Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual elliptic genus	Moduli of sheaves

Virtual Riemann-Roch and Applications

Lothar Göttsche (ICTP) joint work with Barbara Fantechi (SISSA) arXiv:0706.0988

Principal bundles, Stacks and Gerbes, Bad Honnef, June 2007

Introduction ●○	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Introduction					

Invariants of moduli spaces X (Donaldson inv, Donaldson-Thomas inv.)

- $\int_X \alpha \in \mathbb{Q}, \quad \alpha \in \mathcal{A}^*(X),$
- $\chi(X, V) \in \mathbb{Z}$, *V* vector bundle on *X*.

But only works well if X is nonsingular of expected dimension

Introduction ●○	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Introduction					

Invariants of moduli spaces X (Donaldson inv, Donaldson-Thomas inv.)

•
$$\int_X \alpha \in \mathbb{Q}, \quad \alpha \in \mathcal{A}^*(X),$$

• $\chi(X, V) \in \mathbb{Z}$, *V* vector bundle on *X*.

But only works well if X is nonsingular of expected dimension Good situation: X has perfect obstruction theory $[E^{-1} \rightarrow E^0]$ $d = rk(E^0) - rk(E^{-1})$ expected dimension

- virtual fundamental class [X]^{vir} ∈ A_d(X) compute ∫_{[X]^{vir}} α.
- virtual structure sheaf O^{vir}_X ∈ K₀(X) compute χ^{vir}(X, V) := χ(X, V ⊗ O^{vir}_X)

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Introduction					

Philosophy: Pair (X, E^{\bullet}) of proper scheme and perfect obstruction theory is viewed as "virtually smooth scheme". Should behave like a nonsingular variety.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Introduction					

Philosophy: Pair (X, E^{\bullet}) of proper scheme and perfect obstruction theory is viewed as "virtually smooth scheme". Should behave like a nonsingular variety. We show Riemann Roch:

$$\chi^{\mathrm{vir}}(X, V) = \int_{[X]^{\mathrm{vir}}} \mathrm{ch}(V) \mathrm{td}(T_X^{\mathrm{vir}}).$$

Introduction	Virtually smooth schemes	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Introduction				

Philosophy: Pair (X, E^{\bullet}) of proper scheme and perfect obstruction theory is viewed as "virtually smooth scheme". Should behave like a nonsingular variety. We show Riemann Roch:

$$\chi^{\mathrm{vir}}(X, V) = \int_{[X]^{\mathrm{vir}}} \mathrm{ch}(V) \mathrm{td}(T_X^{\mathrm{vir}}).$$

Applications: Study virtual analogues of χ_y -genus, Euler characteristic, Elliptic genus. They behave as if *X* was nonsingular.

Applications to moduli of sheaves on surfaces and *K*-theory Donaldson invariants.

Introduction ○●	Virtually smooth schemes	Virtual Riemann-Roch	Virtual elliptic genus	Moduli of sheaves
Introduction				

Philosophy: Pair (X, E^{\bullet}) of proper scheme and perfect obstruction theory is viewed as "virtually smooth scheme". Should behave like a nonsingular variety. We show Riemann Roch:

$$\chi^{\mathrm{vir}}(X, V) = \int_{[X]^{\mathrm{vir}}} \mathrm{ch}(V) \mathrm{td}(T_X^{\mathrm{vir}}).$$

Applications: Study virtual analogues of χ_y -genus, Euler characteristic, Elliptic genus. They behave as if *X* was nonsingular.

Applications to moduli of sheaves on surfaces and *K*-theory Donaldson invariants.

Other work Similar results are obtained by Ciocan-Fontanine and Kapranov for DG-schemes.

