
The Standard Model of Particle Physics

Bobby Samir Acharya
International Centre for Theoretical Physics

and King’s College London

African School of Fundamental Physics and Applications 2014, Dakar, Senegal

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



The Standard Model of Particle
Physics

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



The Standard Model:

is a mathematical model for describing the behaviour of the
elementary particles: quarks, leptons, gauge bosons and the Higgs
boson
is the most precisely tested scientific model every constructed – it
has passed thousands of tests and most of its predictions have now
been verified
is based on symmetry principles: gauge invariance and Lorentz
invariance (special relativity)
is based on wave equations: Dirac, Maxwell, Yang-Mills,
Klein-Gordon which all generalise the Schrodinger equation
each of the particles obeys one of these equations and particle
interactions are ”potential terms” in the equations

All interactions are determined from the symmetries except their

strengths (coupling constants) and masses which are determined

from experimental data e.g. α the fine structure constant or me the

mass of the electron.
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In these lectures we will.....

Show how the basic symmetry principles determine all the
properties of elementary particles

Derive some predictions from the Standard Model and test
them against experimental data

This should serve as a good introduction to the rest of the
school
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Disclaimer!

This is NOT a complete course on the Standard Model!

that would require all of the three weeks of the school and
more

This is just an introduction. You can consult my lecture notes
for a more detailed introduction and can read the books
suggested there for an even more detailed understanding.
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Natural Units and Dimensional Analysis

Natural units are so-called because they intuitively express
natural physical quantities in terms of mass scales or length
scales.

Natural units are defined by viewing the fundamaental
constants ~ and c as conversion factors

~ = 1 converts 1 Joule into about 1034 seconds−1.
Equivalantly 1 eV = 1.6×1015s−1

c = 1 converts 1 second into approximately 3× 108 metres.

In natural units [E] = [M ] = [L]−1 = [T ]−1.

With these units any quantity can be converted into (some
power of) eV. This provides it with a mass scale.

Excercise: Convert Newton’s constant GN into eV −2.
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Natural Units and Dimensional Analysis

~ = 1 ∼ 10−34J s ∼ 3×10−26J m ∼ 3×10−26 1019

1.6..
eV m ∼ 2×10−7eV m (1)

1 m ∼ 1

2× 10−7 eV
(2)

which means that a distance of one metre is equivalent to an energy scale of
2× 10−7 eV. Larger distances correspond to smaller energies and vice-versa.

In natural units, the mass of the electron is about 0.5 MeV. This is the inverse

of a distance of 1

0.5MeV
∼ 4× 10−13 m This is the Compton wavelength of

the electron. The mass of proton is about 0.94 GeV, corresponding to a length

scale of order 2× 10−16 m. This is the characteristic size of a nucleus. The

masses of the W -bosons, the Z-boson, the top quark and the Higgs boson are

of order 100 GeV – corresponding to a distance of around 2× 10−18 m. The

LHC collisions in 2012 took place at energies of 8 TeV = 8 thousand GeV – a

distance scale of almost 10−20 m. This makes the LHC the world’s most

powerful microscope.
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Particle Interactions and Gauge Symmetries

The SM describes three forces: the strong nuclear force, the
weak nuclear force and the electromagnetic force

Associated with each of these is a symmetry called a gauge
symmetry

In electromagnetism, this symmetry leads to the interaction
between photons and charged particles like electrons.

In the strong nuclear force this leads to the interaction
between gluons and particles ”charged” under the strong
gauge symmetry – the quarks.

In the weak nuclear force this leads to the interactions
between W and Z-bosons and particles charged under the
weak gauge symmetry.
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Wave equations – a reminder

Schrodingers equation derives from E =
p2
j

2m by replacing
E → i∂t and pj → −i∂j
The same exercise with E2 = p2

j +m2 gives the Klein-Gordon

equn: ∂µ∂
µΨ−m2Ψ = 0.

The K-G equation describes relativistic spin-0 particles.

Dirac derived a relativistic equation which is first order in ∂t
and ∂i.

Dirac’s ansatz: i∂tΨ = (−iαj∂j + βm)Ψ with αi and β
operators ie matrices

α2
i = β2 = 1 and {αi, αj} = 0 = {αi, β} ensures
H2Ψ = (p2

i +m2)Ψ
Dirac equation in covariant form: (iγµ∂µ +m)Ψ = 0 with
(γ0, γi) = (β, αiβ)
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Lagrangian Formulation

In classical mechanics one considers generalised coordinates qi(t) of a
particle. Then the Lagrangian

L = T − V (3)

which is the difference between Kinetic and Potential energy leads to the
Euler-Lagrange equations of motion

d

dt

(
dL

dq̇i

)
− dL

dqi
= 0 (4)

We can use this formalism to obtain the relativistic wave equations such
as the Klein-Gordon equation, the Maxwell equations and the Dirac
equation.

Instead of considering L to be a function of discrete coordinates qi, we

consider Lagrangians which are functions of the fields which are

continuous functions of both xi and t i.e. of xµ.
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Lagrangian Formulation

For example, for the Klein-Gordon equation L is a function of φ(xµ) as

well as the derivatives ∂φ
∂xµ
≡ ∂µφ:

L(qi, q̇i, t)→ L(φ, ∂µφ, xµ) (5)

L is obtained from a Lagrangian density L integrated over space

L =
∫
d3xL(φ, ∂µφ) (6)

Integrating over time gives the action, usually called S:

S =
∫
dtL =

∫
d4xL (7)

By varying S wrt φ and ∂µφ and ∂µφ
∗ we obtain the Euler-Lagrange

equations (this is derived at the end of the notes in the section on
Noethers theorem):
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Lagrangian Formulation

∂µ

(
δL

δ(∂µφ)

)
− δL
δφ

= 0 (8)

The Lagrangian density for the KG equation is

L = ∂µφ
∗∂µφ−m2φ∗φ (9)

Substituting this into the Euler-Lagrange equations gives

∂µ∂
µφ+m2φ = 0 (10)

Note: (
δL

δ(∂µφ)

)
= ∂µφ∗ (11)

The Lagrangian density for Maxwells equations in vacuum is

L = −1
4
FµνF

µν (12)
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Lagrangian Formulation

