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This review of miniaturised instrumentation is motivated by the ongoing and forthcoming
exploration of the confirmed, or candidate ocean worlds of the Solar System. It begins with a
section on the evolution of instrumentation itself, ranging from the early efforts up to the current
rich-heritage miniaturised mass spectrometers approved for missions to the Jovian system.
The geochemistry of sulphur stable isotopes was introduced for life detection at the beginning
of the present century. Miniaturised instruments allow the measurement of geochemical
biosignatures with their underlying biogenic coding, which are more robust after death than
cellular organic molecules. The role of known stable sulphur isotope fractionation by sulphate-
reducing bacteria is discussed. Habitable ocean worlds are discussed, beginning with
analogies from the first ocean world known in the Solar System that has always being
available for scientific exploration, our own. Instrumentation can allow the search for
biosignatures, not only on the icy Galilean moons, but also beyond. Observed sulphur
fractionation on Earth suggests a testable “Sulphur Hypothesis”, namely throughout the
Solar System chemoautotrophy, past or present, has left, or are leaving biosignatures
codified in sulphur fractionations. A preliminary feasible test is provided with a discussion
of a previously formulated “Sulphur Dilemma”: It was the Galileo mission that forced it upon us,
when the Europan sulphur patches of non-ice surficial elements were discovered. Biogenic
fractionations up to and beyond δ34S � −70‰ denote biogenic, rather than inorganic
processes, which are measurable with the available high sensitivity miniaturised mass
spectrometers. Finally, we comment on the long-term exploration of ocean worlds in the
neighbourhood of the gas and ice giants.

Keywords: habitability, Ocean worlds, miniaturisation of mass spectrometers, stable isotope geochemistry, sulphur
geochemistry, JUpiter ICy moons Explorer mission, Europa Clipper, terrestrial analogies

REVISITING THE “SULPHUR DILEMMA”

Information on Ocean Worlds that is Coded in Stable Isotopes
We should take a look at what the Galileo mission taught us, regarding the search for life. In
the near future, with the JUpiter ICy moons Explorer (JUICE) mission Grasset et al. (2013a)
and the NASA proposed Europa Clipper mission (Howell and Pappalardo, 2020), there are
several options for interpreting the information that is coded in the sulphur isotopes that have
been deposited on the Galilean moons.
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The epoch-making Galileo Mission was responsible for the
discovery of intriguing surficial deposits of sulphur (patches) on
Europa’s frozen surface. Subsequent measurements ratified this
discovery. It was the first proposal that was put forward, that these
chemical elements may be exogenous, namely that their origin
may have been from the neighbouring satellite Io. Sulphur was
detected by the Galileo mission on the Europan surficial patches:
The presence of sulphur compounds on the Europan surficial ice
was confirmed by NIMS measurements, Near-Infrared Mapping
Spectrometer (Carlson et al., 2002). The data matches the
distribution of an ultraviolet absorber that had been suggested
earlier McEwen (1986), and confirmed later on (Grundy et al.,
2007). A suite of measurements, still from Galileo have led us to
the conclusion that the source of the surficial sulphur is
endogenous, including, Solid-State Imaging (SSI), NIMS and
the Ultraviolet Spectrometer (UVS) (Fanale et al., 1999).

A Europa Lander Mission Concept for
Solving the Sulphur Dilemma
The Europan endogenous surficial sulphur could have been
metabolically processed by a submarine biota. This hypothesis
is testable, as at the level of isotopic modifications the sulphur
could have left measurable traces. They would be detectable with
the sensitivity of the available instrumentation that has already
been approved for the forthcoming missions. All of these queries
can be summarised in a Sulphur Dilemma, which was first
formulated soon after the Galileo mission ended its activities
on September 23, 2003 (Chela-Flores, 2006):

What is the source of the S patches? Could they be endogenous
and at the same time biogenic?

