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Introduction

Invariants of moduli spaces X (Donaldson inv,
Donaldson-Thomas inv.)∫

X α ∈ Q, α ∈ A∗(X ),
χ(X , V ) ∈ Z, V vector bundle on X .

But only works well if X is nonsingular of expected dimension

Good situation: X has perfect obstruction theory [E−1 → E0]
d = rk(E0)− rk(E−1) expected dimension

virtual fundamental class [X ]vir ∈ Ad(X )
compute

∫
[X ]vir α.

virtual structure sheaf Ovir
X ∈ K0(X )

compute χvir(X , V ) := χ(X , V ⊗Ovir
X )
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Introduction

Philosophy: Pair (X , E•) of proper scheme and perfect
obstruction theory is viewed as "virtually smooth scheme".
Should behave like a nonsingular variety.

We show Riemann Roch:

χvir(X , V ) =

∫
[X ]vir

ch(V )td(T vir
X ).

Applications: Study virtual analogues of χy -genus, Euler
characteristic, Elliptic genus. They behave as if X was
nonsingular.
Applications to moduli of sheaves on surfaces and K -theory
Donaldson invariants.
Other work Similar results are obtained by Ciocan-Fontanine
and Kapranov for DG-schemes.
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Obstruction Theory

Definition
Let X proper scheme. A perfect obstruction theory on X is a
complex [E−1 → E0] of vector bundles on X with morphism
φ : E• → LX in derived category such that

h0(φ) is isomorphism
h−1(φ) is surjective

Here LX =cotangent complex. Only need

τ≥−1LX = [I/I2 → ΩM |X ]

for X ⊂closed M nonsingular , I = IX/M .
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Virtually smooth schemes

Definition
A pair (X , E•) of proper scheme and perfect obstruction theory
is called virtually smooth of dimension d := rk(E0)− rk(E−1).
Let [E0 → E1] dual complex to [E−1 → E0].

T vir
X := E0 − E1 ∈ K 0(X ), virtual tangent bundle

Ωvir
X := E0 − E−1 ∈ K 0(X ), virtual cotangent bundle

K vir
X := det(E0)⊗ det(E−1)−1 virtual canonical bundle

From now on, let (X , E•) virtually smooth of dimension d .
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Virtual fundamental class and virtual structure sheaf

Assume X can be embedded into smooth scheme M.
Let CX/M normal cone. Then CX/M ⊂closed NX/M .
Intrinsic normal cone: CX := [CX/M/i∗TM ]
E• obstruction theory implies [NX/M/i∗TM ] ⊂closed [E1/E0]

CX := [CX/M/i∗TM ] ⊂closed [E1/E0]

Let π : E1 → [E1/E0]. Put C := π−1(CX ), cone in E1.
s0 : X → E1 zero section.

virtual fundamental class

[X ]vir := s∗0([C]) ∈ Ad(X )

virtual structure sheaf

Ovir
X := [Ls∗0OC ] ∈ K0(X )
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A trivial example

X nonsingular, E vector bundle of rk = r on X ,
view X = Z (s0), s0 = zero section
Expected dimension: d := dim(X )− r
Obstruction theory: [E∨ 0−→ΩX ]
[X ]vir = cr (E),
Ovir

X = [Λr (E∨)
0−→Λr−1(E∨)

0−→ . . .
0−→E∨ 0−→OX ].
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Basic definitions

K 0(X ) :=Groth. group of vector bundles
K0(X ) :=Groth. Group of coh. sheaves
Let V vector bundle, Chern roots x1, . . . , xr ,

ch(V ) :=
r∑

i=1

exi ∈ A∗(X )

defined on K 0(X ) by ch(V1 − V2) = ch(V1)− ch(V2),

td(V ) :=
r∏

i=1

xi

1− e−xi
∈ A∗(X )×

defined on K 0(X ) by td(V1 − V2) = td(V1)/td(V2).

