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We study the dynamics of the populations of a multilevel molecule endowed with two sets of
rotational levels of different parity, whose ground levels are energy degenerate and coupled by a
constant interaction. The relaxation rate from one set of levels to the other one has an interesting
dependence on the average collision time of the molecules in the gas. This is interpreted as a
quantum Zeno effect due to the decoherence effects provoked by the molecular collisions.

PACS numbers: 03.65.Xp, 34.10.+x, 34.30.+h, 05.40.-a

I. INTRODUCTION

The quantum Zeno effect is usually formulated as the
hindrance of the evolution of a quantum system due to
frequent measurements performed by a classical appa-
ratus [1, 2] and is formalized according to von Neumann
projection rule [3]. The literature of the last few years on
this topic is vast and contemplates a variety of physical
phenomena, ranging from oscillating (few level) systems
[4] and alternative proposals [5] to bona fide unstable
systems [6].

The ideas and concepts at the basis of the quantum
Zeno effect (QZE) were also successfully extended to con-
tinuous measurement processes by different authors and
in different contexts [7] and led to a remarkable expla-
nation of the stability of chiral molecules [8]. This was
a fertile idea, in that it explained the behavior of a vari-
ety of physical systems in terms of a similar underlying
mechanism.

The QZE is, however, a much more general phe-
nomenon, that takes place when a quantum system is
strongly coupled to another system [9] or when it under-
goes a rapid dephasing process. Such a rapid loss of phase
coherence (“decoherence”) of the quantum mechanical
wave function (for instance as a result of frequent inter-
actions with the environment) is basically equivalent to
a continuous measurement process (the main difference
being that the state of the system is not necessarily ex-
plicitly recorded by a pointer).

The quantum Zeno effect is always ultimately ascrib-
able to the short-time features of the dynamical evolution
law [10]: it is only the study of this dynamical problem
that determines the range in which a frequent distur-
bance or interaction will yield a QZE. The very defini-
tion of “frequent” is a delicate problem, that depends on
the features of the interaction Hamiltonian. Moreover,
one should also notice that the quantum system is not
necessarily frozen in its initial state [11], but rather un-
dergoes a “quantum Zeno dynamics,” possibly evolving
away from its initial state. The study of such an evo-
lution in the Zeno “subspace” is in itself an interesting

problem, whose aspects are not completely clear and re-
quire further study and elucidation.

An interesting example of QZE was proposed a few
years ago [12]: the nuclear spin depolarization mecha-
nisms in 13CH3F, due to magnetic dipole interactions
and collisions among the molecules in the gas, was ex-
perimentally investigated and interpreted as a QZE. In a
few words, the 13CH3F molecule has two kinds of angu-
lar momentum states, according to the value of the total
spin of the three protons (H nuclei): I = 3/2 (ortho)
and I = 1/2 (para). Transitions between states with
different parity are (electric dipole) forbidden, so that
spin flip occurs via a weak coupling between two levels
of different spin parity (this is most effective when there
is an accidental degeneracy between the levels, achiev-
able, for example, via a Stark effect [13]). One observes
a significant dependence of the spin relaxation on the
gas pressure and interprets this as a QZE provoked by
the dephasing due to molecular collisions. Nuclear spin
conversion in polyatomic molecules is reviewed in [14].

The aim of this article is to study the occurrence of
the QZE in the general framework of collision-inhibited
Rabi-like oscillations between two sets of rotational lev-
els. We shall study the evolution of the level populations
in a multilevel molecule endowed with two sets of rota-
tional levels of different parity. In particular, we shall
concentrate on the interesting effects that arise as a con-
sequence of the interactions (collisions) with the other
molecules in the gas. The model we shall adopt will be
studied both numerically and analytically, and the re-
sults will be compared. One of the main objectives of
our investigation will be the analysis of apparently dif-
ferent phenomena in terms of a Zeno dynamics.

We shall introduce the system in Section II and the
Zeno problem in the present context in Section III. In
Sections IV-VI we study the problem from an analytic
point of view, by deriving and approximately solving a
master equation. In Section VII the analytical result
are compared to an accurate numerical simulation. We
conclude in Section VIII with a few remarks.

http://arXiv.org/abs/quant-ph/0206143v1
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FIG. 1: Poissonian collisions in a gas of multilevel molecules.

II. THE SYSTEM

Our model molecule has two subsets of rotational levels
(to be called left (L) and right (R) levels in the following)
of different parity, whose ground levels are energy degen-
erate and coupled by a constant interaction. (The choice
of the ground levels is motivated by simplicity: one could
choose any other couple of energy-degenerate levels in the
L-R subspaces.) The molecules undergo collisions with
other identical molecules in the gas and we assume that
these collisions couple the rotational energy levels but
do not violate spin parity conservation. We shall focus
on the dependence of the relaxation rate on the average
collision time or, equivalently, on gas pressure: a QZE
takes place if the transition between the left and right
subspaces is inhibited when the collisions become more
frequent (i.e., the gas pressure increases).

A sketch of the system is shown in Figure 1. The
total Hilbert spaces of each molecule is made up of two
subspaces HL (left) and HR (right), with NL and NR

levels respectively. Collisions cannot provoke L ↔ R
transitions, so that no transitions are possible between
the two subspaces, except through their ground states.
However, collisions with other particles in the gas provoke
transitions within each subspace.

