REDUCIBLE POLYNOMIALS
R. CHELA

All the polynomials considered have rational integral coefficients.
Let N be any positive real number and p,(n, N) the number of poly-
nomials

fl@)=2"+a, " 14...4a, (@®>1), 1)
which are reducible with a factor of degree 1 <<k <{in and satisfying
la;| <N, @E=1,...,%). @)

B. L. van der Waerden proved the following relations (¢f. [1]):
A Nk <p,(n, N) < B N"*, (k<}n) (3)
A, Nn*logN < p,(n, N) < ByN**logN, (k=4n) (4)
where 4,, B,, 4,, B,, are positive constants independent of N.
When # > 2 from (3) and (4) we get:
ANl <p(n, N)< BN™1, (n>2), 50
where p(n, N) is the total number of reducible polynomials (1) with condi-

tion (2) and where 4, B are positive constants independent of V.
This result still leaves open the question whether

p(n, N)

lim , (mn>2), 6
N-w Nn-l ( ) ( )
exists. We shall show that this is the case.
Let
kn=5...gdx1...dxn_1,, (7)
(R) y

where (R) is the region of the n— 1-dimensional Euclidean space (coordin-
ates xy, ..., x,_,) defined by

|2 <1, =1, ..., n—1, (8)
n—1
«Elxi < L, (9)

and let {(2) be the Riemann zeta function of the complex variable z.
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THEOREM 1.

}vlﬂ PX;;_JY) e 2n{l(n—1)—%+ %}’ (n>2). (10)

We need several lemmas.
Let

T,, n(v)=number of polynomials (1) with condition (2) and having
the linear factor z-+v, v = integer.
p1(n, N) =number of polynomials (1) with condition (2) and having
two (not necessarily distinet) linear factors.

Lemma 1.
pi(n N)=XT, y(v)+o(N"?) (11)

where o is the Landaw symbol and where the summation extends over all
integers v in the interval [—N, N].

Proof. We have .
Z T, () =pi(n, N) (12)

since in the left-hand side a polynomial may be counted repeatedly. Let

R,;(t=1, ..., n) be the number of polynomials (1) with exactly ¢ distinct

linear factors. HKach of these is counted in X T, y(v) exactly ¢ times.
14

Moreover
Ri <ﬁl(n’ N) <p2(n’3 N)3 for 7’> 1.

But from (3) and (4) we have
pa(n, N) = o(N"1).
Therefore, p,(n, N) and X 7T, y(v) differ in a term of the form o(N»-1).

LeMMmaA 2.
Z T,

lim bl {{n—1)—1}, [(n>2), (13)

where for fized N the summation extends over all integers v with 1 <|v| < N.
Proof. Since T, y(v)=T, ny(—v), we may assume 2 v <{N. Let
(@) = (@+v) @ 14-by @24 ...+, _,). (14)
T, n(v) is equal to the number of n—1-tuples (b,, ..., b,_;) satisfying
(14) when the coefficients of f(x) vary according to (2).
From (14) we get
a,—b,
v

Byy = , @<i<n), b,=0, (15)

ay = b;+v. (16)
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If b, is fixed and in (15) a; varies in the interval [—N, N7, then b, ,
takes all the integral values of the interval

[—N-|—bi N—b,.]

) 2 v

whose amplitude is 2N /v and, therefore, independent of b, To any b,
there correspond, therefore,

2N 2N
Bl
integral values of b; ;. Hence the number of solutions of (15) is of form

ﬁ(?g +rxri), (]rvil <1)‘

1=1

Moreover, using the inequality
(1 1 1
[64] <N(7 Sl s ,,n—-1)

which follows from (15) and (2), we can see that for 2 <v < N the values
of b, also satisfy (16) with |a,| <N, provided N is large enough. We
have therefore,

[Nl-1 n (9N
3 Tl =2 & H(—+n,-)+2T,.,N([N])
w>1 y=2 =1\ V
—2 ¥ (%V)"_I-Fo(Nﬂ—l). (17)
=2

From (17) follows (13). This completes the proof.
Let

t(f(x)) =a,+...4a,, (18)
L, (N, h) = number of polynomials f(x) satisfying (2) and ¢ ( f(w)) =h. (19)
We have clearly

Tn.N(l) = Ln(Na _1), (20)
L,(N, k)= L,(N, —h). (21)

LEmMa 3.
lim Sl — @

for all h, where k, is given by (7).

