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Abstract
We consider expanding semiflows on branched surfaces. The family of
transfer operators associated with the semiflow is a one-parameter semigroup
of operators. The transfer operators may also be viewed as an operator-valued
function of time and so, in the appropriate norm, we may consider the vector-
valued Laplace transform of this function. We obtain a spectral result on these
operators and relate this to the spectrum of the generator of this semigroup.
Issues of strong continuity of the semigroup are avoided. The main result is
the improvement to the machinery associated with studying semiflows as one-
parameter semigroups of operators and the study of the smoothness properties
of semiflows defined on branched manifolds, without encoding as a suspension
semiflow.

Mathematics Subject Classification: 37C10, 37A25

1. Introduction

Flows associated with vector fields were one of the principle origins of the study of ergodic
theory and dynamical systems are indeed of foremost importance. They are often not at
all simple to analyse. Certain deceptively simple systems of differential equations and the
associated flows still prove extremely difficult to understand. In the past many questions
concerning flows were intractable with the technology available and much progress was made
by first reducing to a discrete dynamical system by considering Poincaré sections and encoding
the flow as a suspension over the discrete-time dynamical system.

In the study of the statistical properties of discrete-time dynamical systems, a major
technological success of the last thirty years was the development of ideas to apply functional
analysis directly to the system. This was developed by a long list of people but particularly
by the pioneering work of Lasota–Yorke [9] and subsequent development by Keller (see [10]
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Figure 1. The prototype of a branched manifold which supports an expanding semiflow. A piece
of an orbit of the flow is displayed (the line with arrows). The semiflow fails to be invertible. There
is a single branch line, horizontally across the central part where the left and right surfaces join. To
the right is the one-dimensional Poincaré return map produced by taking the horizontal line across
the middle as the Poincaré section.

and references within for a more complete history). In this approach one typically considers a
linear operator called the ‘transfer operator’ acting on a certain well chosen Banach space and
then deduces information concerning the statistical properties from information concerning
the spectrum of the operator.

When Liverani studied the rate of mixing of contact Anosov flows [11] he showed that the
family (parametrized by time) of transfer operators associated with a flow can be viewed as
a strongly continuous one-parameter semigroup acting on a well chosen Banach space. This
had the benefit of allowing one to study the flow directly without first encoding to a suspension
flow and again apply the breakthrough work of Dolgopyat [5] on the oscillatory cancelation
mechanism. This seemed like a point of view which had great potential and indeed these ideas
have since been proven useful. In particular they have helped deduce behaviour of the invariant
measure of an Anosov flow under perturbations [3], to study the rate of mixing for piecewise
cone-hyperbolic contact flows [2] and to study dynamical zeta functions, again for contact
Anosov flows [6]. We remark that although studying the flow by considering the associated
one-parameter semigroup of operators seems promising, it is not the only possibility and Tsujii
has demonstrated [13–15] that, certainly in the case of smooth expanding maps of the circle
and contact Anosov flows, it is possible to study directly the transfer operator associated with
the time-one map of the flow.

Many statistical properties of many diverse classes of flows remain as open questions,
for example rates of mixing for the Sinai billiard flow and the Lorenz flow. These are
both flows which are simple to define but whose statistical properties remain elusive (the
corresponding questions for the Poincaré return maps associated with these flows are relatively
well understood). From a technological point of view several issues must be better understood
if we wish to extend our techniques to more general classes of flows, in particular understanding
how to deal with discontinuities. A weight of evidence suggests that ‘good statistical properties’
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like exponential decay of correlation and continuous, or even differential, dependence of the
invariant measure under perturbations, are the consequence of the smoothness of the system.
The aim here is to use as much as possible the available smoothness of the system to deduce
statistical properties in the situations where there is a limited degree of smoothness. In
particular this is why we avoid the approach of reducing to a suspension flow which artificially
reduces the smoothness of the system.

We believe there are many benefits to streamlining and optimizing the current technology
to facilitate its use in more difficult settings. As mentioned above, there is now a very precise
understanding of C r Anosov flows and extremely precise spectral results, however, from
a physical point of view such boundary-less smooth systems seem unrealistic. Here we
wish to consider the more realistic systems which only satisfy significantly weaker regularity
assumptions. As such we study a relatively simple model, although much subtle and complex
behaviour is visible and the results are indeed new. We study semiflows associated with
C 2 vector fields on two-dimensional branched manifolds (branched surfaces), possibly with
boundary. Despite the smoothness of the flow, discontinuities are introduced because the flow is
supported on a manifold with boundary. The existence of branches allows the semiflows to be
non-invertible, i.e. they really are semiflows and not flows. We suppose these semiflows
are uniformly expanding in a sense specified below. We develop the theory of the one-
parameter semigroup of transfer operators associated with these semiflows and we make
several improvements and observations from a technical point of view. We achieve a spectral
decomposition of the (operator-valued) Laplace transform of the transfer operator. We show
that the issue of the strong continuity of the semigroup can be easily avoided. Furthermore, we
demonstrate an approach which means that it should be possible to also study perturbations
of the flow on the same Banach space, even in the case of flows with discontinuities, and so
studying the behaviour of the statistical properties under the perturbation is made possible.
We remark that the operator-theory framework presented in the following section is essentially
independent of the present application to expanding flows on branched manifolds and should
be applicable, with the appropriate choice of dynamically relevant Banach space, to many
other settings.

2. Results

We suppose that ! is a 2-dimensional C 2 branched manifold, possibly with boundary and
with finite branches (figure 1). Definitions and notation concerning branched manifolds and
their differential structure are given in section 3. In summary a branched manifold possesses
a differential structure in much the same way as a Riemannian manifold, in particular tangent
space Tp! is uniquely defined at each point p ∈ ! and there is an inner product 〈·, ·〉 for the
tangent space which allows us to discuss orthogonality and consequently a norm ‖ · ‖. We
suppose that we are given a vector field X ∈ T! which is C 2 and such that the associated
semiflow

"t : ! → !, t ! 0

is globally defined. By semiflow we mean, as usual, that " : !× R+ → ! which we write as
" : (p, t) '→ "t(p) and which satisfies "0 = id and "t ◦ "s = "t+s for all t, s ! 0.

We also require that "t is uniformly expanding as specified in the following. To
characterize hyperbolicity for systems which are either not invertible or have discontinuities it
is not possible to use the notion of an invariant and hyperbolic splitting of tangent space. One
possibility would be to use the notion of conefields. However we opt for yet another alternative
which is most suitable for this particular setting. We suppose there exists an orientatable C 2
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foliation of ! which we denote FV such that the following three properties hold.

