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We study a disordered classical Heisenberg magnet with uniformly antiferromagnetic interactions which are
frustrated on account of their long-range Coulomb form, i.e., J (r) ∼ −A ln r in d = 2 and J (r) ∼ A/r in
d = 3. This arises naturally as the T → 0 limit of the emergent interactions between vacancy-induced degrees
of freedom in a class of diluted Coulomb spin liquids (including the classical Heisenberg antiferromagnets
in checkerboard, SCGO, and pyrochlore lattices) and presents a novel variant of a disordered long-range spin
Hamiltonian. Using detailed analytical and numerical studies we establish that this model exhibits a very broad
paramagnetic regime that extends to very large values of A in both d = 2 and d = 3. In d = 2, using the
lattice-Green-function-based finite-size regularization of the Coulomb potential (which corresponds naturally
to the underlying low-temperature limit of the emergent interactions between orphans), we find evidence that
freezing into a glassy state occurs only in the limit of strong coupling, A = ∞, while no such transition seems
to exist in d = 3. We also demonstrate the presence and importance of screening for such a magnet. We analyze
the spectrum of the Euclidean random matrices describing a Gaussian version of this problem and identify a
corresponding quantum mechanical scattering problem.
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I. INTRODUCTION

The appearance of novel magnetic phases [1–3] generally
contains as one ingredient the ability of the system to avoid
conventional (semi-)classical ordering. In this connection, the
role of several factors has been extensively explored. These
include low dimensionality and the resulting enhancement of
the effects of quantum and entropic fluctuations, geometrical
frustration, whereby the leading antiferromagnetic interactions
compete with each other in lattices such as the kagome and
pyrochlore lattice, and the presence of quenched disorder,
which disrupts any residual tendency to conventional long-
range order. Each of these has given rise to research efforts
spanning decades of work.

Here, we study a model with a new combination of some of
these ingredients. The focus of our study is a disordered clas-
sical Heisenberg magnet with antiferromagnetic interactions
which are frustrated on account of their long-range Coulomb
form at long distances, i.e., J (r) ∼ −A ln(r/L) in d = 2
(where L is a length scale of the order of the system size) and
J (r) ∼ A/r in d = 3. This Coulomb form of the Heisenberg
couplings arises naturally as the T → 0 limit of the emergent
entropic exchange interactions [4] between vacancy-induced
“orphan” degrees of freedom [5–8] in diluted Coulomb spin
liquids and presents a novel variant of a disordered long-range
spin Hamiltonian with connections to Euclidean random
matrices. The coupling constant A is determined in any
given system by the microscopic details of the underlying
Coulomb spin liquid, while the spin degrees of freedom in
the model we study are related to the physical orphan of the
underlying diluted magnet. Our focus here is on studying the
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range of behaviors possible in the T → 0 limit by mapping
out the phase diagram of our Coulomb antiferomagnet as a
function of A. Frustration arises naturally in the model under
consideration, as any triplet of spins are mutually coupled
antiferromagnetically but without the randomness in sign of,
say, the Sherrington-Kirkpatrick model [9]. Also, unlike the
latter case, the interactions are long-ranged but not independent
of distance.

Our motivations for studying it include having been led
to this model in a previous investigation [10] of diluted
frustrated magnets exhibiting a Coulomb spin liquid at low
temperatures. The model is, in this sense, natural, appearing
as the zero-temperature limit of a disordered frustrated magnet.
The corresponding experiments are on the material known as
SCGO, which triggered the interest in what we now call highly
frustated magnetism in the late 80s [11]. Its behavior at very
low temperatures is still not very well understood, e.g., the
observed glassiness even at very low impurity densities (as
low as 2% of the Cr sites occupied by nonmagnetic Ga atoms
in SCGO [12–14]), which appears to involve only the freezing
of a fraction of its degrees of freedom. Similar experiments
have recently been conducted on the three-dimensional spinel
compound ZCGO [15]. We return to this point in Sec. VII B.
While exhibiting a classical Coulomb spin-liquid regime,
the disorder in this system leads to the emergence of new,
fractionalized, degrees of freedom, the so-called orphans [5,6],
which interact via an effective entropic long-range interaction
mediated by their host spin liquid [4].

We believe that, as such, it can be of interest as a
generic instance of the interplay of strong interactions and
disorder in magnetism [16,17]. In particular, it develops the
strand of thought of how disorder in a topological system
characterized by an emergent gauge field can nucleate gauge-
charged defects, with the pristine bulk mediating an effective
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interaction between them. Long-range Coulomb interactions
like the one studied here are thus as natural as the algebraically
decaying RKKY interactions in metallic spin glasses.

Our central results are the following. First, we use the
results of previous work [4] to work out in detail the key
features of this T → 0 limit and demonstrate that this limit
is characterized by a single coupling constant A, which is, in
principle, determined by the geometry of the underlying spin
liquid. Second, our extensive Monte Carlo (MC) simulations
for d = 2 reveal no sign of any freezing or ordering transition
up to very high coupling strengths. At the same time, within
a self-consistent Gaussian approximation, we find that such
a transition does appear at infinite coupling in d = 2 but
not in d = 3. This transition is very tenuous, in that it is
replaced by a more conventional ordering transition in a finite
system depending on the choice of how to regularize this
long-range interaction in a finite lattice: the finite-size lattice
regularization that is most natural from the point of view
of the T → 0 limit of the underlying diluted magnet gives
rise to freezing into a glassy state at A−1 = 0, while other
regularizations replace this glassy state with a conventional
ordering pattern. The Coulomb antiferromagnet therefore
remains highly susceptible to perturbations, just like many
other frustrated magnets [1].

We also study the spectrum of the interaction matrix of this
random Coulomb antiferromagnet, which provides an instance
of a Euclidean random matrix (ERM) [18,19], in that its
entries are obtained as a distance function between randomly
chosen location vectors. We find two qualitatively distinct
regimes. On one hand, at low energies in the low-density limit,
eigenfunctions are localized, with the lowest energy states
as pairs of neighboring spins the probability distribution of
which we compute. Beyond this extreme low-density limit,
more complex lattice animals appear in this regime. On
the other hand, at high energies, the modes correspond to
long-wavelength charge density variations with superextensive
energy. In between, we find no clear signature of a well-defined
mobility edge in this Coulomb system.

Another interesting aspect of the uniformly antiferromag-
netic interactions is that they permit a variant of screening to
appear in this Coulomb magnet, which has no correspondence
with other long-range magnets such as the Sherrington-
Kirkpatrick model. Our analysis of this screening further
leads us to an identification of the correlations of the random
Coulomb antiferromagnet with the properties of the zero-
energy eigenstate of a quantum particle in a box with randomly
placed scatterers.

Returning to experiments, we note that the uniform mag-
netic susceptibility of SCGO will of course be dominated
by the Curie tail (∼1/T ) produced by these orphans at
low temperatures. Both in d = 2 and in d = 3, the full
susceptibility, when vacancies are placed at random, is that
of independent orphans to a good approximation despite the
long-ranged interaction present between them. This persists
down to the lowest temperatures not only because of the
screening of the interactions at finite physical temperature, but
also because the size of the Coulomb coupling derived from
the entropic interaction is comparatively weak. In addition,
the physical orphans are related to the degrees of freedom in
the Coulomb antiferromagnet via a sublattice-dependent stag-

gering transformation, so that the uniform susceptibility of the
physical orphans corresponds to the staggered susceptibility of
the degrees of freedom of our Coulomb antiferromagnet. As
a result, the uniform susceptibility remains largely unaffected
by the fact that the total (vector) gauge charge of our Coulomb
antiferromagnet vanishes.