	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Obstruction T	heory				

Definition

Let *X* proper scheme. A perfect obstruction theory on *X* is a complex $[E^{-1} \rightarrow E^0]$ of vector bundles on *X* with morphism $\phi : E^{\bullet} \rightarrow L_X$ in derived category such that

- *h*⁰(φ) is isomorphism
- $h^{-1}(\phi)$ is surjective

Here L_X =cotangent complex. Only need

$$\tau_{\geq -1} L_X = [I/I^2 \to \Omega_M | X]$$

for $X \subset_{closed} M$ nonsingular , $I = I_{X/M}$.

Introduction	Virtually smooth schemes ○●○○	Virtual Riemann-Roch	Virtual elliptic genus	Moduli of sheaves
Virtually smoo	oth schemes			

Definition

A pair (X, E^{\bullet}) of proper scheme and perfect obstruction theory is called virtually smooth of dimension $d := \operatorname{rk}(E^0) - \operatorname{rk}(E^{-1})$. Let $[E_0 \to E_1]$ dual complex to $[E^{-1} \to E^0]$.

$$T_X^{\text{vir}} := E_0 - E_1 \in K^0(X), \quad \text{virtual tangent bundle}$$

 $\Omega_X^{\text{vir}} := E^0 - E^{-1} \in K^0(X), \quad \text{virtual cotangent bundle}$
 $K_X^{\text{vir}} := \det(E^0) \otimes \det(E^{-1})^{-1} \quad \text{virtual canonical bundle}$

From now on, let (X, E^{\bullet}) virtually smooth of dimension *d*.

Virtual fundamental class and virtual structure sheaf

Assume *X* can be embedded into smooth scheme *M*. Let $C_{X/M}$ normal cone. Then $C_{X/M} \subset_{closed} \mathcal{N}_{X/M}$. Intrinsic normal cone: $\mathfrak{C}_X := [C_{X/M}/i^*T_M]$ E^{\bullet} obstruction theory implies $[\mathcal{N}_{X/M}/i^*T_M] \subset_{closed} [E_1/E_0]$

$$\mathfrak{C}_X := [C_{X/M}/i^*T_M] \subset_{closed} [E_1/E_0]$$

 $\begin{array}{ccc} \text{Introduction} & & \text{Virtually smooth schemes} \\ \text{oo} & & \text{oo} & & \text{oo} \\ \end{array} & \begin{array}{c} \text{Virtual Riemann-Roch} & \text{Virtual} \chi_y \text{-genus} & \text{Virtual elliptic genus} \\ \text{oo} & & \text{oo} \\ \end{array} & \begin{array}{c} \text{Moduli of sheaves} \\ \text{oo} & & \text{oo} \\ \end{array} \\ \end{array} \\ \end{array}$

Virtual fundamental class and virtual structure sheaf

Assume *X* can be embedded into smooth scheme *M*. Let $C_{X/M}$ normal cone. Then $C_{X/M} \subset_{closed} \mathcal{N}_{X/M}$. Intrinsic normal cone: $\mathfrak{C}_X := [C_{X/M}/i^*T_M]$ E^{\bullet} obstruction theory implies $[\mathcal{N}_{X/M}/i^*T_M] \subset_{closed} [E_1/E_0]$

$$\mathfrak{C}_X := [C_{X/M}/i^*T_M] \subset_{closed} [E_1/E_0]$$

Let $\pi : E_1 \to [E_1/E_0]$. Put $C := \pi^{-1}(\mathfrak{C}_X)$, cone in E_1 . $s_0 : X \to E_1$ zero section.

virtual fundamental class

$$[X]^{\mathrm{vir}} := s_0^*([C]) \in A_d(X)$$

 $\begin{array}{ccc} \text{Introduction} & & & \\ \text{Virtually smooth schemes} & & \\ \text{oo} \bullet \bullet & & \\ \text{oo} \bullet & & \\ \end{array} \\ \begin{array}{c} \text{Virtual Riemann-Roch} & & \\ \text{Virtual } \chi_y \text{-genus} & & \\ \text{oo} & & \\ \text{oo} & & \\ \end{array} \\ \begin{array}{c} \text{Virtual elliptic genus} & \\ \text{oo} & & \\ \end{array} \\ \begin{array}{c} \text{Moduli of sheaves} & \\ \text{oo} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Moduli of sheaves} & \\ \text{oo} & & \\ \end{array} \\ \end{array} \\ \end{array}$