A NASA Europa lander, which at present is only a proposed
astrobiology mission concept Pitesky and Hand (2020) has,
nevertheless, been advocated for over two decades (Phillips
and Chyba, 2001). Such a lander could search for the
biosignatures, which we have pointed out in earlier
publications and especially in this review. Likely sites for can
be retrieved from the NIMS data (cf., Information On Ocean
Worlds that is Coded in Stable Isotopes). These measurements
suggest that a Europa lander be placed especially on the area close
to 0–30°N and longitudes 240 and 270, in correspondence with
the S patches, as suggested by our comments above (McCord
et al., 1998).

Autochthonous Microbes Could Alter the
Surface of Europa
It is possible to answer the question whether the early Earth
microbial life could mirror the emergence of Europan
microorganisms, at least as far as their biochemistry is
concerned. Metabolism of autochthonous microbes could
alter substantially the S surficial deposits. The answer lies
encoded in the isotopic fractionation of the sulphur atoms
that would have been involved. Such alterations are
measurable with the accuracy that is available in the latest
miniaturised mass spectrometers that would be compatible
with payloads allowed for a Europa lander.

OCEAN WORLDS PAST AND PRESENT

Past Ocean Worlds on Venus and Mars
Both Venus and Mars were possible hosts of ancient oceans,
probably not unlike the terrestrial ones.Firstly, the possibility
of an early Venusian life-friendly environment was raised
earlier on (Donahue et al., 1982). In addition, on the
question of habitability of Venus, additional papers were
published in the early 1980s: Firstly, numerical simulations
suggested that habitability of Venusian oceans was not
excluded in its first billion years, with oceans persevering
for possible up to twice that time (Grinspoon and Bullock,
2007). There is evidence that initially Venus was an ocean
world (Kasting et al., 1984; Kasting, 1988; Donahue and
Russell, 1997; Grinspoon and Bullock, 2003).

In addition to the early approaches to the question of an early
Venusian ocean, a recent three-dimensional model militates in
favour of the ocean lasting until recent geological times, including
potential habitability conditions (Way et al., 2016). The
possibility of some form of extremophilic life has also been
discussed in a variety of possible environments and the
possibility of panspermia to and from our own planet
(Schulze-Makuch and Irwin, 2004).

Secondly, on a second terrestrial planet—Mars—there could
have been a global ocean in its northern hemisphere, so that the
Red Planet can be added to the list of (past) ocean worlds
(Clifford and Parker, 2001; Fairén et al., 2003).

Volcanic eruptions, contemporary with the presence of the
early ocean, were possible sources of abundant sulphur
compounds. These chemical elements would be expected to
have been deposited on the ancient Martian surface. An early
ecosystem can be tested by ruling out, or detecting, fractionation
codified in the sulphur compounds that were deposited. Testing S
isotopes as biosignatures is a possibility that has already been
raised for Mars (Chela-Flores, 2018). Such identification of
biosignatures will be in a more favourable position with the
forthcoming landing missions Tianwen-1 (CNSA, landed onMay
14, 2021), Perseverance (NASA, landed on February 18, 2021)
and Rosalind Franklin (Roscosmos and ESA, expected to land in
2023).

Analogies From the First Ocean World
Known in the Solar System
Some of the confirmed ocean worlds (OWs) have icy surfaces
over subsurface oceans. On Earth we have a valuable analogy in
Antarctica’s McMurdo Dry Valley Lakes (DVL). These lacustrine
environments (Doran et al., 2010; Chela-Flores and Seckbach,
2011) have biotopes that are known to survive under difficult
constraints, including being permanently covered by ice (cf.,
Tables 1–3).

