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Fractal entropy of a chain of nonlinear oscillators

A. Scardicchio,* P. Facchi, and S. Pascazio
Dipartimento di Fisica, Universita` di Bari, I-70126 Bari, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
~Received 11 April 2003; published 20 August 2003!

We study the time evolution of a chain of nonlinear oscillators. We focus on the fractal features of the
spectral entropy and analyze its characteristic intermediate time scales as a function of the nonlinear coupling.
A Brownian motion is recognized with an analytic power-law dependence of its diffusion coefficient on the
coupling.
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I. INTRODUCTION

A system composed of a large number of particles~ge-
nerically! relaxes toward an equilibrium state that is indepe
dent of the details of the initial state. This is one of t
fundamental hypotheses of statistical mechanics. Howe
from the point of view of Hamiltonian dynamics, the detaile
features of the relaxation are not thoroughly understood. O
of the unsolved fundamental questions is how equilibrium
approached when the underlying microscopic dynamics
sufficiently chaotic, without introducing any randomizatio
or coarse graining ‘‘by hand.’’

After the pioneering work on the time evolution of no
integrable systems@1# and ergodicity@2#, it is now clear that
several additional factors play a primary role in characte
ing the dynamical evolution@3–6#. However, for a large
number of particles the Kolmogorov-Arnold-Moser~KAM !
argument becomes less effective@6,7# and the Nekhoroshev
bound@4# for the equilibrium time appears too weak in com
parison with numerical results. This scenario has motivate
number of numerical studies of Fermi-Pasta-Ulam-like m
els, in the attempt to clarify the dependence of the equi
rium time ~defined in terms of suitable indicators! on the
strength of the nonlinear terms and the number of partic
@8#. These studies yield stretched-exponential relaxa
laws, enforcing the picture that macroscopic equilibriu
could be built out of local ones@9#.

The aim of this paper is to investigate this issue by a
lyzing, both analytically and numerically, the dynamics o
chain of N coupled anharmonic oscillators at intermedia
time scales~for states that are close to equilibrium!. One of
our main results is that at these intermediate time scales
system performs a Brownian motion with a diffusion co
stant that can be accurately estimated and turns out to
analytically diverging in the coupling constant: as a cons
quence, a perturbative approach to this problem appears
sible.

II. THE SYSTEM

We will study a Hamiltonian made up of an integrab
part and a~small! nonlinear perturbation. This is a classic
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nonintegrable system that does not possess enough inte
of motion. The conjugate variables are (q,p)
5(q1 , . . . ,qN ,p1 , . . . ,pN), where periodic boundary con
ditions qN115q1 , pN115p1 are understood. We takeN
5275128, for convenience of the numerical algorithm~we
observed no significant difference for largerN). The Hamil-
tonian (f4 model! reads

H~q,p!5H0~q,p!1gV~q! ~g.0!, ~1!

H0~q,p!5(
i 51

N
1

2
pi

21
1

2
m2qi

21
1

2
~qi 112qi !

2, ~2!

V~q!5(
i 51

N
1

4
qi

4 . ~3!

The quadratic partH0 is easily diagonalized by means of
discrete Fourier transform, in terms of the 2N normal vari-
ablesqk , pk , with k5(k,a), wherek50, . . . ,N/2 anda
50,1, a50 (a51) corresponding to the cosine~sine!
transform with wave numberk. With this coordinate change
H0 becomes

H05(
k

Ek , Ek5
1

2
pk

21
1

2
vk

2qk
2 , ~4!

with the frequency spectrum

vk
25m212F12cosS 2pk

N D G ,
m5vmin<vk<vmax5A41m2. ~5!

In this paper, we always setm2*0.1. The value ofm deter-
mines the width of the spectrum and has profound con
quences on the dynamics, in particular at small nonline
ties: metastable states, such as solitons and breathers
born more easily at smallm and this can have drastic cons
quences, both at intermediate and large time scales of
equilibration process@9#.

We integrated the Hamilton equations deriving from E
~1! via a fourth-order Runge-Kutta algorithm in double pr
cision. Energy conservation is verified at least up to 1 par
107 during the whole running time. Such a precision is ne

etts
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essary in order to assure that the fluctuations due to num
cal integrations be negligible with respect to the physi
ones in which we are interested.

