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Abstract

The Dirac method is used to analyze the classical and quantum dynamics of a particle constrained on a circle. The method
of Lagrange multipliers is scrutinized, in particular in relation to the quantization procedure. Ordering problems are tackled
and solved by requiring the Hermiticity of some operators. The presence of an additional term in the quantum Hamiltonian is
discussed. 2002 Elsevier Science B.V. All rights reserved.

PACS:04.60.Ds; 03.65.Db

1. Introduction

The seminal and, so far, most used way to formulate the quantum theory of a particle or a field makes wide use
of the Hamiltonian description of classical mechanics [1]. The standard rules for constructing the momenta and the
Hamiltonian function, however, cannot be applied when the Lagrangian is singular. In such a case it is not possible
to extract the functional dependence of all the velocities on the momenta in order to obtain a Hamiltonian function
of coordinates and momenta only. Dirac’s method concerns the study of classical systems using the Hamiltonian
method when the usual procedure fails due to the singularity of the Lagrangian [2]. Dirac gave very general rules
to construct the Hamiltonian and calculate sensible brackets that can be used to describe the classical and, by the
canonical quantization procedure, the quantum dynamics.

One of the most interesting situation where Dirac’s method of handling singular Lagrangians can be applied is
in confining particles on curved manifolds [3,4]. Part of this interest is certainly due to the presence of additional
terms which arise in many quantization procedures on curved manifolds [5–7] and is far from being clarified. In
this Letter we will focus our attention on the connection between the additional terms which occur in the quantum
Hamiltonian and the problem of the operator ordering prescription.

In Section 2 we briefly review Dirac’s method of handling singular Lagrangians. In Section 3 we quantize a free
particle constrained on a circle following the standard procedure, i.e., reducing from the very beginning the number
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of degrees of freedom. Then we solve the same (classical) problem using Dirac’s method, recovering a new set of
canonical brackets. Finally, we quantize using this bracket algebra, by focusing our attention on the construction
of coordinates, linear momenta, angular momentum and Hamiltonian operators and on related ordering problems
and we will finally write the Schrödinger equation. Section 4 contains our conclusions.

2. The Dirac method

Let us start by outlining the Dirac method [2] and introduce notation. Take a consistent LagrangianL(x, ẋ) with
N coordinates. The classical dynamics is obtained by the least action principle:

(2.1)S[x] =
t1∫
t0

dt L(x, ẋ), δS[x] = 0,

which in terms of the Lagrangian givesN Euler–Lagrange equations

(2.2)
∂L

∂xi
− d

dt

∂L

∂ẋi
= 0.

We define momenta and Hamiltonian and obtain the usual (Poisson) brackets between momenta and coordinates:

(2.3)pi = ∂L

∂ẋi
, i = 1, . . . ,N,

(2.4)H(x,p)=
∑
i

pi ẋi(x,p)−L
(
x, ẋ(x,p)

)
,

(2.5)[xi,pj ] = δij ,
and for any functionA of x ’s andp’s (not explicitly dependent on time),

(2.6)Ȧ= [A,H ].
Two scenarios are possible. In the typical case one can invertpi(x, ẋ) to obtainẋi(x,p); if this is not possible, not
even locally, the Lagrangian is said singular and its Hessian with respect to the velocities vanishes

(2.7)

∥∥∥∥ ∂L

∂ẋi∂ẋj

∥∥∥∥ = 0.

In such a case we act differently. We consider those relations in (2.3) which hinder the inversion (this step will be
clarified in the example of Section 3) as a series ofconstraints

(2.8)φj ≈ 0,

which must be satisfied “weakly” (namely, their Poisson bracket with any given quantity may not vanish) along
the physical trajectory. In this way we obtain a number (sayM) of constraints which Dirac calledprimarybecause
of their direct derivation from the Lagrangian. Notice that a Hamiltonian is required to be independent of the
velocities. If we are not able to erase theẋ dependence, then the straightforward application of the Hamiltonian
method is impossible. To solve our problem we proceed as follows. We add toH all our primary constraints
multiplied by arbitrary functions of timeuj , to obtain the total HamiltonianHT

(2.9)HT =H +
M∑
j=1

ujφj (x,p).
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This could seem to imply an arbitrariness (additional freedoms are introduced) but we require a number of
consistency conditions: each constraint must be zero during the whole evolution, if it is initially zero:

(2.10)φ̇j = [φj ,HT] ≈ 0, j = 1, . . . ,M.