Lake Joyce is an interesting lake, also ice covered all the year-
round. An analogous water environment lying underneath an icy
cover is Lake Untersee, whose maximum depth is 169 m (Wand
et al., 1997). Being in central Queen Maud Land in East
Antarctica, Untersee is significant as an analogy for the ocean
worlds: The lake ice cover is 2–6 m thick which may have
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persisted for over 100,000 years. Below 80 m hydrogen sulfide is
present, associated with decreased sulfate concentrations,
probably arising from bacterial reduction of sulfate. It is
known that stromatolites are present in the lake bottom
(Andersen et al., 2011). But resurfacing also hints at
submerged geologic activity. The icy Galilean moons
cryovolcanism may resemble terrestrial silicate volcanism.
Earth-like geologic activity includes a candidate for the origin
of life, namely, hydrothermal vents (Wächtershäuser, 1990).

Confirmed Ocean Worlds in the Jovian
System
Going beyond the Martian orbit, we could persevere with a
systematic search for sulphurous material on the surface of the
Galilean icy worlds. We may assume a testable “Sulphur
Hypothesis” (throughout the Solar System chemoautotrophy,
past or present, has left, or are leaving biosignatures codified
in sulphur fractionations).

Under this hypothesis, the non-ice chemical elements may
have their source in the moon’s interior biota; for a test we should
identify surficial locations, where it is most likely to detect
chemical elements arising from the subsurface ocean. One
prominent spot is undoubtedly the dark and red-coloured

material in the young depression Castalia Macula (0°N,
225°W), which has been pointed out by Louise Prockter and
Paul Schenk in the first decade of this century (Prockter and
Schenk, 2005). The tests we have proposed earlier (cf., Stable
Isotopes From Ore Genesis Can Be Used as Biosignatures) can
detect, or rule out, the presence of a significant biogenic signal if
surficial sulphur has been processed by oceanic microbial life.

One of the natural phenomena that could contribute to yield
the ocean chemical contents in places like Castalia Machia is
cryovolcanism (Fagents, 2003). The patchy nature of the surficial
S deposits argues strongly against the possible source being from
the neighbouring volcanic Galilean moon, Io (Carlson et al.,
1999).

In the foreseeable future, direct geochemical tests on the
furthest ocean worlds are not possible, but as we will see in
this section much information has been gathered for including
their moons, as either confirmed, or candidate ocean worlds.

Confirmed Ocean Worlds in the Saturnian
System
Two satellites of Saturn have been the focus of attention for
several missions including the two confirmed ocean worlds
Enceladus and Titan (Hendrix et al., 2018). Enceladus

TABLE 1 | Statistics of the Dry Valleys lakes in Antarctica.

Lake or pond Maximum depth (meters) Elevation (meters above
sea level)

Lake type References

Lake Hoare 34 73 Perennial ice cover; liquid water Chela-Flores and Seckbach, (2011)
Lake Vanda 69 123 Perennial ice cover; liquid water Chela-Flores and Seckbach, (2011)
Lake Joyce 37 1677 Perennial ice cover; liquid water Chela-Flores and Seckbach, (2011)
Lake Untersee 169 563 Perennial ice cover; liquid water Wand et al. (1997)

TABLE 2 | Microbial life in the Dry Valleys lakes, Antarctica (Chela-Flores, and Seckbach, 2011).

Organism Domain Habitat

Cyanobacteria Bacteria Lakes Chad, Fryxell, and Vanda
Leptothrix Bacteria Lakes Fryxell and Hoare
Achronema Bacteria Lakes Fryxell and Hoare
Clostridium Bacteria Lakes Fryxell and Hoare
Chlamydomonas subcaudata (Phylum chlorophyta) Eucarya Lakes Bonney (east lobe) and Hoare
Diatoms (Phylum bacillariophyta) Eucarya Lakes Bonney, Chad, Fryxell

Hoare and Vanda
Bryum (a moss) Eucarya Lake Vanda

TABLE 3 | A few examples of eukaryotes present in Antarctica.