III. SPECTRAL ENTROPY

From the numerically integrated solutions we analyze
behavior of the spectral entropy@8#

S~ t !52(
k

Ek

E0
ln

Ek

E0
, ~6!

whereE05H0 is the unperturbed total energy. Wheng50
all the Ek’s, and thereforeS, are constant. As soon as th
nonlinearity is switched on,g.0, the spectral entropy be
comes a nontrivial function of time.

The purpose of this paper is to explore the dynamics
the system overintermediatetime scales. Previous studie
@8,10# mainly concentrated on the long-time behavior of t
equilibration process, starting from states that are far to e
librium and smoothingS over sufficiently long-time inter-
vals. Relaxation from states that are close to equilibrium
been more seldom studied@11#. In our simulation, we always
set the initial conditions with the actions~unperturbed ener
gies! randomly picked from a microcanonical ensemble a
the angles completely random. Therefore, the fluctuation
S(t) will be studiedclose to equilibrium.

S displays wild time fluctuations, over a wide range
frequencies. We will show that useful, univocal informati
can be obtained from such an irregular function: we will fi
recognize a Brownian structure and then look at the cha
teristic time scales and study their dependence on the
linear coupling.

Let us first discuss some analytical properties. At equi
rium, average quantities and statistical properties should
pend only on integrals of motion. For Hamiltonian~1! one
argues that the only global integral of motion is the to
energy E5H or, equivalently, the energy per modee
[E/N. The equations forqi possess the following scalin
symmetry: ifqi is a solution of the Hamilton equations wit
couplingg, thenqi85AAqi is solution of the Hamilton equa
tions with couplingg85g/A. With this rescaling, the energ
is changed toE85AE. A function X, representing the aver
age of some quantity at equilibrium and having dimens
@X#5 lengthn, can only depend onE andg, whence

X~AE,g/A!5An/2X~E,g!. ~7!

Therefore, if n50, X depends only on the dimensionle
product

x5ge5gE/N, ~8!

which may be considered as the effective strength of
nonlinearity. We will study the dynamical properties of o
system for 1024<x<1.

Average quantities in the weakly nonlinear regime can
calculated by using the microcanonical distribution. The u
of this distribution is motivated by the empirical observati
that the totalunperturbedenergyE0, although not constan
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in time, fluctuates less than 1% around its mean value~even
smaller fluctuations are observed for very small nonlinea
ties!. We can conclude that the primary role of the perturb
tion V is only to allow ‘‘collisions’’ between normal mode
~phonon exchange!, provoking in this way the transition to
equilibrium,1 without ‘‘storing’’ any significant energy.
Therefore, we can assumeE.E0 in the following.

For the spectral entropy at microcanonical equilibriu
one finds, after a straightforward but somewhat lengthy c
culation,

S̄5c~N11!2~12g!5 ln N2~12g!1OS 1

ND , ~9!

dS2[S2̄2S̄25
313N1~p226!N2

3N2~N11!
2c8~N!

5
0.289

N
1OS 1

N2D , ~10!

where c is the Euler digamma function@12# and g
.0.5772 the Euler-Mascheroni constant. The asymptotic
havior of Eq.~9! is in agreement with previous results@6,13#,
obtained at canonical equilibrium. In fact, as shown in t
Appendix, the microcanonical and canonical averages of
function of the spectral entropy coincide. Equations~9! and
~10! are therefore valid also at canonical equilibrium. The
analytical results are well confirmed by numerical simu
tions and provide a good test of the fact that our numer
sample was representative of an equilibrium situation a
free from ‘‘trend’’ components.

IV. CORRELATION FUNCTION

We study the fractal dimension and the characteristic ti
scales of the entropy by looking at the correlation functionC
for the generalized Brownian processS:

C~t!5 lim
T→`

1

TE0

T

dt@S~ t1t!2S~ t !#2. ~11!

In general, one can identify a fractal, or generalized Brow
ian motion, by the dependenceC}t2H. The exponentH is
related to the fractal dimension byD f522H. When using
function ~11! one should take care of ‘‘detrending’’S @14#.
However, since the system starts at equilibrium, whereS
fluctuates about its constant mean value~9!, no detrending is
required. We emphasize, however, that we obtained the s
results also in nonequilibrium situations~not too far from
equilibrium!, provided the trend component ofS(t) was suit-
ably removed.