The remainder of this paper is structured as follows. In
Sec. II, we first provide a self-contained review of earlier
work on vacancy-induced effective spins in a class of classical
antiferromagnets on lattices consisting of “corner sharing
units” and then build on this to provide a careful derivation
of the T → 0 limit of the emergent entropic interactions
between orphans and use this to define our model Coulomb
antiferromagnet. After outlining our analytical and numerical
approaches in Sec. III, we present the results obtained in d = 2
and d = 3 (Sec. IV). Section V contains the analysis of the
problem in terms of an ERM, while the role of screening
and the connection to a scattering problem are discussed in
Sec. VI. We conclude with a discussion of these results and
relegate sundry details (such as discussion of the fully occupied
lattice and the ordered state seeded by a certain finite-lattice
regularization of the two-dimensional Coulomb interaction) to
the appendixes.

II. THE RANDOM COULOMB ANTIFERROMAGNETIC
HAMILTONIAN

We thus study a classical Heisenberg model,

H = 1

2

∑
i,j

Jij �ni · �nj , (1)

where Jij takes on a Coulomb form,

Jij = −A log(rij /L) (d = 2) (2)

= A/rij (d = 3). (3)

This form with L larger than any rij has the property that
the interactions are uniformly antiferromagnetic as well as
long-ranged.

We need to supplement this by defining the degrees of
freedom, unit vectors �ni , appearing in Eq. (1). We concentrate
on the case where their locations, denoted i, are chosen
randomly on a square (cubic) lattice in d = 2 (d = 3), at a
dimensionless density of x spins per lattice site.

For long-range interactions like this Coulomb interaction,
choices about boundary conditions or ensemble constraints can
be considerably less innocuous than for short-range systems.
In order to illustrate this, and to make natural choices for these
items, as well as for motivation of our study, we next discuss
the derivation of a random Coulomb antiferromagnet as an
effective Hamiltonian of a diluted Coulomb spin liquid.

A. Orphan spins and their interactions in diluted
Heisenberg antiferromagnets

We thus begin by providing a self-contained review of
earlier work on vacancy-induced effective spins in a class of
classical frustrated antiferromagnets on lattices consisting of
“corner-sharing units.” The centers of these in turn define a
so-called premedial lattice, which is bipartite in practically all
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instances of the popularly studied classical Heisenberg spin
liquids [8]. A simple model of nearest-neighbor antiferromag-
netically interacting spins on such lattices can be written as

H = J

2

∑
i,j

�Si · �Sj = J

2

∑
�

⎛
⎝∑

�l∈�

�S�l

⎞
⎠

2

, (4)

where the summation in the alternate form of the Hamiltonian
is carried over the cornersharing simplices �, which might
be tetrahedra, as, e.g., in a pyrochlore lattice, triangles in
a Kagome lattice, or a combination of both, as in the case
of SCGO, and the spins of the frustrated magnet are now
labeled �l, the links of the bipartite premedial graph (whose sites
correspond to the centers of the simplices � of the original
lattic and links �l correspond to sites of the original lattice).
When written in this form, it is clear that ground-states are
characterized by the constraints:∑

�l∈�

�S�l = 0,∀ � . (5)

These local constraints lead to an effective description in terms
of a theory of emergent electric fields that obey a Gauss law.
To see this, we define electric fields Eα

�l = ε�lS
α
�l on links �l,

where ε�l is a spatial unit vector that points from the A to
the B sublattice of the premedial lattice end of this link. The
ground-state condition then translates to the statement that the
lattice divergence of this electric field vanishes at each site
� for each α. The key idea of this effective description is
that the coarse-grained (entropic) free energy density depends
quadratically on the local electric field, and deviations from
the vanishing divergence condition amount to the appearance
of vector Coulomb charges [4]. These emergent gauge charges
are defined for each lattice point � of the bipartite premedial
lattice,

�Q� = η(�)
∑
�l∈�

�S�l , (6)

and the staggering factor, η(�) = +1, if � is an A-sublattice
site in the premedial graph, and −1 otherwise. Since each
microscopic spin contributes with opposite signs to the
vector charge on two neighboring simplices, the total gauge
charge of a system without boundaries must vanish in every
configuration of the system,∑

�

�Q� = 0. (7)

This very natural condition—akin to the charge neutrality of
the full universe and, in our case, unavoidable due to the
microscopic origin of the emergent gauge charge—is explicitly
imposed in our MC simulations of the system.

The mapping of the pure system to an emerging gauge
field theory at low temperatures makes clear that general-
ized “vector charges,” �Q�, are generated thermally as a
consequence of the violation of the ground-state constraints.
The constraint, Eq. (5), is also unavoidably violated in the
presence of nonmagnetic impurities (Fig. 1) whenever all but
one spin of a given simplex are substituted for by vacancies
(simplices containing at least two spins can in general satisfy
the zero-total-spin condition, and such simplices do not host

FIG. 1. (Color online) Illustration of the orphan spin arising from
the introduction of nonmagnetic impurities [(red) circles] on the
checkerboard lattice. Its effective moment is half that of a free spin.

a vector charge in the T → 0 limit). Indeed, when all spins
but one in a simplex are replaced by vacancies, the result is a
paramagnetic Curie-like response [4,6,10], which dominates
the susceptibility response at low temperatures. The lone spins
on these defective simplices, which serve as the epicenter of
this paramagnetic response, were baptized orphans [5] in the
first studies of this effect.

The field theory developed in Refs. [4] and [10] extends
the self-consistent Gaussian approximation (SCGA) [20], a
theory successful in describing low-temperature correlations
in undiluted systems, to incorporate the effects of dilution and
study the physics of these orphans at nonzero temperature
in a manner that treats entropic effects on an equal footing
with energetic considerations. In its original form the SCGA
replaces the hard constraint on the spin norm, �S2

i = S2, with the
relaxed soft spin condition on their thermal average, 〈�S2

i 〉 = S2.
The key insight in Refs. [4] and [10], which led to the
detailed analytical understanding summarized below, was the
following: While it is sufficient to treat in this self-consistent
Gaussian manner all spins other than the lone orphan in
a simplex in which all but one spin has been replaced by
vacancies, this is much too crude an approximation for the
orphan itself, which must be treated without approximation as
a hard spin obeying �S2

orphan = S2. Remarkably, the resulting
hybrid field theory continues to be analytically tractable when
the number of orphans is small [4,10]. With just one orphan
present in a sample with an external magnetic field of strength
B along the z axis, the theory predicts that this orphan sees a
magnetic field B/2, with the other half of the external field
screened out by the coupling to the bulk spin liquid. The
resulting polarization of the orphan serves as a source for an
oscillating texture that spreads through the bulk. The net spin
carried by the texture cancels half the spin polarization of the
orphan, resulting in an impurity susceptibility corresponding
to a classical spin S/2. With more than one orphan present,
the spin textures seeded by each orphan mediate an effective
entropic interaction between each pair of orphans.

The effective action for a pair of orphans is predicted in this
manner to have the form

−βJeff(�r,T )�n1 · �n2, (8)
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where �n are unit vectors corresponding to the directions of the
orphans in a given configuration. The exchange coupling has
a particularly simple form in the large separation limit

βJeff ≈ −η(�r1)η(�r2)
〈 �Q�(�r1) · �Q�(�r2)〉

〈 �Q� · �Q�〉2
, (9)

which involves only “charge-charge” correlations calculated
in the pure system:

〈 �Q�(�r1) · �Q�(�r2)〉 ∼ − T 2T d/2−1

×
∫ �/

√
T

ddq
exp (i �q · (�r1 − �r2))

�cq2 + κ
.