The Hamiltonian is

H = Hf +Hcoll(t) = H0 +H1 +Hcoll(t), (1)

where Hf = H0 +H1 is the free Hamiltonian and

H0 =

NL∑

nL=1

EnL |nL〉〈nL| +
NR∑

nR=1

EnR |nR〉〈nR|, (2)

H1 = h̄Ω (|1L〉〈1R| + |1R〉〈1L|) , (3)

Hcoll = h̄
∑

j

δ(t− τj) V, (4)

V = αLVL + αRVR, (5)

Vs =

Ns−1∑

ns=1

Vns =

Ns−1∑

ns=1

|ns〉〈ns + 1| + |ns + 1〉〈ns|, (6)

with s = L,R. The energy levels |ns〉 have energies Ens

(s = L,R) and H1 provokes L ↔ R transitions between
the two ground states, with (Rabi) frequency Ω. Ω is
small (in a sense to be made precise later), for such a
transition is electric-dipole forbidden. Hcoll accounts for
the effect of collisions with the gas (environment): the
collisions are distributed according to the Poisson statis-
tics, so that they occur at times

τj+1 = τj + δτj , (7)

where δτj ’s are independent random variables with dis-
tribution

p(δτj) =
1

τ
exp(−δτj/τ) (8)

and (common) average τ . The coupling constants αL,R

are in general different from each other and measure the
“effectiveness” of a collision. For the sake of simplicity we
assume that collisions provoke transitions only between
adjacent levels [Vs in (6) involves only “nearest neigh-
bors” couplings]. We will assume, for concreteness, that
the energy levels are rotational, so that

Ens = h̄ωsns(ns + 1) (s = L,R) (9)

and |1L〉 and |1R〉 are the only resonant pair of states:

E1L = E1R , EmL 6= EnR for mL, nR > 1. (10)

See Figure 1. The Hilbert spaces HL and HR are taken
to be finite dimensional, with (in general different) di-
mensions NL and NR, respectively. This is because, in
general, the number of accessible rotational levels is lim-
ited to a few tens, since for sufficiently high energies
molecules tend to dissociate. This could be accounted
for by introducing two “absorbing” levels |NL+1〉, |NR+1〉
[15]. However, in our analysis, we will explore a time re-
gion in which the introduction of absorbing levels is not
necessary (in other words, the times involved will not be
long enough to display “border effects”).

III. TWO ZENO EFFECTS

Before we start our theoretical and numerical analysis
it is convenient to focus on the physics of the model in-
troduced in the preceding section and to clarify in which
sense we expect a Zeno effect to take place. We start
from a simple numerical experiment and integrate the
Schrödinger equation by means of a Montecarlo method
[16].

Consider a uniform gas of identical molecules, having
the internal structure described in the preceding section.
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A single molecule freely wanders in a total volume and
undergoes random collisions. By neglecting the spatial
component of the wave function, each molecule can be
represented by an (NL + NR)-dimensional state vector
|ψ(t)〉 that describes its internal state [17]. This physical
situation is well schematized by the model described in
Sec. II. During the free flight the evolution is governed
by the free hamiltonian

|ψ(t)〉 = exp

(
− i

h̄
Hf t

)
|ψ(0)〉. (11)

Since the molecules are immersed in a bath, the collisions
are distributed in time according to the Poisson statis-
tics (7)-(8), with average collision frequency (per parti-
cle) τ−1. Once a collisions occurs, the following collision
time is sampled according to

δτ = −τ log(y), (12)

y being a random number uniformly distributed in [0, 1[.
The collisions are modelled as instantaneous events and
act on the left/right subspaces independently. As a result
of a collision, the state becomes

|ψ(t+ 0+)〉 = exp


−i

∑

s=L,R

αsVs


 |ψ(t)〉. (13)

The matrix exp(−i∑s αsVs) is evaluated numerically. It
is assumed to be independent of the internal state of the
colliding partners and of their kinetic energy.

We also stress that since our aim is to investigate the
occurrence of a QZE within the proposed level structure,
we are not interested in the dissociation of highly excited
molecules. To this end, we must restrict our attention
to times such that the molecules do not “see” the upper
limit of the rotational levels, so that “border” effects do
not play any significant role. In this way the dissociation
of highly excited molecules can be safely neglected.

The afore-mentioned qualitative features of our analy-
sis will be carefully scrutinized and made precise in the
following sections. We now take them for granted and
give a few preliminary results in order to get a feeling for
the physics at the basis of the Zeno effect.

We set NL = NR = 40 energy levels, with energies
given by (9), where ns = 1, . . . , 40, ωL = 1.3·1010 s−1 and
ωR = 9.7 · 109s−1. We always compute the average over
an ensemble of 5 · 103 particles. All particles are initially
in the |1L〉 state and we study the temporal behavior of
the relative population in the left subspace

PL ≡
∑

nL

pnL , (14)

pnL being the occupation probability of state |nL〉.
The results of our numerical integration are shown in

Figures 2-3. In Figure 2, αL = 0.2 and αR = 0, so
that collisions do not provoke transitions among the right
states (or, equivalently, the right subspace consists only
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FIG. 2: Temporal evolution of PL. The collision frequency
τ−1 is varied between 500T−1

R and 1500T−1

R (TR = 2π/Ω).
We set αL = 0.2, αR = 0, so that, in practice, NL = 40 left
energy levels are coupled to only NR = 1 right level. The sur-
vival probability in the left subspace increases as the collision
frequency is increased: frequent collisions hinder transition
to the right subspace, a manifestation of a (“classical”) Zeno
effect.

0,00

0,20

0,40

0,60

0,80

1,00

0 0,2 0,4 0,6 0,8 1

a
L
=0 , a

R
=0.2

τ−1=500*Ω/2π

τ−1=600*Ω/2π

τ−1=800*Ω/2π

τ−1=1000*Ω/2π

τ−1=1200*Ω/2π

τ−1=1500*Ω/2π
P

L

Time (Rabi periods)

FIG. 3: Temporal evolution of PL. The collision frequency
τ−1 is varied between 500T−1

R and 1500T−1

R . Unlike in the
previous figure, we set αL = 0, αR = 0.2, so that in prac-
tice, NL = 1 left level is coupled to NR = 40 right levels.
Again, the survival probability in the left subspace increases
as the collision frequency is increased: frequent collisions hin-
der transition to the right subspace, a manifestation of a
(“quantum”) Zeno effect.

of state |1R〉). It is apparent that when the collision fre-
quency τ−1 is increased between 500T−1

R and 1500T−1
R

(TR = 2π/Ω being the Rabi period) the survival prob-
ability in the left subspace increases. If the collisions
are viewed as a dephasing process (effectively yielding a
“measurement” of the occupation probabilities of the left
states), this can be viewed as a Zeno effect. This is in
agreement with our “classical” intuition: since the sys-
tem is initially in the left subspace and collisions remove
population density from the ground state |1L〉 of this sub-
space (the only level coupled to the right subspace), it
is intuitively clear that, by increasing the collision fre-
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quency, transitions to the right subspace are hindered.
We are therefore tempted to call this a “classical” Zeno
effect.

