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Abstract. By introducing appropriate Banach spaces one can study the spec-

tral properties of the generator of the semigroup defined by an Anosov flow.
Consequently, it is possible to easily obtain sharp results on the Ruelle reso-

nances and the differentiability of the SRB measure.

1. introduction

In the last years there has been a growing interest in the dependence of the SRB
measures on the parameters of the system. In particular, G.Gallavotti [11] has
argued the relevance of such an issue for non-equilibrium statistical mechanics.

On a physical basis (linear response theory) one expects that the average be-
haviour of an observable changes smoothly with parameters. Yet the related rig-
orous results are very limited and the existence of very irregular dependence from
parameters (think, for example, to the quadratic family) shows that, in general,
smooth dependence must be properly interpreted to have any chance to hold.

The only cases in which some simple rigorous results are available are smooth
uniformly hyperbolic systems and some partially hyperbolic systems. In particular,
Ruelle [24] has proved differentiability and has provided an explicit (in principle
computable) formula for the derivative in the case of SRB measures for smooth
hyperbolic diffeomorphisms. Subsequently, D.Dolgopyat has extended such results
to a large class of partially hyperbolic systems [8]. More recently Ruelle has ob-
tained similar results for Anosov flows [26]. Ruelle’s proofs of the above results
use the classical thermodynamic formalism and precise structural stability results
which, although reasonably efficient for diffeomorphisms, produce a quite cumber-
some proof in the case of flows. It should also be remarked that much of the results
concerning statistical properties of dynamical systems are related to the analytical
properties of the Ruelle zeta function [23, 1]. In the context of Anosov flows such
properties have been first elucidated by Pollicott in [22].

In more recent years, several authors have attempted to put forward a different
approach to the study of hyperbolic dynamical systems based on the direct study of
the transfer operator (see [1] for an introduction to the theory of transfer operators
in dynamical systems). Starting with [28, 5] it has become clear that it is possible
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to construct appropriate functional spaces such that the statistical properties of
the systems are accurately described by the spectral data of the operator acting on
such spaces. The recent papers [19, 18, 12, 2, 3, 20, 9, 7, 21, 4, 13], have shown
that such an approach yields a simpler and far reaching alternative to the more
traditional point of view based on Markov partitions.

In this paper we present an application of these methods to the above men-
tioned issue: the differentiability properties of the SRB measure for Anosov flows.
Not only the formulae in [24] are easily recovered, but higher differentiability is
obtained as well whereby making rigorous some of the results in [25]. In addition,
the method employed yields naturally precise information on the structure of the
Ruelle resonances extending the results in [22, 27].

Note that the same strategy can be used to prove differentiability (and obtain
in principle computable formulae) for many other physically relevant quantities (at
least for C∞ flows) such as: Ruelle’s resonances and eigendistributions, the variance
in the central limit theorem (diffusion constant), the rate in the large deviations.
Also a small generalization of the present approach, that is considering transfer
operators with real potential, would apply to general Gibbs measures. This would
allow, for example, to obtain an easy alternative proof of the results in [17].

The key reason for the straightforwardness of the present approach is that, once
the proper functional setting is established, the usual formal manipulations to com-
pute the derivative are rigorously justified whereby making the argument totally
transparent.

The spaces used here are the ones introduced in [12] although similar results
could, most likely, be obtained by using the spaces introduced in [3, 4].

Recently some new results have been obtained on the stability of mixing [10]. It
would be interesting to investigate the relationship between such qualitative results
and the quantitative theory in this paper.

Finally, it should be remarked that the approach of the present paper is based
on the study of the resolvent, rather than the semigroup, in the spirit of [20]. Nev-
ertheless, a recent paper by M.Tsujii [29] has shown that it is possible to introduce
Banach spaces allowing the direct study of the semigroup, although limited to the
case of suspensions over an expanding endomorphism. Such an approach yields
much stronger results. To construct similar spaces for flows and, possibly, other
classes of partially hyperbolic systems is one of the current challenges of the field.

The plan of the paper is as follows: Section 2 details the systems we consider,
introduces the norms we use and corresponding Banach spaces and states the re-
sults. In section 3 we precisely define the Banach spaces relevant for our approach
and study some of their properties. In section 4 we look at the the properties of
the transfer operator in this setting and discuss the spectral decomposition of its
generator. In section 5 we give results on the behaviour of the part of the spec-
trum close to the imaginary axis and in 6 discuss specifically the behaviour of the
SRB measure as the dynamical system is perturbed and, in the course of this, the
Ruelle formula for the derivative is established. In section 7 the main dynamical
inequalities are proven for the transfer operator while in section 8 the corresponding
inequalities are established for the resolvent of the generator of the flow. The paper
also includes an appendix in which some necessary technical (but intuitive) facts
are proven.
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Remark 1.1. In the present paper we will use C to designate a generic constant
depending only on the Dynamical Systems (M, Tt), while Ca,b,... will be used for a
generic constant depending also on the parameters a, b, . . . . Accordingly, the actual
numerical value of C may vary from one occurrence to the next.

2. Statements and results

Let us consider the C∞ d-dimensional compact Riemannian manifold M and
the Anosov flow Tt ∈ Diff (M,M). In other words the following conditions are
satisfied.

Condition 1. T satisfies the following

T0 = Id,

Tp ◦ Tq = Tp+q for each p, q ∈ R.

That is Tt is a flow.

Condition 2. At each point x ∈M there exist a splitting of tangent space TxM =
Es(x) ⊕ Ef (x) ⊕ Eu(x), x ∈ M. The splitting is continuous and invariant with
respect to Tt. Ef is one dimensional and coincides with the flow direction. In
addition, for each ν ∈ Ef , DTtν = 0 =⇒ ν = 0 and there exist λ > 0 such that

‖DTtν‖ ≤ e−λt ‖ν‖ for each ν ∈ Es and t ≥ 0,

‖DT−tν‖ ≤ e−λt ‖ν‖ for each ν ∈ Eu and t ≥ 0.

That is the flow is Anosov.1

A smooth flow naturally defines a related vector field V . Often the vector field
is a more fundamental object than the flow, we will thus put our smoothness re-
quirement directly on the vector field.

Condition 3. We assume V ∈ Cr+1, r > 1.2 This implies Tt ∈ Cr+1.

To study the statistical properties of such systems it is helpful to study the action
of the dynamics on distributions. To this end let us define Lt : D′r+1 → D′r+1 by3

(2.1) 〈Lth, ϕ〉 := 〈h, ϕ ◦ Tt〉, for all ϕ ∈ Cr+1.

It is easy to see that the Lt are continuous.

Remark 2.1. Given the standard continuous embedding4 i : Cr ↪→ D′r we can, and
we will, view functions as distributions. In particular, if h ∈ Cr, then it can be
viewed as the density of the absolutely continuous measure ih. In such a case a
simple computation shows that, setting

(2.2) L̃th := [h det(DTt)−1] ◦ T−1
t ,

1In general one can have a Ce−λt instead of e−λt in the first two inequalities, yet it is always
possible to change the Riemannian structure in order to have C = 1 by losing a little bit of

hyperbolicity (e.g., define 〈v, w〉L :=
R L
−L e2λ′|s|〈DTtv, DTtw〉ds with λ′ < λ and L such that

Ce(λ′−λ)L < 1).
2The reason for such a condition, instead of the more natural r > 0, is purely technical and

rests in the limitation p ∈ N for the spaces Bp,q used in the following. Most likely it could be
removed either using the spaces in [3] or generalizing the present spaces.

3In the following we will use indifferently 〈h, ϕ〉 and h(ϕ) to designate the action of the distri-

bution h on the smooth function ϕ.
4If g, f ∈ Cr, then 〈if, g〉 :=

R
M fg.
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holds iL̃t = Lti. Formula (2.2) provides a more common expression for the transfer
operator.

