
aformulafor -, .o [gm Con(l™)2", € K(S)
Theorem (Marian-Oprea-Pandharipande)

For any s € Z, there exist Vs, Ws, Xs, Ys, Zs € Q[[Z]] s.th. for any
a € K(S) of rank s on S, we have

Zz /3[] [n] ng(a) WSC1(04)2 X;((Os) YSC1(04)KS ZSKS
With the change of variables z = t(1 + (1 — s)t)'~%, one has
Vs(2)=(1+ (1= 8)t) (1 + (2 - 5)1)°,

Ws(2)=(1+ (1 — s)t)2s (1 + (2 — 8)1)2(—9),

12

Xs(2)=(1+ (1 = $)))3 51 + (2 - 8)) 25 2 (1 + (2 — s)(1 — 8)1)~

ol
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Lehn’s conjecture

Marian-Oprea-Pandharipande consider a generalized Lehn formula:
aformulafor -, .o [gm Con(l™)2", € K(S)
Theorem (Marian-Oprea-Pandharipande)

For any s € Z, there exist Vs, Ws, Xs, Ys, Zs € Q[[Z]] s.th. for any
a € K(S) of rank s on S, we have

Zz /Sm [n] ng(a) WSC1(04)2 X;((Os) YSC1(04)KS ZSKS
With the change of variables z = t(1 + (1 — s)t)'~%, one has
Vs(2)=(1+ (1= 8)t) (1 + (2 - 5)1)°,

Ws(2)=(1+ (1 — s)t)2s (1 + (2 — 8)1)2(—9),

2

Xs(2)=(1+ (1 = $)))3 51 + (2 - 8)) 25 2 (1 + (2 — s)(1 — 8)1)~

ol

They showed explicit expressions for Yg, Zs for s € {—2,—1,0,1,2},
and conjecture that Y;, Zs are algebraic functions for all s € Z
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Consider the generating series >_0° o w” (S, u(L) ® E®").

Theorem (Ellingsrud-G-Lehn)

For any r € 7Z, there exist gy, f;, Ar, B, € Q[[w]] such that for any
L € Pic(S), we have

o0 1 >
> w8, (L) @ E51) = gXD X9 Ae B,
n=0
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For any r € 7Z, there exist gy, f;, Ar, B, € Q[[w]] such that for any
L € Pic(S), we have

o0 1 >
> w8, (L) @ E51) = gXD X9 Ae B,
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gr(W):1 +V, fr(W):W




Hilbert scheme of points
Verlinde formula for Hilbert schemes

Consider the generating series >_0° o w” (S, u(L) ® E®").

Theorem (Ellingsrud-G-Lehn)

For any r € 7Z, there exist gy, f;, Ar, B, € Q[[w]] such that for any
L € Pic(S), we have

anx(s[”],u(L)@)E@’) Qr ng(OS) ALKSB

With the change of variables w = v(1 + v)”*~1, we have
(1 +v)*

g(w)=1+v, f(w)= Tty

Serre duality implies A, = B_,/B; for all r. Furthermore,
Ar = B, =1forr=0,+1. In general the A;, B, are unknown.
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Segre-Verlinde correspondence

We have seen

Zz [S (ol = V) W Oy 2185

> W (ST, ) © E97) = g 409 At g

with Vs, Ws, Xs € Q[[Z]], fr, 9r € Q[[w]] known algebraic functions,
and Ys, Zs € Q[[2]], Ar, Br € Q[[w]] unknown
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Segre-Verlinde correspondence

We have seen

Zz [S (ol = V) W Oy 2185

> W (ST, ) © E97) = g 409 At g

with Vs, Ws, Xs € Q[[Z]], fr, gr € Q[[w]] known algebraic functions,
and Ys, Zs € Q[[2]], Ar, Br € Q[[w]] unknown

Based on strange duality there is a conjectural relation between these
two generating functions

Conjecture (Johnson, Marian-Oprea-Pandharipande)

For any r € Z, we have
Al(w) = Ws(2) Ys(2), Br(w) = Zs(2),

wheres=1—randw = v(1+v)" =1, z=t(1+ (1 —s)t)'~S, and
v=t(1+rt)!
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Moduli spaces of sheaves

Aim: Find analogues of all these results for higher rank moduli
spaces

Let (S, H) polarized surface. A torsion free coherent sheaf £ on
S is called H-semistable, if for all subsheaves F C &£, we have

X(S, F @ H®") < X(S, & ® H®M)