If these equations are consistent, three cases are possible: an equation can give an identity; it can give a linear
equation for theuj ; it can give an equation containing onlyp’s andx ’s, in which case it must be considered as
another constraint. The constraints that arise from this procedure will be calledsecondary, for obvious reasons.
Even for these, we impose consistency conditions and this procedure is continued until we have a set of identities
and linear equations for theu’s. Now we have enlarged our set of constraints to include the secondary ones and we
have a new number of constraints, sayK.

We have by now defined a constraint as a quantity which satisfies

(2.11)φj ≈ 0,

(2.12)[φj ,HT] ≈ 0.

This defines a linear vector space (due to the linearity of the Poisson brackets) and so any linear combination of
constraints is again a constraint. It is of great importance for our purposes the distinction betweenfirst classand
second classconstraints. The first are defined as the constraints which “commute” (i.e., have vanishing Poisson
brackets) with all the other constraints. The second ones have at least one non-vanishing bracket with some other
constraint. It may happen that we can take linear combinations of second class constraints and obtain some first
class constraints. This situation brings to light the presence of some gauge degrees of freedom. Dirac showed the
profound difference between this two classes. In fact we can switch to new canonical brackets in order to set all of
oursecondclass constraintsstronglyequal to zero. This means that in any given quantity, such as the Hamiltonian,
we can set them to zero “by hand”. The first class ones, however, will “survive” (even in the Hamiltonian with their
arbitrary multiplicative functionsu). In the following analysis we will not deal with first class constraints and so
will not discuss them any further. Every constraint that we will find will be of the second class. In such a case, we
can safely change to the new canonical brackets, the so-calledDirac brackets, defined as follows: let

(2.13)Mij ≡ [φi,φj ],
and its inverse

(2.14)Gij ≡ (
M−1)

ij

(the invertibility ofM is a particular feature of the absence of first class constraints: in generalM is defined on the
subspace of second class constraints only). Then for any two quantitiesA andB we define the Dirac bracket:

(2.15)[A,B]D = [A,B] −
K∑
i,j=1

[A,φi]Gij [φj ,B].

These brackets have all the properties of the Poisson bracket plus one: for any dynamical variableA we have

(2.16)[A,φi]D = 0,

(2.17)Ȧ= [A,HT] ≈ [A,HT]D,
as is easy to see (for (2.17) use (2.12)).

The very meaning of this redefinition of the canonical brackets is simply a change of variables from the original
phase space to the constrained manifold [3]. Having obtained a set of canonical brackets, we can now quantize, by
looking for self-adjoint operators which satisfy the canonical commutation relation (each quantity in the right-hand
side must be multiplied byih̄).

Let us now look at an interesting example.
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3. Particle on a circle

3.1. The standard approach

We want to quantize the following free particle Lagrangian

(3.1)L= 1

2

(
ẋ2 + ẏ2),

subject to the relation

(3.2)r2 ≡ x2 + y2 = r2
0

(r0 being a positive real constant) which must be satisfied at any time. This describes the motion of a particle
of unitary mass in thexy-plane, constrained on a circle of radiusr0. We can make a change of variables, from
Cartesian to polar coordinates(r, θ),

(3.3)x = r cosθ, y = r sinθ,

after which, using (3.2), the Lagrangian reads

(3.4)L= 1

2
r2
0 θ̇

2.

We have now a new Lagrangian with only one degree of freedomθ . We can define the momentumpθ

(3.5)pθ = ∂L

∂θ̇
= r2

0 θ̇ ,

and the Hamiltonian

(3.6)H(θ,pθ)= θ̇pθ −L= p2
θ

2r2
0

.

