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Abstract. We study a large class of suspension semiflows which contains

the Lorenz semiflow. This is a class with low regularity (the return map is
piecewise C 1+α and the return time is piecewise Cα) and where the return

time is unbounded. We establish the functional analytic framework which is

typically employed to study rates of mixing. The Laplace transform of the
correlation function is shown to admit a meromorphic extension to a strip

about the imaginary axis. As part of this argument we give a new result, of

independent interest, concerning the quasi-compactness of weighted transfer
operators for piecewise C 1+α expanding interval maps.

1. Introduction

Some dynamical systems exhibit very good statistical properties in the sense
of, for example, exponential decay of correlation and the stability of the invariant
measure under deterministic or random perturbations. Such properties have been
shown for many discrete-time dynamical systems and more recently for some flows.
Very strong results now exist for smooth contact Anosov flows [15, 27, 13, 39, 40, 17].
Good results also exist for suspension flows over uniformly-expanding Markov maps
when the system is C 2 or smoother [35, 11, 7]. The above are all rather smooth and
regular systems and arguably not realistic or relevant in many physical systems.
There are two important examples which come to mind: dispersing billiards [14]
and the Lorenz flow [29]. The fine statistical properties of both these systems
remain, to some extent, open problems. We therefore direct our interest to such
systems with rather low regularity. Some recent progress includes the proof of
exponential mixing for piecewise-cone-hyperbolic contact flows [10] and also for a
class of three-dimensional singular flows [6].

This is our theme: To make progress on the understanding of the fine results on
statistical properties of systems with low regularity. The primary motivation for
this study is the Lorenz flow mentioned above. This is a smooth three-dimensional
singular hyperbolic flow. Baladi [8] studied suspension semiflows which were in-
spired by Lorenz flows but required that the various quantities were of bounded
variation where we require them to be Hölder (Hölder does not imply bounded
variation; e.g. x 7→ x sin(1/x)). The work of Araújo and Varandas [6] proved expo-
nential decay of correlation for a class of volume-expanding flows with singularities,
a class which is inspired by the Lorenz flow. However their method required the
existence of a C 2 stable foliation for the flow. Unfortunately in the case of the
Lorenz flow (for the classical parameters) even the weak stable foliation of the flow
(this is the two-dimensional foliation consisting of leaves which are spanned by the
flow direction and the stable direction) is merely C 1+α. Consequently there seems
to be no hope of extending their strategy to the original problem. The problem of
the stable foliations (of the return map) being merely C 1+α for Lorenz like flows
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has been partially tackled by Galatolo and Pacifico [16] followed by Araújo, Gala-
tolo and Pacifico [3] but results on decay of correlations are limited to the return
map and not the flow. In this paper we make some progress in a complementary
direction. There exist two popular strategies for approaching problems of this type:
The first possible strategy is to construct an anisotropic Banach space in order to
study the flow directly as was done for contact Anosov flows [27] and piecewise-
cone-hyperbolic contact flows [10]. The second possible strategy is to study the
Lorenz semiflow (details given in Section 3) which is given by quotienting along the
stable manifolds of the flow. At this stage it is unclear how to construct the space
required for the first possibility and we therefore consider the second. This however
requires one to work with a system which is merely C 1+α. There are many issues
involved in studying the quotient flow in this particular setting. The reader inter-
ested in this question should consult the discussion which is postponed until the
end of Section 3 after we have introduced the pertinent details concerning Lorenz
flows.

In this paper we focus on a particular class of semiflows which are suspensions
over expanding interval maps. This class includes the Lorenz semiflows. They have
low regularity in the following four ways:

(1) The expansion of the return map may be unbounded. I.e. the derivative of
the return map blows up close to certain points of discontinuity. This bad
distortion issue is seen in both billiard systems and the Lorenz flow.

(2) The reciprocal of the derivative of the return map is merely Hölder contin-
uous.

(3) The return time function is unbounded. This is a direct result of the exis-
tence of fixed points of the flow. However in the case of certain suspension
semiflows this has already been shown to not be a barrier to good statistical
properties [11].

(4) The semiflow is merely area-expanding and not uniformly-expanding in the
sense that it is not possible to define a forward invariant conefield which is
uniformly transversal to the flow direction. This puts us in the category of
singular hyperbolicity [31, 33].

In order to study the class of flows considered in this paper, and other systems
which are the object of current research, it is crucial to understand whether these
above issues are real barriers to good statistical properties or merely technical
difficulties. On this issue we succeed in making some progress in the present work
showing that the listed issues are not real barriers to the statistical properties, at
least in this setting. For proving exponential decay of correlation for flows there is
one particular established approach which involves studying the Laplace transform
of the correlation function. We apply this strategy to our present setting and
show that the Laplace transform of the correlation function admits a meromorphic
extension into the left half plane. This fact is also of use when studying other
statistical properties. In Section 2 we define precisely the class of semiflows we
are interested in and state the results. In Section 3 we discuss Lorenz flows and
demonstrate the connection with the class of semiflows we consider. In Section 4 we
give a generalisation of the result of Keller concerning function spaces of generalised
bounded variation [25] such that it is possible to apply to our present application.
This is a new result for the essential spectral radius of such transfer operators for
these piecewise C 1+α expanding interval maps and the section is independent of
the others. The reader interested in the comparison of this result to other related
results for similar function spaces should consult the discussion at the beginning of
Section 4. Section 5 contains the proof of the main result, reducing the problem
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to the study of certain weighted transfer operators and then using the results of
Section 4.

2. Results

For our purposes we define a suspension semiflow to be the triple (Ω, f, τ): The
set Ω is an open interval and {ωi}i∈I is a finite or countable set of disjoint open

sub-intervals which exhaust Ω modulo a set of zero Lebesgue measure; f ∈ C 1(Ω̃,Ω)

(for convenience let Ω̃ =
⊔
i∈I ωi) is a bijection onto its image when restricted to

each ωi; τ ∈ C 0(Ω,R+) is such that
∫

Ω
τ(x) dx < ∞. In a moment we will add

some stronger assumptions on the regularity of f and τ but we will never require
f to be Markov. We call f the return map and τ the return time function. Let
Ωτ := {(x, s) : x ∈ Ω̃, 0 ≤ s < τ(x)} which we call the state space. For all
(x, s) ∈ Ωτ and t ∈ [0, τ(x)− s] let

Φt(x, s) :=

{
(x, s+ t) if t < τ(x)− s
(f(x), 0) if t = τ(x)− s.