The situation depicted in Figure 3 is different: here
αL = 0 and αR = 0.2, so that now collisions do not pro-
voke transitions among the left states, or equivalently the
left subspace consists only of state |1L〉 (which is also the
only state coupled to the right subspace). Once again,
when the collision frequency τ−1 is increased in the same
range as before, the survival probability in the left sub-
space increases. We stress that the collisions are effective
in hindering the transition from a single level towards a
subspace that is initially empty. In other words, now
the collisions act only on the right subspace, where vir-
tually no particles are present. Once again, this can be
viewed as a Zeno effect; however, it is somewhat less intu-
itive than the previous one (and maybe a bit puzzling for
our “classical” intuition). We would therefore call this a
“quantum” Zeno effect.

After having rapidly analyzed these two simple situa-
tions, we are ready to tackle the more general case of NL

left levels coupled to NR right ones. This will be done in
the following.

IV. MASTER EQUATION

A. The general case

We start our analysis by deriving a master equation
for the density matrix of the molecule. Write (4) as

Hcoll(t) = h̄ µ(t)V, (15)

where

µ(t) =
dN(t)

dt
=
∑

j

δ(t− τj) (16)

is the derivative of a Poisson process N(t) with mean
time τ [19]:

Prob{N(t) = n} = P (n, t) = e−t/τ 1

n!

(
t

τ

)n

. (17)

One gets

〈dN(t)〉 =
dt

τ
,

〈(
dN(t) − dt

τ

)2
〉

=
dt

τ
, (18)

so that the process

dW (t) = η(t)dt = µ(t)dt− dt

τ
= dN(t) − dt

τ
(19)

has a vanishing mean and a linear variance in dt

〈dW (t)〉 = 0,
〈
dW (t)2

〉
=
dt

τ
. (20)

In terms of the white noise η(t) these equations read

〈η(t)〉 = 0, 〈η(t)η(t′)〉 =
1

τ
δ(t− t′). (21)

The collision Hamiltonian can then be rewritten in terms
of a constant part and a white noise

Hcoll(t) =
h̄

τ
V + h̄ η(t)V, (22)

whence the total Hamiltonian (1) reads

H = H̄ + h̄ η(t)V, H̄ = H0 +H1 +
h̄

τ
V. (23)

The Schrödinger equation (in Itô form) is

|ψ(t+dt)〉 =

(
1 − i

h̄
H̄dt− 1

2τ
V 2dt

)
|ψ(t)〉−iV dW |ψ(t)〉

(24)
and the average density matrix [〈· · ·〉 is introduced in Eq.
(18)],

ρ(t) = 〈 |ψ(t)〉〈ψ(t)| 〉 , (25)

follows a master equation in Lindblad’s form [20]

dρ

dt
= − i

h̄
[H̄, ρ] − 1

2τ
[V, [V, ρ]]

= − i

h̄
[H̄, ρ] − 1

2τ
{V 2, ρ} +

1

τ
V ρV. (26)

By using Eqs. (23), (5) and (6) we get

dρ

dt
= − i

h̄
[H0, ρ] −

i

h̄
[H1, ρ] −

i

τ
[V, ρ] − 1

2τ
{V 2, ρ} +

1

τ
V ρV

= − i

h̄
[H0, ρ] −

i

h̄
[H1, ρ] +

∑

s=L,R

(
−iαs

τ
[Vs, ρ] −

α2
s

2τ
{V 2

s , ρ} +
α2

s

τ
VsρVs

)
+
αLαR

τ
(VLρVR + VRρVL) . (27)
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This equation for the average density matrix (25) is ex-
act, but complicated. However, it can be greatly simpli-
fied under some reasonable hypotheses.

B. Reduced master equation

We assume that all level pairs EmR and EnL are suf-
ficiently far from resonance, namely

∆E

h̄
≫ Ω, τ−1, (28)

where ∆E is the smallest energy difference between states
|mR〉 and |nL〉, with mR, nL > 1. This requirement will
be discussed in more detail in Section VII. At this stage
we only observe that, typically, ∆E/h̄ ≃ 10−9s, while
Ω ≃ 1kHz and τ ≃ 1µs, so the above condition appears
very reasonable.

It is then possible to show that in (27) the dynam-
ics of the populations pms = ρmsms (s = L,R) plus
the coherence term ρ1L1R completely decouples from the
dynamics of the coherence terms ρmsns′

(s, s′ = L,R
and ms, ns′ 6= 1). This is because, roughly speaking, no
“diagonal” fast frequency is present [essentially because
〈ms|[H0, ρ]|ms〉 = 0 in (27)] and, under the hypothesis
(28), the contribution of all the other fast terms is aver-
aged to zero over the long timescales τ and Ω−1, and the
dynamics of the slow and fast terms completely decou-
ples. In conclusion, only the “slow” dynamics is relevant
over the large timescales τ and Ω−1.

The above argument has a general rigorous justifica-
tion [18] in terms of an adiabatic theorem and is eluci-
dated in Appendix A for the model studied in this article.
One shows that the part of the master equation (27) per-
taining to the populations becomes

dρ̃

dt
≃ − i

h̄
[H̃1, ρ̃]−

i

τ
[Ṽ , ρ̃]− 1

2τ
{Ṽ 2, ρ̃}+

1

τ
Ṽ ρ̃V , (29)

where the reduced operator Ã, defined by

Ã = QAQ+
∑

s=L,R

Ns∑

ms=2

PmsAPms , (30)

involves only matrix elements belonging to the
eigenspaces of H0 [18],

Q = P1L + P1R and Pms = |ms〉〈ms|, (31)

[remember condition (10)] and is diagonal with respect
to H0

[H0, Ã] = 0. (32)

In particular, from Eq. (3)

H̃1 = QH1Q = H1 = h̄Ωσ1,

σ1 ≡ |1L〉〈1R| + |1R〉〈1L| (33)

and from Eqs. (5) and (6)

Ṽ = 0, Ṽ 2 =
∑

s=L,R

α2
sṼ

2
s =

∑

s=L,R

α2
s

Ns−1∑

ms=1

V 2
ms

(34)

and

Ṽ ρ̃V =
∑

s=L,R

α2
s
˜Vsρ̃Vs =

∑

s=L,R

α2
s

Ns−1∑

ms=1

Vms ρ̃Vms, (35)

so that Eq. (29) reads

dρ̃

dt
= −iΩ[σ1, ρ̃] −

∑

s=L,R

α2
s

2τ

Ns−1∑

ms=1

[Vms , [Vms , ρ̃]]. (36)

This is the master equation we will study in detail. The
only assumption made in its derivation is (28).