The radial degree of freedomr disappears (as implicitly did any other non-dynamical degree of freedom, such as
thez coordinate in (3.1)). The Poisson bracket is

(3.7)[θ,pθ ] = 1.

Now, let us quantize: define two self-adjoint operatorsθ̂ andp̂θ satisfying the canonical commutation relation
(CCR) (̄h=1):

(3.8)
[
θ̂ , p̂θ

] = i
(we shall use the same notation for Poisson brackets and commutator of operators, since no confusion can arise).
We can find such a couple of self-adjoint operators in the Hilbert spaceH = L2(0,2π) and their expression is:

(3.9)θ̂ψ(θ)= θψ(θ), p̂θψ(θ)=
(

−i ∂
∂θ

− α
)
ψ(θ).

We add the constantα in the momentumpθ to mimic the possible presence of a magnetic field enclosed in the
circle (see the discussion after (3.44)). Their domains are chosen to be, respectively,Dθ = H andDpθ = {ψ ∈
H | ψ(0) = ψ(2π), ψ ′ ∈ H}. These are dense subsets ofH. Notice also that we have chosen one of the infinite
self-adjoint extensions of the momentum̂pθ . The Hamiltonian reads

(3.10)H
(
θ̂ , p̂θ

) = p̂2
θ

2r2
0

= 1

2r2
0

(
−i ∂
∂θ

− α
)2

,
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and is self-adjoint in the domain ofpθ , i.e.,Dpθ . The Schrödinger equation is (reinsertingm andh̄)

(3.11)ih̄
∂ψ

∂t
= h̄2

2mr2
0

(
−i ∂
∂θ

− α
)2

ψ.

This is what we expected.

3.2. Dirac’s approach

Let analyze the same problem with Dirac’s method. We start from classical dynamics. We want to find the
extremum of the action with the Lagrangian defined in (3.1), subject to the constraint

(3.12)φ = x2 + y2 − r2
0 ≈ 0.

We use the method of Lagrange multipliers [8] and search for the extremum of the action with the new Lagrangian

(3.13)L(x, ẋ, y, ẏ, λ)= 1

2
ẋ2 + 1

2
ẏ2 − λ(x2 + y2 − r2

0

)
,

the quantityλ being treated as an additional dynamical variable. This Lagrangian gives rise to an action functional
S[x, y,λ] which must be varied with respect tox, y and also the “new” degree of freedomλ. If we want to use the
Hamiltonian method with this Lagrangian, we must start by calculating the momenta:

(3.14)px = ∂L

∂ẋ
= ẋ, py = ∂L

∂ẏ
= ẏ, pλ = ∂L

∂λ̇
= 0.

It is apparent that we are facing the situation discussed in the introduction and in Section 2: one of the momenta
disappears. So we proceed as previously sketched: read the relationpλ ≈ 0 as a primary constraint:

(3.15)φ1 = pλ ≈ 0.

This is our only primary constraint. Build up the Hamiltonian

(3.16)H = pxẋ +pyẏ + pλλ̇−L= p2
x

2
+ p2

y

2
+ pλλ̇+ λ(x2 + y2 − r2

0

)
.

We now includeφ1 multiplied by an arbitrary function of the timeu1:

(3.17)HT = p2
x

2
+ p2

y

2
+ λ(x2 + y2 − r2

0

) + u1pλ.

Notice thatλ̇ has been absorbed in the arbitrary functionu1. The consistency condition (2.10) is

(3.18)0≈ φ̇1 = [φ1,HT] = [pλ,HT] = −(
x2 + y2 − r2

0

)
,

which is a new constraint, that the Lagrange multipliers had already implicitly imposed (φ in (3.12))

(3.19)φ2 = φ = x2 + y2 − r2
0 ≈ 0.

The consistency conditions (2.10) forφ2 yields

(3.20)φ3 = xpx + ypy ≈ 0,

and by imposing (2.10) also forφ3 we obtain

(3.21)φ4 = p2
x + p2

y − 2
(
x2 + y2)λ≈ 0.
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These are additional constraints. If we impose (2.10) forφ4 we get an equation foru1:

(3.22)u1 = − 2λ

x2 + y2 (xpx + ypy)≈ 0.