Organism Domain Habitat References

Diatom shells Eucarya (bacillariophyta) Lake Vostok (ice core, at depth of 2375 m) Chela-Flores, and Seckbach, (2011)
Caloneis ventricosa Eucarya (bacillariophyta) Lakes Chad, Fryxell, Hoare, and Vanda Chela-Flores, and Seckbach, (2011)
Navicula cryptocephala Eucarya (bacillariophyta) Lakes Bonney, Fryxell, Hoare, and Vanda Chela-Flores, and Seckbach, (2011)
Chlamydomonas subcaudata Eucarya (chlorophyta) Lakes Bonney and Hoare Chela-Flores, and Seckbach, (2011)
Tetracystis sp. Eucarya (chlorophyta) Lakes Fryxell, Hoare, and Vanda (Chela-Flores, and Seckbach, 2011)
Yeast Eucarya (Ascomycota) Lake Vostok (ice core) Chela-Flores, and Seckbach, (2011)
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Explorer is a mission concept by the German Aerospace Center
together with German universities for an unprecedented coupled
system for probing this moon’s exterior, orbiter and its interior, at
least its surficial ice (cf., Table 4 for references and full names of
all the missions referred to below). In addition, coming from
NASA, Christopher McKay, and colleagues have proposed to
measure biosignatures on Enceladus, the ELSAH mission, with a
payload that would include a sophisticated instrumentation, for
mass spectrometry (McKay, 2008). On the other hand, and once
again focusing on the same intriguing ocean world, the ELF
mission hopes to probe its subsurface ocean. Instead, not only for
Enceladus, but also for Titan, the E2T mission is an international
collaboration between twomajor space agencies dedicated to both
Enceladus and Titan.

In spite of the rich assortment of options, in 2019 NASA gave a
priority in their New Frontier Programme to the mission
Dragonfly to Titan to characterize the habitability of Titan.
The Dragonfly would use a lander with rotors to take off, fly,
and land at new sites to characterize the habitability of Titan’s
environment and to search for biosignatures.

Finally, there is a set of another four Saturnian satellites that
are presently candidate ocean worlds: Mimas, Tethys, Rhea,
Iapetus, where there is only basic foundation for this
possibility (Hendrix et al., 2018). However, new missions for
the Saturnian system is required to promote these four Saturnian
moons to the rank of confirmed ocean worlds. Exceptionally, at
the end of 2004 and in 2007, there were close flybys of Iapetus
during the Cassini mission.

THE EVOLUTION OF INSTRUMENTATION
UP TO MINIATURISED MASS
SPECTROMETERS

The Exploration of Confirmed or Candidate
Ocean Worlds
In the long-term planning, the search of biosignatures should
focus mainly on two of the Galilean moons, Europa and
Ganymede (cf., The Robustness of Geochemical
Biosignatures), since there are missions by ESA and NASA
that in the short term will be equipped with appropriate
instrumentation. The case of Mars as a previous ocean world
is also discussed. Clearly, it is instructive to review the evolution

of instrumentation towards a stage when they have been
approved by the space agencies.

Cryobots and Hydrobots for the Exploration
of Ocean Worlds
Soon after the Galileo mission arrived in the Jovian system, it was
suggested that for icy moons with internal oceans coupled
instruments could be useful. The hydrobot-cryobot intended
to melt through the icy surface into the ocean underneath (cf.,
Figure 1A).

It is at present no longer being considered feasible as we
proposed it. However, we should underline that the cryobot-
type of instrumentation, as a melting drill head for the
exploration of subsurface planetary ice layers has
subsequently attracted the attention of researchers (Weiss
et al., 2008).

The question remains open whether in the future the
exploration of ocean worlds may benefit from a more
advanced version of hydrobots. For instance, the proposal of a
hydrobot submersible has been used subsequently by the concept
mission ENDURANCE. This probe could eventually be used for
the direct exploration of an ocean world, such as Europa
(Bortman, 2010). The possibility of extremophiles that are
known on terrestrial conditions to persevere and survive in
anoxic conditions, can be thought of as models of possible
Europan biota that a hydrobot-type of probe could eventually
detect with an appropriate payload.