K (F) S I

For p € Zwg, ¢ € H?(S,Z), and ¢, € H*(S,Z), let
M .= MSH(p, c1, ¢2) moduli space of rank p H-semistable
sheaves on S with Chern classes ¢y, ¢
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Moduli spaces of sheaves

Aim: Find analogues of all these results for higher rank moduli
spaces

Let (S, H) polarized surface. A torsion free coherent sheaf £ on
S is called H-semistable, if for all subsheaves F C &£, we have

X(S, F @ H®")  x(S,&® H®)

K (F) S I

<

For p € Zwg, ¢ € H?(S,Z), and ¢, € H*(S,Z), let

M .= MSH(p, c1, ¢2) moduli space of rank p H-semistable
sheaves on S with Chern classes ¢y, ¢

Note: via Z > Iz, we have Sl = ME (1,0, n).

Assume M contains no strictly semistable sheaves

For simplicity also assume there exists a universal sheaf £ on
S x M, (i.e. g|S><{[E]} = E)
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For simplicity we assume in the following that py(S) > 0,
bi(S) = 0 and S has a smooth connected canonical divisor
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vd(M) :=2pc, — (p — 1)c§ — (p* — 1)x(Os)
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Moduli spaces of sheaves

For simplicity we assume in the following that py(S) > 0,
bi(S) = 0 and S has a smooth connected canonical divisor

M= Mg’(p, C1, C2) has a perfect obstruction theory of expected
dimension

vd(M) :=2pc, — (p — 1)c§ — (p* — 1)x(Os)

In particular
e it carries a virtual class [M]"" € Hayq(u) (M)
@ has a virtual Tangent bundle T}ir € KO(M)

@ has a virtual structure sheaf O} € Ky(S)
For any V € K°(M) the virtual holomorphic Euler
characteristic of V is x¥"(M, V) = x(M, V ® O}



Moduli spaces of sheaves
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Virtual Segre numbers of moduli spaces

For any class o € K%(S), we define
ch(an) = —ch(mp(r5a - € - det(€) »))

On M := M(1,0,n) = SI", we have ay = ol
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Virtual Segre numbers of moduli spaces

For any class o € K%(S), we define

ch(ay) = —ch(mu(m5a - € - det(€) 7))

On M := M(1,0,n) = Sl we have ay = ol
For any o € H*(S, Q) the p-class of Donaldson theory is

w(o) = (ca(&) — 2= Loy (€)2) PD(0) € HK(M, Q).
2p

For a € K°(S),L € H?(S,Z), and pt € H*(S, Z) the Poincaré
dual of a point, the virtual Segre number of M is

. SCe) & (1) + up(oD) € Ol
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Virtual Segre numbers of moduli spaces

For simplicity we assume in the following that py(S) > 0, b1(S) =0
and S has a smooth connected canonical divisor

Write ¢, := exp(27i/p) and [n] :== {1, ..., n}. Forany J C [n], write |J|
for its cardinality and [|J|| :=>_/c,J
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Virtual Segre numbers of moduli spaces

For simplicity we assume in the following that py(S) > 0, b1(S) =0
and S has a smooth connected canonical divisor

Write ¢, := exp(27i/p) and [n] :== {1, ..., n}. Forany J C [n], write |J|
for its cardinality and [|J|| :=>_/c,J

Conjecture

Letp € Z~o and s € Z. There exist Vs, Ws, Xs, Qs, Rs, Ts € C[[Z]],
Y5, Zys» Sus € C[[z2]], s.th. for all J  [p — 1] for all S as above, any
a € K°(S) with rk(a) = s and L € Pic(S) we have that

/ c(am) exp(u(L) + up(pt)
[ME (p,c1,c2)]r

is the coefficient of zzV4M) of
2—x(0s)+KS VSCz(a) Wsm(oe)2 X;C(Os) eL? st (ci(@)L)Retu T

3 (—1)MIX(O9) glviiKser yoi (ks Zfi e(KsL)Sus

JC[o—1]

P
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Virtual Segre numbers of moduli spaces

Conjecture

S Slam) exp(u(L) + u p(pt)) is the coefficient of z2vdM) of
2 x(Os)+K2 Vs@(a) Wsa(a)2 X§<(Os) oL Qst(c1 (@) ) Rstu T

2
Z (_1)‘J|X(OS) 5\;|)JHKSC1 YJCJS(O‘)KS Zfz e(KsL)SJ,S.
JC[p—1]

P
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Virtual Segre numbers of moduli spaces