Since in the following we shall use only Dirac brackets we regard any constraint as astrongequation and drop
the termu1φ1 from the total Hamiltonian. We can also drop the term containing the Lagrangian multiplier because
of φ2. So our Hamiltonian becomes the free one:

(3.23)HT = p2
x

2
+ p2

y

2
.

The fact that the Hamiltonian function of the constrained dynamics is exactly that of an unconstrained dynamics
may seem strange. One could (erroneously) argue that even the equations of motion would be the same. This
is not correct because we will change the canonical brackets. All additional information characterizing the
constrained dynamics is now contained in these new canonical brackets. One could say that Dirac’s method “drains”
information from the Lagrangian, where it is contained in the additional degree of freedomλ, giving it to the
canonical brackets, where it is contained in a non-trivial algebra. In this process, however, the information on the
topology of the problem is made explicit, as we shall see in the short discussion just after the algebra construction.
This point of view is very useful in quantum mechanics.

We have four constraints and what we need now is the algebra of the Dirac’s brackets. We calculate the matrix
(r = (x, y) andp = (px,py))

(3.24)M =

∣∣∣∣∣∣∣∣∣

0 0 0 2r2

0 0 2r2 4p · r
0 −2r2 0 2p2 + 4λr2

−2r2 −4p · r −2p2 − 4λr2 0

∣∣∣∣∣∣∣∣∣
,

and invert it to get

(3.25)G=

∣∣∣∣∣∣∣∣∣

0 −(
p2 + 2λr2

)/
2r4 r · p/r4 −1/2r2(

p2 + 2λr2
)/

2r4 0 −1/2r2 0

−r · p/r4 1/2r2 0 0

1/2r2 0 0 0

∣∣∣∣∣∣∣∣∣
.

We can now calculate the Dirac brackets of any two quantities and appreciate their physical meaning.
To start off, let us first consider an interesting example of the difference between Poisson and Dirac brackets. We

can check whether (2.16) is true forφ1 = pλ andA= λ. The commutation rule between the Lagrange multiplier
and its momentum changes from[λ,pλ] = 1 to

[λ,pλ]D = 1−
∑
i,j

[λ,φi]Gij [φj ,pλ] = 1− [λ,φ1]G14[φ4,pλ] = 1− 1

(
− 1

2r2

)(−2r2) = 0,

which enables one to see how the Dirac brackets work in order to satisfy the constraints strongly. We also find (we
have replacedr with r0 in each quantity by usingφ2 = 0):

(3.26)

[x,px]D = 1− x2

r2
0

, [y,py]D = 1− y2

r2
0

, [x,py]D = −xy
r2
0

,

[y,px]D = −xy
r2
0

, [x, y]D = 0, [px,py ]D = − 1

r2
0

(xpy − ypx).
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This brackets have a nice geometric interpretation. According to the Poisson bracket[x,px] = 1, px is the
generator of translationsalong thex axis. However this property cannot be preserved in the constrained algebra,
because typically we cannot translate in thex direction while remaining on the circle. This can be done only at
the points (x = 0, y = ±r0) where the first and fourth equations of (3.26) reduce to the Poisson algebra. Another
feature is to be noticed:x andy still commute. We can understand this becausex andy are the generators of
translations in the correspondingp’s directions; however there is no constraint containingonly momenta so any
given point in thepxpy -plane is allowed, by suitably adjusting the other coordinatesx, y andλ. This is not the
case of the coordinatesx andy, as one can readily see: for example, the pointx = 2r0, y = r0 is not allowed even
by making additional translations of momenta andλ, because ofφ2.

We can write the Hamiltonian in the form (3.10) definingLz:

(3.27)Lz = xpy − ypx.
Squaring it and usingφ2 we obtain

(3.28)L2
z = r2

0

(
p2
x + p2

y

) − (xpx + ypy)2,
and usingφ3 we obtain

(3.29)H = 1

2

(
p2
x + p2

y

) = L2
z

2r2
0

.

