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Curve counting

Aim: count (singular) curves on algebraic surfaces
What does this mean?

C c P" projective curve over C

If Cis smooth, g(C) = genus = #handles

9., &
If C singular, g=0 g<1
9(C) = geometric genus = genus of normalization.

X X

a(C) > g(C) genus of smooth deformation

o o0l

Simplest singularity = node =transversal self intersection

a(C)— g(C) = 1 <



Curve counting

Severi degrees: count nodal curves in P?
C plane curve of degree d
C = Z(F) c P?, F € C[xp, X1, X2] homog. of degree d

{curves of degree d} = P(d+3)9/2

A node imposes one condition on curves of degree d
passing through a gen. point imposes one condition

Severi degree: ng ; = #{6 — nodal, degree d curves
through (d +3)d/2 — § gen. points}

(same as number of curves of genus (?,") —¢)
Ngo =1, ng1 = 3(d — 1)? (Steiner 1848)



Curve counting

General surface: S proj. alg. surface, L line bundle on S

L| = {C = Z(s) | s section of L} = P/~
P’  |L| general §-dimensional linear subspace
Severi degree: n(s;); := #{d-nodal curves in P’ }

Why are these interesting?

(1) Classical old question

(2) Rel. to other invariants and moduli spaces
(Pandharipande-Thomas-invariants Gromov-Witten-inv)
(3) Relation to physics (string theory).

String theory also gives refined invariants.
N(s.1),s should be Euler numbers of some moduli space M
The refined invariants something like Betti numbers.



Curve counting

Conjecture ('97)

@ There exists a universal polyn. n{>") in L2, LKg, K2, c,(S)
computing ns ;) s for L sufficiently ample
(2 P
S AP = AF AT AT A9,
5>0
for universal power series Ay, Az, As. Ay € Q[[1]]
(in particular Yo ng st = AY Ay 3 ASAs. modulo t°)

Proven by Tzeng, Kool-Shende-Thomas

KST obtain nfss’“ from generating function of Euler numbers

of Hilbert schemes of points on the universal curve C /P’

This Hilbert scheme is a Pandharipande-Thomas moduli space

SO ngs-‘“ is closely related to PT-invariants



Refined curve counting

Give refinement replacing Euler number by x_,-genus

Sl —Hilbert scheme of points on S

C = {(p,[C])|p € C} C S x P universal curve

cll = {([1Z],[€))|Z c €} c S! x P relative Hilbert scheme
X-y-genus x—y(X) = 32, o(=1)PTIhP9(X)y9

Write

1)

ZX—y(C[”])rn — Z N;C(j/)f;((‘l _ f)(‘l _ yr))g(t)—f—1

n=0 =0

g(L) =genus of smooth curve in |L]|
Refined invariants N\>"(y) := N¢(y).



Refined curve counting

Replaced Euler number by x_,-genus (combin. of Hodge

numbers) obtain refined invariants N\>"(y) € Z[y. y '], with
S.L S.L

NS (1) - S

Denote them NZ(y) in the case of P?

Conjecture
2
NSO — A ALK A 4©9)
8>0

for universal power series A1, Az, As, As € Qy="][[1]]
Ay and A4 are expressed in terms of modular forms.

Theorem

The conjecture is true if
@ S is an abelian or a K3 surface
© modulo t" for all surfaces




Refined curve counting

Know: N\>Y(—1) = ng, 5 for L sufficiently ample
What is the meaning at other values of y?
What do the refined invariants count?

The claim is that for toric surfaces this has to do
with real algebraic geometry and tropical geometry



Welschinger invariants

Welschinger invariants:
Show: Ngs’“(y) related to real algebraic and tropical geometry

Let Sreal algebraic surface; complex conj. r maps Sto S
real algebraic curve = curve C such that 7(C) = C
Real locus of C: C* = C™
P configuration of dim |L| — ¢ real points of S
Welschinger invariants: Ws ) ;(P) = > (—1)5(©)

c
sum is over all real §-nodal curves C in |L| though P

s(C) = #{isolated nodes of C} (>< O C
w(aiad mode>



Tropical curve counting

What | say below is for toric surfaces, for simplicity restrict to P2

Tropical geometry: piecewise linear version of algebraic
geometry

Real and complex algebraic curves can be counted by counting
piecewise linear objects: the tropical curves



Tropical curve counting

plane tropical curve of degree d:
piecewise linear graph I' immersed in R? s.t.
@ the edges e of I have rational slope
@ they have weight w(e) € Z-

© balancing condition:
let p(e) primitive integer vector in direction of e;

for all vertices v of I': L3
> p(e)w(e) = 0. %

eatv
© T has d unbounded edges in each of the directions
(-1.-1),(1,0),(0.1)

Ly e



Tropical curve counting

There is notion of number of nodes of tropical curve I

A simple tropical curve is trivalent

Known: through d(d + 3)/2 — § general points in R?, there are
finitely many d-nodal degree d tropical curves, all simple
Tropical Severi degree: Let I simple tropical curve, v vertex,
e1, e, €3 edges at v

m(v) := w(ei)w(ez)|det(p(er),p(e2)),  m(N)= [ m(v)

wle,) fla) \\ \\ \ v vertex

w(y )/(35

Tropical Severi degree gy = Z m(r

sum over all 5-nodal, degree d tropical curves through
d(d +3)/2 — § general points in R2.