Unfortunately it turns out that the spectral properties of Lt on the above spaces
bear not clear relation with the statistical properties of the system. To establish
such a connection in a fruitful way it is necessary to introduce Banach spaces
that embody in their inner geometry the key properties of the system (that is the
hyperbolicity).

The first step is to define appropriate norms on C∞(M, C) and then take the
closure in the relative topology. The exact definition of the norms can be found in
section 3, yet let us give here a flavor of the construction.

For each p ∈ N, q ∈ R+, consider a set Σ of manifolds of roughly uniform size
and close to the strong stable manifolds and let V be the set of smooth vector
fields (see section 3 for precise definitions). For each W ∈ Σ, v1, . . . , vp ∈ V and
ϕ ∈ Cp+q

0 (W, C) we can then define the linear functionals on C∞(M, C),5

`W,v1,...,vp,ϕ(h) :=
∫

W

ϕv1 · · · vph

and the dual ball

Up,q :=
{

`W,v1,...,vp,ϕ

∣∣W ∈ Σ, |ϕ|Cq+p
0

≤ 1, |vi|Cq+p ≤ 1
}

.

We can finally define the norms we are interested in:

‖h‖−p,q := sup
`∈Up,q

`(h) ∀p ∈ N, q ∈ R+

‖h‖p,q := sup
n≤p

‖h‖−n,q ∀p ∈ N, q ∈ R+,
(2.3)

where the parameter A ∈ (0, 1) will be chosen later. We define the spaces Bp,q :=

C∞(M, C)
‖·‖p,q . Note that such spaces are equivalent to the ones defined in Section

2 of [12], the only difference being in their use: there they depend on the stable
cone of an Anosov diffeomorphism, here they depend on the strong stable cone of
an Anosov flow. Consequently we will often refer to results proved in [12].

A first relevant property of the spaces Bp,q has been proven in [12, Lemma 2.1]:

Lemma 2.2. For each p ∈ N∗, q ∈ R+ holds ‖ · ‖p−1,q+1 ≤ Cp,q,A‖ · ‖p,q. In
addition, the unit ball of Bp,q is relatively compact in Bp−1,q+1.

It is easy to show that Lt : Bp,q → Bp,q, with p + q < r, is a bounded strongly
continuous semigroup (Lemma 4.2), in addition the semigroup is uniformly bounded
in t, Lemma 4.1. Accordingly, by general theory, the generator X of the semi-group
is a closed operator. Clearly, the domain D(X) ⊃ Cr+1(M, C) and, restricted to
Cr+1(M, C), X is nothing else but the action of the adjoint of the vector field
defining the flow, that is

(2.4) Xh = −V (h)− h div V ∈ Cr.

Obviously, the spectral properties of the generator depend on the resolvent
R(z) = (zId − X)−1. It is well known (e.g. see [6]) that for uniformly bounded
semigroup (Lemma 4.1) the spectrum of X is contained in {z ∈ C : <(z) ≤ 0}.

5Here, and in the following, the integrals are meant with respect to the induced Riemannian
metric. Moreover, given a vector field v and a function h, by vh or v(h) we mean the Lie derivative

of h along v.
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That is, for all z ∈ C, <(z) > 0, the resolvent R(z) is a well defined bounded
operator on Bp,q and, moreover, holds true the formula

(2.5) R(z)f =
∫ ∞

0

e−ztLtf dt .

The above facts allow us to establish several facts concerning the spectrum of
the generator.

Theorem 1. For each p ∈ N, q ∈ R+, p + q ≤ r, the spectrum of the generator,
acting on Bp,q, in the strip 0 ≥ <(z) > −min{p, q}λ consists only of isolated eigen-
values of finite multiplicity. Such eigenvalues correspond to the Ruelle resonances
(see Remark 2.3 for more details). In addition, the eigenspace associated to the
eigenvalue zero is the span of the SRB measures.6 The SRB measure is unique
iff the eigenvalue is simple and it is mixing iff zero is the only eigenvalue on the
imaginary axis.

The first statement is proven in Lemma 4.5, the second, and more, in Lemma 5.1.
The above theorem extends the well known results of Pollicott and Rugh [22, 27]
to the higher regularity and higher dimensional setting. Indeed we can connect the
above results to physically relevant quantities: the correlations spectrum.

Let f, g ∈ C∞, then one is interested in Cf,g(t) :=
∫

g ◦ Ttf −
∫

f
∫

g where the
integral may be with respect to Lebesgue or to the SRB measure depending on
whether one is observing the system in equilibrium or out of equilibrium starting
from a state properly prepared.

Remark 2.3. A typical information that can be obtained on the quantity Cf,g is
its Fourier transform

Ĉf,g(ik) :=
∫ ∞

0

e−iktCf,g(t) dt =
∫ (

g −
∫

g

)
R(ik)f.

The above results imply thus that the quantity Ĉf,g has a meromorphic extension in
the strip 0 ≥ <(z) > −min{p, q}λ. In addition, in such a region, the poles (the so
called Ruelle resonances) and their residues describe (and are described by) exactly
the spectrum of X. In particular this means that the spectral data of X on the
Banach spaces Bp,q are not a mathematics nicety but physically relevant quantities.

Given such a spectral interpretation it is then easy to apply the perturbation
theory of [12] and obtain our other main result.

Let us consider a vector field Vη := V + ηV1 ∈ Cr+1 and the associated flow Tη,t.
Suppose, for simplicity, that T0,t has a unique SRB measure. The issue is to show
that Tη,t has a unique SRB measure µη as well, that such a measure is a smooth
function of η and finally to establish a formula for its derivative.

Let us define µ
(n)
η := dn

dηn µη. In section 6 we prove the following.

6Here we adopt the following definition of SRB measure: a measure ν is SRB if there exists a

positive Lebesgue measure open set U such that ∀ϕ ∈ C0 and Lebesgue a.-e. x ∈ U

1

T

Z T

0
ϕ ◦ Tt(x) dt → ν(ϕ).

The above implies, in the present setting, all the usual properties of SRB measures (e.g. absolute
continuity along weak unstable manifold) that we do not detail as they will not be used in the
following. We will only use, at the end of the proof of Lemma 5.1, that the union of the basins

of all the SRB measures is of full Lebesgue measure, that is: for each continuous function the
forward ergodic average exists Lebesgue-a.s.
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Theorem 2. There exists η0 > 0 such that, if the flow T0,t has a unique SRB
measure, then the same holds for the flows Tη,t for |η| ≤ η0. Calling µη such an
SRB measure the function η 7→ µη belongs to Cr−2([−η0, η0],B0,r). In addition, for
all η ∈ [−η0, η0] and ϕ ∈ Cr, it holds the formula

µ(n)
η (ϕ) = lim

a→0+

∫ ∞

0

ne−atµ(n−1)
η (V1(ϕ ◦ Tη,t)) dt .

Remark 2.4. The convergence of the integral in the above formula is far from
obvious and it is part of the statement of the Theorem. Notice that for n = 1
Theorem 2 yields Ruelle’s result [26] while, for n > 0, it makes rigorous some of
the results in [25]. In addition, if operators Xη has a spectral gap (as may happen
for geodesic flows in negative curvature [19]), then from the proof of Theorem 2
follows that the above integral is converging also for a = 0 and one has the formula

µ(n)
η (ϕ) =

∫ ∞

0

nµ(n−1)
η (V1(ϕ ◦ Tη,t)) dt .

3. The Banach spaces

To define the norms it is convenient to consider a fixed Cr+1 atlas {Ui,Ψi}N
i=1

such that ΨiUi = B(0, 4δ) and ∪iΨ−1
i (B(0, δ)) = M.7 In addition, we can require

D0Ψ−1
i {(0, u, 0) : u ∈ Rdu} = Eu(Ψ−1

i (0)), D0Ψ−1
i {(s, 0, 0) : s ∈ Rds} =

Es(Ψ−1
i (0)), and Ψ−1

i ((s, u, t)) = TtΨ−1
i ((s, u, 0)).