Proof. Assume for the moment that

. L,(N,0
hll\;l]v(‘Tl)=kn' (23)
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We shall show that (23) implies (22) or, equivalently

e (NG
llvlﬂm—- ]., for all 5. (24)

By (21) we may assume %> 0. Let
Z, (N, h) = set of polynomials (1) with condition (2) and ¢ ( f(x)) =h.

Let f(x)eZ,(N,0) and let f'(z)=a"+4-a,'z"1+...4a, where
a'=ay,..,a, y=a,,, a,’=a,+h. Then

[/ (@) e L, (N+P, k).
The mapping f(x)—>f'(x) is a binmique map

L., 0)> L, (N+h, h).
Hence
Ly(N, 0) < L (N+h, ). (26)

Let f(x)e 2, (N, k) and f’(z) be given now by
a =ay,...,a, =0, , a, =a,—h.

By the same argument we have

L,(N, k)< L,(N-+h, 0). (26)
From (25) and (26) it follows
Ly(N—h, 0) _ Ly(N, ) _ L,(N+h, 0) (27)

Ly(N,0) = L,(N,0)~ LN, 0)

From (27) and our assumption follows (24).

We shall now prove (23) and this will complete the proof of Lemma 3.

We shall work in E, = n-dimensional Euclidean space (coordinates :
%y, ..., ;). Let A, be the lattice of integral points in E,. Moreover,
if § is any region < E,, we shall denote with || .S|| the number of points of
S8nA, and with V(S) the volume of S.

L,(N, 0) is equal to the number of points of A, which lie inside the
cube Oy :|2;| <N (¢=1, ..., n) and in the hyperplane H : ,+...+x, = 0,

v L,(N, 0) =||A,ACy~H|. (28)
Hisan (n—1)-dimensional space. We takeinitz, ..., ,_; as coordinates

and we identify H with E,_,.
We then have also A,nH=A,_,.

n—1
5 xi\ <N.

i=1

CynH is given by |z,| <N, (¢=1,...,n—1), and

But
}llﬂ U_f}_n_’ll%'l__?ﬂ! =V(R,), (29)
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where R, is the region obtained transforming Cy~H by the substitution
z;=Ny; 6=1, ..., n—1), i.e. R, is given by

ll <1 @G=1,...,n—-1,

n—1
z ?/il <1l
i=1

From (28) and (29) we get

. L,(N,0
tim 226V Oy (R = I 5 P
N-® (Rl)
==
COROLLARY. T e
Im = b (31)
Proof of Theorem 1. We have
2:'Iv'n,N(V) =”§1 Tn,N(V)+2Tn,N(1)+Tn,N(O) (32)
From (32), (31), (13) and 7, 5(0)~2""1N"1, we get
= Tn,N(V)

¢ k

lim i — oD+ ), (0>2). 69
Finally, from (33), Lemma (1), (3) and (4), follows (10).
Remark 1. Formula (10) is not valid when n = 2. However, we can

show that for quadratic polynomials we have:

THEOREM 2. < Ry

lim

I SNTEN - A

Remark 2. Let

p*(n, N) = number of polynomials (1) satisfying the sphere-condition

3 a2 <N, (35)

i=1

W. Specht established asymptotic formulae for p*(n, N) when N>
(¢f. [2]). From his results and ours it follows:

. p(n,N)

izl
N-wp¥(2, N) ] (32}

On the other hand, if we put
v, (N) = volume of the sphere of radius XN,
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. 2N)n
— 1im M) ;
In Nowo Uy (N )
then 1
lim —* = 0.
n->o gn

(36) and (37) give a more precise picture of the distribution inside the cube
of the integral points attached to reducible polynomials.
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