(10)

The denominator of Eq. (9) behaves at low temperatures as
〈 �Q� · �Q�〉 = T/J from equipartition.

For orphans in d = 2, one finds

Jeff(�r1 − �r2,T ) = η(�r1)η(�r2)TJ (|�r1 − �r2|/ξent), (11)

with an entropic screening length ξent = 1/κ ∼ 1/
√

T sep-
arating two regimes for J (κr): for κr � 1 a logarithmic
one, J (κr) ∼ − log(κr); and for κr  1 a screened regime,
J (κr) ∼ 1√

κr
exp(−κr). Analogously, in d = 3,

Jeff(�r1 − �r2,T ) = η(�r1)η(�r2)T 3/2K(|�r1 − �r2|/ξent), (12)

and the entropic screening length ξent = 1/κ ∼ 1/
√

T sep-
arates two regimes, algebraic K(r) ∼ −1/r and screened
K(r) ∼ exp(−κr).

In the physical system, at any nonzero temperature, this
is thus a ”short-ranged” interaction on account of the finite
screening length, which, however, diverges as 1/

√
T . In this

article, we are interested in the limit of T = 0, where the
interaction takes on the novel—for magnetic systems—long-
range Coulomb form.

B. Model Hamiltonian

In the limit of T → 0, we are thus led by these consider-
ations to Coulomb interactions between the vector orphans,
which we study in detail here. For simplicity, we consider
unit-vector spins �n at random locations in a periodic hyper-
cubic lattice of linear size L with occupancy probability x,
corresponding to an underlying spin liquid on the checkerboard
and “octochlore” lattices of corner-sharing units involving 2d

spins in d dimensions.
In what follows, we get rid of the sublattice factors that

affect the sign of the effective interaction by inverting all unit
vectors placed on the B sublattice. In other words, we identify
S�ni with ηi

�Sorphan,i , where �Sorphan,i is the orphan on the simplex
labeled i in the underlying diluted frustrated magnet.

This gives us a “random Coulomb antiferromagnet” in
which unit-vector spins interact with an exchange coupling that
is always antiferromagnetic but of a long-range Coulomb form
at large distances. For a classical system, this transformation
is innocuous, but note that natural observables cease to be
so under this mapping; e.g., the orphan contribution to the
uniform susceptibility of the underlying diluted magnet is
now given by the staggered susceptibility of our Coulomb
antiferromagnet.

As is usual for entropic interactions in the limit of T → 0,
the strength of their coupling, A, is fixed by the microscopics
of the model from which they have emerged. In this work,
we are interested in exploring the generic behavior of such
models—in particular, identifying possible phases—and thus
allow the coupling A to be variable. For completeness, we
mention that A = 1

4π
for the checkerboard lattice.

This therefore leads to the form of H at the beginning of this
section, Eq. (1). To make Eq. (2) dimensionally unambiguous
we write

Jij = −A log(rij /L) (d = 2),

with L conveniently set to a value of the order of the system
size L so that Jij > 0 always. In the above language, with
sublattice factors η absorbed into the definitions of �ni , the zero-
gauge-charge constraint imposed by the microscopic origin
of this effective model now translates to the constraint that∑

i �ni = 0 in every allowed configuration of our Coulomb
antiferromagnet. This constraint in fact can also be imposed by
adding an infinitely strong interaction acting equally between
all spins. This equivalence renders the detailed choice of L
immaterial.

We note an interesting scale invariance of this model in
the limit of low densities of spins. This scale invariance is
inherited from that of the logarithmic function under scaling
transformations, J (κr) = log(κ) + J (r), together with net
charge neutrality, Eq. (7),∑

i

�ni = 0, (13)

implying that the extra term log(κ) gives a temperature-
independent contribution to the action determined by
1/2

∑
i �=j �ni · �nj = −N/2. The partition function thus only

picks up a constant factor:

Z′ = e−β
∑

i,j J (κrij )�ni ·�nj = eβ log(κ)N/2Z. (14)

This also means that, rather unusually, in the continuum limit
x → 0 the partition function is a scaling function depending
on the randomly chosen orphan locations only scaled by their
mean separation. Lattice discretization effects at finite x break
this equivalence. The scaling transformation for the model in
three dimensions gives J (κr) = J (r)/κ , which implies, for
the partition function, a rescaling of β:

Z′(β) = e−β
∑

i,j J (κrij )�ni ·�nj = Z(β/κ). (15)

For Coulomb interactions in a finite-size system, various
choices of the interaction yield the same long-distance form
in the limit L → ∞. The most natural form from the point
of view of the effective field theory predictions for emergent
interactions between orphans is the Fourier transform of the
inverse of the lattice Laplacian, d − ∑d

i=1 cos ki :

J (rij ) = π

L2

∑
�q

ei�k·�rij

d − ∑d
i=1 cos ki

. (16)

We call this the lattice Green function (LGF), and our
most detailed studies are carried out using this form of the
interaction.
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FIG. 2. (Color online) J (x,y) used in the simulations in d = 2.

Alternatively, one can work directly with the Coulomb
form, e.g., for d = 2,

J (rij ) = − log
( rij

L
)
, (17)

with L = L/
√

2. This form agrees with the LGF interactions
at short distances (see Fig. 2).

The issue of how to impose the boundary conditions, and
therefore how to compute rij , turns out to make a large
difference in the results for a finite system, as we shall see.
The choices of either

rij = |�ri − �rj | =
√

x̃2
ij + ỹ2

ij , (18)

with x̃ij = min(|xi − xj |,L − |xi − xj |), or

rij = L

π

√
sin2

(
π (xi − xj )

L

)
+ sin2

(
π (yi − yj )

L

)
(19)

result in different behaviors for the system, which are explained
in more detail in Sec. IV. We refer to these choices as
periodized, and smoothed, logarithms, respectively. The latter
is very close to the LGF, while the former maintains a finite
difference from it at the periodic boundary, where it is not
differentiable for any L (Fig. 2). It is easily seen why this
finite difference is independent of L, if one compares the
smoothed log to the periodized log, approximately equivalent
to comparing the LGF with the log. Looking, e.g., at the
midpoint of one edge (xij = L/2, yij = 0), one finds

(J LGF
L − J

log
L )(L/2,0) ≈ log(π/2), (20)

where the subscript L emphasizes that we are looking at the
respective forms of the interactions in a finite system of size
L. Note, again, that adding a constant to the interaction (in
d = 2), e.g., by changing the denominator of Eq. (17), leaves
the interaction unchanged due to the global charge neutrality
constraint.

III. METHODS

The analysis of spin systems with the potential for glassy
phases is a delicate endeavor, as equilibration of large systems
is elusive. The existence and determination of a transition
temperature are usually a controversial issue [21,22]. Since
our system has long-ranged interactions, boundary effects can
cause yet more trouble. This is why we combine analytical
with numerical methods, as well as mappings to other problems
which have received attention in a different context previously.

Numerically, we study the behavior of this model through
MC simulations and analytically in the self-consistent Gaus-
sian (“large-m”; also denoted the LM approach in the following
[23–25]) approximation, where the parameter A mimics an
inverse temperature. Our MC simulations directly impose the
constraint, Eq. (7). For this we initialize the system in a
random configuration of vanishing total spin, and the update
movements in the system consist of selecting an arbitrary pair
of spins and rotating them around the axis determined by
their vectorial sum. An MC simulation of the same system
with strictly positive interactions, without this constraint on
the total spin, has also been investigated, and the conclusion is
that while the relaxation time increases, the system still prefers
to stay close to the manifold of vanishing total spin.