(2.1)

Note that Φu+t(x, s) = Φu ◦Φt(x, s) for all u, t such that each term is defined. The
flow is then defined for all t ≥ 0 by assuming that this relationship continues to
hold.

Now we define the class of suspension semiflows which we will study. Firstly we
require that the return map is expanding, i.e. that1 ‖1/f ′‖L∞(Ω) < 1. We suppose

that there exist some α ∈ (0, 1) and σ > 0 such that the following three conditions
hold. Firstly we must have some, albeit weak, control on the regularity. We assume
that2

x 7→ ezτ(x)

f ′(x)
is α-Hölder on Ω̃ for each <(z) ∈ [−σ, 0]. (2.2)

Furthermore we must require sufficient expansion in proportion to the return time.
We assume that

sup
i∈I

(
‖ 1
f ′ ‖

L∞(ωi)

)α
eσ‖τ‖L∞(ωi) < 1 (2.3)

Finally, to deal with the possibility of a countable and not finite number of discon-
nected components of Ω, we assume that∑

i∈I
‖ 1
f ′ ‖

L∞(ωi)
eσ‖τ‖L∞(ωi) <∞. (2.4)

Note that we never require any lower bound on τ . Let ν denote some f -invariant
probability measure which is absolutely continuous with respect to Lebesgue on Ω.
The existence of such a probability measure in this setting is known [25] but is also
implied by the results of Section 4. For simplicity we assume that this absolutely
continuous invariant probability measure is unique. It holds that µ := ν⊗Leb /ν(τ)
is a Φt-invariant probability measure which is absolutely continuous with respect
to Lebesgue on Ωτ . Given u, v : Ωτ → C which are α-Hölder we define for all t ≥ 0
the correlation

ξ(t) := µ(u · v ◦ Φt)− µ(u) · µ(v).

1In general it is sufficient to suppose that there exists n ∈ N such that ‖1/(fn)′‖L∞(Ω) < 1.

In which case one simply considers the nth iterate of the suspension flow and proceeds as before,
although care must be taken with assumption (2.2).

2 We say that some ξ : Ω → C is “α-Hölder on Ω” if there exists Hξ < ∞ such that

|ξ(x)− ξ(y)| ≤ Hξ |x− y|α for all x, y ∈ Ω with the understanding that this inequality is trivially
satisfied if x ∈ ωi, y ∈ ωi′ , i 6= i′ since in this case |x− y| is not finite. Note that Hξ does not

depend on i.
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Main Theorem. Suppose the suspension semiflow is as described above, in partic-
ular satisfying the assumptions (2.2), (2.3), and (2.4). Then the Laplace transform

of the correlation ξ̂(z) :=
∫∞

0
e−zt ξ(t) dt admits a meromorphic extension to the

set {z ∈ C : <(z) ≥ −σ}.

The proof of this theorem is given in Section 5 and is based on the results of
Section 4. The argument involves the usual method of twisted transfer operators
but for this setting we require a generalisation of Keller’s previous work [25] on
C 1+α expanding interval maps which is the content of Section 4.

Let us recall in detail some closely related results which were mentioned in the
introduction. Baladi and Vallée [11] (argument later extended to higher dimensions
by Avila, Yoccoz and Gouëzel [7]) studied suspension semiflows which had return
maps which were Markov and also C 2. They allowed the return time to be un-
bounded but only in a mild way as they required τ ′/f ′ to be bounded. As part of
the study of Lorenz-like flows Araújo and Varandas [6] studied suspension semiflows
very similar to the present setting but had to additionally require that the return
map was C 2 rather than our weaker assumption of C 1+α. We therefore see that our
setting is more general and sufficiently general to be used for the study of the Lorenz
flow with the classical parameters (see Section 3). However in each of the above
mentioned cases exponential decay of correlation is proven, a significantly stronger
result than is proven in this present work. To obtain results on exponential decay
of correlations would require a stronger estimate at one stage of the argument; this
is the oscillatory cancelation argument as pioneered by Dolgopyat [15]. However
it seems likely that such an estimate would require the return time function to be
at least C 1 and not just Hölder as in the setting of the above result. At the end
of Section 3 we return to the discussion of this issue in the motivating case of the
Lorenz flow.

3. Lorenz Semiflows

Introduced in 1963 as a simple model for weather, the Lorenz flow [29] is a smooth
three-dimensional flow which, from numerical simulation, appeared to exhibit a
robust chaotic attractor. In the late 1970s Afrăımovič, Bykov and Silnikov [1] and
Guckenheimer and Williams [19, 44] introduced a geometric model of the Lorenz
flow and many years later, in 2002, Tucker [41] showed that the geometric Lorenz
flow really was a representative model for the original Lorenz flow and hence showed
that the Lorenz attractor really did exist. The attractor is zero volume (Hausdorff
dimension ≈ 2.05 [18]), contains the fixed point at the origin and has a complex
Cantor book structure [44]. For some history of the problem and an explanation of
the physical relevance of the system see [43].