(1) The leaves of FV are all one-dimensional curves with end points contained in ∂! and of
length greater than δ for some constant δ > 0,

(2) The leaves of FV are uniformly transversal to the flow direction,
(3) and, letting V denote the unit vector field tangent to the foliation FV , we suppose that

there exist constants C ∈ R, λ > 0 such that 〈D"tu, V 〉 ! C−1eλt 〈u, V 〉 for all u ∈ Tp!,
p ∈ ! and t ! 0.

Note that the foliation FV will not be invariant under the action of the flow, except in extremely
special (non-mixing) cases. The foliation is merely more-or-less in the expanding direction of
the flow. Also note that the assumption of the existence of the flow and of it being uniformly
expanding in the above sense puts significant restrictions on the branched manifold. For
example the flow lines at the boundary must be tangent to the boundary. Many branched
manifolds cannot support such flows.

From this point onwards we assume always that the semiflow "t : ! → ! is a uniformly
expanding semiflow on a two dimensional branched manifold as described above.

The branched manifold ! is a measure space when equipped with the Borel σ -algebra.
Let M denote the space of complex measures on !. This is the dual of C0(!), the Banach
space of continuous complex-valued functions with support contained within some open subset
of !, equipped with the supremum norm |η|∞ := sup{|η(p)| : p ∈ !}. For each µ ∈ M
let ‖µ‖M = sup{|µ(η)| : η ∈ C (!), |η|∞ " 1}. The space (M, ‖·‖M) is a Banach space.
Note that ‖·‖M is exactly the standard total variation which is historically denoted by | · |(!)

but for clarity and consistency in the following we use the norm style notation. We will refer
to the elements of this space as measures and omit explicit mention that they are complex
measures. For later use let C (!) (as opposed to C0(!)) denote the space of all continuous
complex-valued functions on !. For each fixed t ! 0 the flow "t : ! → ! is a measurable
map and so defines the push-forward in the space of measures.

"t
∗ : M → M, "t

∗µ(η) := µ(η ◦ "t)

for all η ∈ C (!). This family of linear operators is a one-parameter semigroup since "0
∗ = id

and it has the semigroup property, inherited from the semiflow, that

"t+s
∗ = "t

∗ ◦ "s
∗ for all t, s ! 0. (1)

At this stage we make no claims on the continuity of this semigroup with respect to the
parameter t . This is however an important issue that we return to later on. They are a family of
bounded linear operators "t

∗ : M → M. We use the standard notation for the operator norm.
I.e. if L : M → M is a linear operator then ‖L ‖M := sup{‖L µ‖M : ‖µ‖M " 1}.
Lemma 2.1. ‖"t

∗‖M = 1 for all t ! 0.

Proof. For any µ ∈ M then ‖"t
∗µ‖M = sup{|µ(η ◦ "t)| : η ∈ C (!), |η|∞ " 1}. That

|η|C 0 " 1 implies that |η ◦ "t(p)| " 1 for each p ∈ ! and also η ◦ "t is measurable
and so by Lusin’s theorem ‖"t

∗µ‖M " ‖µ‖M. We have shown that ‖"t
∗‖M " 1 for all

t ! 0. Define the linear functional ( ∈ M∗ by ((µ) := µ(1) for all µ ∈ M. Note that
(("t

∗µ) := "t
∗µ(1) = µ(1) and so 1 is an eigenvalue for the dual operator and consequently

1 is in the spectrum of "t
∗ : M → M. #

For flows it tends to be difficult to study the operator"t
∗ directly and we introduce a related

family of operators in the following. First some notation: for any pair of Banach spaces A,
B we use the notation B(A, B) to denote the space of bounded linear operators from A to
B. By lemma 2.1 we know that

∫ ∞
0 e−,(z)t‖"t

∗‖M dt < ∞ for all ,(z) > 0 and so the
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function t '→ e−zt"t
∗ ∈ B(M, M) is Bochner integrable [17, §V.5]. We define the operator

P(z) : M → M by

P(z) :=
∫ ∞

0
e−zt"t

∗ dt, for all ,(z) > 0. (2)

In the following we see that P(z) is a pseudo-resolvent, a consequence of t '→ "t
∗ having the

semigroup property (1).

Lemma 2.2. For all ,(z) > 0, ,(ζ ) > 0 then (z − ζ )P(ζ )P(z) = P(ζ ) − P(z).

Proof. Without loss of generality we assume that ,(ζ − z) > 0 and ζ -= z. By definition (2)
for all µ ∈ M

P(ζ )P(z)µ =
∫ ∞

0

∫ ∞

0
e−ζ se−zt"t+s

∗ µ dt ds.

Changing variables u = s + t , splitting the integrals into two pieces and then swapping the two
integral in the second piece we have

P(ζ )P(z)µ =
∫ ∞

0

∫ ∞

s

e−(ζ−z)se−zu"u
∗µ du ds

=
∫ ∞

0
e−(ζ−z)s ds P(z)µ −

∫ ∞

0

∫ s

0
e−(ζ−z)se−zu"u

∗µ du ds

=
∫ ∞

0
e−(ζ−z)s ds P(z)µ −

∫ ∞

0

(∫ ∞

u

e−(ζ−z)s ds

)
e−zu"u

∗µ du.

Since
∫ ∞

0 e−(ζ−z)s ds = (ζ − z)−1 and
∫ ∞
u

e−(ζ−z)s ds = (ζ − z)−1e−(ζ−z)u then the above
calculation implies that P(ζ )P(z)µ = (ζ − z)−1 (P(ζ ) − P(z)) as required. #

Lemma 2.3. ‖P(z)‖M " ,(z)−1 for all ,(z) > 0.

Proof. Note that ‖P(z)‖M "
∫ ∞

0 e−,(z)t‖"t
∗‖M dt by (2). We use the bound on ‖"t

∗‖M from
lemma 2.1 and integrate

∫ ∞
0 e−,(z)t dt = ,(z)−1. #

Lemma 2.4. For each n ∈ N and z ∈ C with ,(z) > 0

P(z)n = 1
(n − 1)!

∫ ∞

0
tn−1e−zt"t

∗ dt.