Penetrators as Alternative Instruments for
Ocean Worlds
A second suggestion that we found as an attractive instrument for
probing the icy surfaces of the ocean worlds was called a
penetrator (Gowen et al., 2011, cf., Figure 1B), which had
previously been suggested for use in the context of lunar
exploration (Smith et al., 2009).

These mini-missiles would have been delivered from orbit
to reach and penetrate the icy surface. In spite of its advantages
some subsequent variations the main space agencies have not
included them in payloads of future missions. Yet, at present
there is still considerable interest in penetrators (Bagrov et al.,
2021).

TABLE 4 | Mass spectrometers for studying ocean worlds of the Solar System.

Miniaturised instrumentation Details References

NGMS: Neutral Gas (NG) Mass Spectrometer MS A Time of Flight (TOF) MS Wurz et al. (2012)
Laser-Induced Breakdown Spectroscopy (LIBS) Can be used to distinguish bacteria with few constraints, which has advantages when

adopted for space research
Multari et al. (2010)

Laser Desorption Mass Spectrometry Potentially applicable for the detection of amino acids on the icy surfaces of ocean
worlds

Ligterink et al. (2020)

Laser Ionization Mass Spectrometry (LIMS) Adopted for space research (Riedo et al., 2012),
2013b)

The MAss SPectrometer for Planetary EXploration/
Europa (MASPEX)

Incorporated in the payload for Europa clipper Howell and Pappalardo,
(2020)
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It should not escape our attention that the basic idea of the
penetrator, as a means to deliver an impacting descent probes for
the Galilean moons has subsequently been extended. The
alternative projectile has been suggested in order to simplify the
costs and technological challenges of direct exploration of the icy
surfaces of ocean worlds with landers (Wurz et al., 2017). But the
possible alternative impacting probe would be an implementation
of an earlier Europa Descent Probe of approximately cubic shape,
unlike the traditional cylindrical penetrator.

After these pioneering efforts for exploring the ocean worlds,
which we have illustrated in Figure 1A,B, a significant string of
publications has followed with the view of participating in the
forthcoming missions to the Galilean moons. We have presented

the corresponding evolution of instrumentation as the timeline in
Table 5:

Heritage of Miniaturised Instruments for
Forthcoming Missions
The most successful instruments that have been selected for
forthcoming space missions are mass spectrometers. From the
point of view of probing the ocean worlds for biosignatures, they
have many advantages to which we shall return in Biosignatures
From the Geochemistry of Stable Isotopes. Their most attractive
feature is the degree of miniaturisation that has been achieved
(Tulej et al., 2015).

FIGURE 1 | A vehicle referred to as a cryobot was intended to carry a small submersible (a hydrobot) equipped with a relevant payload. The hydrobot was based on
previous submersible experience for research in oceanography (Horvath et al., 1997). Image courtesy NASA/JPL-Caltech. As an alternative to landers in space
exploration, penetrators were high speed impacting projectiles designed to investigate the subsurface of icy moons, including Europa, advocated by the UK Penetrator
Consortium and European proposers, besides our Abdus Salam International Centre for Theoretical Physics, Trieste, Italy (Gowen et al., 2011), a technological
initiative to overcome challenges of the standard exploration, carried on in 2021, but more significantly still, the strategy has been advocated for the direct exploration of
the icy surface of Europa and other Galilean worlds in our cosmic neighbourhood. Image published with permission of the Mullard Space Science Laboratory (UCL, UK).
Theminiature mass analyzer of the LIMS system of the University of Bern is displayed. Themass analyzer is held by a structure for bench testing before it will be integrated
into the vacuum chamber. CC the University of Bern, Switzerland.An artist conception of a mission concept, for a first lander on an extraterrestrial ocean world, a Europa
lander (Pitesky and Hand, 2020). Image courtesy NASA/JPL-Caltech.
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Miniaturisation of mass spectrometers has been developed
specifically for space exploration. In various previous
applications, miniaturised mass spectrometers have been used
in the payload of space orbiters, as well as in rovers. There are
many studies aiming at the exploration of the Solar System (Tulej
et al., 2011; Tulej et al., 2016; Wiesendanger et al., 2017;
Wiesendanger et al., 2018a; Wiesendanger et al., 2018b).