Virtual fundamental class and virtual structure sheaf

Assume *X* can be embedded into smooth scheme *M*. Let $C_{X/M}$ normal cone. Then $C_{X/M} \subset_{closed} \mathcal{N}_{X/M}$. Intrinsic normal cone: $\mathfrak{C}_X := [C_{X/M}/i^*T_M]$ E^{\bullet} obstruction theory implies $[\mathcal{N}_{X/M}/i^*T_M] \subset_{closed} [E_1/E_0]$

$$\mathfrak{C}_X := [C_{X/M}/i^*T_M] \subset_{closed} [E_1/E_0]$$

Let $\pi : E_1 \to [E_1/E_0]$. Put $C := \pi^{-1}(\mathfrak{C}_X)$, cone in E_1 . $s_0 : X \to E_1$ zero section.

virtual fundamental class

$$[X]^{\operatorname{vir}} := s_0^*([C]) \in A_d(X)$$

virtual structure sheaf

$$\mathcal{O}_X^{\mathrm{vir}} := [Ls_0^*\mathcal{O}_C] \in K_0(X)$$

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual elliptic genus	Moduli of sheaves
A trivial exam	ple			

X nonsingular, *E* vector bundle of rk = r on X, view $X = Z(s_0)$, $s_0 = \text{zero section}$ Expected dimension: d := dim(X) - rObstruction theory: $[E^{\vee} \xrightarrow{0} \Omega_X]$ $[X]^{\text{vir}} = c_r(E)$, $\mathcal{O}_X^{\text{vir}} = [\Lambda^r(E^{\vee}) \xrightarrow{0} \Lambda^{r-1}(E^{\vee}) \xrightarrow{0} \dots \xrightarrow{0} E^{\vee} \xrightarrow{0} \mathcal{O}_X]$. Introduction Virtually smooth schemes Virtual Riemann-Roch

Basic definitions

 $K^0(X) :=$ Groth. group of vector bundles $K_0(X) :=$ Groth. Group of coh. sheaves Let *V* vector bundle, Chern roots x_1, \ldots, x_r ,

$$\operatorname{ch}(V) := \sum_{i=1}^{r} e^{X_i} \in A^*(X)$$

defined on $\mathcal{K}^0(X)$ by $\operatorname{ch}(V_1 - V_2) = \operatorname{ch}(V_1) - \operatorname{ch}(V_2)$,

$$\operatorname{td}(V) := \prod_{i=1}^r \frac{x_i}{1 - e^{-x_i}} \in A^*(X)^{\times}$$

defined on $\mathcal{K}^0(X)$ by $\operatorname{td}(V_1 - V_2) = \operatorname{td}(V_1)/\operatorname{td}(V_2)$.

For $V \in K^0(X)$ virtual holomorphic Euler characteristic

$$\chi^{\mathrm{vir}}(\pmb{X},\pmb{V}):=\chi(\pmb{X},\pmb{V}\otimes\mathcal{O}_{\pmb{X}}^{\mathrm{vir}})$$

Introduction Virtually smooth schemes Virtual Riemann-Roch Virtual $\chi_{\mathcal{Y}}$ -genus Virtual elliptic genus Moduli of sheaves ooo virtual Riemann-Roch

Let
$$V \in K^0(X)$$

Theorem (virtual Grothendieck-Riemann-Roch)

 $f: X \rightarrow Y$ proper morphism, Y nonsingular.