The reduced density matrix ρ̃ is given by Eq. (30)
and involves only the level populations pns = ρnsns

(s = L,R) and the two coherence terms ρ1L,1R and
ρ1R,1L , all other matrix elements being zero. Thus, it
describes two classical Markov chains (1L, . . . , NL) and
(1R, . . . , NR), whose transition rates are proportional to
DL = α2

L/τ andDR = α2
R/τ respectively, linked by quan-

tum Rabi oscillations between |1L〉 and |1R〉, whose pe-
riod is TR = 2π/Ω.

By setting D = (DL +DR)/2, i.e. α2 = (α2
L + α2

R)/2,
the ratio between the two timescales

x = DTR =
α2

τ
TR =

2πα2

τΩ
(37)

is an important parameter, that describes different dy-
namical regimes. Larger values of x correspond to more
frequent collisions (within a Rabi period) and conse-
quently to a more evident manifestation of the QZE.

V. STOCHASTIC DYNAMICS IN DECOUPLED

SUBSPACES

Let us first study the subdynamics of each subspace
HL/R separately. To this end, set Ω = 0 in Eq. (36):
the time evolution is governed only by the collision dy-
namics, the right and left subspaces decouple and their
subdynamics can be studied separately.

In terms of (s = L,R)

p
s = (ρ1s1s , . . . , ρnsns,...) = (p1s , . . . , pns , . . .) , (38)

Eq. (36) reduces to

dps

dt
= DsW

s
p

s, (39)

where W s is the stochastic matrix

W s =




−1 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .
0 0 1 −2 . . .
...

...
...

...
. . .



, (s = L,R) (40)
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and

Ds =
α2

s

τ
. (41)

Note that W s is a real symmetric matrix with real eigen-
values and a complete set of eigenvectors.

The resulting dynamics is diffusive. Indeed, Eq. (39)
explicitly reads

ṗ1s = Ds (−p1s + p2s) , (Ω = 0) (42)

ṗns = Ds (pns−1 − 2pns + pns+1) , (ns ≥ 2) (43)

which is nothing but a diffusion equation (dropping the
suffix s)

∂tpn(t) = D△pn(t), (44)

where

△ ≡ 1

2

(
∇+∇− + ∇−∇+

)
, (45)

and

∇+pn = pn+1 − pn, ∇−pn = pn − pn−1. (46)

The boundary condition ∇−p1 = 0 [see Eq. (42)] is im-
posed by introducing a supplementary state n = 0, whose
probability satisfies p0 = p1 for every t. The evolution of
the population is made up of two terms (both expressed
in terms of the fundamental solution of the heat equa-
tion): each “site” (level) gets a direct and a “reflected”
contribution from the boundary n = 1:

pn(t) = qn(Dt) + q1−n(Dt), (47)

where qn(t) are the probabilities of the continuous-time
symmetrical random walk engendered by the equations
[21]

q̇n = qn−1 − 2qn + qn+1, −∞ < n <∞, (48)

whose solution starting at n = 1 for t = 0 [i.e. pn(0) =
δn1] reads

qn(t) = e−2tI|n−1|(2t), (49)

In(t) being the modified Bessel function [22]. As is well
known, for t → ∞ and n → ∞ with n2/t =const, this
yields

qn(t) ∼ 1√
4πt

exp

(
− (n− 1)2

4t

)
. (50)

Note that the boundary condition is essential in assuring
probability conservation,

+∞∑

n=1

pn(t) =

+∞∑

n=−∞

qn(Dt) = 1, (51)

for any t. The above equations are of general validity. In
particular,

p1(t) = e−2Dt [I0(2Dt) + I1(2Dt)] , (52)

(and p1(0) = 1). It is also possible, by using the solution
(47) and (49), to evaluate the mean and second moment

µ(t) =

∞∑

n=1

npn(t), (53)

σ2(t) =

∞∑

n=1

n2pn(t) . (54)

Indeed, by using (48), one can obtain explicit differential
equations involving these quantities, valid for any t,

µ̇(t) = Dp1(t) = De−2Dt [I0(2Dt) + I1(2Dt)] ,

σ̇2(t) = 2D +Dp1(t), (55)

whose integration gives

µ(t) =
1

2
+

1

2
e−2Dt [(1 + 4Dt) I0(2Dt) + 4Dt I1(2Dt)] ,

(56)

σ2(t) = 2Dt+ µ(t). (57)

Let us also give, for completeness, the expression of µ
and σ for times Dt≫ 1 [but always t≪ Td, see Eq. (60)
below]. From Eqs. (56)-(57),

µ(t) ∼
√

4D

π
t,

σ(t) ∼
√

2Dt. (58)

In order to compare these results with those of the fol-
lowing sections, consider that

Dt = x
t

TR
, (59)

where TR is the Rabi period and x = xs = α2
sTR/τ (s =

1, 2) is essentially the scaling parameter introduced in
(37).