The LM approach consists of considering spins with m

components and letting m → ∞. This is formally equivalent
to the soft-spin approximation and it only gives, in principle,
information about the infinite number of components limit, but
this can be understood as the first term in an expansion of the
O(m) model. It has been very successful in the analytical study
of correlations in highly frustrated spin systems [20], being
able to reproduce the main features of the ongoing phenomena,
such as the existence of long-range dipolar correlations at
T = 0, characterized by the presence of “pinch points” in the
structure factor [26].

The LM approach allows an analysis of the system both at
finite coupling strengths A < ∞ and at A = ∞. The study of
glassiness using this approach has already been undertaken
in a variety of models [25,27], and we follow a similar
methodology. Correlations are computed through the matrix

Bij = Jij + hiδij (21)

and are given by

Cij = 1

m
〈�ni · �nj 〉 = 1

A
(B−1)ij . (22)

These can be computed once the Lagrange multipliers, hi , are
determined through the set of nonlinear equations:

Cii = 1. (23)

For comparison between the LM and the MC, we scale
observables and couplings with m so that their small-coupling
(“high-temperature”) forms agree.

The point A = ∞ is treated within the LM approach by
determining the (unique [23]) ground state through a local field
quench algorithm [28]. This algorithm is based on the fact that
if the number of spin components, m, is large enough (larger
than

√
2N [23]), then a system of spins with m components is

effectively equivalent to the corresponding system in the limit
m → ∞. The algorithm then consists of taking a system of N
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spins with m >
√

2N components initially randomly oriented
and then iteratively aligning each spin with its local field. This
procedure is expected to converge to the unique ground state,
from which all the quantities of interest can be computed.

A fundamental quantity at A = ∞ within the LM approach
is the number of zero eigenvalues, m0, of the matrix Bij =
Jij + hiδij ; it can be shown [23] that the ground-state spin
vectors span an m0-dimensional space. This quantity should
scale with the number of particles in the system as m0 ∼ Nμ.

The main quantity of interest in our study is the spin-glass
susceptibility (square brackets here and throughout indicate
the disorder average),

χSG(�k) =
⎡
⎣ 1

N

∑
i,j

〈�ni · �nj 〉2 cos �k · (�ri − �rj )

⎤
⎦, (24)

obtained in the MC simulations through the overlap tensor [3],

Q
α,β

�k = 1

N

∑
i

nα
i,1n

β

i,2e
i�k·�ri , (25)

where Greek indices refer to the spin components, while the
indices 1 and 2 refer to two independent replicas of a disorder
realization. This might be interpreted as the overlap of a spin
configuration with itself after an infinitely long time. Since the
onset of glassiness can also be understood as a divergence of
the equilibration time, the nonvanishing of this order parameter
signalizes the transition.

The spin-glass susceptibility in terms of this tensor is

χSG(�k) =
[
N

∑
α,β

〈∣∣Qα,β

�k
∣∣2〉]

. (26)

We follow the usual practice to determine the spin glass
transition by computing a finite system correlation length
associated to the susceptibility above. The Ornstein-Zernike
form for correlations gives:

ξL = 1

2 sin(kmin/2)

(
χSG(0)

χSG(�kmin)
− 1

)1/2

, (27)

and near the transition, the finite size scaling prediction is
expected to be:

ξL

L
= X(L1/ν(1/A − 1/Ac)), (28)

while the susceptibility should follow:
χSG

Lγ/ν
= Y (L1/ν(1/A − 1/Ac)), (29)

Notice that these scaling relations only hold if there exists
a crossing of finite size correlation length curves for different
system sizes at an unique finite coupling strength value. The
absence of such a crossing at a finite Ac indicates the absence
of a phase transition. Nonetheless a phase transition at Ac =
∞ cannot thus be ruled out and the LM approach allows an
analysis in this situation. The scaling relations predicted to
hold in this case (Ac → ∞) are:

χSG = Ld(1−μ)Y (L1/ν/A), ξL/L = X(L1/ν/A). (30)

The exponent μ here is the one previously introduced for the
scaling of the number of zero eigenvalues of the matrix B with

the number of particles in the system. Furthermore, as was
shown in Ref. [25], the same exponent controls the scaling of
the spin glass susceptibility for the ground state configuration:
χSG ∼ N1−μ.

IV. RESULTS

A. Two dimensions

The two approaches (MC and LM) yield a broadly consis-
tent picture for each of the interactions studied. We conduct
an analysis of a possible freezing transition in the model by
measuring the spin glass susceptibility and trying to identify
the transition through a finite size scaling of its associated
correlation length. Other observables such as the specific heat
or the uniform susceptibility were also studied, though these
do not indicate any of the conventional orderings.

The results from MC simulations and LM calculations are
shown in Fig. 3 for a system with the LGF as the interaction for
a fixed density x = 0.10 of particles. In each case the number
of disorder realizations simulated was 200.
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FIG. 3. (Color online) Spin glass susceptibility (top) and corre-
lation length (bottom) for the LGF interaction. Several system sizes
are indicated by different colors. Circles represent MC simulations
(error bars are of the order of the circle size), and lines are from the
LM approach—correlations are stronger for Heisenberg spins than
the ”soft” LM spins throughout. Insets: Scaling collapse for LM for
1/Ac = 0.
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FIG. 4. (Color online) Scaling of the number of zero eigenvalues
(m0) of matrix B defined in the text and of the spin glass susceptibility
(insets) with the number of particles for the LGF (top) and log
(bottom) interactions.

Globally, correlations are stronger for the MC simulations
on Heisenberg spins compared to the LM results. This is in
keeping with the general lore that a lower number of spin
components is conducive to spin freezing, as is well known
from the comparison of Ising and Heisenberg spins.

In the broad range of coupling strengths considered by our
analysis, no unique crossing for the different system sizes of
the correlation length curves can be identified.

The LM analysis at A = ∞ yields the exponent μ as
indicated in Fig. 4. This seems to have the same value, μ ≈ 0.3,
for both the LGF and the log interactions. The exponent value
μ = 0.3 is used as input, together with the assumption that
Ac = ∞ for the LGF, in attempting a scaling collapse of the
LM data. The exponent ν was determined by a fitting procedure
with the scaling relation, Eq. (30), only using data for the
correlation length. The resulting scaling collapse is shown in
the inset in the bottom panel in Fig. 3, where ν = 0.68(1) is
obtained. Finally, we use all these exponents in the predicted
scaling relation for the susceptibility (the result is shown in
the inset in the top panel in Fig. 3). The available data from
the LM calculations therefore indicate a freezing transition at
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FIG. 5. (Color online) Spin glass susceptibility (top) and corre-
lation length (bottom) for the log interaction, as computed in the MC
simulations (points) or with the LM approach (lines). Insets: The
corresponding scaling collapses.

Ac = ∞ for the diluted model with the LGF as the interaction
in two dimensions.

The log interaction turns out to lead to a dramatically dif-
ferent behavior! This is a surprising result, as the interactions
differ appreciably only at large distances (Fig. 2). Figure 5
shows the results for the observables of interest as obtained
from MC simulations and LM calculations, respectively. Here
again we fix the density of particles x = 0.1 and consider 200
disorder realisations. A clear crossing of the correlation length
curves for different system sizes occurs and scaling collapses
of the data are possible, which are shown together with the
corresponding critical exponents in the insets.