Next we wish to define a set of (strong) stable leaves. For each ρ > 0, small
enough, M > 0 large enough and ξ ∈ B(0, δ) let us define

F := {F : B(0, 3δ) ⊂ Rds → Rdu+1 : F (0) = 0 ; |F |C1 ≤ ρ ; |F |Cr ≤ M}.

For each F ∈ F , let us define Gx,F (ξ) := x + (ξ, F (ξ)). Also let us define Σ̃ :=
{Gx,F : x ∈ B(0, δ), F ∈ F}. To each i ∈ {1, . . . , N}, G ∈ Σ̃ we associate the leaf
Wi,G = {Ψ−1

i G(ξ)}ξ∈B(0,2δ), which form our set of stable leaves Σ, and its reduced
and enlarged version W±

i,G = {Ψ−1
i G(ξ)}ξ∈B(0,(2±1)δ).

Integrating on such leaves we can define linear functionals on Cr(M, R). More
precisely, for each i ∈ {1, . . . , N}, s ∈ N, G ∈ Σ̃, ϕ ∈ C0

0(Wi,G, C) and Cs vector
fields v1, . . . , vs, defined in a neighbourhood of W+

i,G, we define

`i,G,ϕ,v1,...,vs(h) :=
∫

Wi,G

ϕ v1 · · · vsh ; ∀ h ∈ Cr(M, C).

We use the above functionals to define a set that can be intuitively interpreted as
the unit ball of the dual of the space we wish to define. For p ∈ N, q ∈ R+, let8

Up,q :=
{

`i,G,ϕ,v1,...,vp

∣∣ 1 ≤ i ≤ N, G ∈ Σ̃, |ϕ|Cq+p
0

≤ 1, |vj |Cq+p ≤ 1,
}

,

The norms ‖·‖p,q are then defined in 2.3.

Remark 3.1. Note that for each h ∈ C∞(M, C) and q ∈ R+, p ∈ N holds true
‖h‖p,q ≤ |h|Cp .

7Here, and in the following, by Cn we mean the Banach space obtained by closing C∞ with

respect to the norm |f |Cn := supk≤n |f (k)|∞2n−k. Such a norm has the useful property |fg|Cn ≤
|f |Cn |g|Cn , that is (Cn, | · |Cn ) is a Banach algebra.

8By |vj |Cq+p ≤ 1 we mean that there exists U =
◦
U ⊃ W+

i,G such that vj is defined on U and

|vj |Cq+p(U) ≤ 1.
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We have the following characterization of Bp,q, see [12, Proposition 4.1].

Lemma 3.2. The embedding i extends to a continuous injection from Bp,q to D′q ⊂
D′, the distributions of order q.

Remark 3.3. In the following we will often identify h and ih if this causes no
confusion.

4. The transfer operator

A first property of the transfer operators is detailed by the following lemma
whose proof is the content of section 7.

Lemma 4.1. For each p ∈ N, q ∈ R+, p + q ≤ r, t ∈ R+ and h ∈ Cr holds true

(4.1) ‖Lth‖p,q ≤ Cp,q‖h‖p,q.

As an immediate consequence we have the following first result.

Lemma 4.2. The operators Lt, restricted to Bp,q, form a bounded strongly contin-
uous semigroup on the Banach space (Bp,q, ‖ · ‖p,q).

Proof. For all h ∈ Bp,q there exists, by definition, a sequence {hn} ⊂ Cr converging
to h in the ‖ · ‖p,q norm. By Lemma 3.2 the sequence converges in the spaces of
distributions as well and, due to the continuity of Lt, {Lthn} converges to Lth in
D′q. On the other hand, by Lemma 4.1, {Lthn} is a Cauchy sequence in Bp,q, hence
it converges and, by Lemma 3.2 again, it must converge to Lth. Thus Lth ∈ Bp,q

and
‖Lth‖p,q ≤ Cp,q‖h‖p,q ∀ h ∈ Bp,q.

We have thus a semigroup of bounded operators. The strong continuity follows
from the fact that, for all h ∈ Cr, holds

lim
t→0

|Lth− h|Cr = lim
t→0

∣∣[h det(DTt)−1] ◦ T−1
t − h

∣∣
Cr = 0.

Next, for h ∈ Bp,q let {hn} ⊂ Cr be converging to h, then, using Remark 3.1,

‖Lth−h‖p,q ≤ ‖Lthn−hn‖p,q+Cp,q‖h−hn‖p,q ≤ CA|Lthn−hn|Cr +Cp,q‖h−hn‖p,q,

taking first n sufficiently large and then t small, one can make the right hand side
arbitrarily small, that is

lim
t→0

‖Lth− h‖p,q = 0 ∀h ∈ Bp,q.

�

In addition we have the following result, proved in section 8.

Lemma 4.3. For each p ∈ N, q ∈ R+, p + q ≤ r, z ∈ C, <(z) = a > 0, holds

‖R(z)n‖p,q ≤ Cp,qa
−n.

For each λ′ ∈ (0, λ), p, n ∈ N, q ∈ R+ and z ∈ C, a := <(z) ≥ a0 > 0 it holds true

‖R(z)nh‖p,q ≤ Cp,q,λ′(a + p̄λ′)−n‖h‖p,q + a−nCp,q,λ′,a0 |z| ‖h‖p−1,q+1,

where p̄ := min{p, q}.
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The above means that the spectral radius of R(z) ∈ L(Bp,q,Bp,q), <(z) = a > 0,
is bounded by a−1, and in fact equals it if z = a since

∫
R(z)h = a−1

∫
h implies

that a−1 is an eigenvalue of the dual. Since Lemma 4.3 implies that R(z) is a
bounded operator from Bp,q to itself and since Lemma 2.2 implies that a bounded
ball in the ‖ · ‖p,q norm is relatively compact in Bp−1,q+1, it readily follows:

Lemma 4.4. For each p ∈ N, q ∈ R+, p+ q < r, and z ∈ C, <(z) > 0 the operator
R(z) : Bp,q → Bp−1,q+1 is compact.

The above implies, via a standard argument [14], that the essential spectral
radius of R(z) is bounded by (a + λp̄)−1. This readily implies the following (see
[19, Section2] if details are needed).

Lemma 4.5. The spectrum σ(X) of the generator is contained in the left half plane.
The set σ(X)∩Up̄λ′ := {z ∈ C | <(z) > −p̄λ′} consists of, at most, countably many
isolated points of point spectrum with finite multiplicity.

Thanks to the above result we can connect the spectral properties of the genera-
tor to the statistical properties of the flow. First of all, by the spectral decomposi-
tion of closed operators on Banach spaces (see [15, sections 3.6.4 and 3.6.7]), if we
select N isolated eigenvalues from the spectrum we have that

X = Xr +
N∑

j=1

(ζkj Skj + Nkj )

where the operators Sk, Nk, Xr commute, the Sk, Nk are finite rank and SkSj =
δkjSk, NkSj = δkjNk and Nk is nilpotent. Finally, if the selected eigenvalues are
the ones with imaginary part in the interval [−L,L], for some L > 0, then Xr is a
closed operator with spectrum contained in the set {z ∈ C : <(z) ≤ −pλ̄} ∪ {z ∈
C : <(z) ≤ 0 ; |Im(z)| > L} ∪ {0} where the eigenspaces corresponding to zero is
the union of the ranges of the Sk.

5. The peripheral spectrum

Here we analyze the meaning of the spectrum on the imaginary axis.

Lemma 5.1. The SRB measures belong to Bp,q, p + q ≤ r; 0 ∈ σ(X) and it is
simple iff the SRB measure is unique. Moreover, the SRB measure is mixing iff 0
is the only eigenvalue on the imaginary axis. Finally, σ(X)∩ iR is a group and the
associated eigenfunctions are all measures absolutely continuous with respect to a
convex combination of the SRB measures.