Here we consider L as a function(al) of fields Aµ and derivatives ∂µAν .
ie since Aµ has four components, we treat each component as a separate
field.
In the presence of a current jµ there is an additional interaction term

L = −1
4
FµνF

µν − jµAµ (13)
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Lagrangian Formulation

Consider a small transformation in a field which leaves the Lagrangian invariant

Ψ→ Ψ + iαΨ (14)

0 = δL =
δL
δΨ

δΨ +

„
δL

δ(∂µΨ)

«
δ(∂µΨ) + c.c. (15)

so

0 = iαΨ
δL
δΨ

+ iα

„
δL

δ(∂µΨ)

«
(∂µΨ) + .. (16)

= iα

»
δL
δΨ
− ∂µ

„
δL

δ(∂µΨ)

«–
Ψ + iα∂µ

„
δL

δ(∂µΨ)
Ψ

«
+ ...

where, to get to the last line from the previous one we use that:

∂µ

„
δL

δ(∂µΨ)
Ψ

«
=

„
∂µ

δL
δ(∂µΨ)

«
Ψ +

„
δL

δ(∂µΨ)

«
∂µΨ (17)

Going back to the previous expression, the equation before the one above, there
are several key points:
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Lagrangian Formulation

The last term in (14) is proportional to a total derivative. Hence, it only
contributes to the action at the boundary of space-time ie at infinity.
Requiring this term to vanish at infinity implies that: the action is
extremised (δS = 0) exactly when the Euler-Lagrange equations are
satisfied (the term in square brackets) . We have thus derived the
Euler-Lagrange equations.

In the case that we require that Ψ→ Ψ + iαΨ is a symmetry of the
action, then, because the terms in square brackets vanish due to the
Euler-Lagrange equations, the total derivative term must vanish
everywhere not just at infinity. Hence,

When a variation of the fields is a SYMMETRY of the action, there

exists a conserved quantity: jµ ≡
“

δL
δ(∂µΨ)

Ψ
”

which obeys:

∂µ

„
δL

δ(∂µΨ)
Ψ

«
= 0 (18)
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Lagrangian Formulation

Recall that to consider the motion of a particle of charge −e in an
electromagnetic field generated by a vector potential Aµ we replace the
derivative ∂µ by

∂µ → ∂µ − ieAµ (19)

We call the rhs of this expression a covariant derivative. This is usually
denoted by Dµ:

Dµ ≡ ∂µ − ieAµ (20)

By making the above replacement in the Dirac equation equation we obtain

iγµ∂µΨ +mΨ = −eγµAµΨ (21)

i.e. we get a ”potential” for the field Ψ. Since the modified equation of motion
was obtained by replacing ∂µ with Dµ, the Lagrangian density for a charged
fermion with mass m is

L = iΨ̄γµDµΨ +mΨ̄Ψ (22)

= iΨ̄γµ∂µΨ +mΨ̄Ψ + eΨ̄γµAµΨ

This is exactly:
L = iΨ̄γµ∂µΨ +mΨ̄Ψ + jµAµ (23)

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



Lagrangian Formulation

The fact that jµAµ appears in L suggests that we can just ”read off” the
vertices allowed in Feynman diagrams from L. This is a general rule for
any Lagrangian! We just read off the Feynman rules from L .

In this example, the three point vertex between the photon and two

charged particles is represented in L by the presence of the jµAµ term.
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Lagrangian Formulation

The Lagrangian for Quantum Electrodynamics, QED has various symmetries.

L = −1

4
FµνF

µν + iΨ̄γµDµΨ +mΨ̄Ψ (24)

Lorentz Invariance. Since all the Lorentz indices are contracted (L is a scalar),
the Lagrangian is invariant under Lorentz transformations.

Internal Symmetry. In addition to this ”spacetime symmetry” it is invariant

under an internal symmetry i.e. one which does not act on the coordinates, but

just on the fields. This is intrinsic to electromagnetism and the other forces as

we will see.
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Gauge Symmetries

We are going to consider a transformation of φ by a unitary, 1-by-1 matrix, a
U(1) transformation.
Any such matrix U is of the form U(α) = eiα. α can take any continuous
value between zero and 2π.
Clearly, under

Ψ→ UΨ (25)

we have that
DµΨ→ UDµΨ (26)

L is clearly invariant under this transfomation since it is of the form DµΨ times
the complex conjugate of Ψ, and UU∗ = 1. Similarly Ψ̄Ψ is invariant, so the
mass term is invariant. Therefore L is invariant under this transformation of Ψ.
Noethers theorem proves that there is a conserved quantity when a Lagrangian
is invariant under a symmetry transformation. In fact, when α is small i.e.
when U ≈ 1 + iα we see that the conserved current jµ is precisely that which
we derived before.

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



Gauge Symmetry

Now, we would like to consider when α is different from point to point in
spacetime. i.e. we make α = α(xν) – a function of the coordinates. Now, we
will get terms proportional to derivatives of α.

DµΨ → U∂µΨ + iU∂µαΨ− ieUAµΨ (27)

= UDµΨ + iU∂µαΨ (28)

Because of this, the Lagrangian is no longer invariant. However, the unwanted
term in the transformation of DµΨ can be removed if Aµ also transforms:

Aµ → Aµ +
1

e
∂µα (29)

which can be verified by replacing this transformed Aµ in the ”unwanted”
term. Thus:

DµΨ→ eiα(x)DµΨ (30)

and the Dirac terms Lagrangian are invariant under this gauge transformation

(this is the name for transformations whose parameters depend on the

coordinates. What about the Maxwell term in the Lagrangian?
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Electromagnetism and U(1) Gauge Symmetry

Maxwells equations can be written in terms of a gauge potential
Aµ. A0 = scalar potential and Ai = the vector potential

The electric field has components Ei = ∂0Ai − ∂iA0

The magnetic field has components B1 = ∂2A3 − ∂3A2 plus
1→ 2→ 3→ 1
They are unified into the EM field strength Fµν = ∂µAν − ∂νAµ
Maxwells equations in vacuum are then:

∂ρFµν + ∂µFνρ + ∂νFρµ = 0→ Ḃ +∇×E = 0

∂µFµν = 0→ Ė−∇×B = 0

∂µFµν = 0→ ∇ ·E = 0
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Electromagnetism and U(1) Gauge Symmetry

Maxwells equations posess a large, infinite dimensional symmetry.