 $\mathrm{ch}(f_*(V\otimes \mathcal{O}_X^{\mathrm{vir}}))\cdot\mathrm{td}(T_Y)\cap [Y]=f_*(\mathrm{ch}(V)\cdot\mathrm{td}(T_X^{\mathrm{vir}})\cap [X]^{\mathrm{vir}})$

Introduction Virtually smooth schemes Virtual Riemann-Roch Virtual Xy-genus OOO Virtual Riemann-Roch

Let
$$V \in K^0(X)$$

Theorem (virtual Grothendieck-Riemann-Roch)

 $f: X \rightarrow Y$ proper morphism, Y nonsingular.

 $\mathrm{ch}(f_*(V\otimes \mathcal{O}_X^{\mathrm{vir}}))\cdot\mathrm{td}(T_Y)\cap [Y]=f_*(\mathrm{ch}(V)\cdot\mathrm{td}(T_X^{\mathrm{vir}})\cap [X]^{\mathrm{vir}})$

This is not the best possible version: Working on an extension, where also Y is only virtually smooth.

Introduction Virtually smooth schemes virtual Riemann-Roch Virtual Xy-genus virtual elliptic genus ooo Moduli of sheaves ooo virtual Riemann-Roch

Let
$$V \in K^0(X)$$

Theorem (virtual Grothendieck-Riemann-Roch)

 $f: X \rightarrow Y$ proper morphism, Y nonsingular.

 $\mathrm{ch}(f_*(V\otimes \mathcal{O}_X^{\mathrm{vir}}))\cdot\mathrm{td}(T_Y)\cap [Y]=f_*(\mathrm{ch}(V)\cdot\mathrm{td}(T_X^{\mathrm{vir}})\cap [X]^{\mathrm{vir}})$

This is not the best possible version: Working on an extension, where also Y is only virtually smooth.

Corollary (virtual Hirzebruch-Riemann-Roch)

$$\chi^{\mathrm{vir}}(\boldsymbol{X},\boldsymbol{V}) = \int_{[\boldsymbol{X}]^{\mathrm{vir}}} \mathrm{ch}(\boldsymbol{V}) \cdot \mathrm{td}(\boldsymbol{T}_{\boldsymbol{X}}^{\mathrm{vir}})$$

 Introduction
 Virtually smooth schemes
 Virtual Riemann-Roch
 Virtual Xy-genus
 Virtual elliptic genus
 Moduli of sheaves

 virtual Riemann-Roch
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••<

Let
$$V \in K^0(X)$$

Theorem (virtual Grothendieck-Riemann-Roch)

 $f: X \rightarrow Y$ proper morphism, Y nonsingular.

 $\mathrm{ch}(f_*(V\otimes \mathcal{O}_X^{\mathrm{vir}}))\cdot\mathrm{td}(T_Y)\cap [Y]=f_*(\mathrm{ch}(V)\cdot\mathrm{td}(T_X^{\mathrm{vir}})\cap [X]^{\mathrm{vir}})$

This is not the best possible version: Working on an extension, where also Y is only virtually smooth.

Corollary (virtual Hirzebruch-Riemann-Roch)

$$\chi^{\mathrm{vir}}(\boldsymbol{X},\boldsymbol{V}) = \int_{[\boldsymbol{X}]^{\mathrm{vir}}} \mathrm{ch}(\boldsymbol{V}) \cdot \mathrm{td}(\boldsymbol{T}_{\boldsymbol{X}}^{\mathrm{vir}})$$

Corollary (weak virtual Serre duality)

 $\chi^{\mathrm{vir}}(X,V) = (-1)^d \chi^{\mathrm{vir}}(X,V^{\vee} \otimes K_X^{\mathrm{vir}})$

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Sketch of pro	of				

Use singular Riemann-Roch (Fulton Chap. 18) There exists $\tau_X : K_0(X) \to A_*(X)$, s.th.