Proof. This is a direct consequence of the definition (2) by induction on n changing variables
in the double integral produced and then swapping the order of integration. #

The natural reference measure is the 2-dimensional Hausdorff measure on ! which we
denote by m ∈ M. If one decided to work with densities using the charts of the differential
structure of ! one could equivalently consider Lebesgue measure as the reference. We do not
expect the operators "t

∗ and P(z) to have good spectral properties acting on M and we are
only interested in properties which are ‘physically relevant’ in the sense of relating to measures
which are absolutely continuous with respect to m. Therefore we may and it is beneficial to
consider a Banach space of measures which is contained in M and on which P(z) acts with
good spectral properties.

Let U be a continuous vector field. A measure µ ∈ M is said to be differentiable (in
the sense of measures) with respect to U if there exists a measure DUµ ∈ M such that
µ(Uη) = −DUµ(η) for all η ∈ C 1

0 (!). The differential of a measure is the linear map
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Dµ : T! × C (!) → C, Dµ : (U, η) '→ DUµ(η). The tangent space at each point is of
course finite dimensional and so there are many equivalent possibilities for the definition of
the norm. For our purposes it is convenient to have a coordinate-independent definition of
the norm. Let X(!) denote the set of continuous vector fields on !. With a slight abuse of
notation let

‖Dµ‖M := sup{‖DUµ‖M : U ∈ X(!), |U |∞ " 1}.
If this quantity is finite we say that µ ∈ M is differentiable (in the sense of measures) and we
let D(!) denote the set of all such measures. For all µ ∈ D let

‖µ‖D := ‖Dµ‖M + ‖µ‖M.

If we were to consider the densities of the measures this norm is nothing other that the bounded
variation norm. However, due to the oddities of working on a branched manifold, it is most
convenient to work directly with the measures, seeing them as linear functionals, as apposed
to working with the corresponding densites. The Banach space (D, ‖ · ‖D) is the central
component of this study.

Proposition 2.5. There exists C ∈ R, α > 0 such that ‖"t
∗‖D " Ceαt for all t ! 0.

The proof of the above proposition is the content of section 4.

The above estimates are far from optimal and later we will be able to improve them but
they are required for us to proceed at this stage. A first consequence of the above lemma is
that we may also consider P(z) : D → D for all ,(z) > α. The space B(D, M), which is
the space of linear operators L : D → M is, when endowed with the operator norm

‖L ‖D→M := sup{‖L µ‖M : µ ∈ D, ‖µ‖D " 1},
a Banach space. It is interesting to note that this idea of using a weaker operator norm,
considering the operator as mapping from strong space to weak space, has already been used
to great effect in studying the stability of the spectrum of discrete-time dynamical systems [8].

Lemma 2.6. There exists C ∈ R such that (1/t)‖"t
∗ − id‖D→M " C for all t > 0.

Proof. Since (1/t)‖"t
∗ − id‖D→M " (1/t0)‖"t

∗ − id‖M " 2/t0 for all t ! t0 it suffices
to prove the lemma for t ∈ [0, t0] where t0 is small. We estimate sup{|("t

sµ − µ)(η)| : η ∈
C 1(!), |η|∞ " 1}. Fix µ ∈ D. The key is to note that

∫ t

0 Xη ◦ "s ds = η ◦ "t − η for all
t ! 0. This means that for any η ∈ C 1(!)

(
"t

sµ − µ
)
(η) = µ(η ◦ "t − η) =

∫ t

0
"s

∗µ(Xη) ds.

Using the estimate from proposition 2.5 this shows that there exists C ∈ R such that
‖"t

sµ − µ‖M " tC‖µ‖D for all µ ∈ D. #
Using also the semigroup property the above lemma says that the operator-valued function

t '→ "t
∗ ∈ B(D, M) is Lipschitz, i.e. is Lipschitz with respect to the ‖·‖D→M norm. We can

now make clear one of the reasons why the quantity P(z) is so important, namely that the key
behaviour of "t

∗ may be recovered from the study of P(z). Here we take the point of view that
the definition of P(z) is akin to the Laplace–Stieltjes transform of an operator-valued function
and so, in a limited sense, there exists an inverse to this transform.

Theorem 1. Suppose t ! 0, a > 0. Then, in B(D, M), we have that

"t
∗ = lim

k→∞

1
2π i

∫ k

−k

e(a+ib)tP(a + ib) db.
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Proof. This is an application of the inverse of the Laplace–Stieltjes transform of an operator-
valued function so we provide the details to pass from our setting here to the result described
in the reference monograph [1]. Let F(t) := "t

∗ − id. Since F(0) = 0 by definition and by
lemma 2.6 we have that F ∈ Lip0(R+, B(D, M)) (as defined in the reference). Consequently,
by [1, theorem 2.3.4 and (1.22)], we have that

F(t) = lim
k→∞

1
2πi

∫ k

−k

e(a+ib)t

(
P(a + ib) − id

a + ib

)
db.

This is sufficient to conclude since
∫ ∞
−∞(a + ib)−1e(a+ib)t db = 2πi. #

The above lemma could not be expected to hold in B(D, D) since the Lipschitz property of
lemma 2.6 is essential. We note in passing that other possibilities exist, including considering
the inverse for some fixed measure [1, §I.3.12]. To proceed we clearly require more information
concerning P(z). Recall the quantity α > 0 was given by proposition 2.5.

Proposition 2.7. For each ,(z) > α the linear operator P(z) : D → D has spectral radius
bounded above by ,(z)−1 and essential spectral radius bounded above by (,(z) + λ)−1.

The proof of the above proposition is the content of section 5.
The importance of the above proposition lies in the following consequence, a fact which

has significant relevance in view of theorem 1.

Theorem 2. The operator-valued function z '→ P(z) ∈ B(D, D) admits a meromorphic
extension to the set {z ∈ C : ,(z) > −λ} and this extension is holomorphic on the set
{z ∈ C : ,(z) > 0}.

