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Resources

Books:
Halzen-Martin: Quarks and Leptons: An Introductory Course in Modern Elementary Particle

Physics
and
Kane: Modern Elementary Particle Physics
and
Thompson: Modern Particle Physics

Will mainly use Halzen-Martin, but Kane and Thompson are also very useful texts.
The known properties of the Standard Model particles and all known particles are listed in the

Particle Data Group book: http://pdg.lbl.gov/2012/listings/contents listings.html
This is an invaluable resource for particle physicists!
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Particle Physics. Weeks 1 and 2

Brief Review of Week 1: (refer to the slides for a reminder. Chapter
1 of Halzen-Martin and/or Thompson is also a good summary of some
topics we discussed.)

In Week 1 we covered:

Some evidence for the classification of matter into particles: the peri-
odic table, the discovery of the electron and the discovery of the nucleus.

We connected particle physics to the Universe at large: We noted the
fact that the ∼ 1011 stars in the galaxy look alike to first approximation.
Similarly, the ∼ 1011 galaxies are also alike to first approximation, im-
plying that there are roughly 1011 × 1011 = 1022 stars, all approximately
like our sun, in the observable Universe. Since our sun’s mass is approx-
imately 1030 kg and we know it is composed of atoms (e.g. H and He

and others) and that an atom has a mass of roughly 10−27 kg, we learn
that there are approximately 1011×1011×1030×1027 = 1079 protons and
neutrons in the Universe!. All of these are described by particle physics.

We introduced the Standard Model of Particle Physics for the first
time: we described the three families (or generations or flavours) of quarks
and leptons. We discussed their properties such as electric charge and
mass. We pointed out the huge range of masses from the lightest charged
particle (the electron) to the heaviest one (the top quark). These span six
orders of magnitude. If we consider that the neutral fermion masses (the
neutrinos) have to be less than about 1 eV/c2 (though we will use natural
units with c = 1), then the masses span at least 12 orders of magnitude
(an order of magnitude is essentially adding an additional digit, so the
number 130 is an order of magnitude larger than the number 16; similarly
2456 is two orders of magnitude smaller than 355573.)

We introduced the strong, weak and electromagnetic interactions; these
are the three forces which govern the behaviour of matter at distance
scales short enough (equivalently energy scales high enough) that gravity
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is sub-dominant. We described the forces as being via the exchange
of gauge bosons (the photon, gluons, W±, Z) and introduced the basic
Feynman diagrams (containing two fermions and one boson) which gives
the basic structure of the Standard Model. We described which particles
participate in the three forces. All electrically chared particles participate
in electromagnetism, so that means all the fermions except neutrinos.
The leptons do not participate in strong interactions, only the quarks
and gluons do this. All the particles participate in the weak interactions
involving the W and Z bosons. (Note: later we will note that fermions
can be ”left-handed” or ”right-handed” so that only left handed particles
(and right handed anti-particles) participate in the interactions with W -
bosons.). By putting together these basic Feynman diagrams we can
create more complicated ones and these are the processes described by
the Standard Model.

Each interaction (strong, weak, electromagnetic) is thus associated
with a simple Feynman diagram; at the vertex of the diagram is assigned
a ”charge”. When the boson is the photon, this is the electromagnetic
interaction and the ”charge” is actually the electric charge, e. For the
strong and weak interactions it is a different charge and is denoted g3 for
the strong interaction and g2 for the weak interaction with W -bosons.
For the weak interactions involving the Z-boson we will later see that
the strength is given by a particular combination of e and g2.

We mentioned that the charges actually are not constants, rather they
depend upon the energy scale of the process that a particular Feynman
diagram is describing. Consider the following two diagrams taken from
Halzen-Martin. An electron is not ”just an electron”. It is continually
radiating photons which convert into e+e− pairs. An electron is thus
surrounded by a ”virtual cloud” of electron/positron pairs (see next dia-
gram). The positrons in the cloud will tend to be closer to the original
electron as they have opposite charge. Hence, the cloud is polarised. This
affects what we mean by charge in a distance/energy dependent way.
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We can measure the electron charge by taking a test charge and mea-
suring the force it experiences. Clearly, the result depends upon how close
the test charge is to the electron cloud, as the next figure illustrates. The
positrons effectively screen the electron from the test charge: a photon
which is exchanged between the positive test charge and a cloud positron
gives a ”repulsive” contribution to the overall force (which is attractive);
the cloud electrons also contribute to this effect, but because they are
farther out there is a smaller chance that the photons will interact with
them so the effect is smaller. As the test charge is brought closer, the
effective charge increases as the screening effect becomes less and less rel-
evant. This results in a distance (equivalently energy) dependent charge,
which is larger at shorter distances or higher energies.
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In the case of the strong interactions (described by quantum chromo-
dynamics or QCD) the story is similar but with a different result. This
is illustrated in the other part of figure 1.5. In the strong interactions,
gluons can interact with themselves (cf electromagnetism where photons
cannot self-interact). This leads to additional contributions to the effec-
tive charge which in fact leads to an energy dependance of the charge
which is opposite to that in quantum electrodynamics (QED). In QCD
the strength of the interaction i.e. the charge increases with distance or
decreases with energy – so that asymptotically at arbitrarily high ener-
gies the charge goes to zero. This is known as asymptotic freedom. The
understanding of this phenomenon led to a Nobel prize in physics for
Gross, Politzer and Wilczek in 2004. As a consequence, at low energies
it is not possible to directly observe quarks or gluons: the strong interac-
tion is so strong that it binds them into bound states known collectively
as ”hadrons”. One of these, the proton, is long lived. The rest of them,
though, do not have long lifetimes: they quickly decay due to the electro-
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magnetic and weak interactions that their constituents also participate
in.

The Large Hadron Collider
We gave an overview of the Large Hadron Collider. Set in a roughly

circular, 27 km diameter tunnel, about 100 m below ground, the LHC
is the world’s largest machine. It is also the world’s most energetic and
powerful particle collider. Powerful superconducting magnets and electric
fields are used to accelerate charged particles (usually protons, but also
lead ions) around the LHC ring in both directions. The two counter
rotating particle beams are made to collide at four interaction points
around the ring. Surrounding each interaction point are different particle
detectors, designed to measure the results of proton-proton (and other)
collisions. The LHC is designed to collide protons at a centre-of-mass
energy

√
s of 14 TeV = 14 ×1012 eV. It first started operation (more

than 20 years after its conception) in 2010. It has successfully run in
2011 at

√
s=7 TeV and in 2012 at

√
s=8 TeV. For most of 2013 and 2014

it will be undergoing upgrades in order to ramp up to the design energy.

High energy is one key property that is necessary for a successful LHC.
The collider also has a very high luminosity. The higher the luminosity
the greater the number of collisions between the particle beams will take
place. This is proportional to the number of protons in each of the collid-
ing beams and inversely proportional to the effective area over which the
beams are made to collide. Hence, luminosity is measured in units of in-
verse area cm−2 or the instantaneous luminosity is given in cm−2s−1. The
design luminosity of the LHC is about 1034cm−2s−1 (or about 1041cm−2

per year) and last year it was running pretty close to that. High energy
is required because we are hoping to produce new particles with a large
mass in the collisions and this can’t be done if there isn’t enough energy.
High luminosity is required because the production of new particles is a
rare process (otherwise we may have seen them already!) so the larger
the number of collisions the greater the probability of producing a new
particle. For instance, a Higgs boson is produced about once for every
billion collisions at the LHC.
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Protons are not elementary particles, but rather ”large”, complicated
bound states of quarks and gluons tightly bound together by the strong
interaction. One aim is to get the quarks or gluons from one proton beam
to collide ”hard” with those of the other proton beam and produce in-
teresting new particles. Colliding protons together is a bit like colliding
cans of beans together at high energies to both create new flavours of
beans in the process as well as understand which beans are in the cans.
As a result, proton-proton collisions are ”quite messy” with hundreds of
particles being produced in a given collision. The detectors which mea-
sure the results of these collisions must therefore be quite sophisticated,
comprehensive, versatile instruments capable of recording pretty much
anything that could conceivably be spat out of a proton-proton collision.

One of the main aims of the LHC projects was to prove or disprove the
existence of the Higgs boson. The theory of the Higgs boson goes back to
1964 when Peter Higgs (who studied at King’s !) proposed a mechanism
to give masses to gauge bosons. This mechanism was incorporated into
what eventually became the Standard Model – and it is the interactions
of the fermions and the bosons with the Higgs boson which is responsible
for the masses that those particles have. The proof (or disproof) of the
existence of the Higgs boson is thus paramount to our understanding
of the nature of mass and goes a long way towards answering e.g. the
question ”why is the mass of the electron about 0.5 MeV/c2 ?” and
towards asking about the nature of mass itself. Particle physicists have
been looking for this particle for decades. Remarkably, after analysing
data collected in 2011 and 2012, the CMS (Compact Muon Solenoid)
and ATLAS (A Toroidal LHC Apparatus) experiments at the CERN
LHC have discovered a new particle with properties remarkably similar
to that of the Higgs boson. Much work is now underway to measure the
detailed properties of this newly discovered particle to verify if it really
is the Higgs boson or something else.
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Natural Units and Dimensional Analysis
Natural units are a system of units which actually make thinking about

physics easier. This is because in these units energy and mass have the
same dimensions and these are inverse to the dimensions of lengths and
times. In fact, in natural units any physical quantity will have dimensions
of mass to some power; equivalently it will have the dimension of length
to the inverse power.

These units are defined by ”setting Planck’s constant ~ and the speed
of light c to one. ” We put the previous statement in speech marks
because the speed of light and ~ are not equal to one in a general unit
system; however they are fundamental constants of nature. Hence you
can view the speed of light as a relationship between metres and seconds.
In fact, in SI units metres are defined by ”the length of the path travelled
by light in vacuum during a time interval of 1/299,792,458 of a second ”.
Thus c can be viewed as a conversion factor between metres and seconds.

In natural units,

1 s = 299792458.. m (1)

which we will often approximate to

1 s = 3× 108 m (2)

Similarly, Plancks constant (over 2π) which has the value

~ = 1.05457172534× 10−34 Js (3)

can be thought of as a conversion factor between Joules and inverse
seconds. This leads to the approximate relation

1 J ∼ 1034s−1 (4)

Since both ~ and c involve seconds, combining them allows us to con-
vert between energy [E], 1/time [T ]−1 and 1/distance [L]−1.

One Joule can be expressed in electron volts as
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1 eV = 1.602176..× 10−19 J (5)

so, ~ = 1 implies

~ = 1 ∼ 10−34J s ∼ 3× 10−26J m ∼ 3× 10−26 1019

1.6..
eV m ∼ 2× 10−7eV m

(6)

1 m ∼ 1

2× 10−7 eV
(7)

which means that a distance of one metre is equivalent to an energy
scale of 2× 10−7 eV. Larger distances correspond to smaller energies and
vice-versa.

In natural units, the mass of the electron is about 0.5 MeV. This is
the inverse of a distance of 1

0.5MeV ∼ 4 × 10−13 m This is the Comp-
ton wavelength of the electron. The mass of proton is about 0.94 GeV,
corresponding to a length scale of order 2× 10−16 m. This is the charac-
teristic size of a nucleus. The masses of the W -bosons, the Z-boson, the
top quark and (if confirmed at the LHC) the Higgs boson are of order
100 GeV – corresponding to a distance of around 2×10−18 m. The LHC
collisions in 2012 took place at energies of 8 TeV = 8 thousand GeV – a
distance scale of almost 10−20 m. This makes the LHC the world’s most
powerful microscope.
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Lorentz Invariance, Special Relativity and 4-vector notation

Einstein’s postulates of special relativity:

1. The speed of light is a constant, measured to have the same value
by all observers

2. The laws of physics are the same for all observers moving with
constant relative velocity to one another (i.e. in uniform relative motion).

If the relative motion between observers is along the x direction, then

t′ = γ(t− vx) (8)

x′ = γ(x− vt)
y′ = y

z′ = z

where

γ =
1√

1− v2
(9)

The boost along the x-direction with velocity v mixes the space and
time coordinates x and t. A key fact about special relativity is that the
quantity

L2 ≡ t2 − x2 − y2 − z2 (10)

is invariant under Lorentz transformations. In fact,

t′2 − x′2 − y′2 − z′2 = γ2(t2 − 2vx+ v2x2)− γ2(x2 − 2vt+ v2t2)− y2 − z2(11)

=
1

1− v2 (t2 − x2)(1− v2)

= t2 − x2 − y2 − z2 = L2

The left and right hand side of this equation can be regarded as a mea-
sure of spacetime length and are unchanged by Lorentz transformations
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(note: the overall sign of the length is not important, we could have used
−t2 + x2 + ...).

We can write this in a more compact form.
Assemble the four space and time coordinates into a vector with four

components, a 4-vector and call this xµ.

xµ ≡


t
x
y
z

 ≡

x0

x1

x2

x3


The invariant length can be thought of as a sort of dot product between

this vector and itself, but defined with some minus signs. In fact

L2 =
(
t x y z

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




t
x

y

z


i.e.

L2 = (xµ)Tηxµ ≡ xµηµνx
ν (12)

where xµ is viewed as a vector multipling the matrix ηµν; η is known
as the Minkowski ”metric”:

ηµν ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Note: η is denoted by g in Halzen-Martin.
We often simplify life and omit the η by writing

L2 = xµx
µ (13)

where, now, notice that the µ is a subscript on the first x. xµ is simply
(xν)Tηµν and now the product between xµ and xµ is the usual dot product.
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The space coordinates (x, y, z) ≡ xi are the components of a 3-vector.
Another familiar 3-vector is the 3-momentum, pi ≡ (px, py, pz) which are
the components of an objects momentum in the three spatial directions.
In the same way that the xi combine with another quantity t to form
a 4-vector xµ, the 3-vector pi combines with another quantity to give a
4-vector pµ – the 4-momentum. In this case, it is the energy of the object
which is p0:

pµ ≡


E
px
py
pz

 ≡

p0

p1

p2

p3


The quantity,

M 2 = pµpµ = E2 − p2
x − p2

y − p2
z = E2 − |pi|2 (14)

is also Lorentz invariant, like L2. Hence it will be the same in all
relatively uniform frames. Consider now a (frame in which we have a)
particle a rest. Being at rest, its momentum is zero, pi = 0. Hence

pµ ≡


E

0
0
0

 =


m
0
0
0


its energy is equal to its mass. Hence, in this frame,

M 2 = m2 (15)

but, since M 2 is Lorentz invariant, M 2 = m2 in all frames. Hence M
is known as the invariant mass. Therefore,

E2 = |pi|2 +m2 (16)

notice that, in the small velocity limit, pi → 0 and E ≈ m. In non-
natural units this becomes E ≈ mc2, a famous equation but one which
is only approximately true.