In Figure 1C, we illustrate a recent example of the process of
miniaturisation of mass spectrometry. It shows one of its
components—a mass analyzer—which takes ionized masses
and separating them according to charge to mass ratios. This
instrument is responsible to deliver the information received to
the detector, where it is converted into a digital output.

Some more exciting recent research is relevant in this
context. Firstly, cutting-edge instrumentation that is
currently ready for the flight on the PEP JUICE mission
(including the NIM instrument), which will fly in 2022. The
NIM instrument is designed to measure exospheres of Jupiter
satellites during flyby (Lasi et al., 2020). This work addresses
instruments designed for a future Europa lander. Secondly,
miniaturized mass spectrometry with the intention of being
included in future payloads is also being considered (Föhn,
et al., 2021). Finally, some work now is focusing on a lander
instrument on Europa, particularly on a coupling of the mass
analyser with sample introduction/laser ablation/desorption
ion source (Origin instrument). This instrument is more like
LMS with the laser ablation/desorption ion source (Ligterink,
et al., 2020).

To implement the experimental tests on biogeochemical
biomarkers on Europa and Ganymede, we have to wait some
time for the results of two forthcoming missions.

There are two possibilities for the use this instrumentation in
the exploration of the icy Galilean moons. The first of the two
missions to launch will be the ESA mission JUpiter ICy moons
Explorer (JUICE), whose main objective will be on Ganymede
(Grasset et al., 2013b). In this mission there has been significant
progress in relevant miniaturised mass spectrometry. In fact,
JUICE will include in its payload a Particle Environment
Package, which includes a Neutral and Ion Gas Mass
Spectrometer (Abplanalp et al., 2009; Meyer et al., 2017).
Potentially, this new instrumentation is capable of testing
whether isotopes of sulphur can be used as biomarkers, as
explained in Biosignatures From the Geochemistry of Stable
Isotopes below.

The second mission to launch will be the NASA Europa
Clipper mission. After the major work achieved by the Galileo
mission, it intends to investigate habitability of Europa. It has the

capability to measure biogenic stable S-isotope fractionation.
Besides, a mission concept for a landed spacecraft to the
surface of Europa is under consideration. The MAss
SPectrometer for Planetary EXploration/Europa (MASPEX)
will be included in the Europa Clipper scientific payload
(Pappalardo et al., 2013).

Even as a mission concept, a Europa lander remains an
appealing project of NASA (Figure 1D).

This lander has been discussed in the scientific community for
a long time, going back at least to the Sixth Trieste Conference
(Phillips and Chyba, 2001). The possibility of including a mass
spectrometer in its payload Pitesky and Hand (2020) would add
significantly to the first possibility of testing the Sulphur
Hypothesis, a critical question in efforts to search for
biognatures (cf., Biosignatures From the Geochemistry of
Stable Isotopes).

BIOSIGNATURES FROM THE
GEOCHEMISTRY OF STABLE ISOTOPES

The Robustness of Geochemical
Biosignatures
The distribution of life in the Universe is the third “chapter” of
astrobiology, which has been given a suggestive name, a Second
Genesis (McKay et al., 2001). We are suggesting in this paper and
some of our previous ones that one way to search for a second
genesis is with the help of stable isotope biochemistry. Metabolic
alteration of the environment, seems to be more robust than the
alternative search for the biomolecules of life, amongst them the
amino acids, lipids or the monomers of the nucleic acids, as it is
often done (Zhang et al., 2021). To test for the difference between
biogenic as opposed to abiogenic remains as one of the
outstanding challenges in astrobiology (McKay, 2008).

