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SUPPLEMENTAL MATERIAL

We show how one can get the estimates (5) and (6) for the mobility edge by analyzing the perturbative wavefunctions
in the forward approximation.

At finite energy density ε = Ea/N resonances, i.e. values of the energy denominators δn = Ea − Ei particularly
small, are quite rare. One has to go a distance of O(N) to find such a resonance. Let us suppose the first resonance
occurs at distance n. Prior to the resonance, the paths sum coherently with each contributing a typical value, so that
we estimate

ψn−1 ' (n− 1)!

(
Γ

εN

)n−1

(1)

for all amplitudes at distance n− 1. The are n ways to reach a site at distance n from sites at distance n− 1. Hence,

ψn =
Γ

δn
nψn−1 (2)

We have a resonance when |ψn| > 1, namely if

|δn| < Γn|ψn−1| (3)

Therefore the (small) probability to have a resonance is

p =

∫ ε+Γn|ψn−1|

ε−Γn|ψn−1|
dε

√
N

π
e−Nε

2

' 2Γn|ψn−1|ρ(ε) (4)

with ρ =
√

N
π e
−ε2N comes from the distribution of levels. Define Pn as the probability that none of the

(
N
n

)
points

at level n gives a resonance. In order to proceed we need to assume that these events are uncorrelated. This is an
approximation which gives a lower bound to the probability Pn and we will see how good this is compared to the
numerical data. In this approximation,

Pn = (1− p)(
N
n) (5)

which, inserting (4) gives

Pn =

(
1− 2Γn!ρ

(
Γ

εN

)n−1
)(Nn)

' e−e
Nf(x,ε)

(6)

where x ≡ n/N and,

f = N−1 ln

(
2

(
N

n

)
Γn!ρ

(
Γ

εN

)n−1
)
. (7)

We obtain to leading order in 1/N ,

f(x, ε) = −(1− x) ln(1− x)− ε2 + x ln

(
Γ

eε

)
. (8)

As N → ∞, if f < 0 we have Pn → 1, while for f > 0 we have Pn → 0. In order to see where the first resonance
occurs we need to find the smallest n such that Pn = 0, so we have to find f∗, the maximum of the function f(x, ε)
over x for any given ε. After some algebra we find

f∗ =
ε

Γ
+ ln

(
Γ

eε

)
− ε2. (9)



2

0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.5

-1.0

-0.5

0.0

x

f

0.0 0.2 0.4 0.6 0.8 1.0
-0.3

-0.2

-0.1

0.0

0.1

x

f

FIG. 1: (color online) The function f in (8) for ε = 0.5 and Γ < Γc (left) and Γ > Γc (right). In the right panel the red, dashed
line is the position of x∗ = n∗/N .

Solving f∗ = 0 for Γ we find an explicit form for Γc(ε) which can be expanded for small ε as

Γc = ε+
√

2ε2 +
4

3
ε3 + ... . (10)

At constant Γ, varying Ea therefore defines a many-body mobility edge. It is also instructive to see at which value of
n the maximum occurs, which gives the most probable position of the first resonance:

n∗ = N
(

1− ε

Γ

)
' N(

√
2ε− 2ε2/3 + ε3/(9

√
2)...). (11)

We see from here that for any finite ε the position of the first resonance is at O(N) away. As ε→ 0 the first resonance
comes quite close to the origin of the locator expansion. If we want to find the finite-N corrections to Γc at ε = 0, we
need to consider this possibility more carefully.

This leads to the discussion of the case at infinite temperature, i.e. where Ea = 0. Let us define the variable
yi = − ln(|Ei|/σ) for some σ which we will fix shortly. yi →∞ at a resonance Ei = Ea = 0.