The energy-momentum 4-vectors of a system are conserved in time:
e.g. consider and initial state with two particles A and B with 4-vectors
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pAµ and pBµ which interact, producing a final state with particles C and
D. Energy-mometum conservation asserts that:

P µ
A + P µ

B = P µ
C + P µ

D (17)

where the lhs and rhs are both additions of two 4-vectors.
In the case of a Higgs boson decaying into, say, two photons the initial

state is one particle (the Higgs boson) whereas the final state is two
particles. If we label the Higgs boson as A and the two photons as B
and C, at an LHC experiment we will measure the energy and momenta
of each of the two photons. But conservation of energy and momentum
implies that:

P µ
A = P µ

B + P µ
C (18)

Therefore, we can reconstruct the energy and momentum of the Higgs
by measuring the energy and momentum of the particles it decayed into.
The mass of the Higgs boson mh is the invariant mass of P µ

A, therefore
we have:

m2
h = P µ

APAµ = (P µ
B + P µ

C)(PBµ + PCµ) (19)

So we can measure the mass of the Higgs boson at the LHC even
though the Higgs decayed very quickly.
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From Schrodingers equation to Relativistic Quantum Theory

Non-relativistic Quantum Mechanics

Non-relativistic quantum mechanics is governed by Schrodingers equa-
tion. This equation is simply an expression in waves/fields of the non-
relativistic energy-momentum relation:

E =
p2

2m
(20)

If we substitute for E and p the differential operators:

E → i
∂

∂t
and pi → −i

∂

∂xi
(21)

we get the free Schrodinger equation:

i
∂Ψ

∂t
+

1

2m

∂2Ψ

∂x2
i

= 0 (22)

where we are acting with the equation on a function of space and time
Ψ, called the wavefunction. Then

ρ = |Ψ|2 (23)

is the probability density and

ρd3x (24)

the probability of finding the particle in the infinitessimal volume ele-
ment d3x.

For applications in which beams of particles interact/collide we will
need to calculate the ”flux density” of particles j passing out of some
volume V . The conservation of probability ρ asserts that the rate of
decrease of the number of particles is equal to the flux coming out of a
surface S surrounding the volume V :

− ∂

∂t

∫
V

ρdV =

∫
S

n.jdS =

∫
V

∇.jdV (25)
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n is just a unit normal vector to S and the last inequality is Stokes
theorem. We therefore have a continuity equation:

∂ρ

∂t
+∇.j = 0 (26)

Next we can get an expression for ∂ρ
∂t by taking Schrodingers equa-

tion and multiplying on the left by −iΨ∗ and substracting this from the
complex-conjugate of Schrodingers equation multiplied by −iΨ. This
gives:

∂ρ

∂t
=

i

2m
(Ψ∗∇2Ψ−Ψ∇2Ψ∗) (27)

This implies that the probability flux density j is

j = − i

2m
(Ψ∗∇Ψ−Ψ∇Ψ∗) (28)

A simple solution of the free Schrodinger equation is:

Ψ = Nei(p
jxj−Et) = Neip

µxµ (29)

which describes a free particle with momentum pi ≡ p and energy E

(notice that the exponent is Lorentz invariant). This has

ρ = |N |2 and j =
p

m
|N |2 (30)

Relativistic Quantum Mechanics: the Klein-Gordon Equation

We can perform the same exercise with the relativistic E, p relation:

E2 = p2 +m2 (31)

This gives the Klein-Gordon equation,

−∂
2φ

∂t2
+∇2φ = m2φ (32)

φ is the wavefunction (or field) for a relativistic particle with mass m,
energy E and momentum p. Again, we can multiply the equation by
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−iφ∗ and substract this from the complex conjugate equation multiplied
by −iφ to obtain ρ and j:

ρ = i(φ∗
∂φ

∂t
− φ∂φ

∗

∂t
) (33)

and

j = −i(φ∗∇φ− φ∇φ∗) (34)

A free particle solution of the KG equation is again given by

φfree = Nei(p
jxj−Et) = Neip

µxµ (35)

hence

ρ = 2E|N |2 and j = 2p|N |2 (36)

The KG equation is Lorentz invariant, since it can be written as

(∂ν∂ν +m2)φ = 0 (37)

and this suggests that ρ and j should combine into the four components
of a 4-vector:

jµ ≡


ρ

j1

j2

j3

 = −i(φ∗∂µφ− φ∂µφ∗) = 2pµ|N |2

The continuity equation can be written in the Lorentz invariant form

∂µjµ = 0 (38)

Substituting the free particle solution into the KG equation, we see
that we can have solutions for both signs of the square root:

E = ±
√

p2 +m2 (39)

We need to interpret the negative energy solutions. Furthermore, the
negative energy solutions have negative probability density:
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E < 0 , ρ < 0 (40)

Pauli and Weisskopf had the idea of multiplying jµ by the charge, e:

jµ −→ −ie(φ∗∂µφ− φ∂µφ∗) (41)

In this case ”negative ρ” can be associated with particles with the
opposite charge.

The final interpretation of the negative energy solutions was given by
Feynman and Stuckelberg who asserted: The negative energy particle
solutions are actually positive energy anti-particles. Moreover, if the
latter propagate forwards in time, the former are propagating backwards
in time. To see this, consider an electron of energy E, momentum p and
charge −e. It has

jµ(e−) = −2e|N |2(E,p) (42)

A positron, with the same E and p has

jµ(e+) = +2e|N |2(E,p) (43)

= −2e|N |2(−E,−p)

which is the same as that for an electron with energy −E and momen-
tum −p.

This basically implies that the single particle wavefunction formalism
describes both particles and antiparticles simultaneously. See Halzen-
Martin 3.5 for some more details.
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From Amplitudes to Cross-sections and Lifetimes.

Using basic quantum mechanics and the relativistic wave equation we
have seen that partice physics processes can be organised into Feynman
diagrams in which the probability per unit time per unit volume is related
to the square of the amplitude.

For charged particles scattering by exchanging photons, the amplitude
is given by

Tfi = −i
∫
d4xjµ1 (x)

−1

q2 j2µ(x) (44)

Here, jµ1 is the current for one of the particles and j2µ the current for
the other. −1

q2 is the propagator of the photon which is exchanged between
them.

We derived the currents for both non-relativistic and relativistic parti-
cles earlier. In the relativistic case, j2µ = −eNBND(pD + pB)µei(pD−pB).x.
Putting this, and the analagous expression for the other current into the
expression for Tfi gives

Tfi = −iNANBNCND(2π)4δ4(pD + pC − pA − pB)M (45)

where

− iM = (ie(pA + pC)µ)(−igµν
q2 )(ie(pB + pD)ν) (46)

M is simply the Feynman diagram translated into a mathematical
expression, known as the invariant amplitude. M is intrinsically physical.
The remaining factors in Tfi take care of a) the energy and momentum
conservation of the process and b) the normalisation of the particle wave
functions.

In particle physics experiments we measure quantities like the lifetime
of a decaying particle or the rate of production of particles from a collider
experiment. We need to be able to calculate quantities like these, starting
with the invariant amplitude M for such a process.
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1 Particle Decays

Consider a particle which decays into a number of other particles. e.g. a
W -boson can decay into a positron and a neutrino, a neutron can decay
as n → peν̄e, a muon decays as µ → eνµν̄e. These processes can be
measured and we would like to understand what the Standard Model
predicts for them.

In general, if the initial particle has some fixed energy and momen-
tum, there are many possibilities for what the final state energies and
momenta could be for the particles produced in the decay. The initial
particle has a specified energy and momentum (obeying E2 = p2 +m2!),
but, given this, there are many possible final state particle energies and
momenta. If we integrate over all of these possible final state energies
and momenta, taking into account energy and momentum conservation
(which is enforced by the delta-function), we can obtain (for example)
the lifetime of the particle.

Independent of the final state energies and momenta, there might be
many different combinations of particles that a given particle can de-
cay into. For instance, a W -boson can decay into (e+, νe); (µ+, νµ); .......
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Each possible combination of final state particles (which differ by their
”charges”) contributes to the total lifetime. The branching ratio (or
branching fraction) for a particular final state combination of particles is
the (inverse of) the total lifetime of the particle divided by the average
lifetime for decaying into the given combination.

Recall (Fermi’s Golden rule) that gave us the probability per unit time
for a transition from one state to another. If the initial state is a particle
and the final state the particles it decays into, this gives us the probability
per unit time for the decay to occur.

Γ = 2π|M|2ρ(E) (47)

ρ(E) is the density of states. More about this in a moment. Γ is known
as the decay width of the particle. The lifetime of the particle is:

τ =
1

Γ
(48)

In natural units, ~ =1 = c and, hence, energies and masses can be
measured in units of eV and distances and times in units of eV−1. Thus
a lifetime has dimensions of [E]−1 = [M]−1 and Γ has dimensions of mass
i.e. [Γ] = [M].

1.1 Particle Number Density

Consider quantum mechanics in a finite region of space - a box with sides
of equal length L.

We require that the single particle, free particle wave function, e−ip.x

has well defined boundary conditions at the boundaries of the box i.e.
when, x, y or z = L. For this we can impose periodic boundary conditions
so that the wave function is periodic at the boundaries:

Ψ(x, y, z) = Ψ(x+ L, y + L, z + L) (49)

This implies that

(px, py, pz) =
2π

L
(nx, ny, nz) (50)
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where the ni are INTEGERS. The momentum of a single particle in a
box is QUANTISED.

Hence, the number of states between px and px + dpx is L
2πdpx.

Therefore, the number density of states for a single particle is:

dn =
L3

(2π)3d
3p =

V

(2π)3d
3p (51)

1.2 The Lifetime of the Neutron

Though stable inside most atoms, a free neutron is unstable. It decays
into a proton, an electron and an anti-neutrino:

n −→ pe−ν̄e (52)

This is β-decay and also occurs within certain radioactive elements.
The lifetime of the neutron at rest is about 900 seconds = 900 × 3× 108

m ≈ 900 × 3× 108 ×106eV−1 ≈ 2.7 × 1017eV−1 = 2.7 ×1026GeV−1.
We will estimate the lifetime ignoring the masses of the electron and

neutrino. The mass difference between a neutron and proton is around
1 MeV. The kinematics of this process is as follows. The energy of the
neutron must equal that of the proton plus electron plus neutrino:

En = Ep + Ee + Eν (53)

If the initial neutron is at rest, En = mn and, since we ignore the
masses of the e and ν we have that Ee = |pe| ≡ p and Eν = |pν| ≡ q.
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The momentum of the proton is equal and opposite to the sum of the
momenta of the electron and neutrino, so is completely fixed. Hence,
when we integrate over the final state particles, we only need to integrate
over the electron and neutrino momenta. We will define En − Ep to be
E0, an energy of order 1 MeV.

Γ = 2π|M|2ρ = 2π

∫
|M|2 d3p

(2π)3

d3q

(2π)3 (54)

where the
∫

means we will integrate over p and q.
A quick reminder about spherical polar coordinates is in order!

1.3 Spherical polar coordinates on the side

Consider the three space coordinates xi = (x, y, z). We can re-write these
in terms of two angles (θ, φ) and a radius r:

x = rsinθcosφ (55)

y = rsinθsinφ (56)

z = rcosθ (57)

where r > 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Now, instead of specifying x, y
and z to specify a particular point, we can specify r, θ and φ instead.
This is a coordinate transformation. Note, that we can do this for the
components of any three-vector, e.g. momentum.

Notice that:

r = (x2 + y2 + z2)1/2 (58)

φ = tan−1(y/x) (59)

θ = cos−1(z/r) (60)

So, in particular, r = |xi|, the length of the vector.
Important to note is how the integration measure gets transformed:

dxdydz −→ r2sinθdrdφdθ (61)
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We can integrate over the two angles:∫
r2dr

∫
dφ

∫
sinθdθ = 4πr2

∫
dr (62)

So, the integral over space becomes equivalent to an integral over r:∫
d3x = 4π

∫
r2dr (63)

Similarly, instead of the 3-vector xi we could consider the 3-momentum
pi: ∫

d3p = 4π

∫
p2dp (64)

end of scholium on spherical polar coordinates. back to the density of
final states.

Now, back to neutron decay!
Assuming the angular dependence of the matrix element is trivial, we

can replace d3p with 4πp2dp, and, similarly for q. Moreover, q = E0−Ee =
E0 − p (since we ignore the electron mass), so there is no actual integral
over q and we only have to integrate over p. Therefore, we have

Γ ≈
∫ E0

0
|M|2 (E0 − p)2

2π3 p2dp (65)

The integral over p is easy and the end result is:

Γ ≈ |M|
2E5

0

60π3 (66)

Since Γ has dimensions of mass, dimensional analysis tells us that for
this process the dimension of |M|2 is mass−4.

Let us therefore relabel |M|2 as 1
M4

∗
, the goal being to estimate what

this mass M∗ is. Historically, M∗ is related to Fermi’s constant as GF ∼
M−2
∗ .
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So, we now have:

Γ ≈ E5
0

M 4
∗60π3 (67)

Since E0 is of order an MeV, we can write

Γ ≈ MeV

60π3

MeV4

M 4
∗

(68)

The second factor is dimensionless. Since 60π3 ≈ 1860 ≈ 2000 we have

Γ ≈ 5× 10−4MeV
MeV4

M 4
∗

= 5× 102eV
MeV4

M 4
∗

(69)

To estimate M∗, we use the fact that the lifetime of the neutron is
about 900s. This gives

M∗ ≈ 100GeV (70)

This is a remarkable result. It suggests that there is something in-
teresting happening at a scale which is 105 times larger than the energy
transferred in this process and 100 times larger than the mass scale of the
proton and neutron. This is essentially the mass scale of the W -boson
(which is 80 GeV)!!! We have discovered the mass scale of the Standard
Model of Particle Physics!.