To study this effect more closely, we consider the pair
correlations as a function of the relative coordinates of the
pairs, averaged over disorder realizations (Fig. 6). The profile is
isotropic for the LGF, with only the first few nearest neighbors
significantly antiferromagnetically correlated. On the other
hand, the log interaction yields strongly anisotropic behavior
(the interaction itself is anisotropic) and this seems to be
responsible for what we see as a “glassy phase transition”
emerging from the “splaying-out” of the susceptibility curves.
The absence of glassiness is explained in more detail in
Appendix A, where we expose how the pair correlation profile
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FIG. 6. (Color online) Disorder-averaged pair correlations with a
spin at the origin as a function of the relative coordinates. The center
of each circle indicates the position of the spin, and its radius gives the
magnitude, with red (black) denoting positive (negative) correlations.
The large central (red) circle thus reflects 〈�S2

i 〉 = 1. Top: Result for
the LGF with A = 100. Bottom: Result for the log with A = 20. MC
data are in agreement with LM data (not shown).

helps us to define an appropriate susceptibility for the case
at hand, which is shown to diverge in the thermodynamic
limit. It turns out that this reflects not the existence of true
glassiness but a transition closer to conventional ordering.
Note that the gross features of the correlations (Fig. 6, bottom)
follow if one frustrates the pairs at the kink (Fig. 2) of the log
interaction, which form a frame at half the system size. The set
of points which in turn are in the “frames” of O(L) points in
the first frame yields the cross-shaped set of ferromagnetically
correlated sites centered on the origin.

Note that such finite-size differences appear to be absent in
previous studies in d = 1 [29]; they appear to be a consequence
of the anisotropic nature of our periodized log interaction
with its nonanalytic minimum at maximum separation. By
contrast, the “smoothed log” (Fig. 2) that also respects the
periodic boundary conditions essentially reproduces the LGF
interaction results.

1. The fully covered square lattice

For completeness, we have also analyzed the situation for a
fully occupied lattice. In this case we observe that the LGF
interaction leads to conventional (Néel) antiferromagnetic
order, while the log leads to a “striped” phase. This can be
understood from a theorem in Ref. [30] which states that the
ground state of the system is determined by the minimum of
the Fourier transform of the interaction. This is explained in
more detail in Appendix B.

B. Three dimensions

We analyze the diluted cubic lattice considering a density
of particles x = 0.0625, and again considering the model
Hamiltonian of Eq. (1), with interactions now restricted to
be the LGF as given by Eq. (16). Both MC simulations
and LM calculations cover several system sizes, with 100
distinct disorder realizations each. The main focus is on the
possibility of a glassy phase, and the spin-glass susceptibility
and corresponding correlation length are computed. Our prior
discussion of the finite-size scaling relations still holds, and one
determines the transition as a unique crossing of the finite-size
correlation length curves. Instead of this we observe (Fig. 7)
a trend for the crossings to shift towards larger values of A
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FIG. 7. (Color online) Spin-glass susceptibility (top) and corre-
lation length (bottom) computed from the LM approach (lines) or
measured in MC simulations (points), for the LGF interaction on a
cubic lattice.
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FIG. 8. (Color online) Scaling of the number of vanishing eigen-
values of matrix B defined in the text and of the spin glass
susceptibility (inset) with the number of particles for the LGF in
three dimensions at 1/A = 0.

as the system size increases, similar to the situation in two
dimensions.

No good scaling collapse was obtained. A freezing tran-
sition in this system at a finite coupling strength therefore
appears unlikely, though a more careful finite-size scaling
analysis of the crossings is necessary to give a definitive
answer.

An LM study at A = ∞ reveals that the exponent for the
scaling of zero eigenvalues of matrix B with the system size
yields μ = 0.33 (Fig. 8), in agreement with the prediction in
three dimensions for a short-ranged-interacting system [25].
Use of this exponent and the scaling relations at A = ∞ does
not lead to a good scaling collapse of our LM data, reinforcing
the conclusion that this system does not present any freezing
transition at A = ∞.

The pair correlations exhibit the same sort of behavior as in
the d = 2 case: only the first few nearest neighbors tend to be
strongly antiferromagnetically correlated, and no correlations
develop at large distances as the coupling strength is increased,
so the system remains paramagnetic.

V. SPECTRAL PROPERTIES

The A−1 = 0 transition can be considered from the point of
view of the interaction matrix Jij , (16) and (17), as an example
of an ERM [18]: Unlike the traditional random matrices,
where different entries in the matrix are uncorrelated, ERMs
are defined as a function of the distance between two points
f (r), where the randomness in the entries is induced by the
randomness of the underlying point pattern {ri}. These random
matrices have been studied for certain classes of functions f

[19], and some classical results are available. Our degree of
understanding of this subject is not comparable to that of the
classical ensembles (e.g., GOE, GUE, Wishart) [31], with most
results coming from exact diagonalization and approximations
[18,19,32].

Unfortunately due to the long-range nature of the log
interaction, many of the methods for analyzing the spectral

properties presented in Ref. [19] do not apply directly to our
case. However, a phenomenological picture of the low- and
high-lying eigenstates of the matrix Jij can be established
transparently.

Let us start from the large positive eigenvalues. Since
Jij is constant in sign, the Frobenius-Perron theorem states
that the highest eigenvector is nodeless. To a reasonable
approximation, it is fully delocalized:

φ(N) � (1/
√

N, . . . ,1/
√

N ). (31)

The associated eigenvalue is

λmax ∼ N

2
ln N, (32)

with an inverse participation ratio (IPR) of 1/N .
The second-to-highest eigenvalue is also associated with a

delocalized eigenvector, which is now a wave with wavelength
�L. At these length scales the randomness of the point process
plays little role. A finite fraction (possibly all) of the eigen-
states containing the largest eigenvalues is delocalized, they
correspond to long-wavelength charge-density variations. The
average spectral density (DOS) of the LGF, (16), interaction
matrices is shown in Figs. 10 and 11 (top), in the limits of high
(x = 0.125) and low density (”continuum limit”; x = 2−13),
respectively.

Guided by the numerics, we see that the eigenvectors
corresponding to the most negative eigenvalues are localized:
most of the weight is concentrated in O(1) spins. This leads
us to consider isolated percolation animals.

The simplest (and, for small x, the most abundant) of these
is the dimer. A well-isolated dimer supports two eigenvalues:
an antisymmetric and a symmetric one. The antisymmetric
one,

φ(0) = (1/
√

2, − 1/
√

2,0, . . . ,0), (33)

corresponds to the smallest eigenvalue. In fact, since the closest
pair is located one lattice spacing away, J12 ∼ ln L and the
lowest eigenvalue is

λmin � − ln(L) + O(1) � 1
2 ln(N/L2) − 1

2 ln(N ) + O(1).

(34)

At a fixed density, N/L2, the lowest eigenvalue depends
logarithmically on the system size.

For a well-isolated dimer, say, at distance r from the closest
spin, the effect of neglecting the rest of the spins appears as a
correction O(1/r). We now consider how large this isolation
distance r is. By the usual arguments of percolation theory,
one can estimate the expected number of isolated dimers as

nd (r) = L22x2(1 − x)πr2
, (35)

where we have approximated the number of lattice sites in a
circle of size r with πr2. Therefore the most isolated dimer
[the solution of the equation nd (r) = 1] is surrounded by an
empty area of size

r(L) =
√

2 ln(xL
√

2)√
π ln (1/(1 − x))

. (36)

Note the extremely slow dependence r(L) ∼ √
ln L.
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FIG. 9. (Color online) Ground-state eigenvector showing a
trimer for a particular disorder realization using the LGF as the
interaction on a lattice of size L = 32 with N = 102 particles. The
components of the eigenvector are proportional to the radii of the
circles, which are centered on the corresponding spin position. A red
(black) circle indicates a positive (negative) sign.