In reality, as we already emphasized, the number N
(NL or NR) of accessible rotational levels is in fact fi-
nite, because the molecule dissociates after absorbing a
sufficient amount of energy. In order to account for this
process one can add an (N + 1)th absorbing level (in
each subspace). However, since we are interested in phe-
nomena, such as the QZE, that can be brought to light
within timescales shorter than the dissociation time, the
introduction of an absorbing level is an unnecessary com-
plication that can be easily avoided by restricting our
attention to the relevant timescales. Let us therefore es-
timate the time scale at which dissociation occurs. If a
molecule dissociates when it reaches level N + 1, namely
if only N levels take part in the diffusion process, the
“dissociation” time reads

Td ≃ N2

D
=
N2τ

α2
=
N2

x
TR. (60)
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This is the time needed by the system, that starts in
the ground level, in order to reach the uppermost level
via the diffusive propagation engendered by the collision.
This rough estimate of the “dissociation” time can be im-
proved: a better analysis yields Td = N2τ/π2α2, which
is roughly of the same order of magnitude.

In our analysis we will assume N = 40. Within the
numerical range of the parameters α and τ to be used in
our simulation, the dissociation time Td varies between
2 and 12 Rabi periods. In the following we will always
remain well below this threshold.

VI. ZENO EFFECT IN COUPLED SUBSPACES

We have seen in Section III that when the L and R
subspaces are coupled, namely when Ω 6= 0, a QZE can
be obtained by increasing the collision frequency. Indeed,
as we will show, by increasing the collision frequency, the
probability of remaining in the initial subspace decays
more slowly. We also commented on the possibility of
studying the Zeno dynamics in two different situations,
that we named “classical” and “quantum.” These differ-
ent names reflect the fact that the former case can be
understood (at least qualitatively) by means of a classi-
cal Markov process, while the latter cannot. Both Zeno
effects are contained in the master equation derived in
Section IV and are a consequence of the features of the
collisions with the other molecules constituting the envi-
ronment, or in other words, of the coupling constants of
the interaction Hamiltonian Hcoll. The resulting dynam-
ics will be numerically investigated in full generality in
Section VII. However, before we show the results of the
numerical simulation, let us discuss the main qualitative
features of the dynamics without solving the complete
master equation. This will be done in the present section
with the help of some working hypotheses and will help
us clarify some additional features of the Zeno effects.

When Ω 6= 0 the two subspaces HL and HR are coupled
through their ground states. The evolution is described
by (43), supplemented by the following three equations

ṗ1L = DL (−p1L + p2L) + Ωpc(t), (61)

ṗ1R = DR (−p1R + p2R) − Ωpc(t), (62)

ṗc(t) = −DL +DR

2
pc(t) − 2Ω (p1L(t) − p1R(t)) , (63)

where pc is the coherence term between states |1L〉 and
|1R〉

pc = −2Imρ1L1R = i (ρ1L1R − ρ1R1L) , (64)

responsible for the coupling between the two subspaces.
The total probabilities of being in the left and right sub-
spaces read

PL(t) =
∑

nL

pnL(t), PR(t) =
∑

nR

pnR(t), (65)

respectively. The derivatives of these quantities are easily
seen to be simply related to the coherence term:

ṖL(t) = Ωpc(t), ṖR(t) = −Ωpc(t). (66)

Notice that ṖL + ṖR = 0 (conservation of particles num-
ber). Let our particles start in the left subspace at time
t = 0. Therefore the quantity of interest is PL. One can
obtain the evolution equation for PL(t) by eliminating pc

by means of (63)

P̈L +DṖL + 2Ω2 (p1L − p1R) = 0, (67)

where we set D ≡ (DL + DR)/2. This equation shows
that the dynamics of PL is governed only by the popula-
tion difference between the ground states, irrespectively
of the population of the higher levels. This introduces
an interesting picture of the dynamics, in which the Rabi
oscillations act as a “source” for the probability. The
source drains particles from the left to the right subspace
if p1L > p1R and vice versa if p1L < p1R .

Our initial condition will always be p1L(0) = 1: initial
population in the ground state of the left subspace. For
t ≪ 1/D ≪ TR = 2π/Ω (which is always true for our
choice of parameters), we can set p1L(t) = 1 + O(Dt)
and p1R(t) = O(Dt) and a power-series solution of (67),

with initial conditions PL(0) = 1, ṖL(0) = 0, yields

PL(t) = 1 − Ω2t2 + o(Ω2t2), (68)

which shows that the quadratic region of the Rabi oscilla-
tion is not perturbed by the collisional dynamics (namely,
does not depend on α), even thought it extends up to
times shorter than 1/D ≪ TR. This result was to be
expected [9] and is well observed in our numerical exper-
iments, also for very high collision frequencies.

Equation (67) is exact, but it is not a closed equa-
tion for the total probability PL. One needs the popula-
tions of the ground states in order to obtain PL. We will
therefore introduce an ansatz for the functional form of
the populations of the ground states, valid for large x,
which will enable us to get a closed equation for PL. In
addition we will also gain a deeper understanding of the
Zeno phenomenon for this system. The ansatz consists in
substituting for p1L/R

the solution (52), obtained for the

decoupled subspaces (Ω = 0), normalized to PL/R. This
“adiabatic” (Born-Oppenheimer-like) approximation re-
lies upon the assumption that the time scale of the in-
ternal collisional dynamics is much faster than the Rabi
one (1/D ≪ TR), so that particles are drained from the
ground level and redistributed according to the uncou-
pled dynamics. The Rabi coupling simply accounts for
the varying number of particles present in each subspace.
This ansatz is translated into the equations

p1L = PL(t)fL(t),

p1R = PR(t)fR(t) = (1 − PL)fR(t), (69)

where fL/R(t) are the population probabilities of the
ground states given by the uncoupled dynamics (52)

fL/R = e−2DL/Rt
[
I0(2DL/Rt) + I1(2DL/Rt)

]
. (70)
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Substituting in (67) we obtain

P̈L +DṖL + 2Ω2 (PL(fL + fR) − fR) = 0, (71)

which is the equation of motion of a unit-mass, forced
pendulum with varying frequency. The initial conditions
are PL(0) = 1, ṖL(0) = 0. It is easy to prove that if
fR/(fL + fR) tends to a well-defined limit and its first
and second derivatives vanish when t → ∞, there is a
stable fixed point at t = ∞ [24]

P ∗
L =

fR(t)

fR(t) + fL(t)

∣∣∣∣∣
t→∞

(72)

and any solution will eventually reach this point. This
feature of the population of the left subspace is always ob-
served in the numerical solutions. An asymptotic analy-
sis of the Bessel functions, performed with 1/D ≪ t≪ Td

shows that all these requirements are satisfied and an
equilibrium distribution exists and is given by

P ∗
L =

1

1 +
√
DR/DL

=
αL

αL + αR
. (73)

Let us see now how the Zeno effect emerges in this picture
in three different cases.