Conjecture

S Slam) exp(u(L) + u p(pt)) is the coefficient of z2vdM) of

pz—x(os)+K§ Vs@(a) Ws<:1(a)2 X;((Os) L2Qs+(cy(a)L)Rs+u Ts

Z (—1)MIX(Os) cllIKse Ya a)Ks ZKs o(KsL)Sus

JC[p—1] .
With z = t(1+ (1 — 2)t)'~ %, we have

Va(2) = (14 (1= 1 ~°(1 + 2 - 2)1)’,

(2) = (1+(1 = $)H3E179(1 4 (2 - 2)n2-9,

Xe(2) = (1 +(1 = YD1 4 @— (1 + (1 - )2 - )| £,
Qu(2) = 311+ (1= 2)1), Re(2) =1, Ta(2) = pt(1+3(1 = 2)(2 - 2)1).

Furthermore, Y, s, Z; s, Sy s are all algebraic functions

(SE
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Virtual Segre numbers of moduli spaces

Conjecture

S Slam) exp(u(L) + u p(pt)) is the coefficient of z2vdM) of

pz—x(os)+K§ Vs@(a) Ws<:1(a)2 X;((Os) L2Qs+(cy(a)L)Rs+u Ts

Z (—1)MIX(Os) cllIKse Ya a)Ks ZKs o(KsL)Sus

JC[p—1] .
With z = t(1+ (1 — 2)t)'~ %, we have

Va(2) = (14 (1= 1 ~°(1 + 2 - 2)1)’,

(2) = (1+(1 = $)H3E179(1 4 (2 - 2)n2-9,

Xe(2) = (1 +(1 = YD1 4 @— (1 + (1 - )2 - )| £,
Qu(2) = 311+ (1= 2)1), Re(2) =1, Ta(2) = pt(1+3(1 = 2)(2 - 2)1).

Furthermore, Y, s, Z; s, Sy s are all algebraic functions

(SE

The fact that Rs(z) = t explains the variable change: z counts the
virtual dimension; t counts ¢;(«)L
For Sl we have Ys = Yy s, Zs = Zy ¢
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Virtual Verlinde formula

Determinant bundles: Let ¢ € K(S) be the class of
EeM=MY(p,ci,co)and K := {v € K(S) : x(S,c®v) =0}
Fora e Kcputwithng: SxM— S, my: SxM—->M
projections

Aa) = det (man (50 - [€])) 7 € Pic(M)
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Virtual Verlinde formula

Determinant bundles: Let ¢ € K(S) be the class of
EeM=MY(p,ci,co)and K := {v € K(S) : x(S,c®v) =0}
Fora e Kcputwithng: SxM— S, my: SxM—->M
projections

Aa) = det (man (50 - [€])) 7 € Pic(M)

Fix r € Z, L € Pic(S) ® Q with £ := L ® det(c) # € Pic(S)
take v € K; such that rk(v) = rand ¢y(v) = L, put
(L) ® E®" := A(v) € Pic(M).

On ME (1,0, n) = Sl this is previous definition of y(L) ® E®"
Relation to Donaldson x class in cohom.: p(ci(L)) = ¢ (p(L))



Moduli spaces of sheaves

@0

Virtual Verlinde formula

Determinant bundles: Let ¢ € K(S) be the class of
EeM=MY(p,ci,co)and K := {v € K(S) : x(S,c®v) =0}
Fora e Kcputwithng: SxM— S, my: SxM—->M
projections

Aa) = det (mpn (w5 - [€])) " € Pic(M)
Fix r € Z, L € Pic(S) ® Q with £ := L ® det(c) # € Pic(S)
take v € K; such that rk(v) = rand ¢y(v) = L, put
(L) ® E®" := A(v) € Pic(M).

On ME (1,0, n) = Sl this is previous definition of y(L) ® E®"
Relation to Donaldson x class in cohom.: p(ci(L)) = ¢ (p(L))
Denote by O} the virtual structure sheaf of M

The virtual Verlinde numbers of S are the virtual holomorphic
Euler characteristics

XM, u(L) © E®) i= x(M, p(L) © E®" @ Of)
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Virtual Verlinde formula

For simplicity we assume in the following that py(S) > 0, b1(S) =0
and S has a smooth connected canonical divisor

Write ¢, := exp(27i/p) and [n] :== {1, ..., n}. Forany J C [n], write |J|
for its cardinality and [|J|| := >,/
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(o] J

Virtual Verlinde formula

For simplicity we assume in the following that py(S) > 0, b1(S) =0
and S has a smooth connected canonical divisor

Write ¢, := exp(27i/p) and [n] :== {1, ..., n}. Forany J C [n], write |J|
for its cardinality and [|J|| := >,/