Stable Isotopes From Ore Genesis Can Be
Used as Biosignatures
Ore is a term which applies to any mineral (metalliferous, or
non-metal) from which the metallic, or non-metallic element
may be profitably extracted. Ore genesis refers to mineral
deposits formation underneath the terrestrial surface. Based
on the analysis of (34S/32S), petroleum geologists used the
analysis of ore genesis for understanding the provenance of
sulphur. Besides, the light stable isotopes, including S, have
provided information about mineral deposition,

TABLE 5 | Timeline: instrumentation for ocean worlds. The early preliminary efforts (1997–2011), in which the author participated, are illustrated in Figures 1A,B. The more
recent miniaturised instruments that are meant to contribute to the exploration of the nearest Galilean ocean worlds, are available in several papers mainly from the
University of Bern, Switzerland, have been cited in Heritage of Miniaturised Instruments for Forthcoming Missions and illustrated in Figure 1C.

1997 2011 2015 2020 2022 2024 >2027

Cryobot-
hydrobot
Figure 1A

Penetrators for
Europa
Figure 1B

Mass
spectrometers
Figure 1C

Origin instrument Heritage of
Miniaturised Instruments
for Forthcoming Missions

NIM instrument Heritage of
Miniaturised Instruments
for Forthcoming Missions

MASPEX Heritage of
Miniaturised Instruments
for Forthcoming Missions

Europa lander
Figure 1D
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demonstrating that ore formation is a surficial phenomenon,
rather than having their origin in magmas. This topic has been
reviewed earlier (Ohmoto, 1986). As opposed to the above
work on ore genesis, astrobiologists can use the experience of
geochemists by taking advantage of an extraordinary
phenomenon in microbiology that has been widely studies
since the middle of last century (Kaplan, 1975): sulphur is
highly fractionated by microbes, in such a way that
biogenically processed S can readily be distinguished from
terrestrial mantle sulphur (Ireland, 2013). This is a remarkable
phenomenon in the context of astrobiology. Indeed,
biogeochemical biomarkers have long been used in
astrobiology (Chela-Flores, 2006). This approach for the
detection of biologic, rather than inorganic fractionation
processes, is currently being exploited in a terrestrial
context (Kring et al., 2021). This work goes back to its
roots based on the well-established studies of ore genesis.

We refer to our earlier discussions for details related to the
introduction of the “delta parameter” δ34S. This term is
significant for the search of geochemical biosignatures
(Chela-Flores and Seckbach, 2011; Chela-Flores et al., 2015):

δ34S � [(34S/32S)sa � (34S/32S)st − 1] × 103[0/00,CDM]
where a standard is chosen referring to a troilite from the
Barringer crater in the Canyon Diablo meteorite (CDM). To
sum up, we already possess the technology which will facilitate
the measurements with the necessary sensibility to test the icy
surface for signs of life in the Europan ocean.

Distribution of Sulphur in the Solar System
In spite of remarkable progress in chemical evolution since the
landmark paper of Stanley Miller (1953), there is yet no
consensus for a theory of life’s origin (Davis and McKay,
1996). This situation suggests that one possibility to make
further progress in life’s emergence would be to make testable
hypotheses to find pathways for deeper aspects of the origin of life
in the Universe.

There is wide past experience in assessing the presence of
biogenicity in terrestrial environments. (Canfield and Thamdrup,
1994; Kohn et al., 1998; Popa et al., 2004; Shen and Buick, 2004;
Sim et al., 2011; Kring et al., 2021).

Motivated by the Solar System S abundances, we adopt a
‘Sulphur Hypothesis’:

Throughout the Solar System, sulphur-processing
microorganisms emerged early and have left, or are
leaving, biosignatures codified in sulphur fractionations.

This is a testable hypothesis with the available instrumentation.
One motivation for the Hypothesis is the role in chemoautotrophy
by a type of bacteria that consumes sulphate and produces sulphide,
as a waste product. These microorganisms are ancient sulphate-
reducers. We will return to them.