Consider now, the muon. It decays according to the following Feynman
diagram.

i.e. µ− → e−νµν̄e
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Why does the muon decay? The answer is that there is nothing from
preventing this process to occur, so it will. The electron cannot decay, be-
cause there is no combination of lighter particles with the correct charges
for it to decay to. Hence, its mass and charge prevent it from decaying.
The muon, on the other hand has the same charge as an electron, but
weighs 200 times more.

What we see from the diagram is that, even though a W -boson weighs
80 GeV, 800 times the muon mass, quantum mechanics allows this to
occur: the energy-time uncertainty relation,

∆E∆t ≥ 1

2
(71)

allows a W -boson to be created for a very short amount of time. Note
that the W -boson which ”propagates” in the neutron and muon decay
diagrams is not on-shell i.e. it does not obey E2 = p2 + m2

W . It is the
uncertainty relation that allows off-shell W ’s to propagate.

The diagram is completely analagous to the neutron decay diagram.
In analogy with that one, we would estimate

Γ(µ− → e−νµν̄e) ≈
m5
µ

M 4
∗60π3 (72)

M∗ ∼ MW . Hence we see that the presence of the W -boson in the
intermediate state contributes a factor of 1/M2

W to the matrix element.
This is the W -boson propagator for a process in which the energies are
much smaller than MW . The actual propagator is proportional to 1

q2−M2
W

c.f. the photon propagator.
So, if we hadn’t done the calculation above we would have seen that

the decay width is proportional to 1
M4
W

and hence, dimensional analysis

would tell us that there is a m5
µ present. The 60π3 would require knowing

that the final state ”phase-space” gives an additional suppression.
The actual properly calculated muon decay width gives the result:

Γ(µ− → e−νµν̄e) ≈
m5
µ

M 4
∗192π3 ≡ G2

F

m5
µ

192π3 (73)
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where GF is now defined to be equal to M−2
∗ .

Use this to calculate the muon lifetime and compare it to the value in
the PDG (Particle Data book).

Calculate the lifetime of the τ -lepton.

1.4 Lorentz Invariant Phase Space Factor

Recall that the probability density, ρ = 2E|N |2. The integral of ρ in a
volume V produces a factor of V , so we could choose the constant N such
that this cancels, i.e.

N =
1√
V

(74)

and ∫
V

d3xρ(E) = 2E (75)

This normalisation is thus one in which there are 2E particles in a
volume V . Hence, with this normalisation, the number density becomes:

dn =
V

2π3

d3p

2E
(76)

note: if we had not chosen a value for N , we would still have the same
E dependence, but there would be a 1

N2 present as well. The final result
doesn’t actually depend on N

The last expression for dn is Lorentz invariant! To see this, consider a
Lorentz boost in the z direction with velocity v:

E ′ = γ(E − vpz) (77)

p′z = γ(pz − vE) (78)

Then,
dp′z = γdpz − γvdE (79)

so
dp′z
dpz

= γ(1− v)
dE

dpz
(80)
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Now

dE

dpz
=

d

dpz
(p2
x + p2

y + p2
z +m2)1/2 = pz(p

2
x + p2

y + p2
z +m2)−1/2 =

pz
E

(81)

Therefore:

dp′z
dpz

= γ(1− vpz
E

) (82)

= γ
(E − vpz)

E
(83)

= E ′/E (84)

Therefore
dp′z/E

′ = dpz/E (85)

and
d3p′

E ′
=
d3p

E
(86)
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1.5 Lifetime of a Particle

We now write the general formula for the differential decay width (its
differential because it is before we integrate over final state particles) in
a relativistic, Lorentz invariant system.

Consider a particle A which decays into n particles. The transition
probability (or differential decay width) is given by:

dΓ =
1

2EA
|M|2 d3p1

(2π)32E1
....

d3pn
(2π)32En

(2π)4δ4(pA−p1−p2− ...−pn) (87)

2EA is the number of decaying particles per unit volume, M the in-
variant amplitude for the process. Note that there are no factors of the
arbitrarily chosen normalisation volume V . Since dΓ is measurable, the
result should not depend on V (one can demonstrate this, but we will
not do this in class).

2 Cross-sections

In a particle collider experiment, we collide beams of particles with some
given flux (also called luminosity and then we measure the particles that
come out of the collisions. The total number of events is obviously pro-
portional to the flux since e.g. if we increase the number of protons in the
LHC beams we will increase the total number of collision events that we
get. Thus, the luminosity is something that we control as experimenters
in a laboratory. It is not an intrinsically physical entity.

However, the proportionality ”constant” in the relation

Nevents ∝ Luminosity ≡ L (88)

is an intrinsically physical quantity. This is called the cross-section and
is usually labeled by σ.

Nevents = Lσ (89)

The left hand side is dimensionless, a whole number if we count the
number of events (or collisions) after a given time interval. Or we could
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consider the number of events per second (or any other unit of time). The
luminosity is thus a flux of particles per unit time. This has dimensions
of [L] = [L]−2[T ]−1 = [M ]3, where the last equality is because we use
natural units. The dimensions of luminosity are like this because it is
essentially the number of particles going through a given area i.e. number
of particles per unit area per second.

So, by dimensional analysis, the cross-section σ has dimensions of
AREA. In fact, that is where its name comes from. It is, effectively,
the area over which the interaction takes place.

2.1 Dimensional analysis calculations of σ

Lets get a feel for σ by estimating it for various processes. Our estimates
are based on Fermi’s Golden Rule plus dimensional analysis in natural
units. We will also compare our results to the ”properly calculated”
results as well as the actual experimental observations.

1. σ(e+e− → µ+µ−) at high energies.
A Feynman diagram at leading order for this is the same as the in-

teraction between muons and electrons diagram above, but turned on its
side. We would like to estimate the cross-section for this at high centre
of mass energies

√
s much greater than mµ.

By now, we know that the answer for this will by proportional to the
”square of the Feynman diagram” for this process. This tells us that:

σ ∝ e4 ∼ α2 (90)

because we have a factor of the charge at each vertex. α is dimensionless,
a number with no units. But σ has dimension [M ]−2. The only other
scale in this problem is the center of mass energy

√
s. Hence we expect

that

σ ∼ α2

s
(91)

The actual ”properly calculated” leading order result is

30



σ =
4π

3

α2

s
(92)

so, we were off by a factor of four or so. Not bad!
The cross-section for this process has been measured at various ener-

gies, as shown in the figure. The smooth line on this graph shows the
theoretical prediction from the above equation and the different ‘mark-
ers’ are actual, experimentally measured values. The agreement between
the theory and experiment is very good. Notice the vertical lines which
eminate from the different experimental points.

Since no experiment is perfect, every reported measurement is un-
certain by a certain amount depending on either the limitations of the
experimental apparatus and/or the size of the data sample available. The
latter, statistical uncertainty, is reduced when a larger data sample be-
comes available. The vertical lines on the graph are the total uncertainty
on the measurement made, so the actual cross-section is somewhere in
between the ”band” represented by the line.
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Putting actual numbers to the cross-section we get:

σ(e+e− → µ+µ−) ∼ 4× 10−32

s/GeV2 cm2 (93)

So in order to produce a few muon pairs in electron-positron scattering
at a centre-of-mass energy of one GeV, you need to have a luminosity
of order 1032cm−2. At higher energies, since the cross-section decreases
quadratically with energy, you need much higher luminosities to produce
the same number of muons.

2. σ(νN → X)
Here we want to consider neutrinos interacting with nucleons in matter.

Neutrinos are not electrically charged so they don’t couple to photons.
Nor do they participate in the strong nuclear interactions (like quarks and
gluons do). But they do undergo weak interactions, eg via exchanging
W -bosons and Z-bosons.
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2.2 Centre-of-Mass Frame and Laboratory Frame

The centre of mass frame for a collision of two particles is one in which
the two particles have equal and opposite momentum and equal energies.
In this frame the Lorentz 4-vectors for the two particles are

pµ1 = (1/2Ecm, p
i) (94)

pµ2 = (1/2Ecm,−pi) (95)

We can calculate the Lorentz invariant quantity s:

s = (p1 + p2)µ(p1 + p2)
µ = E2

cm (96)

The laboratory frame is one in which one of the particles is at rest and
the other is moving.

pµ1 = (M, 0) (97)

pµ2 = (Elab, p
i
lab) (98)

In the lab frame

s = (Elab +M)2 − E2
lab +m2 ≈ 2ElabM (99)

where we assumed E to be much larger than M or m the two particle
masses.

Okay, back to neutrino cross-section
Since neutrinos interact via the weak interaction, the |M|2 will be

proportional to G2
F hence we will have that

σ(νN) ∼ G2
F (100)

But σ must have mass dimension minus two. At high energies, the
only other scale in the problem is s which has mass dimension two.

Therefore, we expect that

σ(νN) ∼ G2
Fs (101)

33



In most experimental situations with neutrinos we are normally in the
lab frame, scattering a beam of neutrinos off a fixed target. e.g. the
nucleons could be a ”block” of matter and the neutrino beam is ”fired”
into it. Therefore s ∼ 2EνmN

Using the fact that mN ∼ 1 GeV and that GF ∼ 10−5 GeV−2 we get

σ(νN) ∼ afew × 10−38 Eν

GeV
cm2 (102)

which is again in agreement with the ”proper calculation” to within a
factor of 10.

Notice that this is a much smaller cross-section than the previous one
we estimated for a fixed centre-of-mass.

How far can neutrinos propagate through matter?

Imagine a neutrino which has been emitted by the sun (or any other
star in the galaxy) and arrives at the Earth. We can use the result
above to estimate how far a neutrino can propagate in the Earth before
it actually interacts with a proton or neutron in the Earth.

Obviously the reaction rate is proportional to both the cross-section for
the reaction per nucleon (as estimated above) and the density of nucleons
i.e. the density of the Earth, ρ. The greater the reaction rate, the shorter
the distance a neutrino can propagate before interacting. Thus, we have,
the average propagation distance L before an interaction takes place is:

L ∝ 1

ρσ
(103)

where σ is calculated above for neutrinos interacting with nucleons and
ρ is the mass per unit volume of the matter through which the neutrino
propagates.

Now we use dimensional analysis. The length L has dimensions of
[L] = [M ]−1. So, the RHS has to have the same dimensions. This will
help us to fix the proportionality constant in the above. ρ has dimensions
of [M ]4 and [σ] = [M ]−2. Thus, if
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L =
C

ρσ
(104)

the dimension of C is [C] = [M ]. Therefore we are looking for a quan-
tity which plays an important role in the interaction between a neutrino
and a nucleon with the dimensions of mass. The obvious candidate is the
nucleon mass, mN ∼ 1 GeV.

We therefore find:

L =
mN

ρσ
(105)

Notice that ρ
mN

is essentially the number of atoms per unit volume in
the Earth. Let us call this N . Hence we see that

L =
1

Nσ
(106)

If we take ρ ∼ 103kg/m3 ∼ 1030 GeV/m3. Since mN ∼GeV we have
that N ∼ 1030/m3. We have calculated σ above. For a neutrino with
energy of order 1 GeV

σ ∼ 10−38cm2 = 10−42m2 (107)

Hence, neutrinos with energies of order a GeV propagate roughly 1012m

through water before interacting! This is a billion kilometres. Most of
the neutrinos from the sun have energies which are one hundred or more
times less than a GeV and, hence they propagate much further.

3. σ(pp→ X)

The next cross-section we estimate is the cross-section for two hadrons
(e.g. two protons) to interact. This is relevant for hadron colliders such
as the CERN LHC. This cross-section is different to those above because
hadrons are not point particles. Rather, they are bound states of quarks,
anti-quarks and gluons, bound together by the strong nuclear force. The
strong nuclear force is the SU(3) part of the Standard Model. The re-
markable thing about the strong nuclear force is that all hadrons have
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masses which are of order a GeV. In fact, most of the particles described
in the PDG are hadrons (either mesons or baryons). If you look at their
masses, they are all within one order of magnitude of the proton mass.
This reflects the fact that the strong nuclear force is characterised by a
scale Λ ∼ GeV. This is known as the QCD scale since the underlying the-
oretical description of the strong nuclear interaction is called Quantum
Chromodynamics.

Λ is essentially the binding energy of the quarks, anti-quarks and glu-
ons inside any hadron. Since the u d and s quarks have masses which
are much smaller than Λ, the masses of hadrons made of these quarks
are mostly binding energy. Therefore your mass, and the masses of all
the stars in the Universe is binding energy of the strong nuclear force.
The b and c quarks have masses of order Λ itself, so c and b hadrons
have masses which are not just binding energy. The t quark, which is
the most massive known elementary particle (mt ∼ 173GeV ± 1 GeV)
actually decays before it has time to ”hadronise” and form a hadron.
This is because τt = 1

Γt
< 1

Λ .
Exercise: Estimate the decay length of a b-hadron. Use the formula for

muon decay. Compare it to some of the b-hadron lifetimes in the PDG.

We want to calculate the cross-section for scattering two hadrons which
interact via the strong nuclear interaction. We have just seen that ev-
erything about the strong nuclear force is characterised by a single scale
Λ. Hence, we expect that the effective cross-section for strong nuclear
interactions is also determined by Λ. Hence,

σ(pp→ X) ∼ 1

Λ2 (108)

It is Λ−2 on dimensional grounds. This has the dimensions of a cross-
section. Since GeV−1 ∼ 10−15m,

σ(pp→ X) ∼ 10−30m2 = 10−26cm2 (109)

Now, the in 2012, the LHC was running with an instantaneous lumi-
nosity of about L = 1033cm−2s−1 at a centre of mass energy of 8 TeV.
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Hence, with our rough estimate, we expect Lσ ∼ 107 events every second!
Actually, our estimate is around a factor of 10 smaller than the actual
answer so we are producing even more collisions than that.

The greater the number of LHC collisions, the greater the probability
of creating a ”rare” event such as the production of a Higgs boson. The
cross-section for producing a Higgs boson with a mass of around 126 GeV
at the LHC is about 10−35cm2. This means that we have to ”sift through”
around a billion events for every Higgs boson produced. The search for
the Higgs is thus very much like looking for a needle in a haystack.

Exercise: The Higgs boson mass is approximately 126GeV. How many
Higgs bosons were produced in the 2012 run of the LHC? For this you
need to find out how much data was recorded i.e. the total integrated
luminosity.

3 Symmetries

3.1 Symmetries Commute with the Hamiltonian

Consider the Schrodinger equation

i
dΨ

dt
= HΨ (110)

Suppose there is an Hermitian operator, K, with expectation value
〈K〉.