Proof. Fix z ∈ C such that ,(z) > α. For any η ∈ C such that |η| > ,(z)−1 then
η−1P(z + η−1)P(z) = P(z + η−1) − P(z) by lemma 2.2 since in particular η -= 0 and
,(z − 1/η) > 0. Rearranging we obtain

P(z + 1
η
) = ηP(z)(ηid − P(z))−1

using that (ηid − P(z)) is invertible by the spectral radius estimate of proposition 2.7. We
use this formula to define the extension of P(z) into the left half of the imaginary plane.
By the essential spectral radius estimate of proposition 2.7 the operator-valued function
η '→ (ηid − P(z))−1 is meromorphic on the set {|η| > (,(z) + λ)−1}. #

We now relate the above ideas to the standard theory of one-parameter semigroups (see [4]
for the theory of one-parameter semigroups). The generator of the one-parameter semigroup
"t

∗ is the linear operator defined by

Zµ := lim
t→0

1
t

(
"t

∗µ − µ
)

the domain of Z being the set of µ ∈ D for which the limit exists. We would expect Z to
be an unbounded operator and moreover, there is no reason to expect even that the domain of
Z is dense in D. The problem is that there is no reason for the range of the resolvent to be
dense in the setting that we are studying. However if the semigroup of operators were strongly
continuous1 then by standard theory the domain of the generator is dense. If we wished to
consider the generator in this fashion we may always take the following approach. For all
s > 0, µ ∈ M let

Asµ := s−1
∫ s

0
"t

∗µ dt.

1 Strongly continuous one-parameter semigroups are sometimes called c0-semigroups.
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Hence let D, := {Asµ : µ ∈ D, s > 0} and let D‡ denote the completion of D, with respect
to ‖ · ‖D. Since D‡ is a vector subspace of D and complete by construction we know that
(D‡, ‖ · ‖D) is a Banach space. Note also that "t

∗D‡ ⊆ D‡.

Lemma 2.8. ‖"t
∗µ − µ‖D → 0 as t → 0 for all µ ∈ D‡.

Proof. By density it suffices to prove the lemma for ν = Asµ where µ ∈ D, s > 0. We have
that

"t
∗ν − ν = s−1

(∫ t

0
"u+s

∗ µ du −
∫ t

0
"u

∗µ du

)
.

We conclude since "t
∗ : D → D is bounded as demonstrated in proposition 2.5. #

The above lemma means that "t
∗ : D‡ → D‡ is a strongly continuous one-parameter

semigroup. Therefore, by standard theory [4] the domain of Z is a dense linear subspace of
D‡, moreover Z is a closed operator and P(z) = (zid − Z)−1 = R(z, Z) for all ,(z) > 0.
Note that what we are saying is that the resolvent operator of the generator coincides with the
operator P(z) previously defined by the integral (2). Note that it is known [4, Problem 8.1.6]
that the range of a pseudo-resolvent, for example P(z), is independent of z for all z in the
domain of definition. We use the notation Ran(·) to denote the range of some linear operator.
The space D‡ is sufficiently large in the following sense. In the statement of the following
lemma we mean the range of the operator P(z) : D → D (as opposed to this operator acting
on some other domain).

Lemma 2.9. Suppose ,(z) > 0. Then Ran(P(z)) ⊆ D‡.

Proof. Fix ,(z) > 0 and let ν ∈ Ran(P(z)). That is, ν =
∫ ∞

0 e−zt"t
∗µ dt for some µ ∈ D.

This means that

Asν = s−1
∫ s

0

∫ ∞

0
e−zt"t+u

∗ µ dt du = s−1
∫ s

0
ezu

∫ ∞

u

e−zw"w
∗ µ dw du.

Consequently

Asν − ν = s−1
∫ s

0
(ezu − 1) du P(z)µ − s−1

∫ s

0
ezu

∫ u

0
e−zw"w

∗ µ dw du.

Since we know that "t
∗ : D → D is bounded the above calculation means that

‖Asν − ν‖D → 0, as s → 0.

Since Asν ∈ D, and D‡ is defined as the completion of D, we have shown that ν ∈ D‡. #
We use the notation Dom(·) to denote the domain of some linear operator. In is convenient

to introduce yet one more norm. For all µ ∈ Dom(Z) let

‖µ‖Z := ‖Zµ‖D + ‖µ‖D.

It is known [4, lemma 6.1.15] that Dom(Z) is complete with respect to the above defined
norm and so one could choose to consider the Banach space (Dom(Z), ‖ · ‖Z). Moreover
"t : Dom(Z) → Dom(Z) is a one-parameter semigroup. An inspection of the proof of
lemma 2.8 shows that the operator-valued function2 t '→ "t

∗ ∈ B(Dom(Z), D) is Lipschitz
since D, ⊂ Dom(Z) and is actually a core3 for Z. Consequently the analogue of theorem 1

2 Here we follow the previous convention of notation and so B(Dom(Z), D) denotes the space of bounded linear
operators L : Dom(Z) → D.
3 See [4, theorem 6.1.18].



Expanding semiflows on branched surfaces 3495

may be obtained. However such a result is of limited use since, although with respect to a
stronger norm, the result only holds for operators defined on Dom(Z). It is clear that we
would pay a price if we restrict our attention to D‡ as apposed to D. The problem is that the
space D‡ is dependent on the dynamics, i.e. if we considered another semiflow acting on the
same branched manifold the space D‡ would be different. This is of course a problem if one
is interested in studying perturbations of the semiflow. If we are using D we may study all
flows defined on ! with the same Banach space. One of the main themes of this exposition
is to demonstrate that all we wish to know about the flow can be recovered without resorting
to studying the generator Z. It is tempting to think that this difficulty is merely the fault of
a poor choice of Banach space to start with. However this is not the case for the semiflows
we are considering. The range of the resolvent will always consist of measures which have
densities that are smooth along flow lines whilst the branches of the manifold means that we
would expect jumps in the densities if one considers sections transversal to the flow lines.

Theorem 3.

(1) Suppose ,(z) > 0. Then z−1 is in the spectrum of P(z) : D → D. If |z| < ,(z) + λ then
z−1 is an eigenvalue for P(z) : D → D.

(2) Suppose ,(z) > 0, ,(w) > 0 and µ is an eigenvector for P(z) corresponding to the
eigenvalue z−1. Then µ is an eigenvector for P(w) corresponding to the eigenvalue w−1.

(3) For all t > 0 then 1 is an eigenvalue for "t
∗ : D → D (perhaps not isolated).

Moreover each eigenvector corresponding to this eigenvalue is also an eigenvector for
P(z) corresponding to the eigenvalue z−1 where ,(z) > 0.

(4) The function z '→ P(z) taking values in B(D, D) has a pole at z = 0.

Proof. Fix z ∈ C such that ,(z) > 0. We define the linear functional ( ∈ D∗ by setting
((µ) := µ(1) for all µ ∈ D. We calculate, for all µ ∈ D, that

(
P(z)∗(

)
µ = ((P(z)µ) = (P(z)µ) (1)

=
∫ ∞

0
e−zt

(
"t

∗µ
)
(1) dt

=
∫ ∞

0
e−ztµ(1) dt = z−1µ(1) = z−1((µ).