Proof. If Xh = ibh, then Lth = eibth. On the other hand there cannot be Jordan
blocks, indeed if Xf = ibf +h, then d

dte
−ibtLtf = h, thus e−ibtLtf = f + th which,

since Lt is uniformly bounded (Lemma 4.1), is a contradiction.
Moreover we have9

(5.1) S̃b := lim
T→∞

1
T

∫ T

0

e−ibtLt dt =

{
0 if ib is not an eigenvalue
Sk if ib = ζk

9The integral must be interpreted in the strong topology.
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To prove the above note the following. If ib is not an eigenvalue,∫ T

0

e−ibtLt = lim
a→0

∫ T

0

e−(a+ib)tLt = lim
a→0

[
R(a + ib)−

∫ ∞

T

e−(a+ib)tLt

]
= lim

a→0

[
R(a + ib)− e−(a+ib)TLT

∫ ∞

0

e−(a+ib)tLt

]
= lim

a→0
(Id− e−(a+ib)TLT )R(a + ib)

= (Id− e−ibTLT )R(ib),

which is uniformly bounded in T . On the other hand if ib = ζk, then R(a + ib) =
(a+ib−ζk)−1Sk+R1(a+ib), where R1(z) is an analytic function in a neighbourhood
of ib [15, 3.6.5 p. 180]. The result then follows by the same computations as above.10

Let ν be an SRB measure and let m be the Riemannian (Lebesgue) measure. By
definition (cf. footnote 6) there exists an open set A such that, for each ϕ ∈ C0 and
Lebesgue a.-e. x ∈ A, 1

T

∫ T

0
ϕ ◦ Tt(x) dt → ν(ϕ). Thus, given h ∈ C∞, supp h ⊂ A,

m(h) = 1, ∀ϕ ∈ Cr by the Lebesgue dominated convergence and Fubini Theorems

µh(ϕ) := S0h(ϕ) = lim
T→∞

∫
M

1
T

∫ T

0

h(x)ϕ(Ttx) dt = ν(ϕ).

In view of Lemma 3.2, the above implies that µh = ν, that is ν ∈ Bp,q. In other
words the SRB measures belong to the space and are eigenfunctions, corresponding
to the eigenvalue zero, of X.

Next, let us define µ := S01. The inequality

|µ(φ)| ≤ lim
T→∞

1
T

∫ T

0

m(|φ| ◦ Tt) dt ≤ |φ|∞

shows that µ is a measure. In addition, if Xh = ibh and S is the corresponding
projector, since Cr is dense in Bp,q and SCr is finite dimensional, it follows that
S Bp,q = S Cr. Hence there exists f ∈ Cr such that h = Sf . Accordingly,

(5.2) |h(ϕ)| = |Sf(ϕ)| ≤ lim
T→∞

∫
M

1
T

∫ T

0

ϕLt|f | ≤ |f |∞µ(ϕ).

Therefore all the eigenvalues on the imaginary axis are measures and such measures
are absolutely continuous with respect to µ and with bounded density.

10For further use note that the convergence in (5.1) takes place not only in Bp,q , p > 0, where
we have non trivial spectral informations, but also in B0,q . To see it first notice that Lemma 4.1

implies that for each h ∈ B1,q , ‖S0h‖0,q ≤ Cq‖h‖0,q , hence S0 has a unique continuous extension

to B0,q . Next, consider h ∈ B0,q . There exists {hn} ⊂ B1,q such that limn→∞ ‖h − hn‖0,q = 0.

Moreover, by Lemma 4.1, ‖T−1
R T
0 Lt(hn − h)‖0,q ≤ Cq‖h− hn‖0,q . Thus

lim sup
T→∞

‚‚‚‚ 1

T

Z T

0
Lth− S0hn

‚‚‚‚
0,q

≤ Cq‖h− hn‖0,q .

To conclude note that the range of S0 is finite dimensional, hence there exists a convergent
subsequence S0hnj , let h̄ be the limit, then, taking the limit j ↑ ∞ follows S0h = h̄ and

lim
T→∞

‚‚‚‚ 1

T

Z T

0
Lth− S0h

‚‚‚‚
0,q

= 0.



10 OLIVER BUTTERLEY AND CARLANGELO LIVERANI

Consequently, if Xh = ibh, then h is a measure and there exists f ∈ L∞(M, µ)
such that dh = fdµ. But then

fµ = h = e−ibtLth = e−ibtLtfµ = e−ibtf ◦ T−tLtµ = e−ibtf ◦ T−tµ,

hence f ◦ T−t = eibtf µ-a.s.. The above argument shows that the peripheral spec-
trum of Lt on Bp,q is contained, with multiplicity, in the point spectrum of the
Koopman operator Utf := f ◦ T−t acting on L2(M, µ). In fact, the two objects
coincide as we are presently going to see.

Let t ∈ R+ and f ∈ L2(M, µ) such that Utf = eibtf . Note that, since Ut|f | = |f |,
the sets {x ∈ M : |f(x)| ≤ L} are µ a.s. invariant. Thus we can consider,
without loss of generality, the case f ∈ L∞(M, µ). By Lusin theorem and the
density of Cr in C0, for each ε > 0 there exists fε ∈ Cr, |fε|∞ ≤ |f |∞, such that
µ(|fε − f |) ≤ ε. Next, let us define, for each f ∈ L2(M, µ), R′(z)f :=

∫∞
0

e−ztUtf .
A direct computation shows that R(z)(fµ) = (R′(z)f)µ, R′(1 + ib)f = f and
‖fεµ‖0,q ≤ C|f |∞. Accordingly, Lemma 4.3 implies

‖R(1 + ib)n(fεµ)‖p,q ≤ Cp,q,λ′,ε(1 + λ′)−n + Cp,q,λ′ |f |∞|1 + ib|
µ(|f −R′(1 + ib)nfε|) ≤ µ(R′(1)n|f − fε|) = µ(|f − fε|) ≤ ε.

For each ε we choose nε such that ‖R(1+ ib)nε(fεµ)‖p,q ≤ 2Cp,q,λ′ |f |∞|1+ ib|, thus
Lemma 2.2 implies that the set Ξ := {R(1 + ib)nε(fεµ)} is compact in Bp−1,q+1.
Let us consider a convergent subsequence εj , let µf ∈ Bp−1,q+1 be the limit, then
for all ϕ ∈ Cp+q,

fµ(ϕ) = µ(fϕ) = lim
j→∞

µ(R′(1 + ib)nεj fεj
ϕ) = lim

j→∞
[R(1 + ib)nεj fεj

µ](ϕ) = µf (ϕ).

The fact that the spectrum is an additive subgroup of iR, follows then from well
known facts about positive operators [6, section 7.4].

To conclude it suffices to prove that all the eigenfunctions of zero are SRB
measure. First of all, since the range of S0 is finite dimensional, S0B0,q+p = S0Bp,q,
C0 is dense in B0,p+q, and remembering footnote 10 we have S0C0 = S0Bp,q. Hence
for each ν ∈ Bp,q there exists f ∈ C0 such that ν = S0f . On the other hand,
setting f± := max{±f, 0} ∈ C0, ν± := S0f± are invariant positive measures and
ν = ν+ − ν−, thus the range of S0 has a base of positive probability measures.
Next, we can assume, without loss of generality, that ν is an ergodic probability
measure for {Tt}.11 Then, for each φ ∈ C0, φ ≥ 0, such that

∫
M fφ = 1, we can

define νφ := S0(φf). By a computation similar to (5.2), νφ is a probability measure
absolutely continuous with respect to ν, hence, by ergodicity, ν = νφ. Then for
each φ ∈ C0, φ > 0, and ϕ ∈ Cq, since Lebesgue a.e. point has forward ergodic

11If not, then consider any invariant set A of positive ν measure. Since ν must be absolutely
continuos with respect to µ, then the set will have positive µ measure and IdA

dν
dµ

is an eigenvector

of Ut for each t > 0. Hence, by the previous discussion, IdAν ∈ Bp,q . By the quasicompactness
it follows that there may be only finitely many such A, hence the claim.
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average (see footnote 6),∫
M

fφ[ϕ+ − ν(ϕ)] :=
∫
M

fφ

[
lim

T→∞

1
T

∫ T

0

ϕ ◦ Tt − ν(ϕ)

]

= lim
T→∞

1
T

∫
M

fφ

∫ T

0

[ϕ− ν(ϕ)] ◦ Tt

=S0(fφ)(ϕ− ν(ϕ))
∫
M

fφ = (ν(ϕ− ν(ϕ))
∫
M

fφ = 0.