One can identifyLz with pθ by writing coordinates and momenta as functions ofθ andLz. This can be done by
solving Eqs. (3.27) and (3.20) forpx andpy and using (3.2). We get:

(3.30)x = r0 cosθ, y = r0 sinθ,

(3.31)px = − 1

r0
Lz sinθ, py = 1

r0
Lz cosθ.

The reader can verify that all the relations obtained by the Dirac brackets algebra are equivalent to the single bracket
[θ,Lz] = 1 (e.g.,[x,Lz]D = −y should be read[cosθ,Lz] = −sinθ and so on).

Eq. (3.26) pave the way to quantization. We shall see that the quantization of the Dirac algebra is not a trivial
problem: our recipe will be the requirement that some operators be self-adjoint (or at least Hermitian). This
requirement will play a fundamental role in our analysis. We look at an explicit representation of the self-adjoint
operatorŝx, ŷ, p̂x , p̂y (notice that we will not deal with the operatorsp̂λ andλ̂ because they are completely defined
by φ1 = 0 andφ4 = 0, respectively) satisfying this algebra. We must, however, impose the (now) strong equalities
φi = 0 (i = 1,2,3,4). So (in the following we will drop all hats on operators),r2 ≡ x2 + y2 = r2

0 and there exists
a self-adjoint operatorθ on the Hilbert spaceH = L2(0,2π) such that:

(3.32)x = r0 cosθ, y = r0 sinθ.

We will determine the momentum operators in order to satisfy the following equations:

(3.33)

[x,px] = i
(

1− x2

r2
0

)
, [y,py] = i

(
1− y2

r2
0

)
, [x,py] = −i xy

r2
0

,

[y,px] = −i xy
r2
0

, [x, y] = 0, [px,py] = − i

r2
0

(xpy − ypx).

Using the fact that (dθ stands for theθ -derivative,F for anyn-times differentiable function)[dnθ ,F (θ)] contains
derivatives of order less than or equal ton− 1 and looking at the first two equations in (3.33) (whose right-hand
side does not contain momenta) one can infer that thep operators in theθ representation contain only first order
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derivatives. Then, in the most general case,

(3.34)px = − i

r0
f (θ)

∂

∂θ
+ 1

r0
a(θ),

(3.35)py = − i

r0
g(θ)

∂

∂θ
+ 1

r0
b(θ).

Using these expressions we solve for the unknown functionsf , g, a andb. The first equation in (3.33) yields

(3.36)cosθ

(
−if (θ) ∂

∂θ

)
−

(
−if (θ) ∂

∂θ

)
cosθ = i sin2 θ,

which is solved to give

(3.37)f (θ)= −sinθ.

Analogously, the solution of the second equation in (3.33) gives

(3.38)g(θ)= cosθ.

At this stage the third, fourth and fifth equations in (3.33) are identities and yield no information ona andb.
However, some insight on their form can be obtained from the last of (3.33), which gives

(3.39)a′ cosθ + b′ sinθ = −b cosθ + a sinθ,

where the primes denotes derivatives. This yields

(3.40)a′ = −b, b′ = a.
However, there are other equations which must be satisfied:

(3.41)[x,H ] = ipx, [y,H ] = ipy.
These are linearly dependent and both equivalent to

(3.42)ia cosθ + ib sinθ = −1

2
.

By using (3.41) this turns into an equation fora whose solutions, under the additional requirement thatpx andpy
be Hermitian operators (this is a necessary step in order to require their self-adjointness), are:

a(θ)= i

2
cosθ + α sinθ, b(θ)= −a′ = i

2
sinθ − α cosθ,

whereα is an arbitraryreal number. Putting all the results together we obtain

(3.43)px = i

r0
sinθ

∂

∂θ
+ i

2r0
cosθ + α

r0
sinθ, py = − i

r0
cosθ

∂

∂θ
+ i

2r0
sinθ − α

r0
cosθ.