Consider an arbitrary function λ(x, y, z, t). (So λ = 1
eα)

Then replace Aµ −→ A′µ = Aµ + ∂µλ

Fµν = ∂µAν − ∂νAµ → ∂µAν + ∂µ∂νλ− ∂νAµ − ∂ν∂µλ
Thus, since ∂µ∂νλ = ∂ν∂µλ, F ′µν = Fµν = ∂µAν − ∂νAµ
So, the gauge potentials Aµ and A′µ describe identical E and B
fields!

These are the equations required by all electronic devices and
technology and they have an infinite dimensional symmetry!

So QED is invariant under U(1) gauge transformations
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Gauge Symmetry as a Principle

If we use gauge symmetry as a principle then it has far reaching consequences.

The covariant derivative must be introduced otherwise the kinetic energy
term would not be gauge invariant.

This requires the introduction of a vector field Aµ which couples to the
matter current. Aµ is usually called the gauge field.

If we consider the kinetic energy of the gauge field, then gauge invariance
requires it to be of the form FµνF

µν (or more generally a function
thereof). Thus, Maxwell’s equations follow from gauge symmetry plus
Lorentz symmetry

The photon is massless
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Gauge Symmetry as a Principle

This last point is crucial. It provides an explanation for why the photon
essentially behaves as a massless particle. (Experimentally of course one cannot
prove that the photon is exactly massless. Rather, one obtains an upper limit
on its mass. The current upper limit is about 10−18 eV.) To see why the
photon is massless, we ask: what would a mass term look like?:

∂ν∂
νAµ +m2Aµ = 0 (31)

This mass term would arise from a term in the Lagrangian of the form

∆L ∼ −m2AµA
µ (32)

Such a term is clearly not invariant under the gauge transformation of Aµ,
which is

Aµ → Aµ +
1

e
∂µα (33)
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Gauge Symmetry as a Principle

In fact, combining all of these points, the most general gauge and Lorentz
invariant Lagrangian which is up to quadratic in the fields and their derivatives
is

L = −1

4
FµνF

µν + iΨ̄γµDµΨ +mΨ̄Ψ (34)

Here we used the fact that [Aµ] = [∂µ] = [M ] and [Ψ] = [M ]3/2 so that
[L] = [M ]4 (energy density)
Thus: the symmetries determine the Lagrangian and, hence, the physics
This is a key point in particle physics. The Lagrangian for the Standard Model
is essentially determined by its symmetries. In other words, symmetries
determine the physics of all elementary particles!

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



Beyond U(1) gauge symmetry

We would now like to consider generalising U(1) gauge theory (i.e. QED) to
U(N) gauge theory. That is to say that U – the transformation matrix – will
become a Unitary N ×N matrix U ij where i, j run from 1 to N each. An
N ×N matrix acts naturally on N component vectors vi. Hence we should
introduce N complex fields Ψi on which these act. Under

Ψi → U jiΨj (35)

we would like to impose a condition that a suitable covariant derivative
transforms acting on Ψi transforms in the same way → U†U = 1N (Identity
matrix) then would guarantee that

Ψ̄jγµDµΨj −→ Ψ̄kU†
m

k U
n
mγ

µDµΨ = Ψ̄kγµDµΨk (36)

This would be the N ×N generalisation of the U(1) case.
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Beyond U(1) gauge symmetry

But what is this covariant derivative?
If we try to introduce a gauge field, in general it is a matrix of gauge fields
i.e. we can have up to N ×N gauge fields:

(Dµφ)i = ∂µφi − ig(Gµ)jiφj (37)

that is, for each of the values of i and j, (Gµ)ij is a different gauge field.
So if U(N) gauge symmetry is a principle it requires N matter particles Ψj and
N2 gauge bosons Gµ)ji
How is this matrix of gauge fields defined?
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Unitary matrices, exponentials, group generators
and all that

exp iθ = 1 + iθ − θ2

2
− i θ

3

3!
+
θ4

4!
+ ..... = cos θ + isin θ (38)

Now consider the rotation matrix

R(θ) ≡
„

cos θ sin θ
−sin θ cos θ

«
(39)

We want to Taylor expand this matrix„
cos θ sin θ
−sin θ cos θ

«
=

 
1− θ2

2
+ θ4

4!
+ ... θ − θ3

3!
+ ...

−θ + θ3

3!
+ ... 1− θ2

2
+ θ4

4!
+ ...

!
(40)

Just as eiθ is the exponential of a 1-by-1 matrix, the rotation matrix above is
the exponential of a two-by-two constant matrix:

R(θ) = exp(iθT ) = 1 + iθT − θ2

2
T 2 − i θ

3

3!
T 3 + .. :→ T =

„
0 −i
i 0

«
(41)

and T 2 is the matrix product of T with itself.
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Beyond U(1) gauge symmetry

So, since any rotation can be written as exp iθT we say that T generates the
rotations. Now consider some other examples of this, because we will need
matrices like T to define the covariant derivative properly.
Let U be a N-by-N unitary matrix ie

U†.U = 1 (42)

Now assume that
U = exp iM (43)

What properties does M have? unitarity implies that

M = M† so M is Hermitian. (44)

If, additionally, we require that det(U) = 1 i.e. that U is special unitary, then
one can show that the trace of M is zero

detU = 1↔ TrM = 0 (45)
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SU(2) gauge symmetry

When N = 2, one can show that M is a linear combination of the Pauli
matrices:

M = αaσa (46)

where

σ1 =

„
0 1
1 0

«
σ2 =

„
0 −i
i 0

«
σ3 =

„
1 0
0 −1

«
(47)

That is to say that the Pauli matrices generate SU(2) transformation matrices!
An important fact about the Pauli matrices is that they obey an algebra:

[σa, σb] = 2iεab
cσc (48)

εabc is totally antisymmetric i.e. if we interchange neighbouring indices then we
get a minus sign:

εabc = −εbac = εbca = −εcba etc (49)

and ε123 = 1
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SU(N) gauge symmetry