Taking the sup over φ, the above yields
∫
M f |ϕ+ − ν(ϕ)| = 0 Accordingly, for

Lebesgue almost every point in the support of f the forward average of ϕ is ν(ϕ),
that is ν is SRB. �

6. Differentiability of the SRB measures

It is possible to state very precise results on the dependence of the eigenfunction
on a parameter of the system. To give an idea of the possibilities let us analyze,
limited to Anosov flows, a situation discussed by Ruelle in [26].

Calling Lη,t the transfer operator associated to the flow Tη,t, Xη its generator and
setting Rη := (zId−Xη)−1, it follows that the SRB measure µη is an eigenfunction
of Rη(a) corresponding to the eigenvalue a−1. Taking Xη = X+ηX1 one can prove,
by induction,

(6.1) Rη(a) =
n∑

k=0

ηk[R0(a)X1]kR0(a) + ηn+1[R0(a)X1]n+1Rη(a).

In addition, we know that a−1 is an isolated eigenvalue of Rη(a). We can thus
apply the perturbation theory developed in [12, section 8] to the operator Rη(a),12

where we choose Bs := Bs,q+r−1−s with q ∈ (0, 1) and s ∈ {0, . . . , r − 1}, it follows
that there exists η0 > 0 such that µη ∈ Cr−2((−η0, η0),B0). Moreover

dn

dηn
µη

∣∣∣∣
η=0

∈ Br−1−n.

We use the natural normalization µη(1) = 1 so that µ
(n)
η (1) = 0. We can thus

differentiate the equation Xηµη = 0, n ≤ r− 2 times with respect to η, obtaining13

(6.2) Xηµ(n)
η + nX1µ

(n−1)
η = 0.

From [15, 3.6.5 p. 180] and remembering that there are no Jordan blocks we have
that Rη(z) = z−1S0,η + Qη(z) where Qη(z) is analytic in a neighbourhood of zero
and S0,η is the spectral projector associated to the eigenvalue zero. In addition,

Rη(z)Xη = Rη(z)(Xη − z) + zRη(z) = −Id + zRη(z).

12Such a theory applies since Rη(a) satisfies a uniform Lasota-Yorke inequality, (6.1) allows to
estimate the closeness of R0(a) and Rη(a) in the appropriate norms and since the Xη are bounded
operators from Bp,q to Bp−1,q+1. In particular this means that the domain of Xη , viewed as a

closed operator on Bp,q , contains Bp+1,q−1.
13Remembering again that X, X1 are a bounded operators from Bp,q to Bp−1,q+1, we can

exchange X0, X1 with the derivative with respect to η provided that n ≤ r − 2.
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Therefore

(6.3) lim
z→0

Rη(z)Xηµ(n)
η = −µ(n)

η + S0,ηµ(n)
η = −µ(n)

η

where we have used that S0,ην(φ) = µη(φ) · ν(1) and so S0,ηµ
(n)
η = 0. Combining

equations (6.2) and (6.3) we may write

µ(n)
η = lim

z→0
nRη(z)X1µ

(n−1)
η = lim

a→0+

∫ ∞

0

ne−atLη,tX1µ
(n−1)
η dt .

This completes the proof of Theorem 2.

Remark 6.1. Note that the perturbation theory in [18] and [12] allows to investi-
gate, by similar arguments, also the behaviour of the other eigenvalues of Xη, with
the related eigenspaces, outside the essential spectrum.

7. Lasota-Yorke type inequalities–the transfer operator

Here we prove Lemma 4.1. But first let us introduce some convenient notation.

Remark 7.1. We will use the notation
∏n

i=1 vi to write the action of many vector
fields. That is

n∏
i=1

vih := v1 . . . vnh.

Note that this suggestive notation does not mean that the vector fields commute.

Let 0 < n ≤ p, 0 ≤ l ≤ n, and let v1, . . . , vn be Cq+n vector fields defined on a
neighbourhood of W with |vi|Cq+n ≤ 1, and ϕ ∈ Cn+q

0 (W ) with |ϕ|Cn+q(W ) ≤ 1. We
need to estimate ∫

W

v1 . . . vn(Lth) · ϕ.

The basic idea is to decompose each vi as a sum vi = wu
i + wf

i + ws
i where ws

i is
tangent to W , wf

i points in the flow direction and wu
i is “almost” in the unstable

direction cross the flow direction. We will state precisely what we mean by “almost”
in lemma 7.4. The ws

i may then be dealt with by an integration by parts and then
noting that wu

i , wf
i are not expanded by DT−t allows us to conclude.

We wish to look at the problem locally and so we use a partition of unity as
given in the following lemma ([12, Lemma 3.3]):

Lemma 7.2. For any admissible leaf W and t ∈ R+, there exist leaves W1, . . . ,W`,
whose number ` is bounded by a constant depending only on t, such that

(1) T−t(W ) ⊂
⋃`

j=1 W−
j .

(2) T−t(W+) ⊃
⋃`

j=1 W+
j .

(3) There exists a constant C (independent of W and t) such that a point of
T−tW

+ is contained in at most C sets Wj.
(4) There exist functions ρ1, . . . , ρ` of class Cr+1 and compactly supported on

W−
j such that

∑
ρj = 1 on T−t(W ), and |ρj |Cr+1 ≤ C.

Remark 7.3. Note that the construction in Lemma 7.2 can be easily modified to
ensure that there exists c > 0 such that for all t ∈ R+ and |s − t| ≤ cδ, the leaves
TsWi and the partition ρi ◦ T−s still satisfy properties (1-4).
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Take some index j, we will estimate

(7.1)

∣∣∣∣∣
∫

Tt(Wj)

v1 . . . vn(Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣ .
The needed decomposition of vi is given by the following lemma whose proof can

be found in appendix A:

Lemma 7.4. Fix λ′ ∈ (0, λ). Let v be a vector field on a neighbourhood of W+

with |v|Ca ≤ 1, a ≤ r and t ∈ R+. Then there exists c > 0 such that, for each
j, there exists a neighbourhood Uj of ∪s∈[t−cδ,t+cδ]Tt(W+

j ) and Ca(Uj) vector fields
wf , wu and ws satisfying, for all |s− t| ≤ cδ:

a. for all x ∈ Ts(Wj), holds v(x) = ws(x) + wf (x) + wu(x).
b. for all x ∈ Ts(Wj), ws(x) is tangent to Ts(Wj).
c. for all x ∈ Ts(Wj), wf (x) is proportional to the flow direction V .
d. |ws|Ca(Uj) ≤ Ct, |wu|Ca(Uj) ≤ Ct and |wf |Ca(Uj) ≤ Ct.
e. |ws ◦ Ts|Ca(Wj) ≤ C.
f. |(T ∗s wu)|Ca(T−sUj) ≤ Ce−λ′s and |wf ◦ Ts|Ca(T−sUj) ≤ C.

Where (T ∗t wu) = DTt(x)−1wu(Ttx) is the pull back of wu by Tt.