Conjecture

Letp € Z~o andr € Z. There exist A, ;, B, € C[[w?]] for all
J C [p — 1] such that x*"(M, u(L) ® E®") equals the coefficient of
W%vd(M) of

2 X(0s)+KE GX(D) p3x(0s) S (— 1)) clllikser pfst Bﬁ

JC[p—1]
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Virtual Verlinde formula

For simplicity we assume in the following that py(S) > 0, b1(S) =0
and S has a smooth connected canonical divisor

Write ¢, := exp(27i/p) and [n] :== {1, ..., n}. Forany J C [n], write |J|
for its cardinality and [|J|| := >,/

Conjecture

Letp € Z-o and r € 7. There exist A;,, By, € C[[w?]] for all
J C [p — 1] such that x*"(M, u(L) ® E®") equals the coefficient of
wzvdM) of

p2—x(Os)+K§ Gx® Fr%X(Os) Z (_1)|J\X(Os) IJIIKscy AKS,L Bﬁ

JC[p—1]

bl\)‘ T

1+ v)
1+ 5 7
Furthermore, A, ,, By, are all algebraic functions.

1

2
Here G/(w)=1+v, F/(w)= withw = v(1 + v)#?
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(o] J

Virtual Verlinde formula

For simplicity we assume in the following that py(S) > 0, b1(S) =0
and S has a smooth connected canonical divisor

Write ¢, := exp(27i/p) and [n] :== {1, ..., n}. Forany J C [n], write |J|
for its cardinality and [|J|| := >,/

Conjecture

Letp € Z-o and r € 7. There exist A;,, By, € C[[w?]] for all
J C [p — 1] such that x*"(M, u(L) ® E®") equals the coefficient of
wzvdM) of

p2—x(Os)+K§ Gx® Fr%X(Os) Z (_1)|J\X(Os) IJIIKscy AKS,L Bﬁ

JC[p—1]

bl\)‘ T

1+ v)
1+ 5 7
Furthermore, A, ,, By, are all algebraic functions.

1

2
Here G/(w)=1+v, F/(w)= withw = v(1 + v)#?

This conjecture is true for K3 surfaces
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Virtual Serre duality

Virtual Serre duality x""(M, L) = (—1)"¥M\Vir(M, Kyir @ L)
gives

Conjecture
For any p > 0, we have

foralld C [p—1] andr € Z.
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Virtual Segre-Verlinde correspondence

We get the following analogue of the Segre-Verlinde
correspondence for Hilbert schemes

Conjecture

Forany p € Z~og andr € Z, for all J C [p — 1], we have

=

Ap(w2) =W, (2) Yy, (22), By, (wz)=2Z,, (22),

with

r2

= _S
w=v(l+v)? ' z=t+(1-5"Tr, v=t1+ It
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Algebraicity

We conjecturally determined the Y, 5, Z, 5, Sy s as algebraic
functionsforp=2,s=-1,...,5,p=3,s=0,...,6,and
p=4,58=0,4,and the A, s , B, s corresponding to them under
the Segre-Verlinde correspondence
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Algebraicity

We conjecturally determined the Y, 5, Z, 5, Sy s as algebraic
functionsforp=2,s=-1,...,5,p=3,s=0,...,6,and
p=4,58=0,4,and the A, s , B, s corresponding to them under
the Segre-Verlinde correspondence

Below we list these functions for Mg’(p, C1,C2), and rk(a) = s
with

p=2,s=1,-1 p=3,s=1, p=4,5=0.



Algebraicity

Rank p =2

for W=Y,Z S we have W@VS(—Z%) = W{1}7s(z%)
We write Ws := W s
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Rank p =2

=

for W=1Y,Z Swehave W (—z
We write Ws := W s

s=1: For z = t(1 + 3t)2, we have

)= W{1},s(2%)

i 3.1 143t 1121+ 3¢)2 i i
Vi= (e (gns, 2= —— 12+1t s Si= gt (14302
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Algebraicity
L]

Rank p =2

=

for W=1Y,Z Swehave W (—z
We write Ws := W s

s=1: For z = t(1 + 3t)2, we have

)= W{1},s(2%)