In general, for an SU(N) matrix

U = exp iM (50)

where M is traceless and Hermitian, there are N2 − 1 generators Ta such that

M = αaTa (51)

and the Ta ’s obey an algebra

[Ta, Tb] = ifab
cTc (52)

where the fab
c are constants called the structure constants. For SU(N) the

algebra defined by the above equation is called the Lie Algebra of SU(N). If

you choose a basis for this algebra, you can explicitly calculate the structure

constants in that basis. They are totally antisymmetric, like εabc. For SU(3)

there is a basis for the eight 3-by-3 Ta matrices which is used a lot in particle

physics called the Gell-Mann basis. You can find these eight matrices in the

textbooks.
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SU(N) gauge symmetry

Finally(!)
Dµ = ∂µ + igTaG

a
µ (53)

where the second term is an N -by-N matrix since Ta is a matrix. There are
N2 − 1 gauge fields Gaµ.
The Standard Model is a gauge theory with SU(3) gauge symmetry, SU(2)
gauge symmetry and U(1) gauge symmetry. There are 8 + 3 + 1 = 12 gauge
bosons. These are the eight gluons, the two W -bosons (W+ and W−), the
neutral Z boson and the photon.
The full covariant derivative is thus

Dµ = ∂µ − i
Y

2
g1Bµ − ig2

σj
2
W j
µ − ig3

λa
2
Gaµ (54)

Bµ is the gauge boson of the U(1). The photon is a linear combination of Bµ
and W 3

µ . The Z-boson is the opposite linear combination. Y is called the
hypercharge. The charge under SU(2) is called isospin I. The proton has
isospin 1/2 and the neutron −1/2.
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SU(N) gauge symmetry

Most of the physics of all non-dark matter comes from this covariant
derivative!
Putting this covariant derivative into the Dirac Lagrangian gives

L = iΨ̄γµDµΨ = iΨ̄γµ∂µΨ + jµ1Bµ + jµi W
i
µ + jµaG

a
µ (55)

where we have three currents, one for each symmetry group.
So we have three interaction terms which lead to the Feynman diagrams for the
quarks and leptons interacting with the gauge bosons
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Standard Model Interactions

By putting these together we can describe any physical process involving
Standard Model particles!
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Calculating the decay properties of W -bosons

We need the formula

−ig2
σj
2
W j
µ = −i g2

2

„
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

«
(56)

which we re-write as:

−i g2

2

„
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

«
= −i g2

2

„
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

«
(57)

we have introduced W±µ = 1√
2
(W 1

µ ∓ iW 2
µ) which are the actual positive and

negative charge eigenstates. All the left-handed fermions pair up as doublets
under the SU(2) gauge symmetry i.e.„

νe
e−

«
L

,

„
νµ
µ−

«
L

,

„
ντ
τ−

«
L

,

„
u
d

«
L

,

„
c
s

«
L

,

„
t
b

«
L

(58)
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SM Interactions

Remember that each of the entries of these doublets are 4-component Dirac
spinors. We have suppressed the spinor labels in the last equation.
Similarly the Lagrangian depends on the ”bars” of all of these multiplets and
hence the couplings to the W -bosons also involves the right-handed
anti-particles to all of the above e.g. right handed-positrons also couple to
W ’s, but left-handed positrons do not. Let’s write the SU(2) gauge
interactions for the muon doublet.
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Muon and Muon-neutrino Interactions with W
bosons

It is `
ν̄µ µ̄−

´
γν × g2

„
W 3
ν

√
2W+

ν√
2W−ν −W 3

ν

«
1

2
(1− γ5)×

„
νµ
µ−

«
(59)

The ”i”’s have multiplied to 1. The ×’s are there to remind us we have to
multiply the matrices together. The 1

2
(1− γ5) is there to project onto the

left-handed component of the fermion doublet to the right of the matrix of
W -bosons. The expression above is equivalent to

√
2
g2

2
µ̄−Lγ

ννµLW
−
ν +

√
2
g2

2
ν̄µLγ

νµ−LW
+
ν (60)

−g2

2
µ̄−Lγ

νµ−LW
3
ν +

g2

2
ν̄µLγ

ννµLW
3
ν

The first line above is the charged current interaction. The second is a neutral
current interaction. If we were to change any of the four coefficients, the
Lagrangian would no longer be SU(2) gauge invariant. The relative strengths
of these interactions

√
2 : 1 is thus fixed by symmetry.
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SM Interactions

For all of the six fermion doublets, there is a similar expression for the SU(2)
interaction terms in the Lagrangian. The interactions we have derived lead to
some remarkable consequences:

The couplings of W+ and W− are universal for both quarks and
leptons. e.g. the interaction between W+, u and d̄ is the same as the
interaction between W+, µ and ν̄.

W+ can decay into (e+, ν̄e), (µ
+, ν̄µ), (τ+, ν̄τ ), (u, d̄), (c, s̄)

Similarly for W−.

W bosons cannot decay into (t, b̄) because mt ∼ 173GeV±1GeV and
mW ∼ 80.4GeV.

Since mW is much larger than me,mµ,mτ ,mu,md,mc,ms the decay
width of the W± doesn’t ”care” about the fermion masses

So the partial decay widths

Γ(W+ → e+ν̄) = Γ(W+ → µ+ν̄) (61)

= Γ(W+ → τ+ν̄) (62)

The decays into quarks are not just two decay channels: (ud̄) and (c, s̄),
but three each, since there are three u quarks, three d quarks, three c
quarks and three s quarks. This is because the quarks transform under
the SU(3) gauge symmetry (the leptons do not). So the decays into
quarks are actually six channels.

This gives a total of three leptonic and six hadronic decay channels, nine
in total.

If Γ(W+ → all) is the total W decay width, the Standard Model predicts
that

Γ(W+ → e+ν̄)

Γ(W+ → all)
=

Γ(W+ → µ+ν̄)

Γ(W+ → all)
(63)

=
Γ(W+ → τ+ν̄)

Γ(W+ → all)
(64)

= 1/9 (65)

and
Γ(W+ → hadrons)

Γ(W+ → all)
= 6/9 = 2/3 (66)
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W -boson decays

The decays into quarks are not just two decay channels: (ud̄) and (c, s̄),
but three each, since there are three u quarks, three d quarks, three c
quarks and three s quarks. This is because the quarks transform under
the SU(3) gauge symmetry (the leptons do not). So the decays into
quarks are actually six channels.