Q: when is 〈K〉 conserved?
By this we mean, when is 〈K〉 a constant of motion i.e.

d

dt
〈K〉 = 0 (111)

This implies

0 =
d

dt
〈K〉 =

d

dt

∫
Ψ∗KΨd3x (112)

Hence
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∫
dΨ

dt

∗
KΨd3x+

∫
Ψ∗K

dΨ

dt
d3x = 0 (113)

Since

− idΨ

dt

∗
= (HΨ)∗ = Ψ∗H (114)

we have that

−
∫

Ψ∗HKΨd3x+

∫
Ψ∗KHΨd3x = 0 (115)

Therefore:

KH −HK = 0 ≡ [K,H] (116)

i.e. the operator K commutes with the Hamiltonian.
This implies that eigenstates of K are also eigenstates of H.

HΨ = EΨ (117)

KΨ = kΨ (118)

This implies that the states transformed into each other by K have
the same energy:

H(KΨ) = E(kΨ) (119)

ie Ψ and (KΨ) are degenerate in energy.

3.2 Lagrangians and Equations of Motion

In classical mechanics one considers generalised coordinates qi(t) of a
particle. Then the Lagrangian

L = T − V (120)

which is the difference between Kinetic and Potential energy leads to
the Euler-Lagrange equations of motion
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d

dt

(
dL

dq̇i

)
− dL

dqi
= 0 (121)

We can use this formalism to obtain the relativistic wave equations
such as the Klein-Gordon equation, the Maxwell equations and the Dirac
equation.

Instead of considering L to be a function of discrete coordinates qi, we
consider Lagrangians which are functions of the fields which are contin-
uous functions of both xi and t i.e. of xµ.

For example, for the Klein-Gordon equation L is a function of φ(xµ)
as well as the derivatives ∂φ

∂xµ
≡ ∂µφ:

L(qi, q̇i, t)→ L(φ, ∂µφ, xµ) (122)

L is obtained from a Lagrangian density L integrated over space

L =

∫
d3xL(φ, ∂µφ) (123)

Integrating over time gives the action, usually called S:

S =

∫
dtL =

∫
d4xL (124)

By varying S wrt φ and ∂µφ and ∂µφ
∗ we obtain the Euler-Lagrange

equations (this is derived at the end of the notes in the section on
Noethers theorem):

∂µ

(
δL

δ(∂µφ)

)
− δL
δφ

= 0 (125)

The Lagrangian density for the KG equation is

L = ∂µφ
∗∂µφ−m2φ∗φ (126)

Substituting this into the Euler-Lagrange equations gives

∂µ∂
µφ+m2φ = 0 (127)
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Note: (
δL

δ(∂µφ)

)
= ∂µφ∗ (128)

The Lagrangian density for Maxwells equations in vacuum is

L = −1

4
FµνF

µν (129)

Here we consider L as a function(al) of fields Aµ and derivatives ∂µAν.
ie since Aµ has four components, we treat each component as a separate
field.

In the presence of a current jµ there is an additional interaction term

L = −1

4
FµνF

µν − jµAµ (130)

3.3 Noether’s Theorem

Consider a small transformation in a field which leaves the Lagrangian
invariant

Ψ→ Ψ + iαΨ (131)

0 = δL =
δL
δΨ

δΨ +

(
δL

δ(∂µΨ)

)
δ(∂µΨ) + c.c. (132)

so

0 = iαΨ
δL
δΨ

+ iα

(
δL

δ(∂µΨ)

)
(∂µΨ) + .. (133)

= iα

[
δL
δΨ
− ∂µ

(
δL

δ(∂µΨ)

)]
Ψ + iα∂µ

(
δL

δ(∂µΨ)
Ψ

)
+ ...

where, to get to the last line from the previous one we use that:

∂µ

(
δL

δ(∂µΨ)
Ψ

)
=

(
∂µ

δL
δ(∂µΨ)

)
Ψ +

(
δL

δ(∂µΨ)

)
∂µΨ (134)
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Going back to the previous expression, the equation before the one
above, there are several key points:

1. The last term is proportional to a total derivative. Hence, it only
contributes to the action at the boundary of space-time ie at infinity. Re-
quiring this term to vanish at infinity implies that: the action is extrem-
ised (δS = 0) exactly when the Euler-Lagrange equations are satisfied
(the term in square brackets) . We have thus derived the Euler-Lagrange
equations.

2. In the case that we require that Ψ → Ψ + iαΨ is a symmetry
of the action, then, because the terms in square brackets vanish due
to the Euler-Lagrange equations, the total derivative term must vanish
everywhere not just at infinity. Hence,

3. When a variation of the fields is a SYMMETRY of the action, there
exists a conserved quantity:

4. This conserved quantity is a Lorentz 4-vector,
(

δL
δ(∂µΨ)Ψ

)
which

obeys the equation

∂µ

(
δL

δ(∂µΨ)
Ψ

)
= 0 (135)

5.
(

δL
δ(∂µΨ)Ψ

)
is identified with the current jµ.

Any constant times jµ is also conserved and we put in the charge to
identify it with the current we discussed earlier in the course.

jµ =
ie

2

(
δL

δ(∂µΨ)
Ψ

)
(136)

Exercise: Verify that this gives the same expression as we had for the
current in the Klein-Gordon case.

The Lagrangian for Scalar QED ie a charged KG field
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Recall (chapter 4 of book) that in order to consider the motion of a
particle of charge −e in an electromagnetic field generated by a vector
potential Aµ we replace the derivative ∂µ by

∂µ → ∂µ − ieAµ (137)

We call the rhs of this expression a covariant derivative. This is usually
denoted by Dµ:

Dµ ≡ ∂µ − ieAµ (138)

Recall that, by making the above replacement in the Klein-Gordon
equation we obtained

∂µ∂
µφ+m2φ = −V φ (139)

where

V = −ie(∂µAµ − Aµ∂µ)− e2AµA
µ (140)

i.e. we get a potential V for the field φ. Since the modified equation
of motion was obtained by replacing ∂µ with Dµ, the Lagrangian density
for a charged scalar is

L = Dµφ(Dµφ)∗ −m2φφ∗ (141)

= ∂µφ∂
µφ∗ − ieAµφ∂

µφ∗ + ie∂µφA
µφ∗ − e2AµA

µφφ∗ −m2φφ∗

Notice that the second and third terms in the last expression combine
to give

L = ∂µφ∂
µφ∗ − jµAµ − e2AµA

µφφ∗ −m2φφ∗ (142)

ie we have written them in terms of the conserved current. Thus,
combining this Lagrangian with that of Maxwell’s theory we have the
full Lagrangian for scalar QED:

L = −1

4
FµνF

µν +Dµφ(Dµφ)∗ −m2φφ∗ (143)
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Feynman Diagrams and the Lagrangian

When we studied scalar QED before introducing it in Lagrangian form,
we saw that jµAµ appears in the invariant amplitude M for a process.

The fact that jµAµ appears in L suggests that we can just ”read off”
the vertices allowed in Feynman diagrams from L. This is a general rule
for any Lagrangian! We just read off the Feynman rules from L .

In this example, the three point vertex between the photon and two
charged particles is represented in L by the presence of the jµAµ term.

Symmetries of Scalar QED

The Lagrangian for scalar QED has various symmetries.
Lorentz Invariance. Since all the Lorentz indices are contracted (L is

a scalar), the Lagrangian is invariant under Lorentz transformations.
Internal Symmetry. In addition to this ”spacetime symmetry” it is

invariant under an internal symmetry i.e. one which does not act on the
coordinates, but just on the fields. This is intrinsic to electromagnetism
and the other forces as we will see.

Gauge Symmetry

43



We are going to consider a transformation of φ by a unitary, 1-by-1
matrix, a U(1) transformation.

Any such matrix U is of the form U(α) = eiα. α can take any contin-
uous value between zero and 2π.

Clearly, under
φ→ Uφ (144)

we have that
Dµφ→ UDµφ (145)

TheDµφ(Dµφ)∗ term is clearly invariant under this transfomation since
it is of the form Dµφ times its complex conjugate, and UU ∗ = 1. Similarly
φφ∗ is invariant, so the mass term is invariant. Therefore L is invariant
under this transformation of φ.

Noethers theorem proves that there is a conserved quantity when a
Lagrangian is invariant under a symmetry transformation. In fact, when
α is small i.e. when U ≈ 1 + iα we see that the conserved current jµ is
precisely that which we derived before.

Now, we would like to consider the case that α is different from point
to point in spacetime. i.e. we make α = α(xν) – a function of the
coordinates. Clearly this will change the above conclusions because we
will get terms proportional to derivatives of α.

Dµφ → U∂µφ+ iU∂µαφ− ieUAµφ (146)

= UDµφ+ iU∂µαφ (147)

Thus, because of the term proportional to the derivative of α the La-
grangian is no longer invariant.

However, the unwanted term in the transformation of Dµφ can be
removed if Aµ also transforms:

Aµ → Aµ +
1

e
∂µα (148)

which can be verified by replacing this transformed Aµ in the ”un-
wanted” term.

44



Therefore, we have that

Dµφ→ eiα(x)Dµφ (149)

and the Klein-Gordon terms in the Lagrangian are invariant under
this gauge transformation (this is the name for transformations whose
parameters are functions of the coordinates.

What about the Maxwell term in the Lagrangian?
Let us consider the electromagnetic field strength, Fµν.
Since

Fµν = ∂µAν − ∂νAµ (150)

the field strength transforms into

Fµν → ∂µAν −
1

e
∂µ∂να− ∂νAµ +

1

e
∂ν∂µα (151)

= ∂µAν − ∂νAµ = Fµν (152)

Therefore Maxwell’s Lagrangian also gauge invariant!

Gauge Symmetry as a Principle

If we use gauge symmetry as a principle then it has far reaching con-
sequences.

1. The covariant derivative must be introduced otherwise the kinetic
energy term would not be gauge invariant.

2. This requires the introduction of a vector field Aµ which couples to
the matter current. Aµ is usually called the gauge field.

3. If we consider the kinetic energy of the gauge field, then gauge
invariance requires it to be of the form FµνF

µν (or more generally a func-
tion thereof). Thus, Maxwell’s equations follow from gauge symmetry
plus Lorentz symmetry

4. The photon is massless
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This last point is crucial. It provides an explanation for why the photon
essentially behaves as a massless particle. (Experimentally of course one
cannot prove that the photon is exactly massless. Rather, one obtains
an upper limit on its mass. The current upper limit is about 10−18 eV.)

To see why the photon is massless, we ask: what would a mass term
look like?. Well, in analogy with the mass term of the KG equation it
would be of the form:

∂ν∂
νAµ +m2Aµ = 0 (153)

This mass term would arise from a term in the Lagrangian of the form

∆L ∼ −m2AµA
µ (154)

Such a term is clearly not invariant under the gauge transformation of
Aµ, which is

Aµ → Aµ +
1

e
∂µα (155)

In fact, combining all of these points, the most general gauge and
Lorentz invariant Lagrangian which is quadratic in the fields and their
derivatives is

L = −1

4
FµνF

µν +Dµφ(Dµφ)∗ −m2φφ∗ (156)

Thus: the symmetries determine the Lagrangian and, hence, the physics

This is a key point in particle physics. The Lagrangian for the Stan-
dard Model is essentially determined by its symmetries. In other words,
symmetries determine the physics of all elementary particles!
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Beyond U(1) Gauge Invariance

We would now like to consider generalising U(1) gauge theory (i.e.
QED) to U(N) gauge theory.

That is to say that U – the transformation matrix – will become a
Unitary N ×N matrix U i

j where i, j run from 1 to N each.
An N × N matrix acts naturally on N component vectors vi. Hence

we should introduce N complex scalar fields φi on which these act.
Under

φi → U j
iφj (157)

we would like to impose a condition that a suitable covariant derivative
transforms acting on φi transforms in the same way

(Dµφ)i → U j
i (Dµφ)j (158)

This would be the N ×N generalisation of the U(1) case.
But what is this covariant derivative?
If we try to introduce a gauge field, in general it is a matrix of gauge

fields i.e. we can have up to N ×N gauge fields:

(Dµφ)i = ∂µφi − ig(Gµ)jiφj (159)

that is, for each of the values of i and j, (Gµ)ij is a different gauge field.
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Unitary matrices, exponentials, group generators and all that
In order to understand a little better the structure we would like to

look at some of the simple symmetry groups like SU(2) and SU(3). First,
though we begin with U(1):

exp iθ = 1 + iθ − θ2

2
− iθ

3

3!
+
θ4

4!
+ ..... = cos θ + isin θ (160)

Now consider the rotation matrix

R(θ) ≡
(

cos θ sin θ
−sin θ cos θ

)
(161)

We want to Taylor expand this matrix

(
cos θ sin θ
−sin θ cos θ

)
=

(
1− θ2

2 + θ4

4! + ... θ − θ3

3! + ...

−θ + θ3

3! + ... 1− θ2

2 + θ4

4! + ...

)
(162)

Just as eiθ is the exponential of a 1-by-1 matrix, the rotation matrix
above is the exponential of a two-by-two matrix:

R(θ) = exp(iθT ) = 1 + iθT − θ2

2
T 2 − iθ

3

3!
T 3 + ... (163)

where

T =

(
0 −i
i 0

)
(164)

and T 2 is the matrix product of T with itself.
So, since any rotation can be written as exp iθT we say that T generates

the rotations.
Let us now consider some other examples of this, because we will need

matrices like T to define the covariant derivative properly.
Let U be a N-by-N unitary matrix ie

U †.U = 1 (165)
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We will now assume that

U = exp iM (166)

What properties does M have?
Since

U † = exp(−iM †) (167)

unitarity implies that
M = M † (168)

So, M is Hermitian.
If, additionally, we require that det(U) = 1 i.e. that U is special

unitary, then one can show that the trace of M is zero

detU = 1↔ TrM = 0 (169)

SU(2)

For the case N = 2, one can show that M is a linear combination of
the Pauli matrices:

M = αaσa (170)

where

σ1 =

(
0 1
1 0

)
(171)

σ2 =

(
0 −i
i 0

)
(172)

σ3 =

(
1 0
0 −1

)
(173)

That is to say that the Pauli matrices generate SU(2) transformation
matrices!