We find

P (yi) =
2σ√
πN

e−yi−
σ2

N exp(−2yi). (12)

We choose now

σ =

√
πN

2
(13)

so, since we are interested in rare fluctuations where yi � 1, we have that

P (yi) ' e−yi for yi & 1. (14)

We need to study the distribution of the amplitudes

Ap =

n∏
i=1

Γ

0− Ei
, (15)

over all the paths p which go out to distance n. Consider all the N ≡
∏n−1
i=0 (N − i) paths that go out to one of the(

N
n

)
points. They appear clustered in sums but since the distribution of their contributions is very large this does not

matter: O(1) of the paths will dominate both the sum to get to the point b and the total probability of resonance at
distance n. To control the latter, we will look for the probability that none of these paths gives resonance. We already
know that the first path to break this condition will be similar to the greedy path but performing the calculation will
give an extra lnN correction, typical of Anderson localization problems on large connectivity graphs [1].
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Consider the log amplitude Ap of a given path,

ln |Ap| = n ln(Γ/σ) +

n∑
i=1

yi. (16)

We have a resonance if

|Ap| > 1, (17)

namely if

n∑
i=1

yi > n ln(σ/Γ) ≡ Yc. (18)

Introducing Y =
∑n
i=1 yi one finds that it is distributed as

P (Y ) =
Y n−1

(n− 1)!
e−Y , (19)

and so we have now all the ingredients to find the probability to have a resonance |Ap| > 1 at distance n (see also
[1–3]).

Since P (|Ap| > 1) = P (Y > Yc) , where Yc = n ln
(
σ
Γ

)
� 1 we have

p ≡ P (Y > Yc) =

∫ ∞
Yc

dY
Y n−1

(n− 1)!
e−Y

' Y n−1
c

(n− 1)!
e−Yc +O(Y (n−2)

c ) (20)

doing the integral by parts. Using Stirling’s approximation:

p ' Y nc e
n

nn
e−Yc

= exp
[
−nφ

(σ
Γ

)]
, (21)

where φ(x) = ln(x/(e lnx)) ≥ 0. Again, assuming that all N paths resonate independently (an underestimate), the
probability that we do not have any resonant paths is

(1− p)N ' e−Np. (22)

If Np � 1 then the probability that no resonating path exists goes to zero. Defining f = ln(Np)/n we have the
condition

f =
1

n
lnN − φ(σ/Γ)

' lnN − ln

(
σ

eΓ ln(σ/Γ)

)
= 0, (23)

the condition for the transition gives

σ

eΓc ln(σ/Γc)
= N. (24)

The numerical solution of this equation for N = 8, ..., 14 are reported in the text. We cannot solve this equation for
Γc exactly but in the large N limit, the solution is

Γc '
σ

eN ln eN
=

√
π

2eN1/2 ln(eN)
+O

(
1

N1/2 ln2N

)
, (25)

as quoted in the main text.
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Replica treatment– The statistical properties of the wavefunctions can also be studied using the replica method,
which provides complementary but non-rigorous understanding [4, 5]. In this approach, we view the amplitude ψb
as the partition sum of a directed random polymer (the path) living on the hypercube with the long-tailed random
weights wi = Γ/(Ea − Ei). Notice that these weights do not have any finite moments so we expect the directed
random polymer to condense onto a small number of large weight paths [6]. We focus on the most interesting case of
infinite temperature states, where the replica approach is most useful as it naturally regulates the divergence of the
weights.

The typical value of the forward scattering wavefunction f = ln |ψ| admits a straightforward replica treatment

exploiting the usual relationship ln |ψ| = Re limm→0
ψm−1
m . In the 1RSB ansatz, the dominant configurations con-

tributing to ψm consist of m/x tightly bound groups of x paths each. This gives rise to the 1RSB free energy:

f(x) =
n

x

(
log n− 1 + logwxi

)
(26)

where x ∈ [0, 1] is the Parisi parameter and wi = Γ/(Ea−Ei) is the weight on site i. Minimizing over x, we find that
the saddle point of the replicated free energy arises at x∗ = 1− 1

log
√

2/πn
+ · · · as n→∞, indicating condensation of

the paths.
Solving for the resonance condition Re f = 0 at n = N , we find the estimate

Γc =

√
π

2
√
N log

√
2/πN

+ · · · (27)

for the critical value of the transverse field. We note that this estimate is larger by a factor of e than the estimate
from the direct probabilistic analysis above, but it has the same scaling with N . This is natural as the resonance
condition used here is that the amplitude at the far side of the hypercube should diverge as opposed to a small (but
entropic) collection of atypical resonances appearing somewhere in the cube, as estimated above.
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