This gives a total of three leptonic and six hadronic decay channels, nine
in total.

If Γ(W+ → all) is the total W decay width, the Standard Model predicts
that

Γ(W+ → e+ν̄)

Γ(W+ → all)
=

Γ(W+ → µ+ν̄)

Γ(W+ → all)
(67)

=
Γ(W+ → τ+ν̄)

Γ(W+ → all)
(68)

= 1/9 (69)

Γ(W+ → hadrons)

Γ(W+ → all)
= 6/9 = 2/3 (70)

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



W -boson decays – what the data says

http://pdg.lbl.gov is where we ”record” data about all known particles ”The

Particle Data Book”
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W -boson decays
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W -boson decays
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W -boson decays
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W -boson decays

These branching fractions have been measured and agree with the
Standard Model predictions to within 1%. Have a look at the PDG.

This excellent agreement between theory and experiment represents a
thorough check of the structure of the Standard Model. The interactions
are derived entirely from symmetry principles. If we changed the number
of leptons the result would change. If there were four u quarks instead of
three (which would be the case if SU(3) were replaced with SU(4) ) the
result would change.

Note: gauge symmetry, Lorentz invariance and charge conservation allows
the possibility of flavour-changing decays that involve different quark
families e.g. W+ → cb̄. In fact these decays also occur, but are
suppressed by so-called CKM-mixing (Cabibbo-Kobayashi-Maskawa). We
will not discuss this in any detail.
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Cross-section estimates for particle collisions

In particle physics experiments we measure quantities like the lifetime of a
decaying particle or the rate of production of particles from a collider
experiment. We need to be able to calculate quantities like these, starting with
the invariant amplitude M for such a process.
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Collider cross-sections

In a particle collider experiment, we collide beams of particles with some given
flux (also called luminosity and then we measure the particles that come out of
the collisions. The total number of events is obviously proportional to the flux
since e.g. if we increase the number of protons in the LHC beams we will
increase the total number of collision events that we get. Thus, the luminosity
is something that we control as experimenters in a laboratory. It is not an
intrinsically physical entity.
However, the proportionality ”constant” in the relation

Nevents ∝ Luminosity ≡ L (71)

is an intrinsically physical quantity. This is called the cross-section and is
usually labeled by σ.

Nevents = Lσ (72)
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Cross-section

The left hand side is dimensionless, a whole number if we count the number of
events (or collisions) after a given time interval. Or we could consider the
number of events per second (or any other unit of time). The luminosity is
thus a flux of particles per unit time. This has dimensions of
[L] = [L]−2[T ]−1 = [M ]3, where the last equality is because we use natural
units. The dimensions of luminosity are like this because it is essentially the
number of particles going through a given area i.e. number of particles per unit
area per second.
So, by dimensional analysis, the cross-section σ has dimensions of AREA.
In fact, that is where its name comes from. It is, effectively, the area over
which the interaction takes place.
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Fermi’s Golden Rule (post-modernist view)

Take a process with initial and final states

Draw the Feynman diagram for this

Use the Feynman rules to convert the diagram into a ”matrix element”
M
The probability density for this process is proportional to ”P ∼ |M|2ρ(E)

ρ(E) represents the phase space density of states subject to
energy/momentum conservation
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Cross-section estimates

Lets get a feel for σ by estimating it for various processes. Our estimates are
based on Fermi’s Golden Rule plus dimensional analysis in natural units. We
will also compare our results to the ”properly calculated” results as well as the
actual experimental observations.

1. σ(e+e− → µ+µ−) at high energies. 2. σ(νN → X) 3. σ(pp→ X)
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σ(e+e− → µ+µ−)
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σ(e+e− → µ+µ−)

We would like to estimate the cross-section for this at high centre of mass
energies

√
s much greater than mµ.

Fermi’s Golden Rule tells us this is proportional to the ”square of the Feynman
diagram” for this process:

σ ∝ e4 ∼ α2 (73)

because we have a factor of the charge at each vertex. α ≡ e2

4π
is dimensionless,

a number with no units. But σ has dimension [M ]−2. The only other scale in
this problem is the center of mass energy

√
s. Hence we expect that

σ ∼ α2

s
(74)
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σ(e+e− → µ+µ−)

The actual ”properly calculated” leading order result is

σ =
4π

3

α2

s
(75)

so, we were off by a factor of four or so. Not bad!
The cross-section for this process has been measured at various energies, as
shown in the figure. The smooth line on this graph shows the theoretical
prediction from the above equation and the different ‘markers’ are actual,
experimentally measured values. The agreement between the theory and
experiment is very good. Notice the vertical lines which eminate from the
different experimental points.
Since no experiment is perfect, every reported measurement is uncertain by a
certain amount depending on either the limitations of the experimental
apparatus and/or the size of the data sample available. The latter, statistical
uncertainty, is reduced when a larger data sample becomes available. The
vertical lines on the graph are the total uncertainty on the measurement made,
so the actual cross-section is somewhere in between the ”band” represented by
the line.
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σ(e+e− → µ+µ−)
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σ(e+e− → µ+µ−)

Putting actual numbers to the cross-section we get:

σ(e+e− → µ+µ−) ∼ 4× 10−32

s/GeV2 cm2 (76)

So in order to produce a few muon pairs in electron-positron scattering at a
centre-of-mass energy of one GeV, you need to have a luminosity of order
1032cm−2. At higher energies, since the cross-section decreases quadratically
with energy, you need much higher luminosities to produce the same number of
muons.