For a long time, we have known from the exploration of the
inner Solar System that sulphur is ubiquitous (Gibson, 1982),
examples of which have been given more recently. Sulphur is

present, not only on the Earth, but also on the other terrestrial
planets: Mercury Weider et al. (2016), Venus Sandor et al.
(2010) and Mars (McLennan and Grotzinge, 2009). But more
significantly, the missions Galileo and Cassini support this
view, since the giant planets have no less abundances of
“metals” (elements heavier than helium), relative to
hydrogen than the inner planets. Indeed, in those giant
planets S abundances are much higher than observed in the
Sun (Owen et al., 1999). In fact, the Jovian S abundance
(measured by Galileo) exceeds Solar by a factor of three
(Atreya et al., 2003).

Returning to our own planet, sulphur in the fossil record
extends some three billion years before the present. There is
evidence for the ancient emergence of sulphate-reducing
microorganisms, which go back to the Archean: The
phenomenon of sulphate reduction has been confirmed in
terrestrial sediments 3.47 billion years before the present. At
that time, in Australia they produced strong stable isotope
depletions in pyrite embedded in barite (Shen et al., 2001;
Shen and Buick, 2004).

DISCUSSION OF INNOVATIVE MISSIONS
FOR THE GAS AND ICE GIANTS

Biogeochemical Biosignatures Beyond
Mars and Jupiter
Due to the large distances involved, in the foreseeable future it will
not be possible to apply the robust biogeochemical biosignatures
discussed in Biosignatures From the Geochemistry of Stable
Isotopes of the present review, but the planning still continues
in the main space agencies. In spite of this handicap, the
preliminary efforts of previous missions, Cassini, New
Horizons and Dawn have given us a general view of the 19
confirmed and candidate ocean worlds of the Solar System,
although, alas it will not be in the near future when we will
have the first indications of an extant inhabited world in our
cosmic neighbourhood.

In Table 6 we have gathered information on the exploration
of some of the possibly habitable worlds of the outer Solar
System of which we have little information. Some mission
concepts have been formulated for some time now. Even
though they have not received support from the main space
agencies, they should be considered amongst astrobiology’s
most urgent future projects.

Candidate Ocean Worlds Amongst the
Moons of the Ice Giants
The search for biosignatures should be an objective for the Ice
Giants Uranus and Neptune, especially the candidate ocean
worlds amongst their moons: The Neptunian satellite Triton
and the five Uranian moons, which are candidates for ocean
worlds (Miranda, Ariel, Umbriel, Titania, Oberon). In spite of the
fact that they are likely ocean worlds, in the future we still need
orbiters around Uranus, as in the past it was the case for the
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Saturnian system with its Cassini mission (Hofstadter et al.,
2017).

In Table 7 we have gathered some proposals of missions, not
supported in the current programmes of the main space agencies,
which may throw some light on additional ocean moons around
and beyond Uranus and Neptune, for instance: the Neptunian
moon Triton, Pluto, Ceres, and the Saturnian moon Dione.

Candidate Ocean Worlds in Our Cosmic
Neighbourhood
We have some remarkable moons in the outer Solar System,
Triton being one of them (Gaeman et al., 2012; Nimmo and
Spencer, 2014). It is conceivable that the geochemical
biosignatures could eventually be applicable in those strange
environments. The work of Hussmann and co-workers (2006)
has taken into consideration, not only the above-mentioned
satellite of Neptune, but in addition, moons of Saturn, Uranus,
and Pluto as well (Rhoden et al., 2015).

Even tantalising opportunities are waiting in planetary
science for deeper insights on the ocean worlds beyond the
gas giants (Chela-Flores, 2017). But as mentioned in
Biogeochemical Biosignatures Beyond Mars and Jupiter, this
aspect of the exploration of the Solar System has not been
favoured by the space-faring nations. Some of the most
significant proposals for future missions to the ice giants
await the exploration of the least known ocean worlds of our
cosmic neighbourhood.
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