1+ 3t—1t2(1 4 31)2
Vo= (et 3nt, g = Lt eBUEED

1 1
.S = —ttrrE(1431)z.
1+ 5t ! 2 (1431

s=-1: For z = t(1 + 31)? put

(1+ 312
They are solutions of

thx* —212(1 + 26)x3 + (1
yt =201+ Bty + (1



Algebraicity
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Rank p =3

s=1: Forz=1t(1+ %t)g, the power series Sy 1, S1.23,1, St11,1, S2}.1
are the four solutions of

x* +2tx% — (3t + P)x% — (3 +283)x — (2 + 2t*) = 0.
Yo.1, Yi121.1, Yiiy.1, Yizy,1 are the four solutions of
Xt — (4 + 201+ 20263 + (6+ 181 + 1662 + 3L 12)x?
— @+ IO+ 20)ix+ (1 + 208 =0.
Zz.1, Zi1,2y,15 Zi1y 1, Z(2),1 are the four solutions of

10 58 55 42 10
6] +§tx3+ (13+Ft+ 3O+ 90 »
1+ 2t (1+




Algebraicity
Rank p = 4

s=0: For z = t(1 + t), we conjecturally have

1

Soo=(1+22)t2(1+1)2, Spyyo=t2(1+1)2,
Zoo = 2(2+22), Ziy0 = 2,

L (1+04((1+ 1)z + t2)

0T (T ani((1+2t) — 25k (1 + 1)F)
v (10N + 1)+ 12)

(13,0 =

(1+202(1+(1 —it)

The other power series are obtained by 22 s —2%,2% vy 22
and j— —i
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Mochizuki formula

Main tool: Mochizuki’s formula:
Compute intersection numbers on M = Mg’(p, C1, C2) in terms of
intersection numbers on Hilbert scheme of points.
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Compute intersection numbers on M = Mg’(p, C1, C2) in terms of
intersection numbers on Hilbert scheme of points.

On S x M have & universal sheaf

i.e. if [E] € M corresponds to a sheaf E on S then &|s, g = E.
For a € HX(S), put

7i(0) == T, (Gi(E)ms(ar)) € HEH(M)
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Mochizuki formula

Main tool: Mochizuki’s formula:

Compute intersection numbers on M = Mg’(p, C1, C2) in terms of
intersection numbers on Hilbert scheme of points.

On S x M have & universal sheaf

i.e. if [E] € M corresponds to a sheaf E on S then &|s, g = E.
For a € HX(S), put

7i(0) == T, (Gi(E)ms(ar)) € HEH(M)

Let P(&) be any polynomial in the 7;(«)
Mochizuki’s formula expresses f[M]vir P(€) in terms of intersec.

numbers on Sl x Slr2l x . x Sl7l and Seiberg-Witten
invariants.
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Mochizuki formula

/[M]Vir c(am) exp(p(L) + up(pt)), XV_iE/(M, u(L) + E®N)

can both be expressed as f[M]m P(€&), for suitable polyn. P, so
can reduce computation to Hilbert schemes.
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Mochizuki formula

/[M]Vir c(am) exp(p(L) + up(pt)), XV_i}(M, u(L) + E®N)

can both be expressed as f[M]m P(€&), for suitable polyn. P, so
can reduce computation to Hilbert schemes.

For x* (M, u(L) + E®") use virtual Riemann-Roch formula

Theorem (Fantechi-G., Kapronov Ciocan-Fontanine)

For V € K%(M) have

(M, V) = / ch(V)(T).
[M]vir
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Mochizuki formula

Seiberg-Witten invariants:

invariants of differentiable 4-manifolds

S projective algebraic surface H?(S,Z) > a+— SW(a) € Z, ais
called SW class if SW(a) # 0.
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Mochizuki formula

Seiberg-Witten invariants:

invariants of differentiable 4-manifolds

S projective algebraic surface H?(S,Z) > a+— SW(a) € Z, ais
called SW class if SW(a) # 0.

In general for alg. surfaces they are easy to compute, e.g.
if b1(S) =0, pg(S) > 0 and |Ks| contains smooth connected
curve, then SW cl. of S are 0, Kg with

SW(O0)=1, SW(Ks)=(—1)xs)
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Mochizuki formula

Seiberg-Witten invariants:

invariants of differentiable 4-manifolds

S projective algebraic surface H?(S,Z) > a+— SW(a) € Z, ais
called SW class if SW(a) # 0.

In general for alg. surfaces they are easy to compute, e.g.
if b1(S) =0, pg(S) > 0 and |Ks| contains smooth connected
curve, then SW cl. of S are 0, Kg with

SW(0) =1, SW(Ks)=(—1)x©s)

This is the reason for assumption |Ks| contains smooth
connected curve, otherwise our results look more complicated:
They are expressed in terms of the Seiberg-Witten inv. of S
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Mochizuki formula

For simplicity look at case p =2, s =1, a = L € Pic(S) and
compute f[,\,,]m c(Ly).