For comparison, the luminosity of the proton-proton beams at full luminosity is

1034cm−2 per second!
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σ(νN → X)

Here we consider neutrinos interacting with nucleons in matter. Neutrinos are
not electrically charged so they don’t couple to photons. Nor do they
participate in the strong nuclear interactions. But they do undergo weak
interactions, eg via exchanging W -bosons and Z-bosons.
Centre-of-Mass Frame and Laboratory Frame
The centre of mass frame for a collision of two particles is one in which the two
particles have equal and opposite momentum and equal energies. The Lorentz
4-vectors for the two particles are

pµ1 = (1/2Ecm, p
i) (77)

pµ2 = (1/2Ecm,−pi) (78)

We can calculate the Lorentz invariant quantity s:

s = (p1 + p2)µ(p1 + p2)µ = E2
cm (79)

In the lab frame one of the particles is at rest and the other is moving.

pµ1 = (M, 0) (80)

pµ2 = (Elab, p
i
lab) (81)

In the lab frame

s = (Elab +M)2 − E2
lab +m2 ≈ 2ElabM (82)

where we assumed E much larger than M or m
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σ(νN → X)

Neutrinos do not interact with photons and gluons, but they do interact with
W and Z bosons. Hence, to interact with other particles, they must exchange
W or Z bosons. Since quarks also interact with W ’s and Z’s, neutrinos can
interact with atoms.
This ”costs” energy and as a result, the Feynman diagram (for neutrino
energies small compared to mW ) will have a factor of 1

m2
W

or 1
m2
Z

. Hence, the

cross-section will have a factor of 1
m4
W

. If we add the coupling constants at the

vertices as well, these combine with this factor to give what is usually called
G2
F .

GF is the Fermi constant – a number of order 10−5GeV−2.
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σ(νN → X)

σ(νN) ∼ G2
F (83)

But σ must have mass dimension minus two. At high energies, the only other
scale in the problem is s which has mass dimension two.
Therefore, we expect that

σ(νN) ∼ G2
F s (84)

In most experimental situations with neutrinos we are normally in the lab

frame, scattering a beam of neutrinos off a fixed target. e.g. the nucleons

could be a ”block” of matter and the neutrino beam is ”fired” into it.

Therefore s ∼ 2EνmN
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σ(νN → X)

Using the fact that mN ∼ 1 GeV and that GF ∼ 10−5 GeV−2 we get

σ(νN) ∼ afew × 10−38 Eν
GeV

cm2 (85)

which is again in agreement with the ”proper calculation” to within a factor of
10.
Notice that this is a much smaller cross-section than the previous one we
estimated for a fixed centre-of-mass.
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How far can neutrinos propagate through matter?

Imagine a neutrino which has been emitted by the sun and arrives at the Earth.
Lets estimate how far a neutrino can propagate in the Earth before it actually
interacts with a proton or neutron in the Earth.
Obviously the rate is proportional to both the cross-section for the reaction per
nucleon (as estimated above) and the density of nucleons i.e. the density of the
Earth, ρ. The greater the reaction rate, the shorter the distance a neutrino can
propagate before interacting. Thus, we have, the average propagation distance
L before an interaction takes place is:

L ∝ 1

ρσ
(86)

where σ is calculated above for neutrinos interacting with nucleons and ρ is the
mass per unit volume of the matter through which the neutrino propagates.
Now use dimensional analysis. TL has dimensions of [L] = [M ]−1. The RHS
has to have the same dimensions. This will help us to fix the proportionality
constant in the above. ρ has dimensions of [M ]4 and [σ] = [M ]−2. Thus, if

L =
C

ρσ
(87)
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σ(νN → X)

Thus, if

L =
C

ρσ
(88)

the dimension of C is [C] = [M ]. Therefore we are looking for a quantity
which plays an important role in the interaction between a neutrino and a
nucleon with the dimensions of mass. The obvious candidate is the nucleon
mass, mN ∼ 1 GeV. We therefore find:

L =
mN

ρσ
(89)

Notice that ρ
mN

is essentially the number of atoms per unit volume in the
Earth. Let us call this N . Hence we see that

L =
1

Nσ
(90)
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σ(νN → X)

If we take ρ ∼ 103kg/m3 ∼ 1030 GeV/m3. Since mN ∼GeV we have that
N ∼ 1030/m3. We have calculated σ above. For a neutrino with energy of
order 1 GeV

σ ∼ 10−38cm2 = 10−42m2 (91)

Hence, neutrinos with energies of order a GeV propagate roughly 1012m
through water before interacting! This is a billion kilometres. Most of the
neutrinos from the sun have energies which are one hundred or more times less
than a GeV and, hence they propagate much further.
But, there are a lot of neutrinos from the sun, so we can still study their
interactions!!
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σ(pp→ X)

This cross-section is different to those above because hadrons are not point

particles. Rather, they are bound states of quarks, anti-quarks and gluons,

bound together by the strong nuclear force. The strong nuclear force is the

SU(3) part of the Standard Model. The remarkable thing about the strong

nuclear force is that all hadrons have masses which are of order a GeV. In fact,

most of the particles described in the PDG are hadrons (either mesons or

baryons). If you look at their masses, they are all within one order of

magnitude of the proton mass. This reflects the fact that the strong nuclear

force is characterised by a scale Λ ∼ GeV. This is known as the QCD scale

since the underlying theoretical description of the strong nuclear interaction is

called Quantum Chromodynamics.
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σ(pp→ X)

Λ is essentially the binding energy of the quarks, anti-quarks and gluons inside

any hadron. Since the u d and s quarks have masses which are much smaller

than Λ, the masses of hadrons made of these quarks are mostly binding energy.

Therefore your mass, and the masses of all the stars in the Universe is binding

energy of the strong nuclear force. The b and c quarks have masses of order Λ

itself, so c and b hadrons have masses which are not just binding energy. The t

quark, which is the most massive known elementary particle (mt ∼ 173GeV ±
1 GeV) actually decays before it has time to ”hadronise” and form a hadron.

This is because τt = 1
Γt
< 1

Λ
.
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σ(pp→ X)

We want to calculate the cross-section for scattering two hadrons which
interact via the strong nuclear interaction. We have just seen that everything
about the strong nuclear force is characterised by a single scale Λ. Hence, we
expect that the effective cross-section for strong nuclear interactions is also
determined by Λ. Hence,

σ(pp→ X) ∼ 1

Λ2
(92)

It is Λ−2 on dimensional grounds. This has the dimensions of a cross-section.
Since GeV−1 ∼ 10−15m,

σ(pp→ X) ∼ 10−30m2 = 10−26cm2 (93)
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σ(pp→ X)

Now, the in 2012, the LHC was running with an instantaneous luminosity of
about L = 1033cm−2s−1 at a centre of mass energy of 8 TeV. Hence, with our
rough estimate, we expect Lσ ∼ 107 events every second! Actually, our
estimate is around a factor of 10 smaller than the actual answer so we are
producing even more collisions than that.
The greater the number of LHC collisions, the greater the probability of
creating a ”rare” event such as the production of a Higgs boson. The
cross-section for producing a Higgs boson with a mass of around 126 GeV at
the LHC is about 10−35cm2. This means that we have to ”sift through”
around a billion events for every Higgs boson produced. The search for the
Higgs is thus very much like looking for a needle in a haystack.