• for
$$V \in K^0(X)$$
, $\mathcal{F} \in K_0(X)$,

$$au_X(V\otimes \mathcal{F}) = \operatorname{ch}(V) \cap au_X(\mathcal{F}),$$

2 for $f : X \to Y$ proper,

$$f_* \circ \tau_X = \tau_X \circ f_* : K_0(X) \to A_*(Y)$$

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Sketch of pro	of				

Use singular Riemann-Roch (Fulton Chap. 18) There exists $\tau_X : K_0(X) \to A_*(X)$, s.th.

• for
$$V \in K^0(X)$$
, $\mathcal{F} \in K_0(X)$,

$$au_X(V\otimes \mathcal{F}) = \operatorname{ch}(V) \cap au_X(\mathcal{F}),$$

(2) for $f: X \to Y$ proper,

$$f_* \circ \tau_X = \tau_X \circ f_* : K_0(X) \to A_*(Y)$$

With this reduce to the following: Let $p : C \to X$ projection. Then

$$\tau_{\mathcal{C}}(\mathcal{O}_{\mathcal{C}}) = p^*(\mathrm{td}(E_0)) \cap [\mathcal{C}]).$$

Show this by deformation to the normal cone.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus ••••	Virtual elliptic genus	Moduli of sheaves
Virtual x	nue				

Let *E* vector bundle of rank *r*. Put

$$\Lambda_t E := \sum_{i=0}^r \Lambda^i E t^i \in \mathcal{K}^0(X)[t], \quad \mathcal{S}_t E := \sum_{i \ge 0} \mathcal{S}^i E t^i \in \mathcal{K}^0(X)[[t]],$$

Easy:
$$S_t E = 1/\Lambda_{-t}E$$
, get
 $\Lambda_t : K^0(X) \to K^0(X)[[t]], \Lambda_t(E-F) = \Lambda_t E/S_{-t}E.$

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus ••••	Virtual elliptic genus	Moduli of sheaves	
Virtual χ_V -ge	enus					

Let *E* vector bundle of rank *r*. Put

$$\Lambda_t E := \sum_{i=0}^r \Lambda^i E t^i \in K^0(X)[t], \quad S_t E := \sum_{i \ge 0} S^i E t^i \in K^0(X)[[t]],$$

Easy: $S_t E = 1/\Lambda_{-t}E$, get $\Lambda_t : K^0(X) \to K^0(X)[[t]], \Lambda_t(E - F) = \Lambda_t E/S_{-t}E.$ Virtual *i*-forms: $\Omega_X^{i, \text{vir}} := \text{Coeff}_{t^i}\Lambda_t \Omega_X^{\text{vir}}.$

Introduction	Virtually smooth schemes	Virtual χ_y -genus $\bullet \circ \circ \circ$	Moduli of sheaves
Virtual action	DU C		

Let *E* vector bundle of rank *r*. Put

$$\Lambda_t E := \sum_{i=0}^r \Lambda^i E t^i \in K^0(X)[t], \quad S_t E := \sum_{i \ge 0} S^i E t^i \in K^0(X)[[t]],$$

Easy:
$$S_t E = 1/\Lambda_{-t}E$$
, get
 $\Lambda_t : \mathcal{K}^0(X) \to \mathcal{K}^0(X)[[t]], \Lambda_t(E - F) = \Lambda_t E/S_{-t}E.$
Virtual *i*-forms: $\Omega_X^{i, \text{vir}} := \text{Coeff}_{t^i}\Lambda_t \Omega_X^{\text{vir}}.$

Definition

Virtual χ_{-y} -genus:

$$\chi_{-y}^{\mathrm{vir}}(X) := \chi^{\mathrm{vir}}(X, \Lambda_{-y}\Omega_X^{\mathrm{vir}}) = \sum_{n \ge 0} (-1)^n \chi(X, \Omega_X^{i, \mathrm{vir}}) \in \mathbb{Z}[[y]],$$

 $\chi_{-y}^{\operatorname{vir}}(X, V) := \chi^{\operatorname{vir}}(X, V \otimes \Lambda_{-y}\Omega_X^{\operatorname{vir}}).$ Will show $\chi_{-y}^{\operatorname{vir}}(X) \in \mathbb{Z}[y].$ virtual Euler characteristic $e^{\operatorname{vir}}(X) := \chi_{-1}^{\operatorname{vir}}(X).$