A. Case αL = αR = α 6= 0

The first case-study is obtained by setting α = αL =
αR 6= 0, so that the (collision dynamics in the) two
subspaces are identical and fL(t) = fR(t) ≡ f(t). We
change the time variable from t to the dimensionless
t/TR = 2πt/Ω and set x = DTR = α2TR/τ = 2πα2τ/Ω,
obtaining (the dot denotes now differentiation with re-
spect to t/TR)

P̈L + xṖL + 8π2f(t)(2PL − 1) = 0, (74)

where f(t) is given by (70). SinceDL = DR, according to
(73), PL will eventually tend to P ∗

L = 1/2. However, we
will see that the typical time scale Trelax of this relaxation
process will increase with x and this will be interpreted
as a QZE.

The proposed analogy with a classical damped har-
monic oscillator suggests that when x ≫ 1 we get ṖL ∼
1/xα and P̈L ∼ 1/x2α, with α > 1. Indeed, we will see
that the solution satisfies this hypothesis with α = 3/2,

so that the first term (P̈L ∼ x−2α) is negligible with

respect to the second (xṖL ∼ x1−α) and the third one
(both f and PL are of order 1) and hence can be dropped
from (74). Thus we are left with a first-order, separable
differential equation whose solution is [here PL(0) = 1

but ṖL(0) = O(1/x)]

PL(t) =
1

2
+

1

2
exp

[
8π2

x2

(
1 − e−2xt(1 + 4xt) I0(2xt)

−e−2xt4xt I1(2xt)
)]
. (75)

10-2

10-1

100

10-7 10-6 10-5 10-4

Numerical

Eq. (76)

(-
1)

*l
n(

2*
P

L-1
)

t/x3

x=48

FIG. 4: Comparison between the numerical results and Eq.
(76). We set x = 48.

For xt≫ 1 we obtain a stretched exponential

PL(t) ≃ 1

2
+

1

2
exp

[
8π2

x2
− 32π3/2

(
t

x3

)1/2
]
, (76)

from which one can define a relaxation time as the only
characteristic time present in the exponential (restoring
natural time units):

Trelax ∝ x3TR. (77)

The Zeno effect consists in the fact that by increasing x
(more frequent collisions) the corresponding curves of PL

tend to zero more slowly. These predictions are in qual-
itative and quantitative agreement with the numerical
simulations of the next section.

In order to get a rough preliminary idea of the issues
discussed in this section, look for instance at Figures 4
and 5, where the numerical results (to be described in
greater details in the following) are compared to Eqs.
(76)-(77). The probability (75)-(76) is correct up to a
precision of 10%, showing that the ansatz (69) yields
sensible results. Notice that x = 48 in Figure 4, so
that the solution (76), which is supposed to be valid for
xt ≫ 1, must yields accurate results for t/x3 >∼ 10−6, as
one indeed observes. A numerical fit for the exponent
in the stretched-exponential yields t0.3 rather than t1/2,
confirming the general functional dependence. The very
fact that the global relaxation law is of the stretched-
exponential type suggests that the dynamics is highly
nontrivial, but we will not elaborate on this here. Fi-
nally, as can be seen from Figure 5, the scaling law (77)
is very well verified.

B. Case αL 6= αR = 0

Let us briefly reconsider the first case analyzed in Sec.
III, Figure 2. Here the left subspace is affected by col-
lisions while the right one is not. Although this is not
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FIG. 5: Rescaled probabilities for x = 32, 48, 56 (numerical
results).

a realistic situation, it is interesting and instructive to
look at it. We shall show that also in this case, as the
collision strength is increased, the system tends to spend
more time in the initial (left) subspace.

If αR = 0 and αL 6= 0 then fL ≡ f and fR = 1 and
Eq. (71) reads

P̈L + xṖL + 8π2[PL(1 + f(t)) − 1] = 0, (78)

where x = α2
LTR/2τ = πα2

L/Ωτ . By means of the same
approximations of the preceding subsection we obtain,
for x≫ 2

√
2π,

PL(t) ≃ 1 − 2
√

2π

x
e
−

(√
8π2t

x + 2
√

2π
x

)
2

×Φ

(√
8π2t

x
+

2
√

2π

x

)
, (79)

where Φ(z) is the error function of imaginary argument
[22]

Φ(z) =
2√
π

∫ z

0

dxex2

. (80)

Here the definition of a relaxation time is not easy (no
simple scaling law exists). However, both in this solution
and in the numerical data, PL has a single minimum
P ∗

L, which is an increasing function of x: this can be
regarded as a manifestation of a (classical) Zeno effect, as
explained in Sec. III. From (79) the value of the minimum
is

P ∗
L = 1 − 2.7

x
(81)

and is an increasing function of x [25]. This law is well
confirmed by the numerical data in Figure 2. Beyond the
minimum PL tends to 1 with a power-law

PL(t) ≃ 1 −
√

4

πxt
. (82)

This is again a Zeno effect: by increasing the collision
rate x the survival probability increases.

C. Case αR 6= αL = 0

This is the second case analyzed in Sec. III, Figure 3.
If αL = 0, αR 6= 0, then fR = f, fL = 0 and Eq. (71)
reads (here x = α2

RTR/2τ)

P̈L + xṖL + 8π2[PL(1 + f(t)) − f(t)] = 0. (83)

Again we neglect P̈L with respect to xṖL and PL, obtain-
ing a first-order equation whose solution is (in the large
x limit)

PL(t) ≃ e
−

(√
8π2t

x + 2
√

2π
x

)
2

×
[
1 +

2
√

2π

x
Φ

(√
8π2t

x
+

2
√

2π

x

)]
.(84)

This displays a (quantum) Zeno effect, since for xt ≫ 1
one gets

PL(t) ∼ e
−

(√
8π2t

x + 2
√

2π
x

)
2

(85)

[compare with (79)].
Once again there is a scaling law and one can define a

characteristic relaxation time (in natural units)

Trelax ∼ xTR. (86)

Observe that this scaling is at variance with (77).