Slml . Sl — (pairs (2, Z,) of subsch. of deg. (nq, nz) on S}

Work on S x SIMl x Sl™l, projection p to SIMl x Sl
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Mochizuki formula

For simplicity look at case p =2, s =1, a = L € Pic(S) and
compute f[,\,,]m c(Ly).

Slml . Sl — (pairs (2, Z,) of subsch. of deg. (nq, nz) on S}

Work on S x SIMl x Sl™l, projection p to SIMl x Sl
Two universal sheaves: Let a € Pic(S)
@ Z,(a) sheaf on S x SIml x Sl with Tj(8)|sx(z,2,) = Iz ® a

@ 0j(a), vector bundle of rank n; on Sl x Sl™l with fibre
0i(a)(Z1,2Z2) = H(Oz @ a)
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Mochizuki formula

For simplicity look at case p =2, s =1, a = L € Pic(S) and
compute f[,\,,]m c(Ly).

Slml . Sl — (pairs (2, Z,) of subsch. of deg. (nq, nz) on S}

Work on S x SIMl x Sl™l, projection p to SIMl x Sl
Two universal sheaves: Let a € Pic(S)
@ Z,(a) sheaf on S x SIml x Sl with Tj(8)|sx(z,2,) = Iz ® a
@ 0j(a), vector bundle of rank n; on Sl x Sl™l with fibre
0i(a)(Z1, Z2) = H(0z ® a)
For a vector bundle E of rank r and variable s put

CGE®Ss)=)_ (r; i> s ke (E), Eu(E) = c/(E)

k=0
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Mochizuki formula

For sheaves &1, & on S x Sml x Slrl put

0(51 ) 52) = Eu(—F:’Homp(& ) 52) — RHomp(Sg, &1 ))




Checks
[e]e]e]e] ]

Mochizuki formula

For sheaves &1, & on S x Sml x Slrl put
0(51 ) 52) = Eu(—F:’Homp(& ) 52) — RHomp(Sg, &1 ))
For a1, a € Pic(S) put

P(Zi(a1)®s '@ (a)® ) Eu(O1(ar)) Eu(Oa(ar) ®
Q(Zi(ar1) @ 571, Ix(a2) ® S) - (28)M 2= x(Os)

Aar,ap, L, co,8) = Y /[ - ]\Il(a1,ag,n1,n2,s) € Q[s,s7']
Sinlx stn

M+m=C—ajaz

\U(a1u327 L7 ny, N, S):
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Mochizuki formula

For sheaves &1, & on S x Sml x Slrl put
0(51 ) 52) = Eu(—F:’Homp(& ) 52) — RHomp(Sg, &1 ))
For a1, a € Pic(S) put

P(Zi(a1)®s '@ (a)® ) Eu(O1(ar)) Eu(Oa(ar) ®
Q(Zi(ar1) @ 571, Ix(a2) ® S) - (28)M 2= x(Os)

Aar,ap, L, co,8) = Y /[ - ]\Il(a1,ag,n1,n2,s) € Q[s,s7']
Sinlx stn

M+m=C—ajaz

\U(a1u327 L7 ny, N, S):

In our case f[M]m c(Ly), we have essentially

P(ZTi(a)®s™ @Ta(a2)@8) = ¢(O1((a1—a2)/2+L)@s™")c(Ox((a2—ar) /2+L)@s)
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Mochizuki formula

For sheaves &1, & on S x Sml x Slrl put
0(51 ) 52) = Eu(—F:’Homp(& ) 52) — RHomp(Sg, &1 ))

For ay, a» € Pic(S) put
P(Zi(a1)®s '@ (a)® ) Eu(O1(ar)) Eu(Oa(ar) ®
Q(Zi(ar1) @ 571, Ix(a2) ® S) - (28)M 2= x(Os)

Aar,ap, L, co,8) = Y /[ - ]\Il(a1,ag,n1,n2,s) € Q[s,s7']
Sinlx stn

ni+n.=Cc—ajas

\U(a1u327 L7 ny, N, S):

In our case f[M]m c(Ly), we have essentially

P(ZTi(a)®s™ @Ta(a2)@8) = ¢(O1((a1—a2)/2+L)@s™")c(Ox((a2—ar) /2+L)@s)

Theorem (Mochizuki)

Assume x(E) > 0 for E € M3(c1, c2). Then

/ PE)= 3 SW(a)CoeftoA(ar, a, L, Cz, )
[ME (cy,co)1Vr

C1=a4 +82
ayH<apH
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Universality