Introductio	n Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus $0 \bullet 00$	Virtual elliptic genus	Moduli of sheaves
Virtual χ_y	genus				
Π	heorem				
($\chi^{\mathrm{vir}}_{-\mathbf{y}}(\mathbf{X}) \in \mathbb{Z}[\mathbf{y}]$, of degree d,			

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus $0 \bullet 0 \circ$	Virtual elliptic genus	Moduli of sheaves
Virtual vy-de	nus				

Theorem

Sketch of proof: Apply Riemann-Roch theorem: x_1, \ldots, x_n Chern roots of E_0, u_1, \ldots, u_m Chern roots of $E_1, d = n - m$

$$\chi_{-y}^{\text{vir}}(X) = \int_{[X]^{\text{vir}}} \prod_{i=1}^{n} \frac{x_i(1 - ye^{-x_i})}{1 - e^{-x_i}} \prod_{j=1}^{m} \frac{1 - e^{-u_j}}{u_j(1 - ye^{-u_j})}$$

Computing modulo classes of degree > d, the integrand becomes a polynomial in (1 - y).

00 Deformation i		0000		
	Virtually smooth schemes	Virtual χ_y -genus	Virtual elliptic genus	

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	 Virtual elliptic genus	Moduli of sheaves
Deformation i	nuorionaa			

Theorem

Let $\mathcal{X} \to B$ family of proper virtually smooth schemes. Let $V \in K^0(\mathcal{X})$. Then $\chi^{\text{vir}}(X_b, V|_{X_b})$ is locally constant on B.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	 Virtual elliptic genus	Moduli of sheaves
Deformation i	nuorionaa			

Theorem

Let $\mathcal{X} \to B$ family of proper virtually smooth schemes. Let $V \in K^0(\mathcal{X})$. Then $\chi^{vir}(X_b, V|_{X_b})$ is locally constant on B.

Corollary

 $\chi^{\rm vir}_{-\nu}(X)$, and $e^{\rm vir}(X)$ are deformation invariants.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
Deformation i	nyarianoo				

Theorem

Let $\mathcal{X} \to B$ family of proper virtually smooth schemes. Let $V \in K^0(\mathcal{X})$. Then $\chi^{vir}(X_b, V|_{X_b})$ is locally constant on B.

Corollary

 $\chi^{\text{vir}}_{-\nu}(X)$, and $e^{\text{vir}}(X)$ are deformation invariants.

In particular if *B* connected and X_0 smooth of dimension *d* then $\chi^{\text{vir}}(X_b, V|_{X_b}) = \chi(X_0, V|_{X_0}), \ \chi^{\text{vir}}_{-y}(X_b) = \chi_{-y}(X_0), \ e^{\text{vir}}(X_b) = e(X_0).$

Fultons Chern class: If $X \subset_{closed} M$, and M nonsingular

$$c_F(X) := c(T_M|_X) \cap s(X, M) \in A_*(X)$$

(indep. of *M*). Generalization of $c(T_X)$ for singular schemes (related to $c_{SM}(X)$, which satisfies deg $(c_{SM}(X)) = e(X)$).

Fultons Chern class: If $X \subset_{closed} M$, and M nonsingular

$$c_F(X) := c(T_M|_X) \cap s(X,M) \in A_*(X)$$

(indep. of *M*). Generalization of $c(T_X)$ for singular schemes (related to $c_{SM}(X)$, which satisfies deg $(c_{SM}(X)) = e(X)$).