VII. SIMULATIONS

A. Method

We will now study in detail the features and results
of the integration of the kinetic equation by means of a
Montecarlo method. The kinetics of the internal degrees
of freedom has been thoroughly studied in nonequilib-
rium situations [16, 17].

Let us recall the main features of the simulation. Some
details have already been given in Sec. III. We set
Ω = 935 s−1, α = αR = αL ≃ 0.2 ÷ 0.4, τ−1 <∼
2 · 105 s−1 and NL = NR = 40 energy levels in each sub-
space, with energies given by (9), where ns = 1, . . . , 40,
ωL = 1.3 · 1010 s−1, ωR = 9.7 · 109s−1. The minimum
energy difference ∆E between the levels is of great im-
portance. One can check that with the above-mentioned
numerical figures ∆E/h̄ = 2.8 · 109s−1 and the condition
(28) is always satisfied [26]. The populations dynam-
ics is collected as an average over an ensemble of 5 · 103

simulated particles. Since the underlying equations are
linear, the particles can be serially simulated and the
precision of the results sharpened by simply increasing
the sample size. The simulations provide the time varia-
tion of all the elements of the 1-particle reduced density
matrix. We constantly checked all the level populations
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FIG. 6: Temporal evolution of the mean µL introduced in
Eq. (53), for αR = αL = α = 0.2 and x = 32, 48, 56.

pns , 1 ≤ ns ≤ 40, s = L,R, but will only discuss in the
following the temporal behavior of the total population
of the left subspace PL. The initial situation, in all the
simulations, is

p1L = 1, all others = 0, (87)

so that the initial population is concentrated in the |1L〉
state (the ground state of the left subspace).

B. Results

It is interesting to discuss in more detail some features
of the relaxation process and compare them to the ana-
lytical model proposed in Sec. IV. We track the tempo-
ral evolution of all the populations and try to estimate
the speed and the extent at which the levels get popu-
lated. Two suitable indicators are the mean µ = µL and
standard deviation σ = σL, introduced in (53) and (54).
They are plotted in Figure 6 and 7 and accurately re-
produce the analytical results (56) and (57) (remember
that Dt = xt/TR). The analytical results are not shown
in the graphs, for they cannot be distinguished from the
numerical ones.

Notice also in both figures the square-root dependence
(58) for large times t ≫ TR/x ≃ 3 · 10−2TR. It is
worth stressing that this also provides a direct proof that
boundary effects, related to the finiteness of the number
of levels, can be safely neglected for the times considered
here.

We now show how the relaxation of the population
depends on the collision frequency τ−1, for fixed values
of the parameter α = αL = αR. Figure 8 shows the
temporal evolution of the relative population of the left
subspace PL(t) ≡

∑
nL
pnL(t) (once again, the analytical

results cannot be distinguished from the numerical ones
and are not shown in the graph). We note that this quan-
tity will always eventually tend to its equilibrium value

100

101

10-3 10-2 10-1 100

α=0.2

α2*τ-1=32*Ω/2π

α2*τ-1=48*Ω/2π

α2*τ-1=56*Ω/2π

σ
L

Time (Rabi periods)

FIG. 7: Temporal evolution of the standard deviation σL

introduced in Eq. (54), for αR = αL = α = 0.2 and x =
32, 48, 56.
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FIG. 8: Temporal evolution of PL as a function of the colli-
sion frequency τ−1. We always set α = αl = αR = 0.2.

P ∗
L = 1/2, according to (73). However, the important

point is that by increasing the collision frequency from
300 T−1

R to 800 T−1
R , the system tends to remain in the

left subspace for a longer time. This is evident in the plot
and is a clear manifestation of a QZE. We also notice (al-
though this is not clearly visible in Figure 8, due to the
scale chosen) that there is always a short-time quadratic

region, characterized by a “Zeno time” P̈L(0) = −Ω, in
full agreement with Eq. (68). The features of this short-
time region are independent of other parameters (such
as α and τ) [9], as can be seen in the figure. Finally,
we emphasize that x = α2T/τ ranges between 12 and 32
and is therefore always ≫ 1, so that the analysis of Sec.
VI A applies.

A similar Zeno effect is evident when the parameter α
is varied, while keeping the collision frequency τ−1 con-
stant, as displayed in Figure 9 (once again, we only dis-
play the numerical results, for the analytical ones cannot
be distinguished). Unlike in the preceding case, where
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FIG. 9: Temporal evolution of PL as a function of α = αL =
αR. For all calculations we set τ−1 = 800Ω/2π.

the Zeno effect was due to increasing collision frequency,
now it is due to increasing collision effectiveness : a larger
α entails more dephasing and decoherence and, in a loose
sense, a better “measurement” of the quantum state. The
parameter x = α2T/τ ranges between 39 and 72 (≫ 1)
and one observes again the presence of a (parameter-
independent) short-time region.

As the analysis of Secs. IV-VI shows, the dynamics of
the system should be ruled by the scaling parameter

x = DTR =
α2TR

τ
. (88)

Figure 10 shows how this scaling law is supported by the
results of the numerical simulation. The plot shows three
sets of curves corresponding to three different values of x.
In each set, the values of α and τ were varied as indicated.
Some deviations from the scaling law (of order 5%) can
be observed and are to be ascribed to the influence of the
terms neglected in deriving Eq. (36). Incidentally, notice
again the short-time quadratic behavior.