Universality: Put

Zs(ar, a,L,5,9)= ) / A(ay, ap, L, atap + ny + np, s)g" "™

ny,n2>0 il x S[n2]



Universality

Universality: Put

Zs(ar, a,L,5,9)= ) / A(ay, ap, L, atap + ny + np, s)g" "™

ny,n2>0 il x S[n2]

Proposition

There exist univ. functions A(s, q), ..., A11(s,q) € Q[s, s~ '][[q]]
s.th. VS,a1,a2,L

Zs(ar, @, L, 5, q) =Fo(ay, ap, L, 5)A% AZ % A pZ1Ks p2Hs pKS px(0s)

12 ALKs plaq plas
- Ag Ag A1o A11v

(where Fy(a1, az, L, s) is some explicit elementary function).

Proof: Modification of the cobordism argument for Hilbert schemes of
points



Reduction to P2 and P! x P'.

Ai(s,Q),...Aq1(s, q) are determ. by value of Zg(ay, as, L, s, q)
for 11 triples (S, a1, a», L) (S surface, ay, a, L € Pic(S)) s.th.
corresponding 11-tuples

(a$> aao, 35, a KSa a KSa Kéa X(OS))v L27 LKS> La1 ; La1)
are linearly independent.



Reduction to P2 and P! x P'.

Ai(s,Q),...Aq1(s, q) are determ. by value of Zg(ay, as, L, s, q)
for 11 triples (S, a1, a», L) (S surface, ay, a, L € Pic(S)) s.th.
corresponding 11-tuples

(aF, a1a0, 85, a1Ks, a1Ks, K5, x(Os)), L?, LKs, Lay, Lay)
are linearly independent. We take
(1@2 0,0,0),(P' xP',0,0,0),(P?,0(1),0,0),(P? 0,0(1),0),
(P2,0(1),0(1),0), (' xP', 0(1,0),0,0), (P xP',0,0(1,0),0)
(P2,0,0,0(1)),(P' xP',0,0,0(1,0)), (P?, O(1),0,0(1)),
(P?,0,0(1),0(1)),



Reduction to P2 and P! x P'.

Ai(s,Q),...Aq1(s, q) are determ. by value of Zg(ay, as, L, s, q)
for 11 triples (S, a1, a», L) (S surface, ay, a, L € Pic(S)) s.th.
corresponding 11-tuples

(&8, araz, 85, a1Ks, a1Ks, K3, x(0s)), L2, LKs, Lay, Lay)
are linearly independent. We take
(P2,0,0,0),(P' x P',0,0,0),(P?, 0(1),0,0),(P?,0,0(1),0),
(P2,0(1),0(1),0), (' xP', 0(1,0),0,0), (P xP',0,0(1,0),0)
(P2,0,0,0(1)),(P' xP',0,0,0(1,0)), (P?, O(1),0,0(1)),
(P?,0,0(1),0(1)),

In this case S is a smooth toric, i.e. have an action of

T = C* x C* with finitely many fixpoints,

Action of T lifts to action on Sl still with finitely many fixpoints
described by partitions, compute by equivariant localization.
This computes Zs(ay, az, L, s, @) in terms of combinatorics of
partitions.



Reduction to P2 and P! x P'.

We determined Zs(a1, a, ..., a,,a,L,s,q)
@ for p = 2 modulo g
@ for p = 3 modulo ¢°
@ for p = 4 modulo g8

This shows the conjectures e.g. for the blowup of a K3 surface
in a point for

@ for p = 2 up to virtual dimension 16
@ for p = 3 up to virtual dimension 14
@ for p = 4 up to virtual dimension 6
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Let X be a smooth projective variety with action of T = C* x C*
with finitely many fixpoints, pi, ..., Pe
Let E be equivariant vector bundle of rank r on X.
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Let X be a smooth projective variety with action of T = C* x C*
with finitely many fixpoints, pi, ..., Pe
Let E be equivariant vector bundle of rank r on X.

Fibre E(p;) of X at fixp. p; has basis of eigenvect. for T-action
E(pi) = @} Cv;, with action (t;, &) - vi = t{"t7"vj, nj,m; € Z
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Let X be a smooth projective variety with action of T = C* x C*
with finitely many fixpoints, pi, ..., Pe
Let E be equivariant vector bundle of rank r on X.