The fundamental remark in the following computations is that, since the com-
mutator of two Cn+q vector fields is a Cn+q−1 vector field, if we exchange two vector
fields, the difference consists of terms with n− 1 Cn−1+q vector fields, hence it can
be bounded by Cn,q‖Lth‖−n−1,q. For each j in (7.1) we can then write ws

1 +wf
1 +wu

1

instead of v1 since they agree on TtWj . After that we can commute such vector
fields with the vector fields vj , j ∈ {2, . . . , n}, as explained above. At this point we
can decompose v2 and so until (7.1) is bounded by

∑
σ∈{s,f,u}n

∣∣∣∣∣
∫

Tt(Wj)

wσ1
1 . . . wσn

n (Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣+ Cn,q,t‖Lth‖−n−1,q

Take σ ∈ {s, f, u}n, and let k = #{i | σi = s} and l = #{i | σi = f}. Let π
be a permutation of {1, . . . , n} such that π{1, . . . , k} = {i | σi = s} and π{n− l +
1, . . . , n} = {i | σi = f}. Therefore

∣∣∣∣∣
∫

Tt(Wj)

wσ1
1 . . . wσn

n (Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣ ≤∣∣∣∣∣
∫

Tt(Wj)

k∏
i=1

ws
π(i)

n−l∏
i=k+1

wu
π(i)

n∏
i=n−l+1

wf
π(i)(Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣+ Cn,q,t‖Lth‖−n−1,q.

By definition wf
i (g) = αiV (g), where αi ∈ Cn+q. Thus wf

i (g) = −αiXg−αig div V ,
where X, for the time being, is defined by (2.4). The terms coming from taking
derivatives of the αi or the terms involving the divergence of the vector fields are
bounded by the ‖·‖−n−1,q. In particular ‖X lh‖−n−l,q ≤ ‖h‖−n,q+Cn,q‖h‖n−1,q. Hence,
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setting ᾱ := (−1)l
∏k+l

i=k+1 απ(i), for k > 0 we have∣∣∣∣∣
∫

Tt(Wj)

wσ1
1 . . . wσn

n (Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣ ≤∣∣∣∣∣
∫

Tt(Wj)

k∏
i=1

ws
π(i)

n−l∏
i=k+1

wu
π(i)X

l(Lth) · ϕ · ρj ◦ T−t · ᾱ

∣∣∣∣∣+ Cn,q,t‖Lth‖n−1,q.

(7.2)

Next, we integrate by parts with respect to the vector fields ws
π(i). These vector

fields are tangent to the manifold W , hence
∫

W
ws

π(i)f ·g = −
∫

W
f ·ws

π(i)g+
∫

W
fg ·

div ws
π(i). Since ws

π(i) is Cq+n and the manifold W is Cr+1 with a Cr+1 volume form,
the divergence terms are bounded by Cn,q,t‖Lth‖n−1,q. This yields∣∣∣∣∣

∫
Tt(Wj)

wσ1
1 . . . wσn

n (Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣ ≤∣∣∣∣∣
∫

Tt(Wj)

n−l∏
i=k+1

wu
π(i)X

l(Lth) ·
k∏

i=1

ws
π(i)(ϕ · ρj ◦ T−t · ᾱ)

∣∣∣∣∣+ Cn,q,t‖Lth‖n−1,q.

By Lemma 7.4 it follows that
∏k

i=1 ws
π(i)(ϕ · ρj ◦ T−t · ᾱ) is a Cq+n−k test function

while on Lth act only n− k vector fields. Thus the above integral can be bounded
by the ‖ · ‖n−1,q norm unless k = 0.

Next we need to analyze the case k = 0 in more detail. For each h ∈ Cr, X lLth =
LtX

lh = (X lh) ◦ T−t det(DTt)−1 ◦ T−t.14 If we differentiate det(DTt)−1 ◦ T−t

we obtain terms that are bounded by Cn,q,t‖X lLth‖n−l−1,q+1 ≤ Cn,q,t‖Lth‖n−1,q.
Hence∣∣∣∣∣
∫

Tt(Wj)

wσ1
1 . . . wσn

n (Lth) · ϕ · ρj ◦ T−t

∣∣∣∣∣ ≤∣∣∣∣∣
∫

Tt(Wj)

n−l∏
i=1

wu
π(i)(X

lh) ◦ T−t · ϕ ·
[
ρj · det(DTt)−1

]
◦ T−t · ᾱ

∣∣∣∣∣+Cn,q,t‖Lth‖n−1,q.

Let w̄u
i (x) = DTt(x)−1wu

i (Ttx). This is a vector field on a neighbourhood of W+
j .

We can then write the above integral as∫
Tt(Wj)

(
n−l∏
i=1

w̄u
π(i)X

lh

)
◦ T−t · ρj ◦ T−t · det(DTt)−1 ◦ T−t · ᾱ · ϕ

and, changing variables, we obtain

(7.3)
∫

Wj

n−l∏
i=1

w̄u
π(i)X

lh · (ᾱϕ) ◦ Tt · ρj · det(DTt)−1 · JW Tt,

where JW Tt is the Jacobian of Tt : Wj → W . Note that

|(ᾱϕ) ◦ Tt|Cq+n ≤ Cp,q |ϕ|Cq+n ≤ Cp,q,

14Since for smooth φ holds V Ttφ = TtV φ and we have used (2.2).
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because of Lemma 7.4. Moreover,
∣∣∣w̄u

π(i)

∣∣∣
Cq+n

≤ Cp,qe
−λ′t (see Lemma 7.4) and so:

(7.4)
n−l∏

i=k+1

|w̄u
π(i)|Cq+n ≤ Cp,qe

−λ′(n−k−l)t.

Putting together all the above estimates we finally obtain15∣∣∣∣∫
W

v1 . . . vn(Lth) · ϕ
∣∣∣∣ ≤ ∑

0≤l≤n
j≤`

∣∣∣∣∣
∫

Wj

V l
n−l∏
i=1

w̄u
π(i)h · (ᾱϕ) ◦ Tt

ρj · JW Tt

det(DTt)

∣∣∣∣∣
+ Cp,q,t(‖Lth‖n−1,q + ‖h‖n−1,q).

(7.5)

To conclude we need the following distortion lemma:16

Lemma 7.5 ([12] Lemma 6.2). Given W ∈ Σ and leaves Wj such that W ⊂⋃
j≤` Wj and W+ ⊃

⋃
j≤` Wj we have the following control:

(7.6)
∑
j≤`

∣∣JW Tt · det(DTt)−1
∣∣
Cr(Wj ,R)

≤ C.

Lemma 7.5 together with (7.4) and (7.5) implies, for all 0 < n ≤ p,

‖Lth‖−0,q ≤C‖h‖−0,q

‖Lth‖−n,q ≤Ce−λ′t‖h‖−n,q + C‖V nh‖0,q+n + Cp,q,t(‖Lth‖n−1,q + ‖h‖n−1,q).
(7.7)

The idea is to finish the proof by induction. For n = 0 the first inequality of (7.7)
is the same as ‖Lth‖0,q ≤ Cp,q‖h‖0,q. On the other hand if ‖Lth‖m,q ≤ Cp,q‖h‖m,q

for each m ≤ n < p, then the second inequality of (7.7) yields

‖Lth‖−n+1,q ≤ Ce−λ′t‖h‖−n+1,q + C‖Xn+1h‖0,q+n+1 + Cp,q,t(‖Lth‖n,q + ‖h‖n,q)

≤ Ce−λ′t‖h‖−n+1,q + C‖Xn+1h‖0,q+n+1 + Cp,q,t‖h‖n,q.

Next, choose t0 such that Ce−λ′t0 ≤ σ < 1 Then

‖Lt0+th‖−n+1,q ≤ σ‖Lth‖−n+1,q + C‖LtX
n+1h‖0,q+n+1 + Cp,q‖Lth‖n,q

≤ σ‖Lth‖−n+1,q + Cp,q‖Xn+1h‖0,q+n+1 + Cp,q‖h‖n,q.