Inserting L = 120 and x = 0.1, which are about the largest
sizes considered in our numerics, r = 4.13, which can hardly
be called isolated. The isolation effect would be much more
pronounced for x = 10−3,L = 1,200, for which r = 18.4.
Otherwise, one needs to consider the ground states of more
complicated lattice animals, like trimers, snakes, squares, etc.
As an example, a ground-state eigenvector for one disorder
realization is shown in Fig. 9.

This problem becomes quickly analytically prohibitive.
However, the fact that the ground state is localized on some
lattice animal appears robust: in the graphs we consider, the
smallest eigenvalue is ∼− ln L and the IPR is O(1).

With the lower end of the spectrum localized and the high-
end delocalized, it is a natural question whether there exists
a mobility edge separating the two limits. In order to study
the transition we have looked at the IPR as a function of the
eigenvalue λ:

IPRα =
∑

i

v4
αi,

(37)

Y (λ) = 1

ρ(λ)

∑
α

IPRαδ(λ − λα),

where λα and vαi are eigenvalues and normalized eigenvectors
of Jij , respectively. We consider the average [Y ](λ) and
fluctuations σ (Y )(λ) [33]. A mobility edge would be signaled
by the divergence of the fluctuations of Y (λ) at a certain λc.
Numerical diagonalization of Jij does not indicate such a
transition: the two limits appear to be separated by a crossover.
The bottom panels in Figs. 10 and 11 show, respectively, for a
high and low density of particles, the average Y (λ), while the
insets display the fluctuations of Y (λ). The spectral properties
of the LGF in d = 3 turn out to be very similar to those in the
d = 2 case (not shown).
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FIG. 10. (Color online) Spectral density (top) and average Y

(Eq. 37, bottom) for a fraction of x = 0.125 occupied sites in the
lattice, using Jij as defined in (16), the LGF interaction. The inset
shows the fluctuations of Y .

A detailed study of this ERM ensemble would be desirable
and is left for future work.

VI. PAIR CORRELATIONS AND SCREENING

A. Analytical theory of screening

Away from the T → 0 limit of the microscopic model,
excitations of the nonorphan tetrahedra out of their momentless
state carry a gauge charge, which leads to a variant of Debye
screening, with the special feature that the gaplessness of the
charge excitations leads to a somewhat unusual temperature
dependence of the screening length [34].

In addition to this, even in the limit T → 0 studied here,
we encounter an additional type of screening. This occurs
on account of the long-range uniformly antiferromagnetic
Coulomb interaction between the orphans, whose existence
is the distinguishing property of the random Coulomb antifer-
romagnet. It again exhibits a Debye form, although distinct
from the setting of mobile charges in which Debye screening
is normally considered, as here it is the (continuous) flavor of
the charges—the orientation of the orphan, whose orientation
is free but whose location is fixed—which is the dynamical
degree of freedom.

085144-10



RANDOM COULOMB ANTIFERROMAGNETS: FROM DILUTED . . . PHYSICAL REVIEW B 92, 085144 (2015)

0

 0.25

 0.5

-4 -2 0 2 4 6 8

S
pe

ct
ra

l D
en

si
ty

λ + 0.5ln(N)

L = 1024

0

 0.2

 0.4

 0.6

-4 -2 0 2 4 6 8

Y
(λ

)

λ + 0.5ln(N)

L = 512
      768
    1024

0

 0.05

 0.1

-4 -2 0 2 4 6 8

σ(
Y

)

λ + 0.5ln(N)

FIG. 11. (Color online) Spectral density (top) and average Y

(bottom) for a fraction of x = 2−13 occupied sites in the lattice, using
Jij as defined in (16), the LGF interaction. Inset: Fluctuations of Y .

This can be seen directly in a weak-coupling expansion,
which in Coulomb systems has a vanishing radius of conver-
gence in the thermodynamic limit, as is easily verified in our
simulations (Fig. 12).

To elucidate the role of screening, we compute the disorder-
averaged correlator between two spins at ra and rb. Consider
the Hamiltonian

H = α

2

∑
i,j

Jij �ni · �nj , (38)

where Jij are given by either the log or the LGF and we
eventually set α = 1. The correlation function between two
spins, for fixed disorder, is (Fig. 13)

Cab = 〈�na · �nb〉
= 1

Z

∫
d3Nn

∏
i

δ
(
1 − n2

i

)
(�na · �nb)e− α

2

∑
i,j Jij �ni ·�nj . (39)

As it is not the hard-spin constraint which is central to
the physics of screening, we substitute it with something
more manageable (analogously to the LM method, but without
imposing self-consistency). Representing the δ function with
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FIG. 12. (Color online) Uniform susceptibility as computed from
MC simulations (points) compared to a weak-coupling expansion
(WCE) averaged over 200 disorder realizations (dashed lines).
The Curie-Weiss constant increases approximately linearly with the
number of particles (inset), yielding a vanishing radius of convergence
of the weak-coupling expansion already at leading order.

a Gaussian term,

δ
(
1 − n2

i

) → 1

(2π/3)3/2
e−3

n2
i
2 (40)

(with a factor of 3 to guarantee that 〈nx2
i + n

y2
i + nz2

i 〉 = 3/3 =
1). Thus

Cab = δab − 〈a|
1
3αJ

1 + 1
3αJ

|b〉, (41)

where we use the matrix notation 〈a|J |b〉 = Jab. For simplicity
we do not write the δab term, which only affects the result for
the self-correlation (it will again be important when we discuss
the LM approximation later). The correlation function between
a and b depends also on the positions of all the other points
x2, . . . ,xN so it should be written as C(xa,xb|x2, . . . ,xN ).

FIG. 13. (Color online) Correlation function exhibiting screen-
ing: numerical results (for a single disorder realization with N = 200
points on a square of unit size) compared to the analytical form
predicted from the chain diagrams.
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This Gaussian approximation is equivalent to the resumma-
tion of a set of diagrams in which there are no internal loops,
dubbed “chain diagrams.” This approximation is justified in
the limit of small α, in which spins are rarely polarized along
some direction and the hard-spin constraint is not as important.

This result holds for each disorder realization. We now take
the average over realizations (leaving the question whether or
not this is representative of the distribution for later), keeping
fixed the position of the two spins a and b. To do this, it is
convenient to go back to the geometric expansions and define

E[Cab] ≡
∫

dN−2x

SN−2
C(xa,xb|x1, . . . ,xN−2), (42)

where xi are the locations of the other N − 2 spins and S = L2.
We have relaxed the constraint that points be located on a
square lattice, which is immaterial in our high-temperature,
low-dilution expansion.

Unfortunately it is difficult to see what the distribution of
J induced by the random positions is, but we can expand the
Gaussian result in powers of α and do the average term by
term. We get

E[Cab] = −1

3
αJab +

∑
i

(
1

3
α

)2

E[JaiJib]

−
(

1

3
α

)3 ∑
ij

E[JaiJij Jjb] + . . . . (43)

Now, term by term we obtain objects like

E

[∑
i

JaiJib

]
= (N − 2)

∫
d2x

S
J (xa − x)J (x − xb)

= ρ

∫
d2xJ (xa − x)J (x − xb), (44)

where ρ = (N − 2)/S � N/S is the density of points. Fourier
transforming,

ρ

∫
d2xJ (xa − x)J (x − xb)

= ρ

∫
d2x

d2q

(2π )2

d2q ′

(2π )2
JqJq ′eiq(xa−x)+iq ′(x−xb) (45)

= ρ

∫
d2q

(2π )2
J 2

q eiq(xa−xb). (46)

The geometric series thus obtained for E[Cab] yields

E[Cab] = −
∫

d2q

(2π )2
eiq(xa−xb) (α/3)Jq

1 + (αρ/3)Jq

. (47)

Now, for both the log and the LGF, Jq � c/q2 [c is a constant
of O(1)] [35], so that at small α we have approximately

E[Cab] � −
∫

d2q

(2π )2
eiq(xa−xb) (cα/3)

q2 + (cαρ/3)
. (48)

This leads to

E[Cab] � (−2α/3)K0(r
√

cαρ/3), (49)

which exhibits a screening length

ξ = 1/
√

cαρ/3. (50)

As both α and c are O(1), this shows (not surprisingly) that
the screening length is proportional to 1/

√
ρ.