Corollary

- If X is lci, then $e^{vir}(X) = deg(c_F(X))$.
- deg(c_F(X)) is a deformation invariant of proper lci schemes.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual elliptic genus ●○	Moduli of sheaves
Virtual Elliptic	aenus			

Definition

For $F \in K^0(X)$ put

$$\mathcal{E}(F) := \bigotimes_{n \ge 0} \left(\Lambda_{-yq^n} F^{\vee} \otimes \Lambda_{-y^{-1}q^n} F \otimes S_{q^n}(F \oplus F^{\vee}) \right)$$

The virtual elliptic genus is

$$\textit{Ell}^{\rm vir}(X;z,\tau) := y^{-d/2} \chi^{\rm vir}_{-y}(X,\mathcal{E}(T_X^{\rm vir})), \quad q = e^{2\pi i \tau}, y = e^{2\pi i z}$$

	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Moduli of sheaves
Virtual Elliptic	denus			

Definition

For $F \in K^0(X)$ put

$$\mathcal{E}(F) := \bigotimes_{n \ge 0} \left(\Lambda_{-yq^n} F^{\vee} \otimes \Lambda_{-y^{-1}q^n} F \otimes S_{q^n}(F \oplus F^{\vee}) \right)$$

The virtual elliptic genus is

$$\textit{Ell}^{\rm vir}(\textit{X};\textit{z},\tau) := \textit{y}^{-d/2} \chi^{\rm vir}_{-\textit{y}}(\textit{X},\mathcal{E}(\textit{T}^{\rm vir}_{\textit{X}})), \quad \textit{q} = \textit{e}^{2\pi i \tau}, \textit{y} = \textit{e}^{2\pi i z}$$

Theorem

Assume $c_1(K_X^{vir}) = 0$, then Ell^{vir}(X; z, τ) is a weak Jacobi form of weight 0 and index d/2.

This means it behaves like a theta function: modular in τ , elliptic in *z*.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus ○●	Moduli of sheaves
Virtual Elliptic	genus				

Proof is similar to the standard case. Apply Riemann-Roch and make explicit calculations with the Chern roots.

00	Virtually smooth schemes	000 Virtual Riemann-Roch		oo	●00000		
Moduli of sheaves							

In work in progress with Nakajima, Mochizuki and Yoshioka, this will be applied to invariants of moduli spaces of vector bundles on surfaces.

Let (X, H) projective surface

 $M_H^X(c_1, c_2) = \{H$ -stable rank 2 sheaves $\}$

 $\mathcal{E} \rightarrow X \times M$ universal sheaf, $L \in H_2(X)$,

$$\mu(L):=\big(c_2(\mathcal{E})-\frac{1}{4}c_1(\mathcal{E})^2\big)/L\in H^2(M).$$

Donaldson invariants: $\Phi_{X,c_1}^H(L^d) := \int_{[M]^{\text{vir}}} \mu(L)^d$.

Let \overline{L} line bundle on M with $c_1(\overline{L}) = \mu(L)$ (determinant bundle). *K*-theory Donaldson invariant: $\chi^{\text{vir}}(M, \overline{L})$.

 $M_H^X(c_1, c_2)$ depends on *H* via system of walls and chambers in ample cone C_X

Definition

 $\xi \in H^2(X,\mathbb{Z})$ defines wall of type (c_1,c_2) if

$$\bigcirc \ \xi \equiv c_1 \mod 2H^2(X,\mathbb{Z})$$

$$2 4c_2 - c_1^2 + \xi^2 \ge 0$$

The wall is

$$W^{\xi} := \{H \in C_X \mid H \cdot \xi = 0\}$$

Chambers=connected components of $C_X \setminus$ walls $M_X^H(c_1, c_2)$ and invariants constant on chambers, change when H crosses wall (i.e. $H_- \to H_+$ with $H_-\xi < 0 < H_+\xi$)

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual elliptic genus	Moduli of sheaves	
Donaldson in	variants				

Theorem

- If $p_g(X) > 0$, then $\Phi_{X,c_1}^H(L^d)$ does not change under wallcrossing.
- 2 If $p_g(X) = 0$, explicit generating function for wallcrossing in terms of modular forms.