This flow has long proved elusive to thorough study. It is not uniformly hyper-
bolic. The class of singular hyperbolic flows was introduced and studied in the late
1990s by Morales, Pacifico, and Pujals [31, 33, 32]. This class of flows contains
the uniform hyperbolic flows and also contains the Lorenz attractor. Whereas the
uniformly hyperbolic flows are the flows which are structurally stable as shown
by Hayashi [21, 22], the singular hyperbolic flows are the flows which are stably
transitive. It is known that singular hyperbolic flows are chaotic in that they are
expansive and admit an SRB measure [4]. Some further results are known limited
to the particular case of the Lorenz attractor. It is know to be mixing [30] and
that the Central Limit Theorem and Invariance Principle hold [24]. As mentioned
earlier, a class of Lorenz-like flows has been shown to mix exponentially [6] although
this result is limited to such flows which have C 2 stable foliations, a property which
cannot be expected to hold in general or for the original Lorenz flow.
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Here we collect together some known facts [41, 5] in order to show that the
Lorenz flow reduces to a suspension semiflow of the class introduced in Section 2.
The Lorenz flow Φt : R3 → R3 is defined by the system of differential equations:

ẋ1 = −σx1 + σx2

ẋ2 = rx1 − x2 − x1x3

ẋ3 = x1x2 − bx3

where σ = 10, r = 28 and b = 8
3 are the so-called classical parameter values. The

flow is uniformly volume contracting and possesses three fixed points; in particular
the origin is a fixed point of saddle type with one positive eigenvalue ζ1 and two
negative eigenvalues −ζ2, and −ζ3, where

ζ1 = (
√

1201− 11)/2 ≈ 11.8,

ζ2 = (
√

1201 + 11)/2 ≈ 22.8, ζ3 = 8/3 ≈ 2.67.

Note that 0 < ζ3 < ζ1 < ζ2. There is a forward invariant open set U which contains
the origin but is bounded away from the other two fixed points. The set U is a torus
of genus two, the holes centred around the two excluded fixed points. Eventually all
trajectories enter this set. The maximal invariant set Λ :=

⋂
t≥0 ΦtU (the attractor)

has zero volume due to the volume contraction of the flow and also contains the
unstable manifold of the origin. There exists a one-dimensional stable foliation. In
the available literature there is some confusion over the regularity of the various
invariant foliations but is it universally agreed that the two dimensional weak-stable
foliation (equivalently the stable foliation of the return map to a suitable Poincaré
section) is differentiable with Hölder derivative and the stable foliation of the flow
is at least Hölder. Let γ ∈ (0, 1) be such that the weak stable foliation is C 1+γ and
the stable foliation is C γ .

The C 1+γ regularity of the weak-stable foliation seems to be unavoidable. Note
that if the Lorenz flow is sufficiently dissipative (the eigenvalues must satisfy ζ2/ζ1 >
ζ3/ζ1 + k) then the stable manifolds for the return map would be C k [5, §3.3.4.1].
Alves and Soufi [2] consider Lorenz-like flows where one may take k = 2 for their
study of statistical stability. Unfortunately this is not the case for the Lorenz flow
with the classical parameters.

Quotienting along the stable manifolds one may reduce the three dimensional
flow to a suspension semiflow over a piecewise expanding map. This procedure
is described in [30, 24]. By an appropriate choice of coordinates we may assume
that the return map is defined on the interval Ω = (−1, 1) with a single point of
discontinuity at the origin. Let f : Ω \ {0} → Ω denote the return map and let
τ : Ω \ {0} → R+ denote the return time.

The return map f is piecewise C 1+γ and is expanding for some iterate. Conse-
quently there exists an invariant measure for the quotient map f which is absolutely
continuous with respect to Lebesgue. This measure allows one to construct an SRB
measure for the original flow. This process is described in [42, §7] (although it is
there claimed that the density of the invariant measure for the quotient map is of
bounded variation although it will merely be of generalised bounded variation).

Non-resonance of the eigenvalues, by Sternberg [37], means that it is possible to
C∞ linearise the flow in a neighbourhood of the singularity (actually it is possible
to C 2 linearise all close flows [24, Remark 2.1]). This allows precise estimates on
the suspension semiflow. By [24, Proposition 2.6] we have the estimates

τ(x) = − 1
ζ1

ln |x|+ τ0(x), f ′(x) = |x|−(1−β)
g(x), (3.1)

where β = ζ3/ζ1 ∈ (0, 1), τ0 ∈ C γ(Ω), g ∈ C βγ(Ω), and infx g(x) > 0. It is
convenient to subdivide the set Ω \ {0} into small subintervals and so for each
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j ∈ N let ω+
j := (e−(j+1), e−j), and ω−j := (−e−j ,−e−(j+1)). This is merely a

means of having some form of weak distortion control on the combination of return
map and return time, that in some sense the behaviour of the system is similar
in each of the above defined intervals: Alternatively one could rephrase conditions
(2.3) and (2.4). However we take advantage of the fact that we can cut the system
wherever we like since discontinuities are allowed.

We must verify that the conditions (2.2), (2.3), and (2.4) are satisfied for this
suspension semiflow. We choose α := min{γβ, (1−β)/(2−β)} and σ > 0 such that

σ < αζ1(1− β), (3.2)

the larger the better. Note this implies that α ∈ (0, 1
2 ) and that

σ ≤ ζ1(1− β − α). (3.3)

Let <(z) ∈ [−σ, 0]. According to (3.1)

e−zτ(x)

f ′(x)
= |x|

z
ζ1

+1−β
g(x)−1e−zτ0(x)

and we know that x 7→ g(x)−1e−zτ0(x) is C γβ . Further note that <(z/ζ1 + 1−β) ≥
−σ/ζ1 + 1− β ≥ α by (3.3). Note that yζ − xζ = ζ

∫ y
x
sζ−1 ds for all x, y ∈ R and

so for y ≥ x we have

yζ − xζ ≤ |ζ|
∫ y

x

s<(ζ)−1 ds =
|ζ|
<(ζ)

(y<(ζ) − x<(ζ)).