This means that ( is an eigenvector for P(z)∗ corresponding to the eigenvalue z−1.
Consequently z−1 ∈ Spec(P(z)) and by the quasi-compactness result of proposition 2.7 we
know that z−1 is actually an eigenvalue and so we prove item (1) of the theorem. Suppose
now that µ ∈ D is an eigenvector for P(z) corresponding to the eigenvalue z−1. Since P(z)

satisfies the resolvent equation (lemma 2.2)

zP(w)µ − µ = z[P(w) − P(z)]µ

= z(z − w)P(w)P(z)µ = (z − w)P(w)µ,

and so P(w)µ = w−1µ. This proves item (2). For all ν ∈ D and t > 0 we have (as
in [4, problem 8.2.4] this may be shown as a consequence of the formula of lemma 2.4)

"t
∗ν = lim

n→∞

(n

t
P(n/t)

)n

ν.

Applying the result of item (2) to the above formula we obtain immediately that for all n ∈ N
we have (n/t)P(n/t)µ = µ and consequently that "t

∗µ = µ as required to prove item (3).
Item (4) is now obvious from the definition of P(z). #
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We now give some indication of how to relate the above one-parameter semigroup theory
of theorem 1, theorem 2 and theorem 3 to the statistical properties of the flow as has been
developed in [3]. Theorem 3 allows us to conclude immediately that there is at least one
invariant measures in D and no more than a finite number. This in turn leads to the ergodic
decomposition of the dynamical system. The pole of P(z) at z = 0 is simple if and only if the
absolutely continuous invariant measure is unique. The flow "t : ! → ! is mixing if and
only if 0 is the only singularity of P(z) on the imaginary axis. It is convenient to let G denote
the set of z ∈ C such that ,(z) > −λ and that z is a pole of z '→ P(z) ∈ B(D, D). G ∩ iR is
a group and the associated eigenfunctions are all measures absolutely continuous with respect
to a convex combination of the absolutely continuous invariant measures. By theorem 2 we
know that z '→ P(z) is holomorphic on {z ∈ C : ,(z) > −λ} \ G . For each z ∈ G let

.z := 1
2π i

∫

γ

P(z) dz

where γ is a positively orientated small circle enclosing z but excluding all other singularities
of P(z). As with spectral projectors the resolvent equation, proven in lemma 2.2, implies that
the definition is independent on the choice of γ subject to the above conditions. In this way the
operator-theoretic results of theorem 1, theorem 2 and theorem 3 can be used to understand the
fine statistical properties of the flow, even in settings where the discontinuities of the system
present considerable obstacles to the study of perturbations.

This section was completely self-contained apart from the proofs of proposition 2.5 and
proposition 2.7 which are the contents of section 4 and section 5 respectively. Section 3
contains the definition and notation related to branched manifolds.

3. Branched manifolds

The definition of a branched manifold we use here is that given by Williams [16] where they
are shown to arise from quotients of dynamical foliations for expanding attractors. We now
recall the definition.

Definition 3.1 (Branched manifold). A d-dimensional branched manifold of class C r is a
metrizable space ! together with:

(1) A countable collection {Ui}i∈I of closed subsets of ! and for each i a map ϕi : Ui → Di

where Di is a closed d-ball in Rd .
(2) A countable collection {Vij }j∈Ji

of closed subsets of Ui , for each i.
Subject to the following axioms:

(3)
⋃

j∈Ji

Vij = Ui for each i.

(4)
⋃

i∈I

Int Ui = !.

(5) For each i ∈ I, j ∈ Ji the map ϕi |Vij
(i.e. ϕi restricted to Vij ) is a homeomorphism onto

its image ϕi(Vij ) ⊆ Di and this image is a closed subset of Di .
(6) For each i, i ′ ∈ I there exists a C r -diffeomorphism αii ′ with domain ϕi ′(Ui ∩ Ui ′) such

that ϕi = αii ′ ◦ ϕi ′ when defined.

The sets Ui are called the charts, the sets Vij are called the subcharts. If it is possible to cover
each Ui with just one subchart, i.e. {Vij }j = {Ui}, the above definition reduces to that of
a manifold with boundary but without branches. The ϕi are called coordinate maps and the
αii ′ are called transition maps. The branched manifold ! contains both interior points and
boundary points which are defined as follows.
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Definition 3.2 (Interior points). A point p ∈ ! is said to be an interior point of the
branched manifold if there exists i ∈ I, a set G ⊂ Ui and δ > 0 such that p ∈ G and
ϕi(G) = {ϕi(p) + y : y ∈ Rd , |y| < δ}.
Definition 3.3 (Boundary points). The complement of the interior points are called the
boundary points. We let ∂! denote the set of all boundary points.

Definition 3.4 (Differentiable). The space C k(!), for each k ∈ {1, 2, . . . , r}, is defined as
the set of all maps f : ! → C such that for every i ∈ I and j ∈ Ji the map

f ◦ (ϕi |Vij
)−1 : ϕi(Vij ) → C is of class C k.

Definition 3.5 (Tangent bundle). For each i ∈ I, j ∈ Ji we have the induced bundle over
Vij given by (ϕi |Vij

)∗ T Rd . Consider the disjoint union
⊔

i∈J,j∈Ji

(ϕi |Vij
)∗ T Rd =

{
(x, v, i, j) : x ∈ Vij , v ∈ Tϕi(x)Rd , i ∈ I, j ∈ Ji

}
.

We introduce the relation which sets (x, v, i, j) ∼ (x ′, v′, i ′, j ′) if x = x ′ and also
(Dαi ′i )v = v′. The tangent bundle over !, written T!, is defined as the above disjoint union
subject to this equivalence relation.

Definition 3.6 (Foliation). Suppose that there exists coordinate charts ϕi : Ui → Rd such
that the transition maps αii ′ : ϕi ′(Ui ∩ Ui ′) → ϕi(Ui ∩ Ui ′) which satisfy ϕi = αii ′ ◦ ϕi ′ are
of the form

αii ′(x, y) =
(
α

(1)
ii ′ (x), α

(2)
ii ′ (x, y)

)
, (3)

where x represents n coordinates and y represents d − n coordinates. For all c ∈ Rn let
Fc := {p ∈ Ui : ϕi(p) = (c, y), y ∈ Rd−n}. These stripes are called the plaques of
the foliation. By (3) these plaques match up from chart to chart to form the leaves of the
n-dimensional foliation F .