We can put these equations in a compact form by using the anticommutator (for any operatorsA and B:
{A,B} ≡AB +BA):

(3.44)px = 1

2r0
eiαθ

{
i
∂

∂θ
,sinθ

}
e−iαθ , py = 1

2r0
eiαθ

{
i
∂

∂θ
,−cosθ

}
e−iαθ .

Written in this form, these equations readily show some properties of these operators. First, they are the Weyl
ordered operators of the classical quantities (3.31) but this ordering arises naturally by taking suitable solutions of
the algebra equations. Second, thesep’s are self-adjoint in the domainDpθ defined after (3.9). Finally, equations
(3.44) also show that differentp’s, corresponding to differentα’s, are connected to each other by means of gauge
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transformations; this interesting property can be easily related to the Aharonov–Bohm effect (see [9]), identifying
α with e

2πcΦB whereΦB is the flux of the magnetic field enclosed in the circle.
One can check that all the constraints are satisfied: remember that we have chosen the expressions ofx andy

to satisfyφ2, setpλ = 0 to satisfyφ1, definedλ to satisfyφ4, so we must manage only withφ3. Physicallyφ3/r0
is the radial part of the momentumpr ≡ (r · p)/r0 (the vectorr being on the circle:r2 = r2

0) so we choose to
represent it with a Hermitian operator. We therefore order it (W stands for ‘Weyl ordering’ which coincides with
any other sufficiently symmetric operator ordering procedure for this simple quantity) in order to get the Hermitian
expression

(3.45)φ3,W = 1

2

({x,px} + {y,py}
)
.

One can easily see, using the solutions (3.32) and (3.43), thatφ3,W = 0. Conversely, using the algebra relations
(3.33) it is possible to show that if a non-Weyl-ordered expression forφ3 is constrained to zero the momentum
operators are not Hermitian. In fact using the algebra of commutators (3.33) one readily gets three equivalent
expressions for the momenta operators:

px = 1

2r2
0

{−y,Lz} + 1

r2
0

x

(
− i

2
+ xpx + ypy

)

(3.46)= 1

2r2
0

{−y,Lz} + 1

r2
0

x

(
i

2
+ pxx + pyy

)
= 1

2r2
0

{−y,Lz} + 1

r2
0

xφ3,W,

py = 1

2r2
0

{x,Lz} + 1

r2
0

y

(
− i

2
+ xpx + ypy

)

(3.47)= 1

2r2
0

{x,Lz} + 1

r2
0

y

(
i

2
+ pxx + pyy

)
= 1

2r2
0

{x,Lz} + 1

r2
0

yφ3,W.

These expression are not Hermitian if we setxpx + ypy = 0 orpxx+pyy = 0. On the contrary they are Hermitian
if we setφ3,W = 0. Therefore the Hermiticity of these operators and their Weyl ordering are strictly correlated. We
shall come back to this remarkable point in the following.

We can now build up any quantity we need in our quantum theory, for example, thez component of the angular
momentum

(3.48)Lz = xpy − ypx = −i ∂
∂θ

− α,
and the Hamiltonian, from (3.23)

H = 1

2

(
p2
x +p2

y

)
= 1

2r2
0

[(
i sinθ

∂

∂θ
+ i

2
cosθ + α sinθ

)2

+
(

−i cosθ
∂

∂θ
+ i

2
sinθ − α cosθ

)2
]

(3.49)= 1

2r2
0

(
−i ∂
∂θ

− α
)2

+ 1

8r2
0

.

One can check that the ground state energy is

(3.50)EG = 1

2r2
0

(
1

2
−

∣∣∣∣1

2
− ᾱ

∣∣∣∣
)2

+E0,

where (in ordinary units)E0 = h̄2

8mr2
0

andᾱ ∈ [0,1[, ᾱ = αmod1. Notice that we have obtained a constantE0 which

was absent both in the classical Hamiltonians (3.29) and (3.6) and in the quantum Hamiltonian (3.10). Let us now
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discuss the domains in which these operators are self-adjoint. We see fromLz that a good domain for its definition
is the previously definedDpθ = {ψ ∈ L2(0,2π) | ψ(2π)= ψ(0), ψ ′ ∈ L2(0,2π)}. In different domainsLz will
not be self-adjoint anymore ad so will not be an observable. The Schrödinger equation (reinserting the mass andh̄)
reads