Fibre E(p;) of X at fixp. p; has basis of eigenvect. for T-action
E(pi) = @} Cv;, with action (t;, &) - vi = t{"t7"vj, nj,m; € Z

Equivariant chern class of fibre at fixpoint:

cT(E(p) = (1+¢] (E(p))+. . +¢] (E(p) = [[(1+nier+miez) € Zler, o]
i=1



Checks

Equivariant localization

Let X be a smooth projective variety with action of T = C* x C*
with finitely many fixpoints, pi, ..., Pe
Let E be equivariant vector bundle of rank r on X.

Fibre E(p;) of X at fixp. p; has basis of eigenvect. for T-action
E(pi) = @} Cv;, with action (t;, &) - vi = t{"t7"vj, nj,m; € Z

Equivariant chern class of fibre at fixpoint:

¢’ (E(p) = (1+¢{ (E(p))+. - +¢/ (E(p) = [[(1+nies+miez) € Z[es, o]
=1

Let P(c(E)))polynomial in Chern classes of é of degree d = dim(X)

Theorem (Bott residue formula)

_ = P(cT(E(pK)))
/[X] P(C(E)) - pr C;(TX(Pk))

(does not depend on €1, €2)
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Equivariant localization

For simplicity S = P2. T = C* x C* acts on P? by
(t f) - (Xo: Xp: Xo) = (Xo: t1.X1 : 22 X2)

Fixpoints are py = (1,0,0), p1 = (0,1,0), po = (0,0, 1).
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For simplicity S = P2. T = C* x C* acts on P? by
(t f) - (Xo: Xp: Xo) = (Xo: t1.X1 : 22 X2)

Fixpoints are py = (1,0,0), p1 = (0,1,0), po = (0,0, 1).
Local (equivariant) coordinates near pg are x = %,y = %
T action (t, b)(x,y) = (t1 x, ty), similar for the p1, po



Checks
(o] le}

Equivariant localization

For simplicity S = P2. T = C* x C* acts on P? by
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T action (t, b)(x,y) = (t1 x, ty), similar for the p1, po

Z ¢ (P?)Mis T-invariant = Z = Z, U Z; U2 supp(Z) = p;.
— Reduce to case supp(Z) = pj, €.9. po
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Equivariant localization

For simplicity S = P2. T = C* x C* acts on P? by
(t f) - (Xo: Xp: Xo) = (Xo: t1.X1 : 22 X2)

Fixpoints are py = (1,0,0), p1 = (0,1,0), po = (0,0, 1).

Local (equivariant) coordinates near pg are x = %,y = %

T action (t, b)(x,y) = (t1 x, ty), similar for the p1, po

Z ¢ (P?)Mis T-invariant = Z = Z, U Z; U2 supp(Z) = p;.
— Reduce to case supp(Z) = pj, €.9. po

Easy: Z is T-invariant < [y € k[x, y] is gen. by monomials
Can write

Iz = (y™, xy™, ... x"y™ x™*) (no,...,n,) partition of n

Fixpoints on (P?)["l are in bijections with triples (Py, Py, P») of
partitions of 3 numbers adding up to n.
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Equivariant localization

Need to compute things like ¢(O)
Ol vector bundle on (P2)" with fibre OI"l(Z) = HO(Oz)

fZ=20U7Z U2, SUp,O(Z,) = Pi, then
oll(z) = ol Zy) & OM(Z) @ OI™](Z,)
c’(0™(2)) = c"(O™)(Zy))cT (0M(Z1))cT (01™(Z2))

Let e.g. Z=2, Iz = (y4axy27X2y7 Xs)
Then the fibre OI(Z) = H°(Oz) = C[x, y]/(y*, xy?, x2y, x®)
Thus basis of eigenvectors of fibre for T action is

1Ty 2y 1 6 £ 8
X Xy with eigenvalues t tb
x2 t2
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Equivariant localization

Need to compute things like ¢(O)
Ol vector bundle on (P2)" with fibre OI"l(Z) = HO(Oz)
fZ=20U7Z U2, SUp,O(Z,) = Pi, then

oll(z) = ol Zy) & OM(Z) @ OI™](Z,)
c’(0™(2)) = c"(O™)(Zy))cT (0M(Z1))cT (01™(Z2))

Let e.g. Z=2, Iz = (y4axy27X2y7 Xs)
Then the fibre OI(Z) = H°(Oz) = C[x, y]/(y*, xy?, x2y, x®)
Thus basis of eigenvectors of fibre for T action is

1Ty 2y 1 6 £ 8
X Xy with eigenvalues t tb
x2 t2

Thus
cT(OM(Z)) = (1 + e2)(1 +2e2)(1 +Be2)(1 + e1)(1 + €1 +e2)(1 + 2¢9).
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