(1) is well-know from gauge theory, algebraic proof due to Mochizuki.

(2) Proven by G-Nakajima-Yoshioka, in case moduli spaces are smooth, results of Mochizuki imply it for virtual case.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves ○○○○●○
K-theory Don	aldson invariants				
	eorem If $p_g(X) > 0$, the under wallcrost		₁ , <i>c</i> ₂), <i>L</i>) do	es not chang	ie

2 If $p_g(X) = 0$, explicit generating function for wallcrossing in terms of elliptic functions.

Introduction	Virtually smooth schemes		Virtual χ_y -genus		Moduli of sheaves		
K the same Data shifts an investigate							

Theorem

If $p_g(X) > 0$, then $\chi^{\text{vir}}(M_H^X(c_1, c_2), \overline{L})$ does not change under wallcrossing.

2 If $p_g(X) = 0$, explicit generating function for wallcrossing in terms of elliptic functions.

(1) Follows from virtual Riemann-Roch and part (1) of previous theorem.

(2) Proven by G-Nakajima-Yoshioka, in case moduli spaces are smooth, virtual Riemann-Roch and results of Mochizuki allow to adapt argument for virtual case.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
00	0000	000	0000	00	000000

K-theory Donaldson invariants

Theorem

- If $p_g(X) > 0$, then $\chi^{\text{vir}}(M_H^X(c_1, c_2), \overline{L})$ does not change under wallcrossing.
- 2 If $p_g(X) = 0$, explicit generating function for wallcrossing in terms of elliptic functions.

(1) Follows from virtual Riemann-Roch and part (1) of previous theorem.

(2) Proven by G-Nakajima-Yoshioka, in case moduli spaces are smooth, virtual Riemann-Roch and results of Mochizuki allow to adapt argument for virtual case.

Note: Uses moduli stacks of sheaves with fixed determinant, which are μ_r -gerbes, extend virtual Riemann-Roch to gerbes.

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves
					000000

K-theory Donaldson invariants

Theorem

If $p_g(X) > 0$, then $\chi^{\text{vir}}(M_H^X(c_1, c_2), \overline{L})$ does not change under wallcrossing.

If $p_g(X) = 0$, explicit generating function for wallcrossing in terms of elliptic functions.

(1) Follows from virtual Riemann-Roch and part (1) of previous theorem.

(2) Proven by G-Nakajima-Yoshioka, in case moduli spaces are smooth, virtual Riemann-Roch and results of Mochizuki allow to adapt argument for virtual case.

Note: Uses moduli stacks of sheaves with fixed determinant, which are μ_r -gerbes, extend virtual Riemann-Roch to gerbes.

Note: If $c_2 \gg 0$, then $M_H^X(c_1, c_2)$ has the expected dimension and therefore is lci. Then

$$\chi(M_{H}^{X}(c_{1},c_{2}),\overline{L}) = \chi^{\mathrm{vir}}(M_{H}^{X}(c_{1},c_{2}),\overline{L})$$

Introduction	Virtually smooth schemes	Virtual Riemann-Roch	Virtual χ_y -genus	Virtual elliptic genus	Moduli of sheaves		
Euler characteristic							

Theorem

- If $p_g(X) > 0$, then $e^{vir}(M_H^X(c_1, c_2))$ does not change under wallcrossing.
- 2 If $p_g(X) = 0$, explicit generating function for wallcrossing in terms of modular forms.

Compute $e^{\text{vir}}(M)$ as $\int_{[M]^{\text{vir}}} c_d(T_M^{\text{vir}})$. Apply again results of Mochizuki.

Note: If $c_2 \gg 0$, and thus $M_H^X(c_1, c_2)$ is lci, then

$$e^{\mathrm{vir}}(M_{H}^{X}(c_{1},c_{2}) = \deg(c_{F}(M_{H}^{X}(c_{1},c_{2}))).$$