4. Φt
∗ : D → D is bounded

In this section we show that the operators "t
∗ : D → D are bounded and so prove

proposition 2.5. Recall that X is the vector field associated with the flow and V is a unit
vector field transversal to X. For each µ ∈ D let

‖µ‖D̃ := ‖DV µ‖M + ‖DXµ‖M + ‖µ‖M. (4)

This defines a norm on D, and importantly it has the following property.

Lemma 4.1. The norms ‖ · ‖D and ‖ · ‖D̃ are equivalent on D.

Proof. Since V and X are uniformly transversal there exists C < ∞ such that any vector field
U , |U |∞ " 1 may be written as U = αV + βX where |α|∞ " C and |β|∞ " C. This means
that ‖DUµ‖M " C‖µ‖D̃ for all µ ∈ D. The other direction is immediate. #

Recall the quantity λ > 0 given by the uniform expansion assumption.

Lemma 4.2. Suppose t ! 0 and let !t := ! \ ("t)−1∂!. There exists At ∈ C 1(!t) and
Bt ∈ C 1(!t) such that on !t we have

Xη ◦ "t = X
(
η ◦ "t

)
,

V η ◦ "t = AtV
(
η ◦ "t

)
+ BtX

(
η ◦ "t

) (5)

for all η ∈ C 1
0 (!). Moreover there exists C ∈ R, α > 0 such that |At |∞ " Ce−λt , |Bt |∞ " C,

|V At |∞ " Ceαt and |XBt |∞ " Ceαt for all t ! 0.
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Proof. The first line of (5) is nothing more than the observation that X is the vector field
associated with the flow "t and so is invariant under the action of the flow. Since the vector
fields V and X are transversal it is always possible to write V η ◦ "t of the form given in the
second line of (5). And since "t : ! → ! is C 2 we know that At and Bt are C 1 on the set
! \ ("t)−1∂!. Fixing p ∈ ! and using the vector fields V and X (respectively) as a basis for
tangent space at that point we can write

Dp"
t =

(
αt 0
βt 1

)

and by the uniform expansion assumption we know that |αt | ! C−1eλt . Taking the inverse
of the matrix we have that At(p) = 1/αt and so |At |∞ " Ce−λt as required. We continue to
use the vector fields V and X, respectively, as a basis for tangent space. Let t > 0, n ∈ N,
τ := t/n, and pj := "jτp for all t ∈ {0, 1, . . . , n}. We may write

(
Dp"

t
)−1 =

(
At 0
Bt 1

)
(p)

=
(

Aτ 0
Bτ 1

)
(pn−1)

(
Aτ 0
Bτ 1

)
(pn−2) · · ·

(
Aτ 0
Bτ 1

)
(p).

(6)

The idea is that for any t > 0 we will always choose n ∈ N such that τ ∈ (0, 1). The above
product of matrices formula means that

Bt(p) = Bτ (p)

+ Bτ (p1)Aτ (p)

+ · · · + · · ·
+ Bτ (pn−1)Aτ (Pn−1) · · · Aτ (p1)Aτ (p).

(7)

Combined with the already proven estimate |At |∞ " Ce−λt the above geometric sum gives
the uniform (in t) bound for |Bt |∞. We increase the value of C as required so that |Bt |∞ " C

for all t ! 0. From (6) we know that the quantities |V At |∞ and |XBt |∞ cannot grow faster
than some exponential rate and so we may choose some α > 0 as required by the statement of
the lemma. #

Remark 4.3. Historically the Markov property was important in the study of dynamical
systems. We never required any such property for the flow studied in this work. In the branched
surface setting we say that "t : ! → ! is Markov if "t∂! ⊂ ∂! or more generally that there
exists some zero measure set S ⊃ ∂! such that "tS ⊂ S. However we may always increase
the boundary of the branched manifold by adding any piece of flowline without changing any of
the properties of the flow. Therefore without loss of generality we may always consider the first
of the above statements. Without the Markov property the technical problem is that η ∈ C0(!)

does not imply that η ◦ "t ∈ C0(!) since there is now no reason to expect η ◦ "t(p) = 0 for
all p ∈ ∂!. This is a reason why we must use bounded variation type norms in the present
setting and not C 1 type norms.

Shortly we will require the following lemma.

Lemma 4.4. Suppose that η ∈ C 1(!), |η|∞ " 1, µ ∈ D and ε > 0. Then there exists
η̃ ∈ C 1

0 (!) such that |η̃|∞ " 1 and |µ(X[η − η̃])| " ε.

Proof. If ∂! = ∅ we may take η̃ = η. Otherwise this lemma is a consequence of X being
tangent to ∂!. Let FV -dist denote distance on ! restricted to the leaves of FV . Let 4 > 0
and δ0 > 0 be sufficiently small, to be chosen later. For all δ ∈ (0, δ0) let

Sδ := {p ∈ ! : FV -dist(p, ∂!) " δ}.
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And let

Sδ,4 := Sδ ∪ {p ∈ ! : "tp ∈ Sδ, t ∈ [0,4]} ∪ {"tp : p ∈ Sδ, t ∈ [0,4]}.
Furthermore, let ωδ : ! → [0, 1] be such that ωδ ∈ C 1

0 (!) (in particular ωδ(p) = 0 for all
p ∈ ∂!), ωδ(p) = 1 for all p ∈ ! \ Sδ,4 and that there exists C < ∞ such that |Xωδ|∞ " C

for all δ ∈ [0, δ0].
Let ηδ := ωδ · η ∈ C 1

0 (!). We must estimate |µ(X(η − ηδ))| = |µ(X([1 − ωδ]η))|. For
all δ ∈ (0, δ0) we have |X([1 − ωδ]η)| " C + |Xη| and also the support of X([1 − ωδ]η) is
contained within Sε,δ . Since, as noted before, µ ∈ D has densities of bounded variation and
in particular the densities are L1 this means that |µ(X([1 − ωδ]η))| → 0 as δ → 0. #

Lemma 4.5. For all µ ∈ D and t ! 0

‖DX("t
∗µ)‖M " ‖DXµ‖M.