VIII. CONCLUDING REMARKS

We have studied a Zeno effect in a multilevel molecule,
focusing, in Sec. VII, on a situation where the Zeno effect
can be ascribed to both a “classical” and a “quantum”
origin. Indeed, the molecule has 40+40 levels, one of
which (the ground state of the left subspace) is initially
populated, and the evolution towards the right subspace
is slowed down both because the collisions remove pop-
ulation density “upwards” from the left ground state (a
classically intuitive process) and because they “dephase”
(or analogously, make energetically less favorable) the
transitions towards the right subspace. The latter pro-
cess is classically less intuitive, but is readily understood
if one thinks in terms of quantum transition amplitudes
(or of the Fermi “golden” rule for a bona fide unstable
system).

0,70

0,80

0,90

1,00

0 0,5 1 1,5 2

α=0.2
α=0.25
α=0.4

P
L

Time (Rabi periods)

α2*τ-1=32*Ω/2π

α2*τ-1=48*Ω/2π

α2*τ-1=56*Ω/2π

FIG. 10: Test of the scaling law (88). Temporal evolution of
PL for different values of x = α2T/τ : three simulations were
done with αR = αL = α = 0.2, 0.25, 0.4, respectively. x
ranges between 32 to 56.

It is worth stressing that the general ideas and tech-
niques introduced in this article are valid for any mul-
tilevel molecule and any possible level distribution: we
focused on the case (9) only for concreteness. Those sit-
uations in which (28) is not valid are very particular cases
and their analysis, although of interest, goes beyond the
scope of this article.

On the other hand, it is also necessary to emphasize
that we neglected temperature effects and rapid struc-
tural rearrangement phenomena leading to a Boltzmann
distribution of the level populations. This is a conceptu-
ally interesting problem, considered in [12] and involving
delicate issues: a sensible estimate of the timescales in-
volved in these thermalization processes is a challenging
problem that requires further investigation.

We conclude by noticing that the Hamiltonian (1)-(6)
is also relevant for the study of quantum chaos and An-
derson localization [23]. The analysis of Poissonianly dis-
tributed “kicks” (7) would introduce a novel element of
discussion in such a context.

Acknowledgments

D.B., S.L. and P.M. were partially supported by Minis-
tero dell’Istruzione, dell’Università e della Ricerca (Con-
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APPENDIX A

It is interesting to look explicitly at the derivation of
Eq. (36) from Eq. (27). The physical mechanism at work
is the effective decoupling between the fast and the slow
modes in (27). Let us start from the equation for ρ1L2L ,
that explicitly reads [here ω2L1L ≡ (E2L − E1L) /h̄]
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dρ1L2L

dt
= iω2L1Lρ1L2L − iΩρ1R2L − i

αL

τ
(ρ2L2L − ρ1L1L − ρ1L3L)

−α
2
L

2τ
(ρ1L2L + ρ3L2L − 2ρ2L1L − 2ρ2L3L + 2ρ1L2L + ρ1L4L). (A1)

When condition (28) is satisfied, the first term in the
right-hand side dominates over the others and one ob-
tains

dρ1L2L

dt
≃ iω2L1Lρ1L2L , (A2)

which yields a very fast dynamics for the term ρ1L2L :

ρ1L2L(t) = ρ1L2L(0) exp(iω2L1Lt). (A3)

The equations for the other off-diagonal components of ρ
are similar. These equations yield very rapidly oscillating
solutions.

On the other hand, the dynamics of the populations
ρ1s1s , with s = L,R, and of the coherent terms ρ1L1R is
governed by the equations

dρ1L1L

dt
= −iΩ(ρ1R1L − ρ1L1R) +

α2
L

τ
(ρ2L2L − ρ1L1L) − i

αL

τ
(ρ2L1L − ρ1L2L) − α2

L

2τ
(ρ3L1L + ρ1L3L),

dρ1R1R

dt
= iΩ(ρ1R1L − ρ1L1R) +

α2
R

τ
(ρ2R2R − ρ1R1R) − i

αR

τ
(ρ2R1R − ρ1R2R) − α2

R

2τ
(ρ3R1R + ρ1R3R), (A4)

dρ1L1R

dt
= iΩ(ρ1L1L − ρ1R1R) − α2

L

2τ
ρ1L1R − α2

R

2τ
ρ1R1L − i

αL

τ
ρ2L1R − i

αR

τ
ρ1L2R +

αLαR

τ
ρ2L2R − α2

L

2τ
ρ3L1R − α2

R

2τ
ρ1L3R .

It is apparent that no “diagonal” fast frequency ω is
present and these matrix elements evolve over timescales
τ and Ω−1 which are much larger than ω−1. Therefore
the contribution of all the off-diagonal fast terms of the
type (A3) is averaged to zero over the long timescales τ
and Ω−1, the dynamics of the slow and fast terms com-
pletely decouples and we get

dρ1L1L

dt
≃ −iΩ(ρ1R1L − ρ1L1R) +

α2
L

τ
(ρ2L2L − ρ1L1L),

dρ1R1R

dt
≃ iΩ(ρ1R1L − ρ1L1R) +

α2
R

τ
(ρ2R2R − ρ1R1R),

dρ1L1R

dt
≃ iΩ(ρ1L1L − ρ1R1R) − α2

L

2τ
ρ1L1R − α2

R

2τ
ρ1R1L .

(A5)

Analogously, the evolution equations of the popula-
tions pms = ρmsms read (ms 6= 1L,R)

dρmsms

dt
=

α2
s

τ
(ρms−1,ms−1 − 2ρmsms + ρms+1,ms+1) − i

αs

τ
(ρms+1,ms − ρms,ms+1 + ρms−1,ms − ρms,ms−1)

−α
2
s

2τ
(ρms−2,ms + ρms,ms−2 + ρms+2,ms + ρms,ms+2) , (A6)

and by the same argument reduce to

dρmsms

dt
≃ α2

s

τ
(ρms−1,ms−1 − 2ρmsms + ρms+1,ms+1) ,

(A7)

which are in the form (29)-(36). Notice the absence of
fast and oscillating terms.
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problem of number theory. However, in our case
NL = NR = 40 and one can numerically check that the
value ∆E/h̄ = 2.8 · 109s−1 given in the text is stable

against perturbation of ωL,R of a few percent (well above
experimental uncertainties).