Consequently x 7→ ezτ(x)/f ′(x) is α-Hölder on (0, 1) and similarly on (−1, 0). We
must now show that (2.3) and (2.4) also hold. By (3.1) we have the simple estimates
(identical estimates hold for the ω−j )

‖ 1
f ′ ‖

L∞(ω+
j )
≤ Ce−j(1−β), ‖τ‖L∞(ω+

j ) ≤ C + 1
ζ1

(j + 1),

for some C > 0. This means that

‖ 1
f ′ ‖

α

L∞(ω+
j )
eσ‖τ‖L∞(ωi) ≤ Ce−j[α(1−β)−σ/ζ1]eσ/ζ1

(perhaps by increasing C) and by (3.2) we know that α(1 − β) − σ/ζ1 > 0. This
means that (2.4) is satisfied and (2.3) is satisfied for all large j. Unfortunately
we are not quite done since we have not shown that (2.3) is satisfied for all j and
we have not shown that ‖1/f ′‖L∞(Ω) < 1. We do know however that there exists

n ∈ N such that ‖1/(fn)′‖L∞(Ω) < 1. Consequently we instead consider the nth

iterate suspension semiflow. I.e. we consider the return map fn and the return
time τ + τ ◦ f + · · ·+ τ ◦ fn−1. This does not change the flow we study, it is merely
a choice of coding. Care must be taken by the Hölder continuity assumption (2.2).
It is to be expected that this is now only satisfied by decreasing α > 0 since it is
the composition of Hölder continuous functions. We now fix this smaller value of
α and choose σ > 0 corresponding smaller as required above (3.2). Condition (2.4)
remains satisfied, but now for the new return map and new return time function
with the obvious refinement of the partition. Condition (2.3) is still satisfied by the
iterate for all but a finite number of terms. However since ‖1/(fn)′‖L∞(Ω) < 1 it is

possible to choose σ > 0 sufficiently small such that the condition is satisfied. The
above estimates mean that the results of the main theorem of this paper applies
to the Lorenz semiflows. It is likely that the choice of α ∈ (0, 1) and σ > 0 by the
above procedure is far from optimal. In principle the rigorous numerics approach
of Tucker could be used to obtain values which were close to optimal.

We make a few more comments about this particular suspension semiflow. This
suspension semiflow presents the difficulty that the return time is not bounded but
moreover τ ′/f ′ is not bounded and will not be bounded for any iterate. (Such
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a condition is crucially required in [11, 7].) This means that the semiflow is not
uniformly expanding in the sense of there existing an invariant conefield, uniformly
bounded away from the flow direction, inside of which there is uniform expansion.
Lorenz semiflows as discussed above are our main application although we study a
more general class of suspension semiflows.

A natural and important question is to what extent the meromorphic extension
result of the previous section can be improved in the setting of the Lorenz attractor.
In particular, how could one show exponential decay of correlation for the Lorenz
attractor? As briefly mentioned earlier the remaining estimate required would
be a stronger bound on the spectral radius of the twisted transfer operator (see
Section 5) for large imaginary values in the weight of the transfer operator. This
is the oscillatory cancelation argument of Dolgopyat [15]. The regularity of the
return time function is key for such an argument. The result of this paper does
not require the return time to be better than Hölder but it seems unlikely that the
above mentioned oscillatory cancellation estimate could be proved with regularity
less than C 1. This is because the cancellation method works like an oscillatory
integral with the return time appearing as one key part of the intergrand.

There is hope that the return function for the Lorenz semiflow is differentiable.
As usual in such situations the regularity of the foliation depends on the balance be-
tween the expansion and contraction in the complementary invariant subspaces [23].
In many situations it cannot be hoped for invariant foliations to be better than
Hölder [20]. For an Anosov flow it is easy to show that codimension one invariant
foliations are C 1+α but the foliation we are interested in is codimension two. For
three dimensional contact Anosov flows one may show that the stable foliation of the
flow is C 1+α by using crucially the contact structure, this in particular includes the
case of geodesic flows on surfaces of negative curvature.3 The evidence is therefore
not inspiring for our aim. However the Lorenz attractor does not preserve volume,
it is actually highly dissipative. It seems possible that one can take advantage of
this fact to give an improved estimate of the regularity of the stable foliation for
the Lorenz attractor. This is the subject of ongoing work.

4. Generalised Bounded Variation

We must consider the weighted transfer operators associated to expanding maps
of the interval which have countable discontinuities and for which the inverse of
the derivative and the weighting are merely Hölder continuous. This means that
we cannot study the transfer operator acting on any relatively standard spaces.
One possibility is the generalised bounded variation introduced by Keller [25] and
used for expanding interval maps. However he does not consider the case when
there are countable discontinuities and also does not consider the case of general
weights. Saussol [36] used the same spaces for multi-dimensional expanding maps
and showed that a countable number of discontinuities (as opposed to finite) are
allowable but again did not study a general classes of weights and furthermore
required the derivative of the map to be bounded. These are the spaces we will
use in this section. Although not proven in the above mentioned references, with
delicate estimates these spaces, as we will prove in this section, are useful for our
application. Recently several people have worked on possible alternatives for solv-
ing the problem at hand and similar problems. The results of this section are able

3In general the contact structure merely implies that the stable foliation enjoys the same
regularity as the weak-stable foliation (similarly for the unstable). This means that for higher
dimensional Anosov flows the contact structure is not sufficient to obtain C 1+α regularity for the
stable and unstable foliations. Nonetheless, using the contact structure, it is possible to carry out
the oscillatory cancellation argument in such situations [27].
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to favourably settle this question. In particular the following three options were
studied. (1) Thomine [38] uses Sobolev space (with fractional exponent) and uses
extensively complex interpolation between Banach spaces for many of the calcula-
tions. He is able to treat piecewise expanding maps of any dimension. The work is
the natural restriction to expanding maps of the ideas used for hyperbolic maps by
Baladi and Gouëzel [9]. Unfortunately the maps are required to have derivatives
which are uniformly bounded from above and below. (2) Liverani introduced a
norm [26] which he studied [28] in the context of piecewise expanding maps of the
interval. There is a simple definition for the norm in terms of integrals against test
functions that are Hölder continuous. He can study piecewise expanding maps of
the interval which have a countable number of discontinuities and also allows the
case where the derivative of the map blows up and the case where the weighting of
the transfer operator is not bounded but there is a condition that links the Hölder
regularity of the weighting in the transfer operator to the rate at which the deriva-
tive and weighting blows up. (3) The author also developed an alternative Banach
space [12] for studying these problems. The Banach space is a very natural object
in that it is equivalent to the space given by real interpolation between L1 and BV.
This has the benefit that it is very easy to work with. Also this approach allows the
study of similar settings as the space of Liverani but unfortunately also suffers from
the same limitations. Consequently each of these options suffers from some problem
which prevents the use in this present setting without imposing undesirable further
conditions on the semiflow we wish to study. One particular problem is that we
cannot guarantee that the weighting is bounded (see Section 5) and consequently
we cannot guarantee that the weighted transfer operator is bounded on L1. Keller’s
Banach space of generalised bounded variation [25] is contained within L∞, a dis-
tinct difference to the available alternatives [12, 28]. This suggests the possibility
that the transfer operator is bounded on this space even when not bounded on L1.
In the remainder of this section we see that this speculation is shown to be correct.