Proof. Fix µ ∈ D and η ∈ C 1
0 (!). By lemma 4.2 we have that for all t ! 0

DX("t
∗µ)(η) = µ(Xη ◦ "t) = µ(X(η ◦ "t)).

The problem is that η ∈ C 1
0 (!) does not imply that η ◦ "t ∈ C 1

0 (!) since we do not require
the Markov property as discussed in remark 4.3. However by lemma 4.4, for all ε > 0 there
exists ζ ∈ C 1

0 (!) such that |µ(X(ζ − η ◦ "t))| " ε. #

Lemma 4.6. There exists C ∈ R such that for all t ! 0 and η ∈ C 1
0 (!) with |η|∞ " 1 there

exists 6η,t ∈ C 1(!) such that (η ◦ "t − 6η,t ) ∈ C0(!), |6η,t |∞ " 1 and |V6η,t |∞ " C.

Proof. Recall that by assumption there exists the foliation FV whose leaves are all curves of
length at least δ > 0 and with end points contained within ∂!. We therefore define 6η,t to
be equal to η ◦ "t on ∂! and linear along the leaves of FV . The uniform minimum length of
these curves gives the uniform bound for |V6η,t |∞. #

Recall the quantity λ > 0 given by the uniform expansion assumption and the quantity
α > 0 given by lemma 4.2.

Lemma 4.7. There exists C ∈ R such that, for all µ ∈ D and t ! 0

‖DV ("t
∗µ)‖M " Ce−λt‖DV µ‖M + C‖DXµ‖M + Ceαt‖µ‖M.

Proof. Fix µ ∈ D, t ! 0 and η ∈ C 1
0 (!). By lemma 4.2 we have that

(
DV ("t

∗µ)
)
(η) = µ(V η ◦ "t) = µ(At · V

(
η ◦ "t

)
) + µ(Bt · X

(
η ◦ "t

)
). (8)

We will estimate these two terms separately. First we estimate |µ(At · V
(
η ◦ "t

)
)|. Using

the quantity 6η,t defined in lemma 4.6 we have

µ(At · V
(
η ◦ "t

)
) = µ(V

(
At [η ◦ "t − 6η,t ]

)
) + µ(V (At · 6η,t )) − µ(V At · η ◦ "t)

Note that At [η ◦ "t − 6η,t ] ∈ C0(!) and |At [η ◦ "t − 6η,t ]| " Ce−λt by lemma 4.2. This
means that |µ(V

(
At [η ◦ "t − 6η,t ]

)
)| " 2Ce−λt‖DV µ‖M. The second and third terms are

bounded by Ceαt‖µ‖M by the estimates of lemma 4.2. This means that

|µ(At · V
(
η ◦ "t

)
)| " Ce−λt‖DV µ‖M + Ceαt‖µ‖M. (9)

Now we estimate |µ(BtX
(
η ◦ "t

)
)|, the second term of (8). We observe that

µ(BtX
(
η ◦ "t

)
) = µ(X

(
Bt · η ◦ "t

)
) − µ(XBt · η ◦ "t). By the same reasoning as the

proof of lemma 4.5, using also lemma 4.4, we have that

|µ(Bt · X
(
η ◦ "t

)
)| " C‖DXµ‖M + Ceαt‖µ‖M. (10)

By (8), the estimates of (9) and (10) complete the proof of the lemma. #
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Proof of proposition 2.5. The equivalence of the norms by lemma 4.1 and the estimates of
lemma 4.5 and lemma 4.7 complete the proof of proposition 2.5. #

5. Essential spectral radius of P(z) : D → D

In this section we prove proposition 2.7. Recall the quantity α > 0 which was given by
proposition 2.5 and which had its origin in the estimates of lemma 4.2.

Lemma 5.1. For all n ∈ {2, 3, . . .}, z ∈ C such that ,(z) > α and µ ∈ D

‖DXP(z)nµ‖M " (|z| + ,(z)) ,(z)−n‖µ‖M.

Proof. Fix η ∈ C 1
0 (!) such that |η|∞ " 1 and z ∈ C such that ,(z) > α. Using the formula

from lemma 2.4 we have

DXP(z)nµ(η) = −1
(n − 1)!

∫ ∞

0
tn−1e−ztµ(Xη ◦ "t) dt

= −1
(n − 1)!

µ

(∫ ∞

0
tn−1e−zt Xη ◦ "t dt

)
.

(11)

Since Xη ◦ "t = X
(
η ◦ "t

)
= (d/dt)(η ◦ "t) by lemma 4.2 and integrating by parts

∫ ∞

0
tn−1e−zt Xη ◦ "t dt = −

∫ ∞

0

d
dt

(tn−1e−zt ) η ◦ "t dt.

There are no boundary terms in the integration by parts since for each p ∈ ! the map
t '→ η ◦ "t(p) is continuous and tn−1e−zt → 0 as t → 0 and as t → ∞. Substituting the
above into (11) and noting that |µ(η ◦ "t)| " ‖µ‖M as discussed in the proof of lemma 2.1
we have

|DXP(z)nµ(η)| " 1
(n − 1)!

∫ ∞

0
| d
dt

(tn−1e−zt )| |µ(η ◦ "t)| dt

" 1
(n − 1)!

(∫ ∞

0

∣∣∣∣
d
dt

(tn−1e−zt )

∣∣∣∣ dt

)
‖µ‖M.

It remains to calculate the integral. Since d/dt(tn−1e−zt ) = (n − 1)tn−2e−zt − ztn−1e−zt then∣∣(d/dt)(tn−1e−zt )
∣∣ " (n − 1)tn−2e−,(z)t + |z|tn−1e−,(z)t . For each m ∈ {1, 2, . . .} and a > 0

then
∫ ∞

0 tm−1e−at dt = (m − 1)! a−m and so

1
(n − 1)!

∫ ∞

0

∣∣∣∣
d
dt

(tn−1e−zt )

∣∣∣∣ dt " (|z| + ,(z)) ,(z)−n. (12)

#

Lemma 5.2. There exists C ∈ R such that for all n ∈ {2, 3, . . .}
‖DV P(z)nµ‖M " C(,(z) + λ)−n‖DV µ‖M

+ C(,(z) − α)−n‖µ‖M + C(|z| + ,(z)),(z)−n‖µ‖M.

for all z ∈ C such that ,(z) > α and µ ∈ D.

Proof. Fix η ∈ C 1
0 (!) such that |η|∞ " 1 and z ∈ C such that ,(z) > α. Using the formula

from lemma 2.4 we have

DV P(z)nµ(η) = −1
(n − 1)!