An important fact about the Pauli matrices is that they obey an alge-
bra:

[σa, σb] = 2iεab
cσc (174)
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A note on εabc
εabc is the same as εab

c – we put the third index up to remind us that we
are summing over c. εabc is totally antisymmetric i.e. if we interchange
neighbouring indices then we get a minus sign:

εabc = −εbac = εbca = −εcba etc (175)

This implies that all three indices of εabc must take different values in
order to get a non-zero result otherwise it would not be totally antisym-
metric.

Therefore εabc is non-zero if and only if (abc) is a permutation of (123).
Finally,

ε123 = 1 (176)

For all of the other five permutations of (123) the value of εabc can be
obtained from antisymmetry. Thus, for example ε132 = −1.

Back to SU(N).

In general, for an SU(N) matrix

U = exp iM (177)

where M is traceless and Hermitian, there are N 2 − 1 generators Ta
such that

M = αaTa (178)

and the Ta ’s obey an algebra

[Ta, Tb] = ifab
cTc (179)

where the fab
c are constants called the structure constants. For SU(N)

the algebra defined by the above equation is called the Lie Algebra of
SU(N). If you choose a basis for this algebra, you can explicitly calculate
the structure constants in that basis. They are totally antisymmetric, like
εabc. For SU(3) there is a basis for the eight 3-by-3 Ta matrices which is
used a lot in particle physics called the Gell-Mann basis. You can find
these eight matrices in the book.
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Finally

Dµ = ∂µ + igTaG
a
µ (180)

where the second term is an N -by-N matrix since Ta is a matrix.
There are N 2 − 1 gauge fields Ga

µ.

The Standard Model is a gauge theory with SU(3) gauge symmetry,
SU(2) gauge symmetry and U(1) gauge symmetry. There are 8+3+1 =
12 gauge bosons. These are the eight gluons, the two W -bosons (W+ and
W−), the neutral Z boson and the photon.

The full covariant derivative is thus

Dµ = ∂µ − i
Y

2
g1Bµ − ig2

σj
2
W j

µ − ig3
λa
2
Ga
µ (181)

Bµ is the gauge boson of the U(1). The photon is a linear combination
of Bµ and W 3

µ . The Z-boson is the opposite linear combination.
Y is called the hypercharge. The charge under SU(2) is called isospin

I. The proton has isospin 1/2 and the neutron −1/2.
The proton and neutron transform as a doublet under the SU(2) of

the Standard Model: (
p

n

)
→ exp(iM)

(
p

n

)
(182)

Electric charge is a linear combination of Y and I.

Q = I + Y/2 (183)

Both p and n have to have the same Y which is one.
Similarly, in the Standard Model u and d quarks transform under

SU(2) (
u
d

)
→ exp(iM)

(
u
d

)
(184)

Note: this is not strictly speaking correct: fermions can be left-handed
or right-handed as we will see when we study the Dirac equation. This is
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related to the fact they are not scalars, but fermions i.e. it is related to
their spin under rotations. The correct statement is that the left-handed
up and down quarks transform under SU(2) as above. In fact, right
handed fermions do NOT transform atall under the SU(2) i.e. for them
I=0. Thus, when the covariant derivative acts on right-handed fermions,
the term proportional to the Bµ boson is zero.

Hence left-handed u-quarks have I = 1/2, Y = 1/6 whereas right-
handed u-quarks have I = 0, Y = 4/3. Both of these charges give
Q = 2/3. Similarly, e−L the left-handed electron has I = −1/2, Y = −1
whereas e−R has Y = −2. Left-handed electron-neutrinos are SU(2) part-
ners of left-handed electrons, hence they have I = 1/2, Y = −1.

No right-handed neutrinos have been directly observed to exist (yet).
The reason is the following. If they did exist, they would not transform
under SU(2) like all of the other right-handed neutrinos, hence have both
I = 0 and Y = 0. Therefore, such neutrinos would not couple to Bµ or
the SU(2) gauge fields W i

µ. Since neutrinos do not participate in the
strong interactions, the SU(3) part of the covariant derivative would also
not act on the right-handed neutrino field. Therefore, the right-handed
neutrino does not feel any force directly: its equation of motion does not
include a gauge field. Such neutrinos are also called sterile neutrinos,
for reasons which should hopefully be clear. Since they do not couple to
gauge bosons it is very difficult to produce or detect them in a laboratory.

Beyond U(1) Gauge Invariance

We would now like to consider generalising U(1) gauge theory (i.e.
QED) to U(N) gauge theory.

That is to say that U – the transformation matrix – will become a
Unitary N ×N matrix U i

j where i, j run from 1 to N each.
An N × N matrix acts naturally on N component vectors vi. Hence

we should introduce N complex scalar fields φi on which these act.
Under

φi → U j
iφj (185)
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we would like to impose a condition that a suitable covariant derivative
transforms acting on φi transforms in the same way

(Dµφ)i → U j
i (Dµφ)j (186)

This would be the N ×N generalisation of the U(1) case.
But what is this covariant derivative?
If we try to introduce a gauge field, in general it is a matrix of gauge

fields i.e. we can have up to N ×N gauge fields:

(Dµφ)i = ∂µφi − ig(Gµ)jiφj (187)

that is, for each of the values of i and j, (Gµ)ij is a different gauge field.
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Unitary matrices, exponentials, group generators and all that
In order to understand a little better the structure we would like to

look at some of the simple symmetry groups like SU(2) and SU(3). First,
though we begin with U(1):

exp iθ = 1 + iθ − θ2

2
− iθ

3

3!
+
θ4

4!
+ ..... = cos θ + isin θ (188)

Now consider the rotation matrix

R(θ) ≡
(

cos θ sin θ
−sin θ cos θ

)
(189)

We want to Taylor expand this matrix

(
cos θ sin θ
−sin θ cos θ

)
=

(
1− θ2

2 + θ4

4! + ... θ − θ3

3! + ...

−θ + θ3

3! + ... 1− θ2

2 + θ4

4! + ...

)
(190)

Just as eiθ is the exponential of a 1-by-1 matrix, the rotation matrix
above is the exponential of a two-by-two matrix:

R(θ) = exp(iθT ) = 1 + iθT − θ2

2
T 2 − iθ

3

3!
T 3 + ... (191)

where

T =

(
0 −i
i 0

)
(192)

and T 2 is the matrix product of T with itself.
So, since any rotation can be written as exp iθT we say that T generates

the rotations.
Let us now consider some other examples of this, because we will need

matrices like T to define the covariant derivative properly.
Let U be a N-by-N unitary matrix ie

U †.U = 1 (193)
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We will now assume that

U = exp iM (194)

What properties does M have?
Since

U † = exp(−iM †) (195)

unitarity implies that
M = M † (196)

So, M is Hermitian.
If, additionally, we require that det(U) = 1 i.e. that U is special

unitary, then one can show that the trace of M is zero

detU = 1↔ TrM = 0 (197)

SU(2)

For the case N = 2, one can show that M is a linear combination of
the Pauli matrices:

M = αaσa (198)

where

σ1 =

(
0 1
1 0

)
(199)

σ2 =

(
0 −i
i 0

)
(200)

σ3 =

(
1 0
0 −1

)
(201)

That is to say that the Pauli matrices generate SU(2) transformation
matrices!

An important fact about the Pauli matrices is that they obey an alge-
bra:

[σa, σb] = 2iεab
cσc (202)
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A note on εabc

εabc is the same as εab
c – we put the third index up to remind us that we

are summing over c. εabc is totally antisymmetric i.e. if we interchange
neighbouring indices then we get a minus sign:

εabc = −εbac = εbca = −εcba etc (203)

This implies that all three indices of εabc must take different values in
order to get a non-zero result otherwise it would not be totally antisym-
metric.

Therefore εabc is non-zero if and only if (abc) is a permutation of (123).
Finally,

ε123 = 1 (204)

For all of the other five permutations of (123) the value of εabc can be
obtained from antisymmetry. Thus, for example ε132 = −1.

Back to SU(N).

In general, for an SU(N) matrix

U = exp iM (205)

where M is traceless and Hermitian, there are N 2 − 1 generators Ta
such that

M = αaTa (206)

and the Ta ’s obey an algebra

[Ta, Tb] = ifab
cTc (207)

where the fab
c are constants called the structure constants. For SU(N)

the algebra defined by the above equation is called the Lie Algebra of
SU(N). If you choose a basis for this algebra, you can explicitly calculate
the structure constants in that basis. They are totally antisymmetric, like
εabc. For SU(3) there is a basis for the eight 3-by-3 Ta matrices which is
used a lot in particle physics called the Gell-Mann basis. You can find
these eight matrices in the book.
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Finally

Dµ = ∂µ + igTaG
a
µ (208)

where the second term is an N -by-N matrix since Ta is a matrix.
There are N 2 − 1 gauge fields Ga

µ.

The Standard Model is a gauge theory with SU(3) gauge symmetry,
SU(2) gauge symmetry and U(1) gauge symmetry. There are 8+3+1 =
12 gauge bosons. These are the eight gluons, the two W -bosons (W+ and
W−), the neutral Z boson and the photon.

The full covariant derivative is thus

Dµ = ∂µ − i
Y

2
g1Bµ − ig2

σj
2
W j

µ − ig3
λa
2
Ga
µ (209)

Bµ is the gauge boson of the U(1). The photon is a linear combination
of Bµ and W 3

µ . The Z-boson is the opposite linear combination.
Y is called the hypercharge. The charge under SU(2) is called isospin

I. The proton has isospin 1/2 and the neutron −1/2.
The proton and neutron transform as a doublet under the SU(2) of

the Standard Model: (
p

n

)
→ exp(iM)

(
p

n

)
(210)

Electric charge is a linear combination of Y and I.

Q = I + Y/2 (211)

Both p and n have to have the same Y which is one.
Similarly, in the Standard Model u and d quarks transform under

SU(2) (
u
d

)
→ exp(iM)

(
u
d

)
(212)

Note: this is not strictly speaking correct: fermions can be left-handed
or right-handed as we will see when we study the Dirac equation. This is
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related to the fact they are not scalars, but fermions i.e. it is related to
their spin under rotations. The correct statement is that the left-handed
up and down quarks transform under SU(2) as above. In fact, right
handed fermions do NOT transform atall under the SU(2) i.e. for them
I=0. Thus, when the covariant derivative acts on right-handed fermions,
the terms proportional to the Wµ bosons is zero.

Hence left-handed u-quarks have I = 1/2, Y = 1/6 whereas right-
handed u-quarks have I = 0, Y = 4/3. Both of these charges give
Q = 2/3. Similarly, e−L the left-handed electron has I = −1/2, Y = −1
whereas e−R has Y = −2. Left-handed electron-neutrinos are SU(2) part-
ners of left-handed electrons, hence they have I = 1/2, Y = −1.

No right-handed neutrinos have been directly observed to exist (yet).
The reason is the following. If they did exist, they would not transform
under SU(2) like all of the other right-handed neutrinos, hence have both
I = 0 and Y = 0. Therefore, such neutrinos would not couple to Bµ or
the SU(2) gauge fields W i

µ. Since neutrinos do not participate in the
strong interactions, the SU(3) part of the covariant derivative would also
not act on the right-handed neutrino field. Therefore, the right-handed
neutrino does not feel any force directly: its equation of motion does not
include a gauge field. Such neutrinos are also called sterile neutrinos,
for reasons which should hopefully be clear. Since they do not couple to
gauge bosons it is very difficult to produce or detect them in a laboratory.
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Spin, Fermions and the Dirac Equation

Spin

In quantum mechanics, particles have an intrinsic spin under spatial
rotations of space. This is analagous to the rotation of ”classical objects”
such as planets or spiniing tops, but the spin of elementary particles
is quantised (comes in discrete amounts). In natural units the allowed
spins are half-integer or integer. Bosons have integer spins; fermions
half-integer spins.

The Algebra of Rotations

We saw in the last lecture that rotations in a plane by an angle θ are
generated by a matrix:

R(θ) = exp(iθT ) = 1 + iθT − θ2

2
T 2 − iθ

3

3!
T 3 + ... (213)

where

T =

(
0 −i
i 0

)
(214)

We can use this observation to generate all rotations in three dimen-
sional space. These are given by 3-by-3 matrices. Rotations in the (x, y)
plane around the z-axis are of the form

Rz(θz) =

 cos θz sin θz 0
−sin θz cos θz 0

0 0 1

 (215)

Show that these are generated by

T3 ≡

 0 −i 0
i 0 0
0 0 0

 (216)

Similarly, a rotation around the x-axis

Rx(θx) =

 1 0 0
0 cos θx sin θx
0 −sin θx cos θx

 (217)
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is generated by

T1 ≡

 0 0 0
0 0 −i
0 i 0

 (218)

and rotations around the y-axis

Ry(θy) =

 cos θy 0 sin θy
0 1 0

−sin θy 0 cos θy

 (219)

are generated by

T2 ≡

 0 0 −i
0 0 0
i 0 0

 (220)

Thus, any rotation in three dimensional space can be generated by a
linear combination of T1, T2, T3. The generators Ta obey an algebra:

[Ta, Tb] = iεab
cTc (221)

We have seen this algebra before. The Pauli matrices satisfy

[σa, σb] = 2iεab
cσc (222)

Hence,

[
1

2
σa,

1

2
σb] = iεab

c1

2
σc (223)

Therefore the Ta and 1
2σa obey precisely the same algebra, even though

the T ’s are 3-by-3 matrices and the Pauli matrices are 2-by-2.

We have shown that the algebra of rotations is the same as that of SU(2)

Every 3-by-3 rotation matrix can be specified by choosing (θx, θy, θz).
From these we can specify a 2-by-2 SU(2) matrix. This gives a corre-
spondence between rotations and elements of SU(2). For example, Rx(θx)
corresponds to the matrix

Mx(θx) = exp

(
iθx
2
σ1

)
(224)
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The 3-by-3 rotation matrices act on 3-component vectors, such as the
spatial coordinates or the momentum of a particle. 3-by-3 rotations obey

R(θx, θy, θz) = R((θx + 2π, θy, θz) = R(θx, θy + 2π, θz) = R(θx, θy, θz + 2π)
(225)

So a vector returns to itself after a full 2π rotation.
However,

Mx(θx + 2π) = −Mx(θx) (226)

Mathematically, 2-component objects which transform under spatial
rotations via SU(2) matrices are called spinors. Fermion wave functions
are represented by spinors. Fermions are said to have spin ”one-half”:
they come back to themselves after two 2π rotations in space. In fact, in
the Pauli basis, the entries of 1

2σ3 give the spin of the two components of
the fermion wave function, which are ±1

2 .