For V ∈ K 0(X ) virtual holomorphic Euler characteristic

χvir(X , V ) := χ(X , V ⊗Ovir
X )
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virtual Riemann-Roch

Let V ∈ K 0(X )

Theorem (virtual Grothendieck-Riemann-Roch)
f : X → Y proper morphism, Y nonsingular.

ch(f∗(V ⊗Ovir
X )) · td(TY ) ∩ [Y ] = f∗(ch(V ) · td(T vir

X ) ∩ [X ]vir)

This is not the best possible version: Working on an extension,
where also Y is only virtually smooth.

Corollary (virtual Hirzebruch-Riemann-Roch)

χvir(X , V ) =

∫
[X ]vir

ch(V ) · td(T vir
X )

Corollary (weak virtual Serre duality)

χvir(X , V ) = (−1)dχvir(X , V∨ ⊗ K vir
X )
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Sketch of proof

Use singular Riemann-Roch (Fulton Chap. 18)
There exists τX : K0(X ) → A∗(X ), s.th.

1 for V ∈ K 0(X ), F ∈ K0(X ),

τX (V ⊗F) = ch(V ) ∩ τX (F),

2 for f : X → Y proper,

f∗ ◦ τX = τX ◦ f∗ : K0(X ) → A∗(Y )

With this reduce to the following: Let p : C → X projection.
Then

τC(OC) = p∗(td(E0)) ∩ [C]).

Show this by deformation to the normal cone.
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Virtual χy -genus

Let E vector bundle of rank r . Put

ΛtE :=
r∑

i=0

ΛiEt i ∈ K 0(X )[t ], StE :=
∑
i≥0

SiEt i ∈ K 0(X )[[t ]],

Easy: StE = 1/Λ−tE , get
Λt : K 0(X ) → K 0(X )[[t ]],Λt(E − F ) = ΛtE/S−tE .

Virtual i-forms: Ωi,vir
X := Coefft i ΛtΩ

vir
X .

Definition
Virtual χ−y -genus:

χvir
−y (X ) := χvir(X ,Λ−yΩvir

X ) =
∑
n≥0

(−1)nχ(X ,Ωi,vir
X ) ∈ Z[[y ]],

χvir
−y (X , V ) := χvir(X , V ⊗ Λ−yΩvir

X ). Will show χvir
−y (X ) ∈ Z[y ].

virtual Euler characteristic evir(X ) := χvir
−1(X ).
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Virtual χy -genus

Theorem
1 χvir

−y (X ) ∈ Z[y ], of degree d,
equivalently χ(X ,Ωi,vir

X ) = 0 for i > d.
2 χvir

−y (X ) = ydχvir
−1/y (X ),

equivalently χ(X ,Ωi,vir
X ) = (−1)dχ(X ,Ωd−i,vir

X )

3 evir(X ) =
∫
[X vir] cd(T vir

X ).

Sketch of proof: Apply Riemann-Roch theorem:
x1, . . . , xn Chern roots of E0, u1, . . . , um Chern roots of E1,
d = n −m

χvir
−y (X ) =

∫
[X ]vir

n∏
i=1

xi(1− ye−xi )

1− e−xi

m∏
j=1

1− e−uj

uj(1− ye−uj )

Computing modulo classes of degree > d , the integrand
becomes a polynomial in (1− y).
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Deformation invariance

A family of proper virtually smooth schemes is π : X → B
proper, B nonsingular, with relative perfect obstruction theory.
Then all fibres are virtually smooth.

Theorem
Let X → B family of proper virtually smooth schemes.
Let V ∈ K 0(X ).
Then χvir(Xb, V |Xb) is locally constant on B.

Corollary

χvir
−y (X ), and evir(X ) are deformation invariants.

In particular if B connected and X0 smooth of dimension d then
χvir(Xb, V |Xb) = χ(X0, V |X0), χvir

−y (Xb) = χ−y (X0),
evir(Xb) = e(X0).
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Deformation invariance

Fultons Chern class: If X ⊂closed M, and M nonsingular

cF (X ) := c(TM |X ) ∩ s(X , M) ∈ A∗(X )

(indep. of M). Generalization of c(TX ) for singular schemes
(related to cSM(X ), which satisfies deg(cSM(X )) = e(X )).