Exercise: The Higgs boson mass is approximately 126GeV. How many Higgs
bosons were produced in the 2012 run of the LHC? For this you need to find
out how much data was recorded i.e. the total integrated luminosity.
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Helicity: fermions are left or right handed

The following 4-by-4 matrix:

Λ ≡ 1

2

„
σip̂

i 0
0 σip̂

i

«
(94)

where p̂i = pi

|p| satisfies p̂ip̂i = 1 i.e. is the unit vector which points in the same

direction as pi. Λ commutes with the Hamiltonian. Therefore, the eigenvalues
of Λ are conserved.
1
2
σip̂

i is clearly the spin projected in the direction of motion. We call this the
helicity of the state. The possible eigenvalues of 1

2
σip̂

i are just λ = ± 1
2

.

We say that fermions with helicity −1/2 are left-handed and those with helicity

1/2 are right-handed.
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Parity Violation

The left and right handed fermions have different interactions with W
and Z bosons.

In fact, only left handed quarks and leptons couple to W -bosons

Equivalently, only right handed anti-quarks and anti-leptons couple to
W -bosons

This violates parity (maximally).

The weak interactions are not the same if you look at them in a ”mirror”

This is the only known violation of parity in the fundamental laws of
physics
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Chiral Fermions have no mass terms

A fermion mass would be
L ∼ mΨ̄Ψ (95)

One can show (see exercises) that

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL (96)

so a mass term couples the left-handed and right-handed components of the
fermion together.
But in the Standard model, the left and right handed fermions transform
differently under SU(2) and U(1)Y . Therefore:
Mass terms in the Standard Model are forbidden
by gauge invariance!

This is a deep and significant point.
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Chirality and mass

One can see this by looking at how Ψ̄LΨR + Ψ̄RΨL transforms under U(1)Y
for the case the Ψ = e−, the Dirac spinor for the electron. It is important to

remember that Ψ = e =

„
e−L
e−R

«
ie the Dirac spinor is the 4-component spinor

containing both the left and right handed fermions.
So, in order for a mass term to be generated, the gauge symmetry must be
broken. This is consistent with the fact that the W and Z bosons must also be
massive – something which is not possible unless the gauge symmetry is
actually broken. The gauge symmetry breaking and mass generation is
accomplished by introducing the Higgs boson. The Higgs boson is associated
with a Higgs field – this is a scalar field which transforms under SU(2) exactly
as the left-handed quarks and leptons and has hypercharge Y = +1. The
remarkable thing is that the Lagrangian including the Higgs is gauge invariant,
but the vacuum state of the Standard Model is not!
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Mass and The Higgs Boson

The Higgs boson is described by a scalar field in the Standard Model. It is
therefore described by a Klein-Gordon equation with a covariant derivative. We
will use a simplified model to begin:a U(1) gauge theory with a Higgs boson
field φ of charge q. The Lagrangian is:

L = Dµφ(Dµφ)∗ −m2φφ∗ (97)

= ∂µφ∂
µφ∗ − iqAµφ∂µφ∗ + iq∂µφA

µφ∗ − q2AµA
µφφ∗ −m2φφ∗

Since φ has mass dimension [M ]1 and |φ|2 = φ ∗ φ is gauge invariant under
φ→ eiqθφ, we can add one more gauge invariant interaction to L:

∆L = −λ|φ|4 (98)

which represents a self-interaction of the Higgs with strength given by the
dimensionless coupling λ. So, the potential for φ is

V (φ) = m2|φ|2 + λ|φ|4 (99)
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Mass and the Higgs Boson

If φ were real, instead of complex, V looks like

Note: some books use µ2/2 instead of m2 and λ/4 instead of λ.
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Spontaneous Symmetry Breaking

The shape of the potential takes a very different form depending on
whether or not m2 is +ve or -ve.

When m2 > 0 there is one minimum at φ = 0

When m2 < 0 there are two minima, both at non− zero values of φ.

V (φ) is invariant under the symmetry φ→ −φ.

When m2 > 0, the minimum is still invariant under the symmetry

When m2 < 0 any of the two minima break the symmetry!
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Spontaneous Symmetry Breaking

In gauge theory, however, φ is actually complex. The potential, for m2 < 0
looks like
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Spontaneous Symmetry Breaking

When m2 > 0 there is one minimum at φ = 0

When m2 < 0 there is a whole circle of minima, all at non− zero values
of φ.

V (φ) is invariant under the gauge symmetry φ→ eiqθφ.

When m2 > 0, the minimum is still invariant under the gauge symmetry

When m2 < 0 any of the minima break the gauge symmetry since a
non-zero value of φ transforms to a non-zero, different value!

This is called spontaneous symmetry breaking
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The Higgs Mechanism

Going back to the original Lagrangian, there is an interesting term:

L = −q2AµAµ|φ|2 (100)

Now, since the value of φ in the minimum is < |φ| >= v =
p
−m2/2λ this

leads to
L = −q2AµAµv

2 (101)

This is a mass term for the gauge field and it arises from a gauge
invariant Lagrangian! The mass of the U(1) gauge boson is

M =
√

2qv = q
|m|√

2λ
(102)

The factor of
√

2 is present since a mass term for a real boson, such as Aµ is of
the form

L =
M2

2
AµAµ (103)

Therefore the Higgs mechanism as described in this simple model can give

masses to gauge bosons without the Lagrangian violating gauge symmetry.
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What about Fermion Masses?