Spins are Classified

A set of three N -by-N matrices which obey the algebra:

[Wa,Wb] = iεab
cWc (227)

is called a representation of the Lie algebra of SU(2) (or the algebra
of rotations) with dimension N . The Pauli matrices are a 2-dimensional
representation, the T ’s a 3-dimensional one.

All possible sets of matrices obeying the algebra can be completely
classified. In fact, there are representations for any integer N . The N
components of the vector on which the W ’s act have spins which are
(N/2−1/2, N/2−3/2, N/2−5/2....,−N/2+1/2) . The highest spin of a
representation i.e. N/2− 1/2 is also used to label the representation and
is usually called the ”spin of the representation”. Any positive integer or
half-integer is the highest spin of a set of W ’s obeying the algebra above.

So, representations with oddN have spins which are all integers. Those
with N even, have all the spins strictly taking half-integer values. The
odd N representations are said to be bosonic whilst the half-integer spin
representations are called fermionic.
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Scalar fields transform in the spin zero representation, N = 1. Quarks
and Leptons in the spin 1/2 representation, N = 2 and gauge fields, being
vector fields, transform in the spin 1 representation, N = 3

Notice that in the 2-by-2 representation given by the Pauli matrices,
one of the generators (1

2σ3) is diagonal. It’s eigenvalues are the spins of the
representation, in this case 1

2 and −1
2 . In the 3-by-3 representation given

above, all three generators are off-diagonal, however their eigenvalues are
(1, 0,−1) so the spins of the 3-dimensional representation are 1,0 and -1.

Since the rotations are part of the Lorentz symmetry, spin is conserved
in physical processes.

So, when a W -boson of spin one decays into two particles A and B,
the only possibilities are that A and B have spins 0 and 1, 1 and 0, or
1/2 and 1/2. In the Standard Model, only the last possibility is realised
because in order to realise the first two, the spin 0 particle would have
to be the Higgs (the only scalar field present) and the spin 1 particle
would have to have be charged because charge is also conserved. The
only charged spin 1 particles in the Standard Model are the W -bosons,
which obviously, cannot decay into themselves.

The Dirac Equation

Dirac wanted to write a wave equation consistent with Lorentz invari-
ance that was linear in the time derivative as in the Schrodinger equation.
He wanted to do this to remove the negative energy solutions of the Klein-
Gordon equation. He succeeded in finding a Lorentz covariant equation
linear in ∂

∂t but the negative energy solutions still remained. We know
now (as we discussed) that the negative energy solutions are associated
with anti-particles. The Dirac equation describes relativistic fermions.
We will derive the Dirac equation for free fermions, then, after exploring
it’s properties we will write the Dirac equation for fermions interacting
with gauge fields. Then we will explore the interactions between fermions
and gauge fields and explore some of the consequences.

The starting point of Dirac’s argument was the hypothesis that the
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equation should be of the form:

HΨ = (αipi + βm)Ψ (228)

where the left hand side is, as usual, linear in ∂
∂t . αi and β are coeffi-

cients to be determined.
The term proportional to mass must be present, since a particle with

mass m has energy m when its momentum is zero. The term proportional
to the momentum must be present since we are looking for an equation
which treats space and time (and hence momentum and energy) on an
equal footing. We determine the coefficients by demanding that, for a
free particle solution

H2Ψ = (pip
i +m2)Ψ (229)

From the first equation we have that

H2Ψ = (αipi + βm)(αjpj + βm)Ψ (230)

= (α2
i p

2
i + (αiαj + αjαi)pipj + (αiβ + βαi)pim+ β2m)Ψ

Where the first term on the rhs of the second line are the three terms
in the product when i = j, the second and third terms are the remaining
six possibilities when i 6= j.

So, we learn that

• α1, α2, α3 and β all anti-commute with each other.

• α2
1 = α2

2 = α2
3 = β2 = 1

So, the coefficients cannot be numbers. Dirac realised that if they were
matrices then solutions to these conditions indeed exist. With m 6= 0, (it
can be shown, but we won’t do so) the simplest solution has the αi and
β 4-by-4 matrices. Thus, Ψ is now understood to be a vector with four
components i.e.

Ψ ≡ ΨA =


Ψ1

Ψ2

Ψ3

Ψ4

 (231)
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Ψ is called a Dirac spinor. There are actually different solutions for
the matrices, though physical results don’t depend on this choice.

One representation for the (αi, β) is called the Dirac-Pauli representa-
tion and is given by

αi =

(
0 σi
σi 0

)
β =

(
I 0
0 − I

)
(232)

where I is the 2-by-2 identity matrix.
Another useful representation is the Weyl representation:

αi =

(
−σi 0
0 σi

)
β =

(
0 I
I 0

)
(233)

Covariant Form of the Dirac Equation

We can multiply the original form of the Dirac equation on the left by
β to obtain

iβ
∂

∂t
Ψ = −iβαi

∂

∂xi
Ψ +mΨ (234)

which can be written as

(iγµ∂µ −m)Ψ = 0 (235)

where we have introduced the so-called Dirac γ-matrices

γµ ≡ (β, βαi) (236)

and we have anticipated the fact that the four γ-matrices transform
under Lorentz transformations as a Lorentz 4-vector.

In the above form we have suppressed the spinor matrix labels on γµ

and the spinor labels on Ψ. If we put these back in we have:

4∑
K=1

[∑
µ

i(γµ)JK∂µ −mδJK

]
ΨK = 0 (237)
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The original relations on the αi and β required by relativistic invariance
are equivalent to

γµγν + γνγµ = 2gµν (238)

where gµν is the Minkowski metric.

Currents
We now proceed as we did with the KG equation to obtain a form of

the current.
For this we need the Hermitian conjugate of the Dirac equation:

− i∂Ψ†

∂t
γ0 − i∂Ψ†

∂xk
(−γk)−mΨ† = 0 (239)

This does not look terribly covariant since, whilst γ0 is Hermitian, the
γk are anti-Hermitian. However, by defining

Ψ̄ ≡ Ψ†γ0 (240)

we see that

i∂µΨ̄γµ +mΨ̄ = 0 (241)

We now multiply the Dirac equation on the left by Ψ̄, the conjugate
equation above by Ψ and add the two. The mass terms cancel and we
see that

Ψ̄γµ∂µΨ + (∂µΨ̄)γµΨ = ∂µ(Ψ̄γµΨ) = 0 (242)

so that Ψ̄γµΨ is conserved.
Putting in the required factor of the charge, we then will have, for a

fermion of charge −e the charge current density is

jµ = −eΨ̄γµΨ (243)

Solutions of the Dirac Equation
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We now turn to solutions of the Dirac equation. It is convenient to
introduce the Feynman ”slash” notation which is defined as /V ≡ γµVµ
for any four-vector Vµ.

Thus, the Dirac equation can be written as

(i/∂ −m)Ψ = 0 (244)

Since (see exercise sheets) the Dirac equation implies the KG equation,
we have

(∂µ∂
µ +m2)ΨA = (� +m2)ΨA = 0 (245)

and we can write

Ψ = u(pµ)e−ip
µxµ (246)

where the 4-particle spinor u(p) is independent of x and satisfied the
momentum space Dirac equation

(/p−m)u = 0 (247)

The Hamiltonian H is obtained from Diracs original ansatz

Hu = (αip
i + βm)u = Eu (248)

There are actually four independent solutions of this equation. Two
have E > 0 and two have E < 0. To see this, consider fermions at rest
pi = 0. Let us use the Dirac-Pauli rep for the γ-matrices. Then

Hu = βmu =


m 0 0 0
0 m 0 0
0 0 −m 0
0 0 0 −m



u1

u2

u3

u4


which obviously has two positive and two negative eigenvalues. The

two positive energy solutions are interpreted as describing an E > 0
electron, the two E < 0 solutions are interpreted as describing an E > 0
positron.
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For non-zero momentum, the equation becomes

Hu =

(
m σip

i

σip
i −m

)(
uA
uB

)
= E

(
uA
uB

)
(249)

where

u ≡
(
uA
uB

)
(250)

we therefore have that

σip
iuB = (E −m)uA (251)

σip
iuA = (E +m)uB (252)

(253)

To solve the equations we pick the two positive energy solutions u1 and
u2 to have

u1
A =

(
1
0

)
, u2

A =

(
0
1

)
(254)

Then the remaining components of u1 and u2, namely u1
B and u2

B are
determined as

usB =
σip

i

E +m
usA (255)

So, u1 and u2, the positive energy solutions of the Dirac equation are
given by

us = N

(
usA

σip
i

E+mu
s
A

)
(256)

Similarly, to obtain the two negative energy solutions u3 and u4 we
take the lower components (uB) of the Dirac spinor to be

u3
B =

(
1
0

)
, u4

B =

(
0
1

)
(257)

This gives the negative energy solutions as

us+2 = N

(
−σipi
E−mu

s
A

usA

)
(258)
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Helicity

Consider the following 4-by-4 matrix:

Λ ≡ 1

2

(
σip̂

i 0
0 σip̂

i

)
(259)

where p̂i = pi

|p| satisfies p̂ip̂i = 1 i.e. is the unit vector which points in

the same direction as pi. Λ commutes with the Hamiltonian. Therefore,
the eigenvalues of Λ are conserved.

1
2σip̂

i is clearly the spin projected in the direction of motion. We call
this the helicity of the state. The possible eigenvalues of 1

2σip̂
i are just

λ = ±1
2 .

We say that fermions with helicity −1/2 are left-handed and those
with helicity 1/2 are right-handed.

Massless Dirac Equation and Helicity

The Dirac spinor has four components, whereas by considerations of
spin we expected two. The four are divided into two sets of two: left-
handed and right-handed. Thus the Dirac spinor for a fermion describes
both the left- and right-handed helicity states. We can see this a bit
more clearly by considering the Dirac equation for m = 0 i.e. massless
fermions. Then β drops out and the αi have to satisfy

αiαj + αjαi = 2δij , α†i = αi (260)

These conditions can be solved by 2-by-2 matrices, αi = σi. Thus the
Dirac equation in the massless case can be satisfied by a 2-component
spinor, φ and we have:

Hφ = σip
iφ (261)

In this case, E2 = pip
i so, |E| = |p|. Hence we have

± |p|φ = σip
iφ (262)

Consider now the positive energy solution E = |p|, φ+. It has

σip̂
iφ+ = φ+ (263)
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Therefore φ+ is right-handed in this case. The second solution φ− has
negative energy E = −|p|, so in this case

σip̂
iφ− = −φ− (264)

When the energy is −E and the momentum −pi, we have

σi(−p̂i)φ− = −φ− (265)

and describes a left-handed anti-fermion. So, if we apply this to a neu-
trino in situations where |E| >> m, φ describes a right-handed neutrino
νR and a left-handed anti-neutrino ν̄L.

We could have also chosen αi = −σi. In this case we would have

Eχ = −σipiχ (266)

The two solutions χ± describe a left-handed neutrino νL and a right-
handed anti-neutrino ν̄R. Only left-handed neutrinos and right-handed
anti-neutrinos have been observed in nature.

We can combine χ and φ into a four component Dirac spinor u as:

u =

(
χ
φ

)
(267)

with

αi =

(
−σi 0
0 σi

)
(268)

and, hence our solution for the αi is part of the Weyl representation of
the γ-matrices.

For any Dirac spinor, we can make a matrix PL which projects onto
the left-handed component of u. If we introduce a fifth γ-matrix, γ5,
defined by

γ5 = iγ0γ1γ2γ3 (269)

Then
γ5γ5 = 1, γ5γµ + γµγ5 = 0 (270)

In the Weyl representation

γ5 =

(
−I 0
0 I

)
(271)
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Thus,

PL ≡
1

2
(1− γ5) =

(
I 0
0 0

)
(272)

and

PLu = PL

(
χ
φ

)
=

(
χ
0

)
(273)

Similarly

PR ≡
1

2
(1 + γ5) =

(
0 0
0 I

)
(274)

PRu = PR

(
χ
φ

)
=

(
0
φ

)
(275)

Parity Violation in Weak interactions

In the Standard model, only left-handed fermions (and right-handed
anti-fermions) couple to W -bosons. Hence, the form of the current which
couples, for instance the electron and neutrino to a W -boson takes the
form:

Jµ = Ψ̄eγ
µ1

2
(1− γ5)Ψν (276)

So that the right-handed component of Ψν is not present. Nor is the
left-handed component of Ψ̄e which, because of the ”bar” describes the
positron. Hence, a right-handed electron does not interact with neutrinos
in the Standard Model. Similarly only left-handed up and down quarks
interact with W -bosons. Right-handed ones do not.

Parity is the operation under which we reflect all space coordinates
through the origin: xi → −xi. Under parity, pi → −pi but the spin
operators σi are unchanged. Hence parity exchanges left-handed and
right-handed fermions.

The fact that right-handed neutrinos have not been observed means
that parity is violated in Nature in this subtle way. The parity violating
form of the charged current above has been experimentally verified.
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For instance, one can consider β-decay of Cobalt nuclei:

60Co→60 Ni∗ + e− + νe (277)

The nuclear spins of the Cobalt were aligned by a magnetic field and
an asymmetry in the direction of the emitted electrons observed. This
asymmetry changed sign when the magnetic field was reversed. This
was interpreted as a left-handed electron and right-handed anti-neutrino.
The fact that there was an asymmetry is a strong indication that no
right-handed electrons were produced and hence they do not couple to
W -bosons!

Coupling the Current to the Gauge Fields

The free Dirac equation for a massless fermion can be derived from a
Lagrangian

L = iΨ̄(/∂Ψ) (278)

In order to obtain the gauge invariant interactions between the fermions
in the Standard Model and the gauge fields of the Standard Model, we
simply replace the ordinary derivative which appears in /∂ with the co-
variant derivative.

/∂ −→ γµDµ = /D (279)
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where

Dµ = ∂µ − i
Y

2
g1Bµ − ig2

σj
2
W j

µ − ig3
λa
2
Ga
µ (280)

Let us ignore g1 and g3 for now and calculate the terms in the La-
grangian proportional to g2.

We need the formula

− ig2
σj
2
W j

µ = −ig2

2

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ

)
(281)

which we re-write as:

− ig2

2

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ

)
= −ig2

2

(
W 3

µ

√
2W+

µ√
2W−

µ −W 3
µ

)
(282)

we have introduced W±
µ = 1√

2
(W 1

µ∓ iW 2
µ) which are the actual positive

and negative charge eigenstates.
All the left-handed fermions pair up as doublets under the SU(2) gauge

symmetry i.e.(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

,

(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

(283)

Remember that each of the entries of these doublets are 4-component
Dirac spinors. We have suppressed the spinor labels in the last equation.