1In action-angle variables, one can renormalize the free Ham
tonian with a positive, nonlinear correction of the order ofx. The
total Hamiltonian is accordingly split into a new free part and a n
perturbation.
1-2



en

ys
wa

e
,

s

e

r o

p
le
ta

he

all
r

n-

-
n
an

cal
c-

ate

des

g,

n
e

on

on

ter-

e

to
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For a Brownian process, one expects a linear depend
of C on t @14,15#, i.e., D f53/2,

C~t!}t. ~12!

Brownian motions are useful idealizations to describe ph
cal processes in a simple and coherent mathematical
However, in order to treat an analytic function~such asS) as
a Brownian process, one must identify~at least! one time
scale, sayt1. This time scale is such that by ‘‘observing’’ th
function at time scalest&t1 one obtains a smooth function
while by observing it with a time resolutiont@t1, one rec-
ognizes a Brownian process. It is possible to unambiguou
identify the time scalet1 sinceC;t2 for sufficiently small
t:

C~t!. lim
T→`

1

TE0

T

dtS Ṡ~ t !t1
1

2
S̈~ t !t21O~t3! D 2

5Ṡ~ t ! 2̄t21O~t4!. ~13!

At largert, the quadratic dependence changes into the lin
one ~12!: the time scale at which this change takes place
t1. See inset in Fig. 1. It is important to stress thatt1 is
nothing but the linear time scale for phonons, of the orde
an inverse characteristic frequency~5! of the oscillators

2p

v̄
52p

2

vmin1vmax
5

4p

m1A41m2
. ~14!

Up to this time scale, one is able to observe the microsco
details of the motion in phase space. At larger time sca
the motion appears very irregular and the microscopic de
are lost.

For a Brownian process which is also bounded anot
time scale appears, sinceS bounded impliesC bounded and

FIG. 1. C vs v̄t. Notice the quadratic region extending up
times of the order oft1 ~inset! and the linear region~20! in the
ranget1,t,t2. The saturation levelC.2dS2.0.0044 is in full
agreement with Eq.~10! @for N5128]. We setx50.09 andm2

55, so thatv̄52.62. Observe thatt2.200t1 is clearly an inter-
mediate time scale, orders of magnitude smaller thanTrelax. Larger
ratiost2 /t1 are observed for smaller values ofx, but the chain of
inequalities~19! always remains valid.
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the lawC}t must break down at a certain time. Let us c
this time scalet2. It is easy to show that at equilibrium, fo
sufficiently larget we haveC(t).2dS2, so we can inter-
pret t2 as the time at which the autocorrelation of the e
tropy vanishes:

^S~ t1t!S~ t !&2^S~ t1t!&^S~ t !&.0 for t.t2 .
~15!

This means thatS(t1t) andS(t) can be considered uncor
related random numbers chosen from a sample of meaS̄
and variancedS2. In terms of motion in phase space one c
argue that the system starts att50 at ~or very close to!
equilibrium and att;t2 it has explored a sufficiently large
part of the equilibrium region, such that the microcanoni
averages~9! and ~10! can be used. The theoretical predi
tions ~10! @with N5128], ~12!, and~13! are very well veri-
fied by the numerical data shown in Fig. 1.

The relaxation of the system, when it starts from a st
far to equilibrium, takes place on a time scaleTrelax that can
be defined in terms of the effective number of excited mo
@8#

ne[exp~S!: ~16!

clearly, if the system is initially far from equilibrium,

Dne~Trelax![ne~Trelax!2ne~0!5O~N!. ~17!

On the other hand, due to Eqs.~9! and ~10!, for a system
close to equilibrium

Dne~t2!5eS1dS2eS.dSeS5O~AN!. ~18!

In this sense,t2 is an intermediate time scale, characterizin
as we have seen, local fluctuations in phase space.

Finally, if one considers that only a few oscillators ca
exchange energy in a timet1, one can summarize the abov
discussion by writing

Dne~t1!5O~1!!Dne~t2!5O~AN!!Dne~Trelax!5O~N!.
~19!