Tropical curve counting

Let I' simple tropical curve, v vertex

o (=1)m=1/2 m(v) odd
V)= 0 m(v) even
wif= T wv

Tropical Welschinger inv.: W% := " w(r)

-
sum over all 5-nodal, degree d tropical curves through
d(d +3)/2 — ¢ general points in R2.



Tropical curve counting

Mikhalkin: The Severi degree is equal to the tropical Severi
degree and the Welschinger invariants are equal to the tropical
Welschinger invariants.

troy
Ngs = ”d,éo

Wy 5(P) = W(;(‘;F’

(the second for suitable P)
We know, for d > ¢ sufficiently ample N9(1) = ng

Conjecture
Ford >4/3+1 NJ(-1) = WP




Refined Severi degree

n/2__ n/2
quantum number: [n], := yﬁ'a_y e
—1)(n-1)/2
By definition [n]y = n, [n] 4 = (=1) n odd
0 n even

Let I' simple tropical curve, v vertex

M(v) :=[mW)ly, M) = ] M(v)

v vertex

Refined Severi degree: N;’:‘;p(y) := > M(I") sum as above

By definition N§P(1) = i = ng s,

NyP(—1) = WYP = Wys(P)

Conjecture
Ford >§/2+1, N¢(y) = Ng__‘gp(y)




Refined Node polynomials

The above conjectures specialize to

Conjecture
Q NiP(y) = Ng(y) ford > 5

© NZ(y) is a polynomial in d, y*
o

S N(y)E = BY BYB;s
50

for universal power series B; € Q[y*="][[1]].



Refined Node polynomials

@ There exist refined node polynomials
N5(d.y) € Q[d, y*'] with Ns(d,y) = NyP(y) ford > 5.

@ Ns(d.y) = N2(y), for 5 < 10.

Theorem

|
|I\)
|

> Ns(d,y)t =B B;Bs

5>0

for power series B; € Q[y="][[1]].

Rest of the conjecture is B; = B; fori = 1,2, 3.

Note that in particular the specialization to y = —1 gives a
corresponding result for the Welschinger invariants.



Floor diagrams

The method to prove this is floor diagrams and combinatorics

These have been introduced by Brugallé and Mikhalkin to study
the ngﬁ;", and used e.g. by Block, Liu, to prove the analogue of

the above results for ngﬁ;”



Floor diagrams

To I tropical curve through horizontally stretched conf. of points
associate marked floor diagram.
escalators: horizontal segments of I
floors: conn. comp. of complem. of
escalators. One marked point on every floor
and escalator
Floor diagram: black vertex for escalator
white vertex for floor W
connect if escalator connects to floor, keep
weight
Put m(A) =[], edges[w(e)]y

NiZ) = > mn)

A floor diagrams



Heisenberg algebra

H deformed Heisenberg algebra gen. by an, bn, neZ
a_p, b_pwith n > 0 are called creation operators

an, by with n > 0 are called annihilation operators
commutation relations

[an, am] =0= [bn,bm], [an,bm] = [n]y(in,_m

Fock space: F generated by creation operators a_,, b_p
acting on vacuum vector v

H-module by a,v; := 0, b,vy :=0forn>0

(concatenate and apply commutation relations)



Heisenberg algebra

Basis paramtr. by pairs of partitions
p=(1m, 2“2 o) y—(1”1 2v2....)

a, =1 2% s Ao = H, ~1» similarly for by, b_,
Vlu_p = da- Iub 7 Vm baSIS fOf F
inner product (vy|vy) = 1; an, by adjoint to a_p, bp.

Expression for refined Severi degrees in terms of
Heisenberg algebra:

H(t):=) bbx+t > aay,
k>0 [l =llw]| 1

el == >0 ipis sum includes p = ()

Theorem
NEP(y) = (v|CoeffaH(t)H@+3)/2=0y g 1)



ldea of proof: Feynman diagrams = floor diagrams

Feynman diagrams: To each monomial M in the bxb_x, a,a_,,

associate diagrams: %

@ for bxb_x write —@—~ e.g. for dciz2ya-(13) %
L

@ write vertices in order they are in the monomial

@ connect all vertices so that edges connect only vertices of
different colour, and the weights match
(b1b_1)28(12)8_1b1b_181

count the diagrams with multiplicity m(T") := [T, egges[W(€)]y-

Proposition (Wicks Theorem)

M) = > m(r)

I" Graphs for M

Claim: floor diagrams = Feynman diagrams