4.1. The Banach Space. The following definitions are identical to [25] with minor
changes of notation. For any interval S and h : S → C let

osc [h,S] := ess sup {|h(x1)− h(x2)| : x1, x2 ∈ S}

where the essential supremum is taken with respect to Lebesgue measure on S2.
Let Bε(x) := {y ∈ R : |x− y| ≤ ε}. If α ∈ (0, 1) and Ω is some finite or countable
union of open intervals, let

|h|Bα
:= sup

ε∈(0,ε0)

ε−α
∫

Ω

osc [h,Bε(x) ∩ Ω] dx, (4.1)

where ε0 > 0 is some fixed parameter. Hence let

Bα :=
{
h ∈ L1(Ω) : |h|Bα

<∞
}
.

The seminorm defined above will depend on ε0 > 0 although the sets Bα do not.
It is known [25, Theorem 1.13] that this set is a Banach space when equipped with
the norm

‖h‖Bα
:= |h|Bα

+ ‖h‖L1(Ω),

that Bα ⊂ L∞(Ω), and that the embedding

Bα ↪→ L1(Ω) is compact. (4.2)
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4.2. Piecewise Expanding Transformations. As before, we suppose that Ω
is an open interval and {ωi}i∈I is a finite or countable set of disjoint open sub-
intervals which exhaust Ω modulo a set of zero Lebesgue measure (for convenience

let Ω̃ =
⊔
i∈I ωi) and that we are given

f ∈ C 1(Ω̃,Ω)

which is bijective when restricted to each ωi. We further suppose that we are given
ξ : Ω→ C which we call the weighting. We require that

‖1/f ′‖L∞(Ω) ∈ (0, 1), (4.3)

furthermore that ∑
i∈I
‖1/f ′‖L∞(ωi)

‖ξ‖L∞(ωi)
<∞, (4.4)

and finally that ξ
f ′ : Ω → C is α-Hölder. I.e. there exists Hξ < ∞ and α ∈ (0, 1)

such that∣∣∣ ξf ′ (x)− ξ
f ′ (y)

∣∣∣ ≤ Hξ |x− y|α for all x, y ∈ ωi for each i ∈ I. (4.5)

For convenience let fi : ωi → Ω denote the restriction of f to ωi. As usual the
weighted transfer operator is given, for each h : Ω→ C, by4

Lξh(x) :=
∑
i∈I

(
ξ · h
f ′

)
◦ f−1

i (x) · 1fωi(x). (4.6)

By (4.4) we know that Lξ : L∞(Ω) → L∞(Ω) is well defined even thought, since
we do not require ‖ξ‖L∞(Ω) < ∞, we cannot guarantee that the operator is well

defined on L1(Ω).
The purpose of this section is to prove the following new result which is a gen-

eralisation of the work of Keller [25] to the case of countable discontinuities and
unbounded weightings.

Theorem 4.1. Suppose the transformation f : Ω→ Ω and the weighting ξ : Ω→ C
are as above and satisfy (4.3), (4.4) and (4.5). Then Lξ : Bα → Bα is a bounded
operator with essential spectral radius not greater than

λ := sup
i∈I
‖1/f ′‖αL∞(ωi)

‖ξ‖L∞(ωi)
.

By a standard argument (see for example [27, p.1281]) the essential spectral radius
estimate of the above theorem follows from the compact embedding (4.2) and the
Lasota-Yorke type estimate contained in the following theorem. In the case where
‖ξ‖L∞(Ω) < ∞ an elementary estimate shows that ‖Lξ‖L1(Ω) ≤ ‖ξ‖L∞(Ω) and so,

once the essential spectral radius estimate has been shown, this implies that the
spectral radius is not greater than ‖ξ‖L∞(Ω).

Theorem 4.2. Suppose that f and ξ are as per the assumptions of Theorem 4.1.
Then for all δ > 0 there exists Cδ <∞ such that

‖Lξh‖Bα
≤ (2 + δ)λ ‖h‖Bα

+ Cδ‖h‖L1(Ω) for all h ∈ Bα.

The remainder of this section is devoted to the proof of the above theorem. This
estimate is an extension of the result of Keller [25] to our setting. The proof follows
a similar argument to Keller’s original with various additional complications, in
particular because of the weighting ξ and the possibility that I is merely countable.
As such we are forced to redo the proof but when possible we refer to the relevant
theorems and lemmas which we can reuse.

4For any set, e.g. A, we let 1A denote the indicator function of that set.
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4.3. Proof of Theorem 4.2. We may assume that δ ≤ 1. First ε0 > 0 must be
carefully chosen and it is convenient to divide the index set as I = I1 ∪ I2. By
(4.4) we may choose a finite set I1 ⊂ I such that∑

i∈I2

‖1/f ′‖L∞(ωi)
‖ξ‖L∞(ωi)

≤ λδ

16
, (4.7)

where I2 := I \ I1. Let Γ := 32δ−1 + 2. Choosing ε0 sufficiently small we ensure
that

|fωi| ≥ ε0Γ for all i ∈ I1 (4.8)

and that

εα0 ≤
δλ

8(8 + δ)HξΓ
. (4.9)

(The reason for this particular choice will subsequently become clear (4.18).) If
|fωi| > 2ε0Γ for some i ∈ I1 we chop ωi into pieces such that ε0Γ ≤ |fωj | ≤ 2ε0Γ
for all the resulting pieces. If |fωi| > 2ε0Γ for some i ∈ I2 we chop ωi into pieces as
before but in this case we move the resulting pieces into the set I1. This means that
the estimate (4.7) remains unaltered. Note that I1 may no longer be a finite set.
To conclude we have arranged so that (4.7), (4.8), and (4.9) hold and furthermore
that

|fωi| ≤ 2ε0Γ for all i ∈ I. (4.10)

Fix h ∈ Bα. We start by noting that by the definition (4.1) of the seminorm
and the definition (4.6) of the transfer operator

|Lξh|Bα
= sup
ε∈(0,ε0)

ε−α
∫

Ω

osc [Lξh,Bε(x) ∩ Ω] dx

≤ sup
ε∈(0,ε0)

∑
i

ε−α
∫

Ω

osc
[(

ξ·h
f ′

)
◦ f−1

i · 1fωi , Bε(x) ∩ Ω
]
dx.