V. DIFFUSION COEFFICIENT AND INTERMEDIATE
TIME SCALES

The presence of the linear region~12! for the correlation
function C is observed in the whole range ofx investigated.
This enables us to define a diffusion coefficientD as the rate
at whichC increases in its linear regime, so that in the regi
t1,t,t2 we have

C5Dt1C0 , ~20!

whereD andC0 have in general a nontrivial dependence
x. In the following, we will perform a systematic study ofD,
which is the physically most relevant quantity and charac
izes the Brownian fluctuations. Notice thatC0 is related to
the initial quadratic region~13! and therefore depends on th
microscopic details of the motion.
1-3
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The diffusion coefficientD has no length dimension@n
50 in Eq. ~7!# and therefore one expects it to be only
function ofx5ge5gE/N ~at fixedN andm). This expecta-
tion is numerically confirmed with high accuracy. In partic
lar, D is a monotonically increasing function ofx, as can be
seen from Fig. 2. Each point in the figure is obtained
averaging at least five numerical solutions with the sa
value ofx. For x&0.1, D is accurately fit by a power law

D5axb, b51.98760.040. ~21!

This is an indication that the intermediate dynamics at th
time scales can be tackled by a perturbative approach. No
that, if one endeavors to fit the curves in Fig. 2 with
stretched-exponential law of the typeD}exp(constx2d),
one finds the very small valued59.431024. In our opinion,
this is a rather strong indication in support of a power-l
behavior. On the other hand, for largex, D saturates to a
constant (m-independent! value. Observe that the coefficien
b in Eq. ~21! doesnot depend onm; them dependence ofa
will be analyzed in the following~see Fig. 3!.

The intermediate time scalet2 is strictly related to the
diffusion coefficientD, via the saturation value 2dS2 in Eq.

FIG. 2. D vs x5ge5gE/N for different masses. The lines ar
the power law~21! and the error bars are included in the size of t
dots.

FIG. 3. a5D/x2 vs m2 @in the quadratic region~21!#. The solid
line is theoretical prediction for large massesa}m27. The dashed
line is the fita}m23.3.
02621
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~10!, as discussed in connection with Fig. 1. A consistent a
natural definition ist252dS2/D, so that forx&0.1

t2}x2b.x22. ~22!

Note that in order to measuret2 it is not even necessary t
perform a numerical integration of the Hamilton equatio
for times of the order oft2. It suffices to integrate them up t
times larger thant1(!t2), getD and hencet2.

The analytic dependence~22! of t2 on x is in full agree-
ment with previous results and suggests the validity o
perturbative approach@11#. One expects that for sufficiently
smallx a sensible fraction of the phase space is covered w
KAM tori, allowing only Arnol’d diffusion and yielding a
consistent suppression of diffusion and a rapid divergenc
the macroscopic equilibrium time. Related analytical and
merical work hints at a nonanalytic divergence~such as a
stretched exponential! of the macroscopic time scales~such
as Trelax) @4,7,8# for x→0. The fact that the intermediat
time scale here analyzed diverges with a power law~22!
indicates thelocal presence of a Brownian motion~in the
region of parameters studied!, so that diffusion should be
suppressed on macroscopic regions of phase space.

The dependence ofa5D/x2 on m is not trivial. However,
in the region of validity of Eq.~21! and for large masse
m2@1, one expects a power-law dependencea}m27. In-
deed, for largem2 we get from Eq.~2! e;m2q2, so that, at
fixed e, q scales like 1/m. Therefore, the strengthg of the
quartic potential~and hencex5ge) scales likem4. Consid-
ering that @D#5t21 and the characteristic oscillation tim
~14! scales like 1/m, an additional factorm is obtained,
yielding

a}m27 for m2*15. ~23!

As shown in Fig. 3, this prediction is well confirmed by o
numerical data, providedm2*15. For 0.1&m2&15, we nu-
merically founda}m23.3, for which we offer no explana-
tion. Moreover, form→0 one expects a qualitatively differ
ent situation, sincevmax/vmin5A41m2/m→`, such a ratio
representing the available primary resonances between
mal modes@6#. Actually, we observed the formation of meta
stable states form2&0.05 ~not shown in Fig. 3!: as a conse-
quence, the correlation function showed marked oscillati
of definite frequency, hindering a consistent definition o
diffusion coefficient.