Note that in this approximation, for ra,b � ξ the correlation
function C(r)  1, which is not physical for unit length spins.
This is an artifact resulting from substituting a quadratic
confining potential for the hard-spin constraint. Therefore
this approximation is internally consistent only for ra,b � ξ ,
where it predicts an exponential damping of the correlations,
but we note that the large anticorrelations at short distances,
due to strongly coupled spins close to one another, put these
into a state with vanishing total spin, which—physically
correctly—screens their joint field at larger distances.

B. A random scattering picture

The final question we address concerns the fluctuations of
the random quantity, (41), and whether these may signal any
phase transition even when the mean does not. To gain some
insight into this, we develop an analogy with wave propagation
in disordered media, which suggests that no transition exists.
The basic observation is that the interaction is simply related
to the inverse of the Laplacian, the propagator of a free particle
on the lattice:

Considering that

Jij = 〈i| 1

−∇2
|j 〉 (51)

properly regularized (particularly important is the condition
that Jii = 0), we can rewrite expression (41) as

Cab = δab − α

3
〈a| 1

−∇2 + V − E
|b〉, (52)

where E = 0 and

V (x) = α

3

∑
i

δ(x − xi) (53)

is a random potential. This can be established by expanding
in powers of α. Thus C is (proportional to) the propagator
for a wave in a two-dimensional box with randomly placed
pointlike scatterers [36,37], at energy E = 0.

The precise form of the mapping is the following: The
correlation function,

− 1

α
Cab = − 3

α
〈nanb〉, (54)

is the amplitude of a signal sent from the scatterer a to the
scatterer b, considering all order processes bouncing over all
the N scatterers. In the case where a = b the direct path from
a to b needs to be neglected. This is a form of renormalization
of the scattering problem, which is always necessary in the
pointlike (or s-wave) scattering limit [38].

Once the renormalization procedure is done, the problem
we are left with corresponds to the propagation of a scalar
wave, damped by a scattering section for every typical real-
ization of disorder. Without repeating the classical treatment
of this phenomenon we can say that the signals (spin-spin
correlations) must be screened for any α, the screening length
(measured in units of 1/

√
ρ) being a decreasing function of α.

Even if not precisely of the form (50) for small α, it seems to
diverge like 1/

√
α.
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This is valid for both the coherent field E[Cab] and the
incoherent field E[C2

ab] − E[Cab]2, although the scattering
sections (and hence the damping/correlation lengths) might
have different values. This analogy makes us realize that in
this approximation there is no transition, irrespective of the
value of α or ρ, and this is consistent with numerical results.

This analogy extends also to the LM limit. Considering a
small-α series expansion for the spin correlation function,

haCabhb = δabha − αJab + α2Jai

1

hi

Jib

−α3Jai

1

hi

Jij

1

hj

Jjb + . . . (55)

(recall that in the LM approach α is scaled by a factor 1/m,
hence the factor of 3 in the previous paragraphs is absent here),
where the extra factors of ha need to be chosen in such a way
that

Cii = 〈nini〉 = 1. (56)

Cab is then proportional to the propagator

Gab = h̃ab − α〈a| 1

−∇2 + V − E
|b〉, (57)

where h̃ is the diagonal matrix with diagonal entries
{hi}i=1,...,N , E = 0, and

V (x) = α
∑

i

1

hi

δ(x − xi), (58)

where the renormalized value 〈i| 1
−∇2 |i〉 = 0 is intended.

This is a scattering problem over pointlike scatterers, where
now each scatterer has a different scattering amplitude. This
modification should not change the physical analogy of the
problem. This is again a scattering problem of a scalar wave
over pointlike scatterers. The propagation of the wave is
attenuated over distance in the usual exponential fashion.
Therefore, if a phase transition exists, it is not mirrored in
the divergence of the correlation length. Conversely, as this
treatment is closely related to the LM one (rather than the
Heisenberg model), on account of the softening of the hard
constraint to a Gaussian one, we would not expect a transition
at a finite value of α.

VII. DISCUSSION

We have studied the effective theory describing disorder
in the form of quenched nonmagnetic impurities, in the
topological Coulomb phase, on a lattice with a bipartite dual
lattice. Interactions in the effective picture are long-ranged, and
to the best of our knowledge, this is the first study available of
such a model.

A. A freezing transition?

Our results show that any freezing transition, if it exists, is
extremely tenuous. In d = 2, for LM there does not appear to
be freezing for any finite coupling, with a nice scaling collapse
of the data at A = ∞, indicating freezing to take place in this
limit.

The relation of this result to a finite number of spin
components is the following. First, our Heisenberg simulations
cannot access a freezing transition, but they do show a greater
tendency towards glassiness than the LM data, with both a
larger spin-glass correlation length and an enhanced tendency
for the curves to cross.

This is in keeping with the general expectation [25] for
the more constrained Heisenberg model to freeze before the
soft spins do (and after an Ising model might). If there is a
freezing transition at Ac < ∞, it will still be at the fantastically
large coupling Ac > 100. The delicate nature of all of these
phenomena is further underscored by the dependence on
finite-size choices, which may lead to an entirely different
set of instabilities. Similarly, the analytical approaches, in
particular, the mapping to a quantum scattering problem, show
little indication of a transition.

The tendency towards freezing seems to be even weaker
in d = 3, perhaps surprisingly so, given that the freezing
transition is more robust in higher dimensions for instances
of canonical spin glasses. However, unlike in these cases,
our distribution of the intersite couplings is dimensionality
dependent and, in particular, becomes ”shorter-ranged” as the
power law of the decay of the Coulomb law grows with d

(while, of course, the power law with which the number of
distant spins grows increases).

The weak tendency towards freezing is in keeping with
the fact that our model is not easily deformed into one of the
standard spin-glass models. On one hand, increasing the range
of the interaction towards the extreme of doing away with any
notion of distance and assigning equal coupling between all
the spins yields simply a global charge-neutrality constraint
(which, at any rate, is already enforced microscopically) and
therefore preserves a microcanonical version of a perfect
paramagnet. If the coupling is restricted to nearest neighbor,
we instead get a combination of percolation physics and that of
the standard Néel state for a bipartite antiferromagnet, where
any tendency towards disorder is a dimensionality effect, and
glassiness is nowhere to be seen.

The tendency towards glassiness is therefore necessarily
due to a combination of the nonconstancy of the logarithmic
interaction—which, helpfully, is not bounded as r → ∞—
along with its long range. Studying models exhibiting this pair
of ingredients more systematically is surely an interesting av-
enue for future research. We would like to emphasize, in partic-
ular, that the phenomenon of screening we have discussed has
no counterpart in the literature on conventional spin glasses,
where random choice of the sign of the interactions does not
allow the identification of an underlying charge structure.

In this sense, our model is much closer to those familiar
from the study of Coulomb glasses, although the differences
here are again considerable. We have vector charges rather
than Ising (positive or negative) ones; disorder appears in the
form of random but fixed locations rather than fixed on-site
potentials for charges not bound to a particular site. It is
intriguing that such a variation of a classic Coulomb glass
appears entirely naturally in frustrated magnetism.