Similarly the Lagrangian depends on the ”bars” of all of these multi-
plets and hence the couplings to the W -bosons also involves the right-
handed anti-particles to all of the above e.g. right handed-positrons also
couple to W ’s, but left-handed positrons do not. Let’s write the SU(2)
gauge interactions for the muon doublet.

It is(
ν̄µ µ̄−

)
γν × g2

(
W 3

ν

√
2W+

ν√
2W−

ν −W 3
ν

)
1

2
(1− γ5)×

(
νµ
µ−

)
(284)

The ”i”’s have multiplied to 1. The ×’s are there to remind us we
have to multiply the matrices together. The 1

2(1− γ5) is there to project
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onto the left-handed component of the fermion doublet to the right of
the matrix of W -bosons. The expression above is equivalent to

√
2
g2

2
µ̄−Lγ

ννµLW
−
ν +

√
2
g2

2
ν̄µLγ

νµ−LW
+
ν (285)

−g2

2
µ̄−Lγ

νµ−LW
3
ν +

g2

2
ν̄µLγ

ννµLW
3
ν

The first line above is the charged current interaction. The second is
a neutral current interaction. If we were to change any of the four coef-
ficients, the Lagrangian would no longer be SU(2) gauge invariant. The
relative strengths of these interactions

√
2 : 1 is thus fixed by symmetry.

For all of the six fermion doublets, there is a similar expression for the
SU(2) interaction terms in the Lagrangian.

The interactions we have derived lead to some remarkable consequences:

• The couplings of W+ and W− are universal for both quarks and
leptons. e.g. the interaction between W+, u and d̄ is the same as the
interaction between W+, µ and ν̄.

• W+ can decay into (e+, ν̄e), (µ
+, ν̄µ), (τ+, ν̄τ), (u, d̄), (c, s̄)

• Similarly for W−.

• W bosons cannot decay into (t, b̄) because mt ∼ 173GeV±1GeV and
mW ∼ 80.4GeV.

• Since mW is much larger than me,mµ,mτ ,mu,md,mc,ms the decay
width of the W± doesn’t ”care” about the fermion masses

• So the partial decay widths

Γ(W+ → e+ν̄) = Γ(W+ → µ+ν̄) (286)

= Γ(W+ → τ+ν̄) (287)

• The decays into quarks are not just two decay channels: (ud̄) and
(c, s̄), but three each, since there are three u quarks, three d quarks,
three c quarks and three s quarks. This is because the quarks trans-
form under the SU(3) gauge symmetry (the leptons do not). So the
decays into quarks are actually six channels.
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• This gives a total of three leptonic and six hadronic decay channels,
nine in total.

• If Γ(W+ → all) is the total W decay width, the Standard Model
predicts that

Γ(W+ → e+ν̄)

Γ(W+ → all)
=

Γ(W+ → µ+ν̄)

Γ(W+ → all)
(288)

=
Γ(W+ → τ+ν̄)

Γ(W+ → all)
(289)

= 1/9 (290)

and
Γ(W+ → hadrons)

Γ(W+ → all)
= 6/9 = 2/3 (291)

• These branching fractions have been measured and agree with the
Standard Model predictions to within 1%. Have a look at the PDG.

• This excellent agreement between theory and experiment represents
a thorough check of the structure of the Standard Model. The inter-
actions are derived entirely from symmetry principles. If we changed
the number of leptons the result would change. If there were four
u quarks instead of three (which would be the case if SU(3) were
replaced with SU(4) ) the result would change.

• Note: gauge symmetry, Lorentz invariance and charge conservation
allows the possibility of flavour-changing decays that involve differ-
ent quark families e.g. W+ → cb̄. In fact these decays also occur,
but are suppressed by so-called CKM-mixing (Cabibbo-Kobayashi-
Maskawa). We will not discuss this in any detail.

Now, let us also add the terms proportional to g1, the hypercharge
coupling constant.

These are the interactions between fermions and the hypercharge gauge
boson Bµ. These have two contributions: one from left-handed fermions
and one from the right-handed fermions. For example, in the case of the
left-handed electron neutrino doublet, which has Y = −1, we have
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g1

2

(
ν̄e ē−

)
L
γµY Bµ

(
νe
e−

)
L

(292)

where Y = −1. The right-handed electron contribution to the neutral
current is

g1

2
ēRγ

µY eRBµ (293)

where Y = −2 for eR. There is no neutrino contribution in the above,
since there is no νR.

If we add all the contributions to the neutral current interactions for
electrons, we get

ēLγ
µeL

[
−g1

2
Bµ −

g2

2
W 3

µ

]
− ēRγµeR [g1Bµ] (294)

On the other hand, the basic QED interaction for an electron is of the
form

L ∼ −eAµ (ēLγ
µeL + ēRγ

µeR) (295)

where Aµ is the Maxwell gauge field. This has to emerge from the Stan-
dard Model. In order to see it, consider the neutral current interactions
for neutrinos:

ν̄−L γ
νν−L

[
−g1

2
Bµ +

g2

2
W 3

ν

]
(296)

Neutrinos, being neutral, do not couple to Aµ. This motivates us to
define two new linear combinations of Bµ and W 3

µ . One of these will be
Aµ, the other combination will be called Zµ. The correctly normalised
combinations are

Aµ =
g2Bµ + g1W

3
µ√

g2
2 + g2

1

(297)

Zµ =
−g1Bµ + g2W

3
µ√

g2
2 + g2

1

(298)
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With these re-definitions we have two contributions to the electron
neutral current interaction

Aµ(ēLγ
µeL

[
−g1g2√
g2

1 + g2
2

]
+ ēRγ

µeR

[
−g1g2√
g2

1 + g2
2

]
)

Zµ(ēLγ
µeL

[
g2

1 − g2
2

2
√
g2

1 + g2
2

]
+ ēRγ

µeR

[
g2

1√
g2

1 + g2
2

]
)

Notice that the left-handed and right-handed components of the elec-
tron couple to the photon with precisely the same strength! This is
required by the parity invariance of the electromagnetic interaction. We
therefore have that [

−g1g2√
g2

1 + g2
2

]
= −e (299)

Notice also that the left-handed and right-handed electron currents
couple with different strengths to the Z-boson. Thus, these couplings
violate parity.

Furthermore, the neutral current coupling to the neutrino does not
involve the photon atall:

ν̄−L γ
νν−L

[
−g1

2
Bµ +

g2

2
W 3

ν

]
∼ ν̄Lγ

µνL

[
−
√
g2

1 + g2
2

2
Zµ

]
(300)

Thus, as long as the combination which represents Aµ is massless, and
that one can arrange for Zµ to be sufficiently massive, all phenomena
described accurately by QED will be correctly reproduced.

One can (see exercises) similarly calculate the couplings of the quarks
to the W ’s, the Z and the photon.

Mass Terms

From the fact that L has mass dimension [M ]4, we see from the Dirac
Lagrangian that fermions have mass dimension [M ]3/2 i.e. 3/2. A mass
term for a fermion with mass m would be of the form

L ∼ mΨ̄Ψ (301)

76



Indeed, a term like this gives exactly the mass term in the Dirac equa-
tion.

One can show (see exercises) that

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL (302)

so a mass term couples the left-handed and right-handed components
of the fermion together.

But in the Standard model, the left and right handed fermions trans-
form differently under SU(2) and U(1)Y . Therefore:
Mass terms in the Standard Model are forbidden
by gauge invariance!

This is a deep and significant point.
Check this by looking at how Ψ̄LΨR + Ψ̄RΨL transforms under U(1)Y

for the case the Ψ = e−, the Dirac spinor for the electron. It is important

to remember that Ψ = e =

(
e−L
e−R

)
ie the Dirac spinor is the 4-component

spinor containing both the left and right handed fermions.
So, in order for a mass term to be generated, the gauge symmetry

must be broken. This is consistent with the fact that the W and Z
bosons must also be massive – something which is not possible unless
the gauge symmetry is actually broken. The gauge symmetry breaking
and mass generation is accomplished by introducing the Higgs boson.
The Higgs boson is associated with a Higgs field – this is a scalar field
which transforms under SU(2) exactly as the left-handed quarks and
leptons and has hypercharge Y = +1. The remarkable thing is that the
Lagrangian including the Higgs is gauge invariant, but the vacuum state
of the Standard Model is not!

This is the first academic year in which particle physics courses can
state with reasonable confidence that the Higgs boson actually exists!
This is thanks to the remarkable success of both the Large Hadron Col-
lider and the ATLAS and CMS experiments which are based at two of
the hadron collision points.

Mass and the Higgs Boson
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The Higgs boson is described by a scalar field in the Standard Model.
It is therefore described by a Klein-Gordon equation with a covariant
derivative. We have studied this before. We will discuss a simplified
model to begin with, namely a U(1) gauge theory with a Higgs boson
field φ of charge q. The Lagrangian is:

L = Dµφ(Dµφ)∗ −m2φφ∗ (303)

= ∂µφ∂
µφ∗ − iqAµφ∂

µφ∗ + iq∂µφA
µφ∗ − q2AµA

µφφ∗ −m2φφ∗

Since φ has mass dimension [M ]1 and |φ|2 = φ ∗ φ is gauge invariant
under φ→ eiqθφ, we can add one more gauge invariant interaction to L:

∆L = −λ|φ|4 (304)

which represents a self-interaction of the Higgs with strength given by
the dimensionless coupling λ. So, the potential for φ is

V (φ) = m2|φ|2 + λ|φ|4 (305)

If φ were real, instead of complex, V looks like

Note: the book uses µ2/2 instead of m2 and λ/4 instead of λ.

• The shape of the potential takes a very different form depending on
whether or not m2 is +ve or -ve.

• When m2 > 0 there is one minimum at φ = 0
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• When m2 < 0 there are two minima, both at non− zero values of
φ.

• V (φ) is invariant under the symmetry φ→ −φ.

• When m2 > 0, the minimum is still invariant under the symmetry

• When m2 < 0 any of the two minima break the symmetry!

In gauge theory, however, φ is actually complex. The potential, for
m2 < 0 looks like

• When m2 > 0 there is one minimum at φ = 0

• When m2 < 0 there is a whole circle of minima, all at non− zero
values of φ.

• V (φ) is invariant under the gauge symmetry φ→ eiqθφ.

• When m2 > 0, the minimum is still invariant under the gauge sym-
metry

• When m2 < 0 any of the minima break the gauge symmetry since
a non-zero value of φ transforms to a non-zero, different value!
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• This is called spontaneous symmetry breaking

The system will minimize the energy. Therefore, if the parameter m2 <
0, the vacuum spontaneously breaks the gauge symmetry. Note that,
close to the minimum of the potential, the potential is well approximated
by

V ∼ −4m2|φ|2 (306)

which, since m2 < 0 describes a positive mass-squared particle! This
is the Higgs boson.

Going back to the original Lagrangian, there is an interesting term:

L = −q2AµAµ|φ|2 (307)

Now, since the value of φ in the minimum is < |φ| >= v =
√
−m2/2λ

this leads to
L = −q2AµAµv

2 (308)

This is a mass term for the gauge field and it arises from a gauge
invariant Lagrangian! The mass of the U(1) gauge boson is

M =
√

2qv = q
|m|√

2λ
(309)

The factor of
√

2 is present since a mass term for a real boson, such as
Aµ is of the form

L =
M 2

2
AµAµ (310)

Therefore the Higgs mechanism as described in this simple model can
give masses to gauge bosons without the Lagrangian violating gauge sym-
metry.

In the full Standard Model, the Higgs field is an SU(2) doublet with
Y = 1

φ =

(
φ1

φ2

)
(311)

Therefore it couples to both W -bosons and Zµ. In the vacuum the
gauge symmetry is broken and both W±

µ and Zµ get a mass both propor-
tional to v. The Z and W masses are different in this case since both g1

and g2 enter into the formula for their masses.
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The physical Higgs particle, being neutral, does not couple to the
Maxwell field Aµ, which is therefore massless. Hence, the Higgs in the
Standard Model induces the symmetry breaking pattern:

SU(2)× U(1)Y −→ U(1)em (312)

What about fermion masses?

Well, let us go back to our simple U(1) model and assume that we have
a left-handed ”electron” eL with charge -1 and a right-handed ”electron”
eR of charge -2 (just like the hypercharge in the Standard Model).

Without the Higgs field, the bare mass term

meΨ̄Ψ = meΨ̄LΨR +meΨ̄RΨL (313)

is not gauge invariant.
However, if the charge q of the Higgs field φ is equal to one, then

Lyukawa = yeφΨ̄LΨR + yeφ
∗Ψ̄RΨL (314)

with a dimensionless coupling constant ye, is gauge invariant (0 = 1 +
1 -2 = -1 + 2 -1 )! Since it is gauge invariant and has mass dimension
[M ]4 we should include it. Such terms are called Yukawa interactions and
ye the Yukawa coupling.

Remarkably, in the vacuum we get

Lyukawa = yevΨ̄LΨR + yevΨ̄RΨL (315)

which is a mass-term for the electron. The electron mass is

me = yev (316)

In the Standard Model, v is of order 200GeV in order that the W and
Z bosons have the correct masses. Therefore ye ∼ 0.25 × 10−5. Mass
terms for all the other fermions arise in the same way by introducing
yµ, yt, yd etc. By fixing these parameters appropriately the model cor-
rectly describes all the particle masses.

So, according to the Standard Model, all elementary particles get their
masses via their interactions with the Higgs boson. The stronger the
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coupling between a particle and the Higgs, the more massive that particle
is. e.g. the top quark Yukawa coupling is of order one, the coupling
between the Higgs and the Z-boson is of order 1/2 , but the coupling
with the muon is of order 0.5× 10−3.

In essence, the Higgs mechanism and symmetry breaking and particle
masses all occur in the Standard Model as soon as we propose the exis-
tence of an elementary charged scalar particle (as long as we assume a
potential with m2 < 0). The fact that the Standard Model fits all particle
data thus far so extremely well, encourages (many of) us to believe that
the Higgs boson actually exists and will be found at the CERN Large
Hadron Collider.