Writing t as mt0 + s, s ∈ (0, t0), and iterating the above equation yields

‖Lth‖−n+1,q ≤ σm‖Lsh‖−n+1,q + (1− σ)−1Cp,q

[
‖Xn+1h‖0,q+n+1 + ‖h‖n,q

]
≤ Cp,q‖h‖−n+1,q + Cp,q‖h‖n,q.

Finally we have

‖Lth‖n+1,q ≤ ‖Lth‖−n+1,q + ‖Lth‖n,q ≤ Cp,q‖h‖n+1,q.

This completes the proof of Lemma 4.1.

15Where we have used again the possibility to commute the vector fields by paying an error

bound in the ‖ · ‖n−1,q norm and we have recalled (2.4).
16In fact, [12] applies to hyperbolic maps, yet the proof holds also for flows with the only

change of thickening TtWj by ρ also in the flow direction.
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8. Lasota-Yorke type estimates–the resolvent

In this section we prove Lemma 4.3. In order to do this note that the following
may be shown by induction from equation (2.5):

(8.1) R(z)mh =
1

(m− 1)!

∫ ∞

0

tm−1e−ztLth dt .

The first inequality of lemma 4.3 follows directly from equations (4.1) and (8.1)
by integration over t. Analogously we can use (4.1) to cut the domain of integration.

Indeed for each z := a + ib, a ≥ a0 > 0, β ≥ 16 and L := mβ
a , we have17

∥∥∥∥ 1
(m− 1)!

∫ ∞

L

tm−1e−ztLth dt
∥∥∥∥

p,q

≤ 1
(m− 1)!

∫ ∞

L

tm−1e−atCp,q‖h‖p,q

≤ Cp,qa
−me−

mβ
2 ‖h‖p,q.

(8.2)

Accordingly, to prove the second part of lemma 4.3 it suffices to fix n ≤ p, |vi|Cq+n ≤
1, |ϕ|Cn+q

0
≤ 1 and estimate

1
(m− 1)!

∫ L

0

tm−1e−zt

∫
W

v1 . . . vn(Lth) · ϕ dt .

To do so it is convenient to localize in time by introducing a smooth partition
of unity {φi} of R+ subordinated to the partition {[(s − 1/2)t∗, (s + 3/2)t∗]}s∈N
where t∗ = cδ and c is specified in Remark 7.3. In fact, it is possible to have such
a partition of the form φs(t) := φ(t− st∗) for some fixed function φ.

We will use the notation of section 7 and the formula (7.5) where the families of
submanifolds are chosen for each t = st∗, s ∈ N, according to Lemma 7.2 and for
t 6= st∗ the families of submanifolds are constructed as described in Remark 7.3.
We can then write, for each s ∈ N and setting ts := st∗ − t,18∣∣∣∣∣

∫ L

0

tm−1e−ztφs(t)
∫

W

v1 . . . vn(Lth) · ϕ dt

∣∣∣∣∣
≤
∑

0≤l≤n
j≤`

∣∣∣∣∣
∫ L

0

tm−1φs(t)
ezt

∫
Tts Wj

V l
n−l∏
i=1

w̄u
π(i)h ·

(ᾱϕ) ◦ Tt · ρj ◦ Tts · JW Tt

det(DTt)

∣∣∣∣∣
+ Cp,q,LLmm−1‖h‖n−1,q,

(8.3)

17Indeed, setting I(m) :=
R∞

L tme−at, integrating by parts yields I(m) = Lma−1e−aL +

ma−1I(m− 1). Hence, by induction, we can prove the formula

1

(m− 1)!
I(m− 1) =

m−1X
j=0

Lj

am−jj!
e−aL = a−m

m−1X
j=0

mjβj

j!
e−mβ ≤ a−m

m−1X
j=0

„
m

j
e

«j

βje−mβ ,

since j! ≥ jje−j . Next, since the maximum of
“

m
j

e
”j

is achieved for j = m, hence
“

m
j

e
”j

≤ em,

1

(m− 1)!
I(m− 1) ≤

a−mβm

β − 1
e−m(β−1) ≤ Ca−me−m β

2 .

18By construction, the manifolds {Wj} in the formula (8.3) depend on s but not on t.
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where we have used equations (7.5), (7.7). Changing variables and using Fubini’s
theorem on all the right hand side integrals and setting t+s := st∗ + t yields∫

Wj

∫
R
(t+s )m−1e−zt+s φ(t)V l

((
n−l∏
i=1

w̄u
π(i)h

)
◦ Tt

)
(ᾱϕ) ◦ Tst∗ · ρj · JW Tst∗

det(DTts
)−1 ◦ Tt

.

For l 6= 0, we can integrate by parts, since V (Ψ ◦ Tt) = d
dtΨ ◦ Tt, obtaining

(8.4) C‖h‖n−1,q|z|
∫

R+

tm−1e−atφs(t) ≤ C‖h‖n−1,q|z|a−m.

For l = 0 and n = p, remembering (7.4), we have∑
s∈N
j≤`

1
(m− 1)!

∣∣∣∣∣
∫ L

0

tm−1e−ztφs(t)
∫

Wj

p∏
i=1

w̄u
π(i)h · (ᾱϕ) ◦ Tt ·

ρj · JW Tt

det(DTt)

∣∣∣∣∣
≤ Cp,q

(m− 1)!

∫
R+

tm−1e−(a+λ′p)t‖h‖−p,q ≤ Cp,q(a + λ′p)−m‖h‖−p,q.

(8.5)

In the case l = 0, n < p we must use a regularization trick in order to have the
wanted decay in the norm. Since the composition with Tt decreases the derivatives
one can take advantage of such a fact by smoothening the test function.

For ε ≤ δ and ϕ̄ ∈ Ca
0 (W, R), let Aεϕ̄ ∈ Ca+1

0 (W+, R) be obtained by convolving
ϕ̄ with a C∞ mollifier whose support is of size ε. We will use the following, standard,
result.

Lemma 8.1. For each n ∈ N, q ∈ R+ and ϕ̄ ∈ Cq+n,

|Aεϕ̄|Cq+n ≤ C|ϕ̄|Cq+n ; |Aεϕ̄|Cq+1+n ≤ Cε−1|ϕ̄|Cq+n ;

|Aεϕ̄− ϕ̄|Cq+n ≤ Cε|ϕ̄|Cq+n+1 .

Hence, setting ∆ϕ = (ϕ−Aεϕ)◦Tt, by the action of Tt on the derivatives follows
|∆ϕ|Cq+n ≤ Ce−λ(q+n)t, provided one chooses ε ≤ Ce−λ(q+n)t. Thus, using (7.4)
as well, we have∑

s∈N
j≤`

1
(m− 1)!

∣∣∣∣∣
∫ L

0

tm−1e−ztφs(t)
∫

Wj

n∏
i=1

w̄u
π(i)h · ϕ ◦ Tt ·

ρj · JW Tt

det(DTt)

∣∣∣∣∣
≤
∑
s∈N
j≤`

∫ L

0

tm−1e−ztφs(t)
(m− 1)!

∣∣∣∣∣
∫

Wj

n∏
i=1

w̄u
π(i)h ·

∆ϕ · ρj · JW Tt

det(DTt)

∣∣∣∣∣
+

Cp,q,a0,LLm‖h‖−n,q+1

m!

≤ Cp,q(a + λ(q + n))−m‖h‖p,q + Cp,q,a0,L
Lm

m!
‖h‖−n,q+1.

(8.6)

Collecting equations (8.2), (8.3), (8.4), (8.5) and (8.6) yields, for each n ≤ p,

‖R(z)mh‖−n,q ≤Cp,q

[
a−me−

mβ
2 + (a + λ′p)−m + (a + λq)−m

]
‖h‖n,q

+ (a−m|z|+ Cp,q,Lm−1)‖h‖n−1,q + Cp,q,a0,L
Lm

m!
‖h‖n−1,q+1.
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To conclude it is convenient to introduce, for each 0 < A < 1, the equivalent
weighted norms19

‖h‖p,q,A :=
∑
n≤p

An‖h‖−n,q.