(3.51)ih̄
∂ψ

∂t
= h̄2

2mr2
0

(
−i ∂
∂θ

− α
)2

ψ +E0ψ,

which differs from (3.11) for the presence ofE0.
At this point one should focus on the connection between the additional termE0 and the quantization procedure

we have established. First of all, observe that if we had not required that thep’s be Hermitian we would not have
found such a term. For example, takingH = L2

z/2r
2
0 on the circle in the classical context andthensubstitutingLz

with the corresponding quantum operator gives (of course) no additional terms in the Hamiltonian. Another way of
getting rid of the additional terms is by Abelian conversion of the algebra [4,10,11], by introducing an additional
set of coordinates. In practice, there are many ways of dropping or changing the additional terms without changing
the algebra.

Similar terms arise in the quantization on curved manifolds as an effect of the (intrinsic) curvature of the
manifold itself, as shown by DeWitt [5] and successively elaborated by Schulman [7]. We stress however that
the constantE0 found in Dirac’s procedurecannotbe put in direct correspondence with such curvature terms.
Indeed for the quantization on the circle the scalar curvature is 0, while the additional term in Dirac’s procedure is
1/8r2

0. However, the fact that no direct proportionality is present between these two energies does not mean that one
of them (namely Dirac’s one) is unphysical, but rather that the procedures of quantization leading to them reflects
different physical processes. While, for example, in the path-integral procedure no mention of the embedding space
(for example, the circle as a subset of the plane) is made, in Dirac’s procedure this embedding is unavoidable.
Moreover a parallel with the classical version of Dirac’s procedure hints that the physical evolution it suggests is
like making a small step (free evolution) in the embedding space followed by a “projection” on the constraining
manifold, obtained by dropping the component of the step orthogonal to the manifold [2]. In order to visualize
this way of constraining the particle on the manifold one should follow the procedure we outlined, i.e., should
quantize the generators of translationspx andpy of the embedding space andthencalculate the Hamiltonian. On
the contrary DeWitt’s procedures relies upon the presence of a natural metric on the manifold and the additional
term is due to the intrinsic curvature of the manifold itself. This scenario obviously sets aside a possible embedding
of our manifold in a bigger one. The choice of a given procedure should depend on the physical process one has in
mind.

Additional work is needed in this direction, for the problem is certainly far from being solved, as the physical
significance of the additional energies appearing in the different procedures is not completely understood.

4. Conclusions

As we have shown, the Dirac method yields deep insight even in a simple example like the one we considered.
The construction of the Dirac algebra of brackets is non-trivial and instructive and even more interesting is
the search for an explicit representation of the self-adjoint operators satisfying the algebra and the constraints.
One must look at their functional form and identify and interpret any possible freedom inherent to their choice.
Then one must look at their domains of definition, facing sometimes ordering problems. Eventually, one gains
a better comprehension of the Hamiltonian formalism, the connection between Dirac algebra and the topology
of the constrained manifold and the quantization procedure on this manifold. An interesting explicit result we
have obtained is the presence of an additional energy term different from the ones present in other quantization
procedures. We have discussed this term in connection with the Dirac’s quantization procedure arguing that its
presence is connected to the (physical) way of constraining the dynamics on a manifold.
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In this Letter we have adopted forpθ andLz only the domain with periodic boundary conditions. Actually
there is an infinity of subsets ofL2(0,2π) where every operator we have considered is self-adjoint, i.e., those
with ψ(2π) = ei2πβψ(0) whereβ ∈ [0,1[. This issue is clearly exposed in [12,13] and references therein. One
can regard the gauge transformation with parameterα in Section 3.2 as a similarity transformation between these
subsets ofL2. The (potential) freedom in the choice of the domain of definition of the operators is contained in this
gauge transformation.

It would be interesting to elucidate the features of this formalism, in the form explicitly including the Lagrange
multipliers, in connection with the Faddeev and Popov functional technique in quantum field theory [14].
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