The last sentence was written in October 2011 and I’ve left it in as a
reminder. Now, we are fairly confident that we have discovered the Higgs
boson.
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Processes and Production Rates at the LHC

M.Nessi - CERN 7

TeV production rates

Whatever accelerator might cover the
TeV scale, it must produce a high
enough event rate to be statistically
significant

Nrate = ! * Luminosity * BR

Beam Energy needed to produce new
massive particles such as the Higgs
boson  --> TeV

Beam Intensity needed because
some of the processes that one
would like to study are very rare
(e.g. small !.B for decay modes

visible above background) -->
L=1034 cm-2 sec-1

Higgs showcase:  m=500 GeV, ! ~ pb,
BR(to 4 µ)~10-3

  N~few/day -> L=1034 cm-2 sec-1
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Producing Higgs Bosons with the LHC

Once produced, the Higgs decays to lighter Standard Model Particles.

Two photons, two tau leptons, two Z bosons,...

We then measure these decay products and ”reconstruct” the Higgs!
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The above figure shows the branching ratios of the Higgs boson as a
function of its mass. These are the probablities for the Higgs to decay
into a certain set of particles as a function of its mass. Consisder the
region from 100 to 130 GeV. Here the decays are dominated by the bb̄
final state. This is because the mass of the Higgs is not large enough
to decay into two Z bosons or W bosons or two top quarks. But it can
decay into any of the other fermion/anti-fermion pairs. It decays into bb̄
most of the time because its coupling to bottom quarks is much larger
than that of any of the other fermions (except the top quark, but it can’t
decay to tt̄) because it doesn’t have enough mass.

As we increase the mass of the Higgs, beyond 130 GeV, decays into
W ’s become available and start to dominate until 180 GeV when Z’s also
enter. Finally at twice the top quark mass, decays into tt̄ are allowed and
dominate.

The actual Higgs mass as measured by the LHC experiments is around
125 GeV ± 2 GeV or so. This region is interesting because, with enough
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data many of the final states are available and many have actually been
observed. If the Higgs mass had turned out to be 190 GeV, only WW
and ZZ would have been observable.

Notice that, even thought the Higgs is electrically neutral, that decays
to two photons i.e. γγ appear on the graph. These decays actually
occur due to higher order (one loop) processes in the Standard Model.
This is why the γγ channel has a small branching fraction. However,
even though it is small, experimentally it is easier to study than bb̄ at a
hadron collider. This is because the background to bb̄ is much larger than
that of γγ. In fact, the calorimeters of ATLAS and CMS were designed
to find the Higgs boson in the γγ final state. These instruments turned
out to perform even better than anticipated and the Higgs was first seen
in the γγ channel.

How is the mass of the Higgs measured in the diphoton channel?
First, we select events with two photons and nothing else.
We require that these photons are ”very clean” and have energies/momenta

of at least 15 GeV or so.
Since we measure the energies and momenta of the photons, for each

such event we have a Lorentz 4-vector for each photon: P µ
1 and P µ

2 .
From these we construct the invariant mass squared:

M 2 = (P µ
1 + P µ

2 )(P1µ + P2µ) = (E1 + E2)
2 − (p1x + p2x)

2 − ... (317)

The reason for this is that, if the Higgs decays to two photons then
Lorentz invariance implies that

P µ
h = P µ

1 + P µ
2 (318)

i.e. that the Higgs’ Lorentz vector equals the sum of the Lorentz vectors
of the two photons and the Higgs Lorentz vector satisfies

P µ
hPhµ = m2

h (319)

Now, events with diphotons can be produced by many other processes
leading to a large background to this search. But, if we understand
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precisely enough the background and the signal-to-background rate is
large enough then we should be able to see the ”Higgs peak” above the
background. This is an example of what has been seen:

You can see a clear peak in the data around 126 GeV.
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SU(5) the Standard Model and Proton Decay

Consider the set of special, unitary, 5-by-5 matrices i.e. SU(5).
This set contains both SU(3), SU(2) and U(1).
SU(3) is the subset of of SU(5) matrices of the form:(

M3 0
0 1

)
(320)

where M3 is a 3-by-3 SU(3) matrix, the 1 is the 2-by-2 identity matrix
and the other entries are all zero.

Similarly, SU(2) is contained in the subset(
1 0
0 M2

)
(321)

Moreover, these SU(3) and SU(2) subsets of SU(5) commute with each
other. There is also a U(1) subset which commutes with both SU(3) and
SU(2) subsets: 

eiqθ 0 0 0 0
0 eiqθ 0 0 0
0 0 eiqθ 0 0

0 0 0 e−i
3
2qθ 0

0 0 0 0 e−i
3
2qθ

 (322)

Note that the determinant is 1 implies that the sum of the five U(1)
charges is zero.

The fact that the determinant of an SU(5) matrix is 1, implies that,
when SU(5) acts on a 5-vector, the five charges of the 5-components of
that vector under any U(1) subset will add to zero.

We have shown that the Standard Model gauge symmetry SU(3) ×
SU(2) × U(1)Y is a subset of a ”simpler” symmetry SU(5). Could this
be a useful idea to consider? Could the gauge symmetry of our world
be SU(5)? This would be remarkable because the three SM couplings
g1, g2, g3 would be unified into one ”grand unified coupling” gGUT .
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Furthermore, it explains an unexplained fact about the Standard Model
particles, as we will see.
SU(5) acts naturally on 5-component vectors. So, in order to use

SU(5) as a gauge symmetry, we have to arrange five of the Standard
Model fermions into the components of this vector. Consider the follow-
ing 5-vector of fermions 

d1
R

d2
R

d3
R

ν̄L
ēL

 (323)

where ēL is the right-handed positron with charge +e and , d2
R, d

3
R are

the three ”colours” of right-handed quarks. Under the SU(3) subset,
the right-handed down quarks transform as they do under the Standard
Model SU(3). Similarly the anti-neutrino/positron doublet transform
correctly under the SU(2) subset.

If SU(5) is a gauge symmetry, it must contain Maxwell’s U(1)em.
Whatever this U(1) is, the fact that SU(5) has determinant one implies
that the electric charge of the right-handed down quarks is minus 1/3
times the electric charge of the positron! Equivalently, SU(5) explains
why the proton and positron have the same electric charge!

Qel(p) = Qel(e
+) (324)

Similarly, if we identify U(1)Y with the U(1):
eiqθ 0 0 0 0
0 eiqθ 0 0 0
0 0 eiqθ 0 0

0 0 0 e−i
3
2qθ 0

0 0 0 0 e−i
3
2qθ

 (325)

We learn that the hypercharge of the positron/antineutrino doublet is
minus 3/2 times that of the right-handed down quarks i.e. that

Y (dR) = −2

3
Y (e+

R) (326)
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What about the other fermions?
Well, we have already seen that SU(2) can be generated by 2-by-2

matrices (Pauli) and by 3-by-3 matrices (rotation generators). So, a
fixed symmetry can be realised by matrices of different dimensions. In
fact, for SU(2) there are matrix representations of all sizes i.e. k-by-k
where k is any integer. Similarly, the other symmetry groups SU(N) for
N > 2 can also be generated by matrices whose sizes are larger than N -
by-N . e.g. SU(3) can be generated by 6-by-6, 8-by-8 and larger matrices.
For SU(5) which interests us here, after the 5-by-5 representation, there
is also a 10-by-10 one. Though there are lots of larger ones, these are
the two smallest sets of generators. The remarkable fact is that these
two representations ”explain” all of the charges of the Standard Model
fermions.

We usually denote the representations by their dimensions. So, for
instance the representation of SU(2) by the Pauli matrices is denoted as
a 2 of SU(2); the 3 of SU(3) is the representation of SU(3 under which
the quarks transform, and so on. So, under the Standard Model gauge
symmetry SU(3) × SU(2) × U(1)Y the fermions of a single generation
transform as

(3,2)1/3 + (3∗,1)−4/3 + (3∗,1)2/3 + (1,2)−1 + (1,1)2 (327)

Note that we have written the representation of all the left-handed
fermions or anti-fermions since it makes sense to combine all the left-
handed spinors together. The first term is the left handed, up-down
quark doublet. This is because the left-handed quarks transform in the
3 of SU(3), the u and d combine to transform as a 2 of SU(2) and the
subscript 1/3 is their hypercharge. The second term is the anti-up quark
(hence the ∗ on the 3); this is the anti particle to the right handed up
quark and is hence left-handed like the first term. The second is the
anti-down quark. The third is the left-handed neutrino-electron doublet
and the last is the (left-handed) anti-(right-handed) electron i.e. the left
handed positron.
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When we put the right-handed down quark and the right-handed anti-
electron/neutrino doublet into the 5-vector, we learned that, under the
SU(3)× SU(2)× U(1)Y subset of SU(5):

5 = (3,1)−2/3 + (1,2)1 (328)

Similarly we can consider the conjugate of this:

5∗ = (3∗,1)2/3 + (1,2∗)−1 (329)

Finally, the remarkable thing is that, if we take the ten-dimensional
representation of SU(5), under the SM subset we have

10 = (3,2)1/3 + (3∗,1)−4/3 + (1,1)2 (330)

We therefore learn that

5∗ + 10 = (3,2)1/3 + (3∗,1)−4/3 + (3∗,1)2/3 + (1,2)−1 + (1,1)2 (331)

so that the two simplest representations of SU(5), when written in
terms of the SU(3)×SU(2)×U(1)Y subset reproduce exactly the charges
of all the Standard Model fermions!

We have thus far discussed how the Standard Model particles fit into
SU(5) representations. We have discussed the 12 ”directions” inside an
SU(5) matrix which correspond to the 8+3+1=12 generators of SU(3)×
SU(2) × U(1)Y . What about the ”other” elements of SU(5) which are
*not* in SU(3) × SU(2) × U(1)Y ? SU(5) is 24-dimensional i.e. has
24 generators and 24 gauge bosons. There are thus 12 gauge bosons
predicted by SU(5) which are *beyond* the Standard Model. Can we
estimate the masses of these gauge bosons?

In order to do that we have to consider what sorts of interactions are
mediated by these gauge bosons. To see those we should consider SU(5)
transformations which are NOT in SU(3) × SU(2) × U(1)Y . Consider
the following example of an SU(5) transformation:
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1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 −1 0 0



d1
R

d2
R

d3
R

ν̄L
ēL

 =


d1
R

d2
R

ēL
ν̄L
−d3

R

 (332)

This interchanges a down quark with a positron! Therefore, the 12
SU(5) gauge bosons which are not identified with Standard Model gauge
bosons mediate interactions between quarks and leptons. If a quark can
turn into a lepton by emitting an SU(5) gauge boson, then the proton
(which is absolutely stable in the Standard Model) would become unsta-
ble. Thus, the idea of grand unification of the fundamental forces predicts
protons will decay. We can estimate the lifetime of the proton in terms
of the SU(5) coupling constant and the masses of the (fictitious) SU(5)
gauge bosons. The diagram and the calculation are very similar to the
muon decay calculation that we have done before.
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The figure shows the analogy with muon decay in calculating the
proton lifetime. The diagram on the right shows a process in which
p→ π0e+. The two u-quarks in p annihilate into the SU(5) gauge boson
X. X then decays into e+, d̄ via the interaction we described above. At
this point, the d-quark combines with the produced d̄ to make a neutral
hadron, the pion.

The basic matrix element comes from the uu→ X → e+d̄ part of the
diagram and

M∝ g2
GUT

M 2
X

(333)

where gGUT is the SU(5) gauge coupling and MX the mass of the gauge
boson. Thus the decay width

Γ(p→ e+π0) ∝ |M|2 ∼ g4
GUT

M 4
X

(334)

This is a very low momentum process relative to MX . Since the proton
mass is much larger than both the pion and positron masses, the only
other relevant scale in the problem is the proton mass mp. Since Γ has
mass dimension [M ]1 it must be that
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Γ(p→ e+π0) ∼
g4
GUTm

5
p

M 4
X

(335)

We can thus use this formula, together with the experimental limit on
the lifetime of the proton to constrain the combination M ≡ MX

gGUT
, though

in practice gGUT is not usually that small so effectively we constrain MX .

Measuring/Setting a limit on the proton lifetime

The current limit on the proton lifetime for the decay mode we are
considering is about τp > 1.6× 1033 years!

Q: How can we obtain such a strong limit, 23 orders of magnitude
longer than the age of the Universe (about 1010 years) ?
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A: By watching a very large number of protons for as long as possible
and seeing that none have decayed yet!

One way to look for proton decay is to surround a tank of water with
”photon detectors ” ie photo multiplier tubes. The positron will interact
with the electrons in the water to produce photons and the π0 almost
always decays to two photons.

Since 1m3 of water contains around 1030 protons, if no protons are
observed to decay after one year we get a limit of about 1030 years.
So, by putting photo-multiplier tubes around larger amounts of water
one can obtain a stronger limit. The SuperKamiokande experiment has
50,000 tons of water and this is where the best limit on the proton lifetime
comes from.

SuperK also detects neutrinos: when a neutrino comes in to the water
it can sometimes exchange a Z-boson with an electron in the water. If
the original neutrino is energetic enough, the electron will recoil with
high enough momentum such that it will travel faster than the speed
of light in water. When this happens, the electron will emit what is
called Cerenkov radiation, which are photons which can be detected in
the photomultiplier tubes. Similarly, if the incoming neutrino exchanges
a W -boson with an electron or quark in the water, it will convert into
an electron, muon (or tau if energetic enough) and this could also emit
Cerenkov light if fast enough.
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We therefore have that

M 4

m5
p

> 1.6× 1033yrs = 50.5× 1039s = 7.65× 1064(GeV )−1 (336)

Approximating mp ∼ 1GeV we have that

M 4 > 7.65× 1064GeV (337)

or

M > 1.7× 1016GeV (338)

In other words we obtain a limit on the mass scale which is 16 orders
of magnitude larger than the proton mass, 14 orders of magnitude larger
than the masses of the W and Z bosons! This very large scale of order
1016 GeV is known as the GUT scale – the scale of grand unification. IF
grand unification is correct, it is at this scale that the additional bosons
predicted by grand unification get their masses i.e. the SU(5) symmetry
is broken at a very high scale.

Anyway, from the point of view of the course, the idea behind this
calculation is to give a) in idea about how theoretical physics think –
using the idea of gauge symmetry and pushing it to its final conclusions
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and b) to show how one can use the experimental data to get an idea of
what theoretical parameters have to be and c) to understand the basic
idea behind proton decay experiments.
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