VI. CONCLUSIONS

The analytic~power-law! divergence~22! of the interme-
diate time scales describing the Brownian motion on the c
stant energy surface suggests that a perturbative appro
based on a Liouville-Fokker-Planck equation@16# should ap-
ply, at leastlocally, and that an eventually nonanalytic dive
gence of the relaxation time from far to equilibrium shou
be ascribed to a nontrivial structure of the phase spac
larger scales. The dependence of the intermediate time s
on the mass and the presence of long-lived metastable s
indicates that the problem is very involved also at the~sup-
posedly simpler! level of the local dynamics in phase spac
1-4
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In this context, one might speculate that the relaxation fr
states that are not too far to equilibrium depends on the ‘‘m
soscopic’’ features of phase space.~The expression meso
scopic is not used here in its most familiar meaning, rela
to the interplay of classical and quantum effects, but rathe
the sense of intermediate between ‘‘microscopic’’ and ‘‘ma
roscopic,’’ i.e., pertaining to the total system.! The approach
we propose enables one to extract sensible information f
the dynamics at intermediate time scales~from close to equi-
librium! that are usually less studied than the longer on
describing the relaxation from far to equilibrium. This h
obvious positive spinoffs from the perspective of numeri
investigations, as it requires less computing time. From
more conceptual viewpoint, we have proved the existenc
a diffusive process~without introducing any randomizatio
‘‘by hand’’ ! that constitutes a building block for the glob
equilibration process.

APPENDIX

Let us show that, in order to compute the average of
function of the spectral entropyS, the microcanonical and
the canonical ensemble are equivalent. This conclusion
consequence of the following theorem.

In an ensemble ofN noninteracting integrable classic
systems, where the energiesEi.0 are homogeneous func
tions of the action variablesI i , the average of functions o
the kind F(Ei /E), whereE5(Ei , computed according to
the Boltzmann distribution, is equal to that computed acco
ing to the microcanonical distribution. Moreover, this ave
age is independent of the temperatureb of the canonical
ensemble and the energyE of the microcanonical ensemble

We prove this theorem by calculating the canonical av
age of a quantityF ~the angle variables are trivially inte
grated over since they do not contribute to the energies!

^F&c5
1

Zc
E dNIe2bEFS Ei

E D
5

1

Zc
E dNEJ~Ei !e

2bEFS Ei

E D , ~A1!

where

Zc5E dNIe2bE ~A2!

is the canonical partition function andJ5i]I j /]Ei i the
Jacobian. Due to our hypotheses, this is a homogene
function of theEi ’s. We obtain
-
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^F&c5
1

Zc
E dNEE

0

`

djdS j2(
i

Ei De2bEJ~Ei !FS Ei

E D
5

1

Zc
E

0

`

dje2bjjN21E dNxJ~jxi !dS 12(
i

xi DF~xi !

5
1

Zc
E

0

`

djjN211Nae2bj

3E dNxJ~xi !dS 12(
i

xi DF~xi !

5
1

Zc
b2N(11a)G@N~11a!#

3E dNxJ~xi !dS 12(
i

xi DF~xi !, ~A3!

whereG is the gamma function, we definedxi5Ei /( jEj and
used the homogeneity of the Jacobian to write

J~jxi !5jNaJ~xi !, ~A4!

which defines the quantitya. By repeating the same deriva
tion with F51, one readily shows that

Zc

b2N(11a)
5G@N~11a!#

Zm

EN211Na
, ~A5!

where theZm is the microcanonical partition function

Zm5E dNId~E2E!. ~A6!

Incidentally, notice that both sides of Eq.~A5! are indepen-
dent ofb andE. In conclusion,

^F&c5
EN211Na

Zm
E dNxJ~xi !dS 12(

i
xi DF~xi !

5
1

Zm
E dNId~E2E!FS Ei

E D5^F&m . ~A7!

This proves our assertion. Equations~9! and~10! are readily
obtained by explicitly calculating the~simpler! canonical av-
erage ofF5S andF5S2.

As a corollary, one sees that if theEis are random vari-
ables distributed withe2Ei, the variablesxi5Ei /( jEj are
distributed liked(12( j xj ). This provides a fast numerica
recipe to generate microcanonically distributed variables
.
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