Corollary
1 If X is lci, then evir(X ) = deg(cF (X )).
2 deg(cF (X )) is a deformation invariant of proper lci

schemes.
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Virtual Elliptic genus

Definition

For F ∈ K 0(X ) put

E(F ) :=
⊗
n≥0

(
Λ−yqnF∨ ⊗ Λ−y−1qnF ⊗ Sqn(F ⊕ F∨)

)
The virtual elliptic genus is

Ellvir(X ; z, τ) := y−d/2χvir
−y (X , E(T vir

X )), q = e2πiτ , y = e2πiz

Theorem

Assume c1(K vir
X ) = 0, then

Ellvir(X ; z, τ) is a weak Jacobi form of weight 0 and index d/2.

This means it behaves like a theta function:
modular in τ , elliptic in z.
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Virtual Elliptic genus

Proof is similar to the standard case.
Apply Riemann-Roch and make explicit calculations with the
Chern roots.
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Moduli of sheaves

In work in progress with Nakajima, Mochizuki and Yoshioka,
this will be applied to invariants of moduli spaces of vector
bundles on surfaces.
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Moduli of sheaves

Let (X , H) projective surface

MX
H (c1, c2) = {H-stable rank 2 sheaves}

E → X ×M universal sheaf, L ∈ H2(X ),

µ(L) :=
(
c2(E)− 1

4
c1(E)2)/L ∈ H2(M).

Donaldson invariants: ΦH
X ,c1

(Ld) :=
∫
[M]vir µ(L)d .

Let L line bundle on M with c1(L) = µ(L) (determinant bundle).
K -theory Donaldson invariant: χvir(M, L).
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Walls and chambers

MX
H (c1, c2) depends on H via system of walls and chambers in

ample cone CX

Definition

ξ ∈ H2(X , Z) defines wall of type (c1, c2) if

1 ξ ≡ c1 mod 2H2(X , Z)

2 4c2 − c2
1 + ξ2 ≥ 0

The wall is
W ξ := {H ∈ CX | H · ξ = 0}

Chambers=connected components of CX\ walls
MH

X (c1, c2) and invariants constant on chambers, change when
H crosses wall (i.e. H− → H+ with H−ξ < 0 < H+ξ)
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Donaldson invariants

Theorem
1 If pg(X ) > 0, then ΦH

X ,c1
(Ld) does not change under

wallcrossing.
2 If pg(X ) = 0, explicit generating function for wallcrossing in

terms of modular forms.

(1) is well-know from gauge theory, algebraic proof due to
Mochizuki.
(2) Proven by G-Nakajima-Yoshioka, in case moduli spaces are
smooth, results of Mochizuki imply it for virtual case.
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K-theory Donaldson invariants

Theorem
1 If pg(X ) > 0, then χvir(MX

H (c1, c2), L) does not change
under wallcrossing.

2 If pg(X ) = 0, explicit generating function for wallcrossing in
terms of elliptic functions.

(1) Follows from virtual Riemann-Roch and part (1) of previous
theorem.
(2) Proven by G-Nakajima-Yoshioka, in case moduli spaces are
smooth, virtual Riemann-Roch and results of Mochizuki allow to
adapt argument for virtual case.
Note: Uses moduli stacks of sheaves with fixed determinant,
which are µr -gerbes, extend virtual Riemann-Roch to gerbes.

Note: If c2 � 0, then MX
H (c1, c2) has the expected dimension

and therefore is lci. Then

χ(MX
H (c1, c2), L) = χvir(MX

H (c1, c2), L)
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Euler characteristic

Theorem
1 If pg(X ) > 0, then evir(MX

H (c1, c2)) does not change under
wallcrossing.

2 If pg(X ) = 0, explicit generating function for wallcrossing in
terms of modular forms.

Compute evir(M) as
∫
[M]vir cd(T vir

M ).
Apply again results of Mochizuki.

Note: If c2 � 0, and thus MX
H (c1, c2) is lci, then

evir(MX
H (c1, c2) = deg(cF (MX

H (c1, c2))).
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