Since left and right handed fermions have different charges, mass
terms are forbidden by gauge invariance.
E.g. under U(1)-hypercharge of the SM, left-handed electrons eL
have charge -1 bt right-handed electrons eR have charge -2
Without the Higgs field, the bare mass term

meΨ̄Ψ = meΨ̄LΨR +meΨ̄RΨL (104)

is not gauge invariant.
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Yukawa Couplings

However, if the charge of the Higgs field φ is equal to one, then

Lyukawa = yeφΨ̄LΨR + yeφ
∗Ψ̄RΨL (105)

with a dimensionless coupling constant ye, is gauge invariant (0 =
1 + 1 -2 = -1 + 2 -1 )! Since it is gauge invariant and has mass
dimension [M ]4 we should include it. Such terms are called
Yukawa interactions and ye the Yukawa coupling.
Remarkably, in the vacuum we get

Lyukawa = yevΨ̄LΨR + yevΨ̄RΨL (106)

which is a mass-term for the electron. The electron mass is

me = yev (107)
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Fermion masses

In the Standard Model, v is of order 200GeV in order that the W and Z bosons
have the correct masses. Therefore ye ∼ 0.25× 10−5. Mass terms for all the
other fermions arise in the same way by introducing yµ, yt, yd etc. By fixing
these parameters appropriately the model correctly describes all the particle
masses.
So, according to the Standard Model, all elementary particles get their masses
via their interactions with the Higgs boson. The stronger the coupling between
a particle and the Higgs, the more massive that particle is. e.g. the top quark
Yukawa coupling is of order one, but the coupling with the muon is of order
0.5× 10−3.
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Producing Higgs Bosons with the LHC

Once produced, the Higgs decays to lighter Standard Model
Particles.
Two photons, two tau leptons, two Z bosons,...
We then measure these decay products and ”reconstruct” the
Higgs!Bobby Samir Acharya ICTP/KCL
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Higgs

We then measure these decay products and ”reconstruct” the
Higgs!
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Higgs Decay Probabilities
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Higgs

The above figure shows the branching ratios of the Higgs boson as a function of its
mass. These are the probablities for the Higgs to decay into a certain set of particles
as a function of its mass. Consisder the region from 100 to 130 GeV. Here the decays
are dominated by the bb̄ final state. This is because the mass of the Higgs is not large
enough to decay into two Z bosons or W bosons or two top quarks. But it can decay
into any of the other fermion/anti-fermion pairs. It decays into bb̄ most of the time as
its coupling to bottom quarks is larger than the other fermions (except the top quark,
but it can’t decay to tt̄) because it doesn’t have enough mass.
Beyond 130 GeV, decays into W ’s become available (initially with one virtual W ) and
start to dominate until 180 GeV when Z’s also enter. Finally at twice the top quark
mass, decays into tt̄ are allowed.
The actual Higgs mass as measured by the LHC experiments is around 125 GeV ± 2
GeV or so. This region is interesting because, with enough data many of the final
states are available and many have actually been observed. If the Higgs mass had
turned out to be 190 GeV, only WW and ZZ would have been observable.
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Higgs decays

Note: even though the Higgs is neutral, decays to two photons i.e. γγ appear
on the graph. These decays actually occur due to higher order (one loop)
processes in the Standard Model. This is why the γγ channel has a small
branching fraction.
BUT: even though it is small, experimentally it is easier to study than bb̄ at a
hadron collider.
This is because the background to bb̄ is much larger than that of γγ. In fact,
the calorimeters of ATLAS and CMS were designed to find the Higgs boson in
the γγ final state. These instruments turned out to perform even better than
anticipated and the Higgs was first seen in the γγ channel.
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Higgs Observation

How is the Higgs seen in the diphoton channel?
First, we select events with two photons and nothing else.
We require that these photons are ”very clean” and have energies/momenta of
at least 15 GeV or so.
Since we measure the energies and momenta of the photons, for each such
event we have a Lorentz 4-vector for each photon: Pµ1 and Pµ2 .
From these we construct the invariant mass squared:

M2 = (Pµ1 + Pµ2 )(P1µ + P2µ) = (E1 + E2)2 − (p1x + p2x)2 − ... (108)

The reason for this is that, if the Higgs decays to two photons then Lorentz
invariance implies that

Pµh = Pµ1 + Pµ2 (109)

i.e. that the Higgs’ Lorentz vector equals the sum of the Lorentz vectors of the
two photons. This implies:

Pµh Phµ = m2
h (110)

Bobby Samir Acharya ICTP/KCL

ASP2014, UCAD, Dakar, Senegal



Higgs Discovery

Events with diphotons can be produced by many other processes leading to a
large background to this search. But, if we understand precisely enough the
background and the signal-to-background rate is large enough then we should
be able to see the ”Higgs peak” above the background. This is an example of

what has been seen: You
can see a clear peak in the data around 126 GeV.
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Conclusions

The Higgs has subsequently been observed in the ZZ, WW ∗ and ττ channels
as well, in agreement with the Standard Model predictions
This has been a truly monumental, remarkable set of discoveries which
completes the story of the Standard Model.
The Standard Model is actually very simple: just based upon gauge and
Lorentz symmetry
Combining this with the fact that all of its predictions have been verified
represents one of the greatest achievements of human civilization
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There is Much To Do

Thankfully, there are still many questions:
The Standard Model does not explain Dark Matter
The Standard Model does not explain Dark Energy
The masses of the Standard Model particles are not explained
In particular, why is mh so small compared to, say, the Planck
mass mpl = 1

G
1/2
N

?

Why is there so much more matter compared to anti-matter?
Baryogenesis.
......
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Thank you and Good Luck with your Studies!
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Notation

We use natural units:~ = c = 1
V µ is a 4-component vector with components V0 and
Vx, Vy, Vz ≡ Vi.
Vµ is a 4-component co-vector with components V0 and
−Vx,−Vy,−Vz.

∂t ≡ ∂
∂t . ∂i ≡ ∇ ≡

∂
∂xi

V νVν ≡ V 2
0 − V 2

x − V 2
y − V 2

z ≡ V 2
0 − V 2

i ≡ V 2
0 −V2

∂µ ≡ (∂t,∇) and ∂µ = (∂t,−∇)
4-momentum can be represented as pµ → i∂µ and
pµ → i(∂t,−∇)
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