(4.11)

To proceed we take advantage of several estimates which have already been proved
elsewhere. Firstly by [25, Theorem 2.1] for each i ∈ I1, since |fωi| ≥ (32δ−1 + 2)ε0
by (4.8) and |fωi| ≥ 4ε0, we have that∫

Ω

osc
[(

ξ·h
f ′

)
◦ f−1

i · 1fωi , Bε(x) ∩ Ω
]
dx

≤ (2 + δ
4 )

∫
fωi

osc
[(

ξ·h
f ′

)
◦ f−1

i , Bε(x) ∩ fωi
]
dx

+
ε

ε0

∫
fωi

∣∣∣ ξ·hf ′

∣∣∣ ◦ f−1
i (x) dx.

(4.12)

For i ∈ I2 (where |fωi| may be small) we use the following, more basic estimate.
By [36, Proposition 3.2 (ii)] for each i

osc
[(

ξ·h
f ′

)
◦ f−1

i · 1fωi , Bε(x) ∩ Ω
]
≤ osc

[(
ξ·h
f ′

)
◦ f−1

i , Bε(x) ∩ fωi
]
· 1fωi

+ 2‖ ξ·hf ′ ‖
L∞(ωi)

1Fi,ε(x)

where Fi,ε denotes the set of all points x ∈ Ω which are within a distance of ε of
the end points of the interval fωi. Since |

∫
fωi

1Fi,ε(x) dx| ≤ 2ε the above implies
that ∫

Ω

osc
[(

ξ·h
f ′

)
◦ f−1

i · 1fωi , Bε(x) ∩ Ω
]
dx

≤
∫
fωi

osc
[(

ξ·h
f ′

)
◦ f−1

i , Bε(x) ∩ fωi
]
dx

+ 4ε‖ξ‖L∞(ωi)
‖h‖L∞(Ω)‖1/f

′‖L∞(ωi)
.

(4.13)
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Note that the integral term in the middle line of the above equation is identical to
the integral term of the middle line of (4.12). We also require the following basic
estimate for the osc [·, ·] of a product.

Lemma 4.3. Suppose S ⊂ Ω is an interval, g1 : S → C, g1 : S → C and y ∈ S.
Then

osc [g1 · g2,S] ≤ |g1(y)| · osc [g2,S] + 2‖g2‖L∞(S) · osc [g1,S] .

Proof. Suppose x1, x2, y ∈ S. It suffices to observe that

(g1 · g2)(x1)− (g1 · g2)(x2) = g1(y) (g2(x1)− g2(x2))

+ g2(x1) (g1(x1)− g1(y)) + g2(x2) (g1(y)− g1(x2)) . �

This means in particular that (this is the term which appears in the middle lines
of (4.12) and (4.13))∫

fωi

osc
[(

ξ·h
f ′

)
◦ f−1

i , Bε(x) ∩ fωi
]
dx

≤
∫
fωi

∣∣∣ ξf ′

∣∣∣ ◦ f−1
i (x) · osc

[
h ◦ f−1

i , Bε(x) ∩ fωi
]
dx

+ 2‖h‖L∞(ωi)

∫
fωi

osc
[
ξ
f ′ ◦ f−1

i , Bε(x) ∩ fωi
]
dx.

(4.14)

Recalling (4.11) and applying the estimates of (4.12), (4.13) and (4.14) we have

|Lξh|Bα
≤ sup
ε∈(0,ε0)

(A1,ξ,h(ε) +A2,ξ,h(ε) +A3,ξ,h(ε) +A4,ξ,h(ε)) , (4.15)

where we have definded for convenience

A1,ξ,h(ε) := ε−α(2 + δ
4 )
∑
i∈I

∫
fωi

∣∣∣ ξf ′

∣∣∣ ◦ f−1
i (x) · osc

[
h ◦ f−1

i , Bε(x) ∩ fωi
]
dx

A2,ξ,h(ε) := 2ε−α(2 + δ
4 )
∑
i∈I
‖h‖L∞(ωi)

∫
fωi

osc
[
ξ
f ′ ◦ f−1

i , Bε(x) ∩ fωi
]
dx

A3,ξ,h(ε) := 4ε1−α‖h‖L∞(Ω)

∑
i∈I2

‖1/f ′‖L∞(ωi)
‖ξ‖L∞(ωi)

A4,ξ,h(ε) :=
ε1−α

ε0

∑
i∈I1

∫
fωi

∣∣∣ ξ·hf ′

∣∣∣ ◦ f−1
i (x) dx.

The remainder of the proof involves independently estimating each of these four
terms.

We start by estimating A1,ξ,h(ε). Let σi := ‖1/f ′‖L∞(ωi)
∈ (0, 1) by assumption

(4.3). Since f−1
i Bε(x) ⊆ Bσiε(f−1

i x) we have that

osc
[
h ◦ f−1

i , Bε(x) ∩ fωi
]

= osc
[
h, f−1

i Bε(x) ∩ ωi
]

≤ osc [h,Bσiε(yi) ∩ ωi]
(4.16)

where yi := f−1
i x. We change variables in the integral and so

A1,ξ,h(ε) ≤ ε−α(2 + δ
4 )
∑
i∈I

∫
ωi

|ξ| (yi) · osc [h,Bσiε(yi) ∩ ωi] dyi

≤ ε−α(2 + δ
4 )‖ξ‖L∞(ωi)

∫
Ω

osc [h,Bσiε(y) ∩ Ω] dy

≤ σαi (2 + δ
4 )‖ξ‖L∞(ωi)

|h|Bα
≤ (2 + δ

4 )λ |h|Bα
.