∫ ∞

0
tn−1e−ztµ(V η ◦ "t) dt

= −1
(n − 1)!

µ

(∫ ∞

0
tn−1e−zt V η ◦ "t dt

)
.

(13)
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Using lemma 4.2 we have V η ◦ "t = At · V
(
η ◦ "t

)
+ Bt · X(η ◦ "t) and so

∫ ∞

0
tn−1e−ztV η ◦ "t dt =

∫ ∞

0
tn−1e−ztAt · V

(
η ◦ "t

)
dt

+
∫ ∞

0
tn−1e−ztBt · X(η ◦ "t) dt.

For the first term of the right-hand side, since At ∈ C 1(!), we use that At · V
(
η ◦ "t

)
=

V
(
At · η ◦ "t

)
−V At ·η◦"t . Notice that X

(
η ◦ "t

)
= (d/dt)(η◦"t) and that Bt ·X(η◦"t) =

X(Bt · η ◦"t) − XBt · (η ◦"t). We use this for the second term of the right-hand side and we
integrate by parts, as in the proof of lemma 5.1. Since for each p ∈ ! the functions t '→ Bt(p)

and t '→ η ◦ "t(p) are continuous we have pointwise on !
∫ ∞

0
tn−1e−ztBt · X(η ◦ "t) dt =

∫ ∞

0
(d/dt)

(
tn−1e−zt

)
· Bt · η ◦ "t dt

−
∫ ∞

0
tn−1e−ztXBt · η ◦ "t dt.

There are no boundary terms in the integration by parts since ,(z) > α and so |tn−1e−zt | → 0
both as t → 0 and as t → ∞. So, collecting together the above calculations, we have shown
that
∫ ∞

0
tn−1e−ztV η ◦ "t dt =

∫ ∞

0
tn−1e−ztV

(
At · (η ◦ "t − 6η,t )

)
dt

+
∫ ∞

0
tn−1e−zt

[
V (At · 6η,t ) − (V At + XBt) · η ◦ "t

]
dt

+
∫ ∞

0

d
dt

(
tn−1e−zt

)
· Bt · η ◦ "t dt,

where we have used that quantity 6η,t which was defined in lemma 4.6. Recalling (13) this
means that

|DV P(z)µ(η)| " 1
(n − 1)!

∫ ∞

0
tn−1e−,(z)t |DV µ(At · (η ◦ "t − 6η,t ))| dt

+
1

(n − 1)!

∫ ∞

0
tn−1e−zt |µ(V (At · 6η,t ) − (V At + XBt) · η ◦ "t)| dt

+
1

(n − 1)!

∫ ∞

0
| d
dt

(
tn−1e−zt

)
||µ(Bt · η ◦ "t)| dt.

(14)

That (At · (η ◦ "t − 6η,t )) ∈ C 1
0 (!) by lemma 4.6 and the other estimates from lemma 4.2

we know that

|DV µ(At · (η ◦ "t − 6η,t ))| " Ce−λt‖DV µ‖M.

Furthermore,

|µ(V (At · 6η,t ) − (V At + XBt) · η ◦ "t)| " Ceαt‖µ‖M.

For the final term we have that |Bt · η ◦ "t)| " C, also by lemma 4.2. Since ‖DV P(z)µ‖M =
sup

{
|DV P(z)µ(η)| : η ∈ C 1(!), |η|C 0 " 1

}
substituting the above estimates in (14) and

integrating, using also (12), we obtain the estimate of the lemma. #

Lemma 5.3. There exists C ∈ R such that for all ,(z) > α, n ∈ {2, 3, . . .} and µ ∈ D

‖P(z)nµ‖D " C(,(z) + λ)−n‖DV µ‖M + Cgz,n‖µ‖M,

where gz,n := (|z| + ,(z)),(z)−n + (,(z) − α)−n.
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Proof. We recall that ‖P(z)nµ‖D̃ = ‖DXP(z)nµ‖M + ‖DV P(z)nµ‖M + ‖P(z)nµ‖M and
combine the estimates from lemma 2.3, lemma 5.1, lemma 5.2. We then recall that by lemma 4.1
the norms ‖ · ‖D and ‖ · ‖D̃ are equivalent. #

Lemma 5.4. The embedding D ↪→ M is compact.

Proof. Any measure µ ∈ D may be represented as densities in the charts ϕi(Vij ) ⊂ R2. These
densities of of bounded variation. This means that the lemma is a direct consequence of the
classical result that BV is compactly imbedded into L1. #

Proof of proposition 2.7. We follow Hennion’s argument [7]. Fix z ∈ C such that ,(z) > α

and for each n ∈ {2, 3, . . .} let

Bn := {P(z)nµ : µ ∈ D, ‖µ‖D " 1}
and let rn denote the infimum of the r such that the set Bn may be covered by a finite number
of balls of radius r (measured in the ‖ · ‖D norm). The formula of Nussbaum [12] states that

ress(P(z)) = lim inf
n→∞

n
√

rn. (15)

By lemma 5.4 we know that B0 is relatively compact in the ‖·‖M norm and therefore, for each
ε > 0, there exists a finite set {Gi}Nε

i=1 of subsets of B0 whose union covers B0 and such that

‖µ − µ̃‖M " ε for all µ, µ̃ ∈ Gi. (16)

Notice that rn can be bounded above by the supremum of the diameters of the elements of
any given cover of Bn. Since the union of {Gi}Nε

i=1 is a cover of B0, then {P(z)n(Gi)}Nε

i=1 is a
cover of Bn and therefore it is sufficient to obtain an upper bound for the maximum diameter
of the P n(Gi). We use the estimate on ‖P(z)nµ‖D from lemma 5.3. This implies that for all
µ, µ̃ ∈ Gi and n ∈ {2, 3, . . .} then

‖P(z)nµ − P(z)nµ̃‖D " C(,(z) + λ)−n‖µ − µ̃‖D + Cz,n‖µ − µ̃‖M.

Substituting (16) we have shown that rn " C(,(z) + λ)−n + εCz,n. We choose ε = ε(n)

small enough so that rn " 2C(,(z) + λ)−n. By (15) we have shown that the essential spectral
radius is not greater than (,(z) + λ)−1. Having proved this estimate on the essential spectral
radius we note that the spectral radius cannot be greater than ,(z)−1 otherwise there would be
a contradiction with lemma 2.3. #
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