B. Freezing in frustrated magnetic materials

With Heisenberg spins placed at random sites of a
pyrochlore-slab lattice (also known as an SCGO lattice) and a
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particular, microscopically determined value of A, the d = 2
case of our Coulomb antiferromagnet corresponds, up to the
sublattice-dependent inversion factor mentioned earlier, to the
T → 0 limit of the physics of orphans created when a pair
of Ga impurities substitutes for two of the three Cr spins in
a triangular simplex of this lattice. Although experimental
interest in SCGO dates back to the 1980s and played a key
role in stimulating experimental and theoretical interest in
the area of highly frustrated magnetism [11], the behavior
of SCGO is reasonably well understood in theoretical terms
only in the broad Coulomb spin-liquid regime down to about
a hundredth of the exchange energy scale (of order 500 K)
between Cr spins. The magnetic response in this regime can
be modeled in a rather detailed way as being made up as the
response of a pure Coulomb spin liquid superposed with the
Curie tails associated with vacancy-induced “orphan” degrees
of freedom [5–8], which carry an effective fractional spin
[4,10] and leave their imprint on NMR lineshapes [10] and
bulk susceptibility [5,6,10] in the Coulomb spin-liquid phase.
In contrast, the physics at very low temperatures (of order 5 K
or lower) is still not very well understood, with intriguing but
largely unexplained reports of observed glassy behavior even
at very low densities of Ga impurities [12,15], which appears
to involve only the freezing of a fraction of its degrees of
freedom.

Our model retains the key feature of the T → 0 limit of
the effective model, namely, the long-range Coulomb form
of the effective exchange couplings, but does not retain the
detailed geometry of these orphans in SCGO, except for the
sublattice-dependent inversion that connects the degrees of
freedom of our Coulomb antiferromagnet with the underlying
physics of these orphans.

Bearing all this in mind, the usual caveat about idealized
models for frustrated systems applies to our study as well:
Our starting Hamiltonian of a classical nearest-neighbor
Heisenberg model does not include a number of aspects—
farther-neighbor interactions, single-ion anisotropies, non-
commutation of spin components—all of which give rise to
interesting, generally nonglassy, physics of their own. If and
when these energy scales dominate over our the instabilities
of the idealized model, it is the former which will likely show
up more prominently in experiments.

In addition, in our case, the critical coupling Ac, even if
it is not infinite, is hard to attain in any microscopic model.
Indeed, for a checkerboard lattice, one obtains A = 1/4π from
a microscopic calculation, easily within a very short-range
correlated regime.

At any finite temperature, which is all that can be accessed
experimentally for the time being, Coulomb interactions
obtain a finite-screening length due to the thermal excitation
of charges even in nonorphan tetrahedra. Following the
general lore on spin freezing, this precludes even canonical
Heisenberg spin glassiness. For this reason, the above-
mentioned A independence of a freezing transition in d =
2 is not going to carry over directly to the experimental
compound.

However, real systems will only be quasi-two-dimensional,
with residual couplings between the two-dimensional layers.
Indeed, for the case of SCGO, dilution also breaks up
the tightly bound singlets of the dimers of Cr ions which

isolate the kagome-triangle-kagome trilayers from one an-
other. The consequences of coupling in the third dimension
remain an interesting yet completely open topic for future
study.

C. Connection to other models

More broadly, perhaps the most pleasing aspect of this work
is how it naturally connects (with) a number of deformations
of well-known problems: the scattering problem, Coulomb
glass physics, and random matrix theory. In particular, we have
identified a straightforward way of obtaining an ERM problem
from a simple magnetic model where long-range interactions
emerge naturally. We hope that this will motivate further work
on any (and perhaps all) of these problems.

ACKNOWLEDGMENTS

We are very grateful to John Chalker, Ferdinand Evers,
Mike Moore, and Peter Young for useful discussions. This
work was supported by DFG Grant No. SFB 1143.

APPENDIX A: NONGLASSINESS FOR THE LOG
INTERACTION

The pair correlation profiles for the log interaction exhibit a
structure hinting at the way pair correlations should be summed
in order to define a generalized susceptibility describing the
order present in this system. This order reflects the symmetry
of the interaction, which is anisotropic but has the symmetries
of a square lattice.

We define a sign function, θ (x,y), which, in each quadrant,
has alternating values of ±1 in successive “square frames” of
a fixed width of two lattice sites for any L. Assuming (x,y) in
the first quadrant, this function has the profile pictured at the
left in Fig. 14.

The corresponding susceptibility reads

χ =
⎡
⎣ 1

N

∑
i,j

θ (�rij )〈�Si · �Sj 〉
⎤
⎦. (A1)

Square brackets denote, as usual, the disorder average. This
susceptibility diverges with the system size, and its scaling
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FIG. 14. (Color online) Left: The sign function in the first quad-
rant for a lattice of side L = 100 used to resum the correlations. Right:
Scaling of the new susceptibility proposed to describe the ordering
occurring with the log interaction.
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FIG. 15. (Color online) Numerically obtained Fourier transform
of the log (red symbols) and LGF (blue symbols) for a lattice of size
L = 100. Circles connected by lines indicate the edge ky = 0, while
squares indicate the diagonal kx = ky . The index n labeling the x axis
indicates the index of the wave vector: kx = 2π

L
n. Inset: The region

near the global minimum in more detail.

in MC simulations is shown at the right in Fig. 14; the same
behavior is found in the LM data.

APPENDIX B: FULLY OCCUPIED LATTICE

Proposition 1 in Ref. [30] states that if Ĵ (k) is the Fourier
transform of the interaction matrix J , then a minimizer �k0 for
Ĵ (k) determines a modulated ground state for a system with
that wave vector. The Fourier transform of the LGF at nonzero
wave vector iseasily read from its definition, Eq. (16),

ĴLGF(k) = 1

2 − cos(kx) − cos(ky)
, (B1)

which has a minimum at �k = (π,π ), thence we find “conven-
tional” antiferromagnetic order.

For the log interaction, we are not able to find an analytical
expression for its Fourier transform, but numerical results
show that the global minima happen at �k = (π,0) or (0,π ),
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FIG. 16. (Color online) The average in each binning block of the
spin glass susceptibilities plotted against the logarithm (base 2) of the
size of the corresponding binning block. Data shown here correspond
to MC simulation of the LGF in a cubic lattice at A = 200.

which explains the striped phase for the fully occupied lattice.
The nonanalyticity of the distance function periodized by the
function min(x,L − x) or min(y,L − y) (which is seen as
a discontinuity in the derivative along the lines x = L/2 or
y = L/2) gives rise to “ringing” in ĴLog(k); a line of alternating
local maxima and minima appears along kx = 0 or ky = 0. The
new global minimum is shifted from (π,π ) to the edges of these
lines, as shown in Fig. 15.

APPENDIX C: VERIFYING EQUILIBRATION

Our simulations require exploring a region of very high
coupling, A. In this case it is important to ensure that
equilibrium is attained. To test this, we bin the data for
spin-glass susceptibility. This binning consists of subdividing
the total number of measurements, Nm, into contiguous bins
of successive sizes: 1, 1, 2, 4, 8, . . . ,Nm/4,Nm/2. The average
for each bin is then plotted against the logarithm of the bin
size (Fig. 16). Equilibrium is diagnosed when at least the last
three bin averages agree within the interval set by their error
bars. The final equilibrium values used consist of the average
of the last half of the measurements made in the simulation,
Nm/2.
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