(4.17)
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Now we estimate A2,ξ,h(ε). By [25, Lemma 2.2] we have the estimate

‖h‖L∞(ωi)
≤ ε−1

0

∫
ωi

osc [h,Bε0(x)] dx+ |ωi|−1 ‖h‖L1(ωi)
.

By assumption (4.5) we know that osc [ ξf ′ , Bσiε(yi) ∩ ωi] ≤ 2Hξσ
α
i ε
α and so, chang-

ing variables as per (4.16), we have∫
fωi

osc
[
ξ
f ′ ◦ f−1

i , Bε(x) ∩ fωi
]
dx ≤

∫
ωi

osc
[
ξ
f ′ , Bσiε(yi) ∩ ωi

]
dyi

≤ 2 |ωi|Hξσ
α
i ε
α.

Combining the above two estimates means that

A2,ξ,h(ε) ≤ 4(2 + δ
4 )Hξ

∑
i∈I

σαi

(
ε
−(1−α)
0 |ωi| ε−α0

∫
ωi

osc [h,Bε0(x)] dx+ ‖h‖L1(ωi)
.

)
By the expanding assumption (4.3) and by (4.10) we know that |ωi| ≤ σi |fωi| ≤
2σiε0Γ. Using also (4.9) this means that for all i ∈ I

4(2 + δ
4 )Hξσ

αε
−(1−α)
0 |ωi| ≤ 8(2 + δ

4 )Hξ‖1/f ′‖
1+α
L∞(Ω)ε

α
0 Γ

≤ δ
4λ.

Consequently we have shown that

A2,ξ,h(ε) ≤ δ
4λ |h|Bα

+ 4(2 + δ
4 )Hξ‖1/f ′‖

α
L∞(Ω)‖h‖L1(Ω). (4.18)

Now we estimate A3,ξ,h(ε). Using again [25, Lemma 2.2] we have the estimate

‖h‖L∞(Ω) ≤ ε
−(1−α)
0 |h|Bα

+ |Ω|−1 ‖h‖L1(Ω). (4.19)

This means that

A3,ξ,h(ε) ≤ 4

(
|h|Bα

+
ε1−α0

|Ω|
‖h‖L1(Ω)

)∑
i∈I2

‖1/f ′‖L∞(ωi)
‖ξ‖L∞(ωi)

.

By (4.7) we know that
∑
i∈I2 ‖1/f

′‖L∞(ωi)
‖ξ‖L∞(ωi)

≤ λδ
16 and so

A3,ξ,h(ε) ≤ δ
4λ |h|Bα

+

(
ε1−α0 δ

4 |Ω|
λ

)
‖h‖L1(Ω). (4.20)

Now we estimate A4,ξ,h(ε). Using again the assumption (4.4) we may choose a finite
set I3 ⊂ I1 such that ∑

i∈I4

‖1/f ′‖L∞(ωi)
‖ξ‖L∞(ωi)

≤ δε0
4
λ,

where I4 := I1 \ I3. We therefore estimate, using also a change of variables yi :=
f−1
i x,

A4,ξ,h(ε) ≤ ε−α0

∑
i∈I1

∫
fωi

∣∣∣ ξ·hf ′

∣∣∣ ◦ f−1
i (x) dx

≤ ε−α0

∑
i∈I3

∫
ωi

|ξ · h| (yi) dyi + ε−α0

∑
i∈I4

‖ ξ
f ′
‖
L∞(ωi)

‖h‖L∞(Ω).

Using (4.19) to estimate ‖h‖L∞(Ω), this means that for all ε ∈ (0, ε0) we have

A4,ξ,h(ε) ≤ δ

4
λ |h|Bα

+

(
ε−α0 |Ω|−1

sup
i∈I3
‖ξ‖L∞(ωi)

)
‖h‖L1(Ω). (4.21)

Summing the estimates of (4.17), (4.18), (4.20), and (4.21) we have shown that

|Lξh|Bα
≤ (2 + δ)λ |h|Bα

+ Cδ‖h‖L1(Ω)
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for all h ∈ Bα, where

Cδ := 4(2 + δ
4 )Hξ‖ 1

f ′ ‖
α

L∞(ωi)
+

1

εα0 |Ω|
sup
i∈I3
‖ξ‖L∞(ωi)

+
λε1−α0 δ

4 |Ω|
.

This completes the proof of Theorem 4.2.

5. Twisted Transfer Operators

In this section we follow the standard “twisted transfer operator” approach to
studying flows. We will take steps to allow the transfer operator results of the
previous section to be applied to the original problem of the meromorphic extension
of the correlation function. Throughout this section we suppose that we are given a
suspension semiflow (Ω, f, τ) which satisfies the assumptions of the Main Theorem,
in particular assumptions (2.2), (2.3), and (2.4). First we show that a condition
named exponential tails in [7] holds also in this setting.

Lemma 5.1.
∫

Ω
eστ(x) dx <∞.

Proof. We estimate
∫

Ω
eστ(x) dx ≤

∑
i∈I |ωi| e

σ‖τ‖L∞(ωi) . Since also we have that
|ωi| ≤ ‖1/f ′‖L∞(ωi)

|Ω| then the supposition (2.4) implies the lemma. �

For all t ≥ 0 let At := {(x, s) ∈ Ωτ : s+ t ≥ τ(x)} and Bt := Ωτ \At. Hence we
may write

µ(u · v ◦ Φt) = µ(u · v ◦ Φt · 1At) + µ(u · v ◦ Φt · 1Bt). (5.1)

Exponential decay for the second term is simple to estimate.

Lemma 5.2. Exists C < ∞ such that |µ(u · v ◦ Φt · 1Bt)| ≤ C |u|∞ |v|∞ e−σt for
all u, v : Ωτ → C bounded and t ≥ 0.