Using such a norm we can write

‖R(z)mh‖p,q,A ≤Cp,q

[
a−me−

mβ
2 + (a + λ′p)−m + (a + λq)−m

]
‖h‖p,q,A

+ A(a−m|z|+ Cp,q,Lm−1)‖h‖p−1,q,A + Cp,q,a0,L
Lm

m!
‖h‖n−1,q+1,A.

For each λ′′ < λ′, calling p̄ := min{p, q}, there exists ma ∈ N, e.g. ma = Cλ′′,p,q a
will do, such that Cp,q(a + λ′p̄)−ma ≤ 1

4 (a + λ′′p̄)−ma . Choosing then β, and hence
L, large enough20 and A small enough we have

‖R(z)mah‖p,q,A ≤ (a + λ′′p̄)−ma‖h‖p,q,A + Cp,q,a0a
−ma |z|‖h‖p−1,q+1,A,

which can be iterated to yield the wanted estimate (given the equivalence of the
norms).

Appendix A.

Proof of Lemma 7.4. Our aim is to write the vector field as v = ws+wu+wf . We
start by making a Cr+1 change of variables in the charts21 so that W+

j and W+ are
subsets of Rds×{0}×{0} while Tt(s, u, τ) = (s, u, τ+t). In addition, chosen z ∈ Wj ,
we can assume, without loss of generality, that Eu(z) = {(0, 0, u) : u ∈ Rdu}
and Eu(Ttz) = {(0, 0, u) : u ∈ Rdu}. We can then consider the foliation E =
{E(s, τ, u)} of a neighbourhood of W+

j made by the leaves E(s, τ, u) := {(s, τ, u +
v) : v ∈ Rdu ; |v| ≤ δ} and define the foliation F = TtE.

The idea is to first define the splitting on Tt+sWj and then extend it to a neigh-
bourhood. We thus define the splitting on {(s, τ, 0)} as follows: 〈ws, (0, τ, u)〉 = 0,
for each u ∈ Rdu , τ ∈ R; wf is in the flow direction; wu belongs to the tangent
spaces of the leaves of the foliation F .

To verify that the splitting satisfies the wanted properties we need to write the
differential of Tt in the chosen coordinates. For each x in a neighbourhood of Wj , by
the requirement that the flow direction is mapped into the flow direction it follows

DTt(x) =

At(x) 0 Bt(x)
at(x) 1 bt(x)
Ct(x) 0 Dt(x)

 .

Moreover, if x ∈ W+
j , then it must be at(x) = 0; Ct(x) = 0 and, finally bt(z) = 0

and Bt(z) = 0. In addition, due to the uniform hyperbolicity of the flow, we have
that, for each x ∈ W+

j , ‖At(x)‖ ≤ Ce−λt, while, for each x in a neighbourhood of
Wj , ‖(Bt(x)u, 〈bt(x), u〉, Dt(x)u)‖ ≥ Ceλt‖u‖.22 Notice as well that the size of the
neighbourhood we are interested in can be chosen arbitrarily, thus, by continuity, we

19The advantage of using weighted norms has been pointed out to us by Sébastien Gouëzel.
20For example, β ≥ 2λp̄a−1 will do, notice that this choice implies that L can be chosen

uniformly bounded with respect to a.
21A point in the charts will be written as (s, τ, u) ∈ Rd with s ∈ Rds , τ ∈ R and u ∈ Rdu .
22The latter follows from the possibility to choose δ small enough so that all the tangent spaces

to the foliations E lay in the unstable cone.
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can assume ‖Ct‖Cr + ‖at‖Cr arbitrarily small.23 Finally, since the foliation F must
be close to the unstable direction, it must follow ‖Bt(x)u‖+|〈bt(x)u〉| ≤ 1

2‖Dt(x)u‖,
for all u ∈ Rdu .

By construction the tangent space to the leaves of the foliation F has the form
{(Bt(x)Dt(x)−1u, 〈bt(x), Dt(x)−1u〉, u) : u ∈ Rdu}. Accordingly, setting v =:
(vs, vf , vu), we have

ws = (vs − (BtD
−1
t ) ◦ T−tvu, 0, 0)

wf = (0, vf − (btD
−1
t ) ◦ T−tvu, 0)

wu = ((BtD
−1
t ) ◦ T−tvu, (btD

−1
t ) ◦ T−tvu, vu).

(A.1)

By construction such vector fields satisfy points (a-d) of the Lemma; moreover
they belong to Cr(Tt(Wj)). To estimate the Cr norm we must study the Cr norm
of Ut(x) := Bt(x)Dt(x)−1 and βt(x) := bt(x)Dt(x)−1.24

To do so it is convenient to break up the trajectory in pieces of finite length
t0 and, at all the points Tkt0x, introduce the same type of coordinates already
defined. By the hyperbolicity assumption, given λ′ ∈ (0, λ), it is possible to choose
t0 ≤ C so that nt0 = t and ‖Dt0(Tkt0x)−1‖ ≤ e−λ′t0 , ‖At0(Tkt0x)‖ ≤ e−λ′t,
‖Tkt0x − Tkt0y‖ ≤ e−λ′t‖T(k−1)t0x − T(k−1)t0y‖ for each k ≤ n and x, y ∈ Wj .
Accordingly, since D(k+1)t0(x) = Dt0(Tkt0x)Dkt0(x)

(A.2) ‖D−1
t ‖Cr = ‖D−1

nt0‖Cr ≤ (e−λ′t0 + Ce−λ′(n−1)t0)‖D−1
(n−1)t0

‖Cr ≤ Ce−λ′t.

Next, notice thatA(k+1)t0(x) 0 B(k+1)t0(x)
0 1 b(k+1)t0(x)
0 0 D(k+1)t0(x)


=

At0(Tkt0x)Akt0(x) 0 At0(Tkt0x)Bkt0(x) + Bt0(Tkt0x)Dkt0(x)
0 1 bt0(Tkt0x)Dkt0(x) + bkt0(x)
0 0 Dt0(Tkt0x)Dkt0(x)

 .

Thus, setting Uk := Bkt0D
−1
kt0

, holds

Uk+1 = At0(Tkt0x)UkDt0(Tkt0x)−1 + Bt0(Tkt0x)Dt0(Tkt0x)−1.

Hence,
‖Un‖Cr ≤ (e−λ′t0 + e−λ′(n−1)t0)2‖Un−1‖Cr + C.

Iterating the above equation yields ‖Ut‖Cr(Wj) ≤ C. By a similar argument it fol-
lows ‖βt‖Cr(Wj) ≤ C. Applying the above estimates to (A.1) yields |ws◦Tt|Ca(Wj) ≤
C, |wu ◦ Tt|Ca(Wj) ≤ C and |wf ◦ Tt|Ca(Wj) ≤ C, which proves (e).

To tackle (f) we need to extend the vector fields smoothly, this is easily done by
taking them constant along the leaves of F . Since on Wj we have DT−1

t wu ◦ Tt =
(0, 0, D−1

t vu ◦ Tt) and wf ◦ Tt = (0, vf ◦ Tt − bD−1
t vu ◦ Tt, 0), the above estimates

imply |T ∗t wu|Ca(Wj) ≤ Ce−λ′t and |wf ◦ Tt|Ca(Wj) ≤ C. Since the vector fields
have been extended by keeping them constant on the leaves of F , if follows that
their preimages are constant along the leaf of E, that is they do not depend on u.

23Given a function A with values in the matrices we define ‖A‖Cn := supk

P
j |Akj |Cn . Such

a definition has the useful consequence that if A = BD, then ‖A‖Cn ≤ ‖B‖Cn‖D‖Cn .
24Note that, within a chart, the matrices do not depend on xf
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This means that the above bounds on the norms does not increase when they are
considered on the neighbourhood T−tUj , hence point (e). �
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