Proof. Since µ is given by a formula in terms of the measure ν which is absolutely
continuous with respect to Lebesgue there exists C < ∞ such that, letting Dt :=
{x ∈ Ω : τ(x)− t > 0}, we have∣∣µ(u · v ◦ Φt · 1Bt)

∣∣ ≤ C |u|∞ |v|∞ ∫
Ω

(τ(x)− t) · 1Dt(x) dx (5.2)

for all t ≥ 0. For y ∈ R we define k(y) equal to y if y ≥ 0 and equal to 0 otherwise.
This definition means that (τ(x)− t) · 1Dt(x) ≤ k(τ(x)− t). Since ln y ≤ y for all
y > 0 it follows that ln(σy) = lnσ + ln y ≤ σy and so y ≤ σ−1eσy for all y > 0.
The case y ≤ 0 is simple and so we have shown that k(y) ≤ σ−1eσy for all y ∈ R.
This means that

(τ(x)− t) · 1Dt(x) ≤ σ−1eσ(τ(x)−t), for all x ∈ Ω.

We conclude using the above with (5.2) since
∫
eστ(x) dx <∞ by Lemma 5.1. �

In order to proceed we must estimate the other term in (5.1) and so it is conve-
nient to define

ρ(t) := µ(u · v ◦ Φt · 1At). (5.3)

Note that |µ(u · v ◦ Φt · 1At)| ≤ |u|∞ |v|∞ for all t ≥ 0. For all z ∈ C such that
<(z) > 0 we consider the Laplace transform of the above function

ρ̂(z) :=

∫ ∞
0

e−ztρ(t) dt. (5.4)

Additionally for any u : Ωτ → C and z ∈ C let

ûz(x) :=

∫ ∞
0

e−zsu(x, s) ds (5.5)
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for all x ∈ Ω. Furthermore for all n ∈ N let τn :=
∑n−1
k=0 τ ◦ fk. Since the

invariant measure ν is absolutely continuous with respect to Lebesgue there exists

a density h0 ∈ L1(Ω) such that µ(η) =
∫

Ω

∫ τ(x)

0
η(x, s) ds h0(x) dx for all bounded

η : Ωτ → C. As in [34, 35, 11, 7] we have the following representation of the Laplace
transform in terms of an infinite sum.

Lemma 5.3. For all z ∈ C such that <(z) > 0 and all |u|∞ <∞, |v|∞ <∞,

ρ̂(z) =

∞∑
n=1

∫
Ω

(h0 · û−z · e−zτn · v̂z ◦ fn)(x) dx.

Proof. Recall that h0 ∈ L1(Ω) is the density of the f -invariant measure ν. For all
<(z) > 0

ρ̂(z) =

∫ ∞
0

∫
Ω

∫ τ(x)

0

e−ztu(x, s)v ◦ Φt(x, s)1At(x, s)h0(x) ds dx dt

=

∞∑
n=1

∫
Ω

∫ τ(x)

0

∫ τn+1(x)−s

τn(x)−s
e−ztu(x, s)v ◦ Φt(x, s)h0(x) dt ds dx.

We change variables letting t′ = t − τn(x) + s and note that when t ∈ [τn(x) −
s, τn+1(x)− s] then Φt(x, s) = (fnx, t− τn(x) + s). This means that

ρ̂(z) =

∞∑
n=1

∫
Ω

e−zτn(x)

(∫ τ(x)

0

ezsu(x, s) ds

)

×

(∫ τ(fnx)

0

e−zt
′
v(fnx, t′) dt′

)
h0(x) dx.

Recalling the definition (5.5) for û−z and v̂z we conclude. �

We now relate the sum given by Lemma 5.3 to the twisted transfer operators.
For all z ∈ C such that <(z) ∈ [−σ, 0] let ξz : Ω→ C be defined as

ξz := e−zτ . (5.6)

We consider the map f : Ω → Ω with the weighting ξz. It is immediate that
the assumptions imposed on the semiflow imply that the pair f and ξz satisfy the
assumptions of Theorem 4.1. Consequently the transfer operator Lz : Bα → Bα

(for convenience we now write Lz for Lξz ) and which is given by the formula

Lzh(x) :=
∑
i∈I

(
e−zτ · h
f ′

)
◦ f−1

i (x) · 1fωi(x).

has essential spectral radius strictly less than 1. Let B(Bα,Bα) denote the space
of bounded linear operators mapping Bα to Bα.

Lemma 5.4. The operator valued function z 7→ (id − Lz)
−1 ∈ B(Bα,Bα) is

meromorphic on the set {z ∈ C : <(z) ∈ [−σ, 0]}.

Proof. We know that Lz ∈ B(Bα,Bα) has essential spectral radius less than 1
for all <(z) ∈ [−σ, 0] and so is of the form Lz = Kz + Az where Kz is compact,
the spectral radius of Az is strictly less than 1 and KzAz = 0. Furthermore both
z 7→ Kz ∈ B(Bα,Bα) and z 7→ Az ∈ B(Bα,Bα) are holomorphic operator-valued
functions. Note that

(id−Lz) = (id−Kz)(id−Az).

and that (id − Az) is invertible. By the Analytic Fredholm Theorem z 7→ (id −
Kz)

−1 is meromorphic on the set {z ∈ C : <(z) ∈ [−σ, 0]}. �
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Lemma 5.5. The operator valued function z 7→
∑∞
n=1 L n

z ∈ B(Bα,Bα) is mero-
morphic on the set {z ∈ C : <(z) ∈ [−σ, 0]}.

Proof. We note that
∑∞
n=1 L n

z = (id−Lz)
−1Lz and apply Lemma 5.4. �

Proof of The Main Theorem. By Lemma 5.2 it suffices to know that ρ̂ admits the
relevant meromorphic extension. Since, as usual for transfer operators, we have
that ∫

Ω

L n
z h1(x) · h2(x) dx =

∫
Ω

h1(x) · h2 ◦ e−zτn(x) ◦ fn(x) dx

the formula for ρ̂(z) given by Lemma 5.3 means that

ρ̂(z) =

∞∑
n=1

∫
Ω

L n
z (h0û−z)(x) · v̂z(x) dx.

This equality was shown to hold for all <(z) > 0. But since the right hand side is
meromorphic on the set {z ∈ C : <(z) ∈ [−σ, 0]} we have shown that the left hand
side admits such an extension. �
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