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We study the effects of disorder on a holographic superconductor by introducing a random chemical
potential on the boundary. We consider various realizations of disorder and find that the critical temperature
for superconductivity is enhanced. We also present evidence for a precise form of renormalization in this
system. Namely, when the random chemical potential is characterized by a Fourier spectrum of the form
k−2α we find that the spectra of the condensate and the charge density are again power laws, whose
exponents are accurately and universally governed by linear functions of α.
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I. INTRODUCTION

Disorder is a fundamental paradigm in condensed matter
physics as it provides a crucial step away from clean
systems towards realistic ones. One of the most striking and
ubiquitous manifestations of disorder in noninteracting
quantum systems is the phenomenon of Anderson locali-
zation [1], where the conductivity can be completely
suppressed by quantum effects. Due to the technical
difficulties involved, the study of the interplay between
disorder and interactions in quantum systems has seen little
progress on the theoretical side. Recently however, in the
context of disordered conductors, Basko, Aleiner and
Altshuler took a formidable step forward by presenting
compelling evidence in favor of a many-body localized
phase, based on an analysis of the perturbation theory in
electron-electron interaction to all orders [2]. Subsequent
works (see [3–7] and references therein) have confirmed
and sharpened the picture of the existence of a phase
transition separating the weak and strong interacting limit
of electrons in disordered potentials.
The AdS/CFT correspondence provides a natural frame-

work where some strongly coupled field theory systems
can be described in terms of weakly coupled gravity. It is
only natural to try to understand the interplay of disorder
and strong interactions in this context. Indeed, there has
been a number of discussions along these lines [8–14]. In
this paper, however, we follow a direct approach of
coupling a given operator to a randomly distributed
space-dependent source. We essentially translate a typical
condensed matter protocol into the AdS/CFT framework.

One particularly important application of disorder is in
the context of dirty superconductors which have a rich
history in condensed matter physics dating back to the
pioneering work of Anderson in 1959 [15]. For many years
Anderson’s theorem, stating that superconductivity is
insensitive to perturbations that do not destroy time-
reversal invariance (pair breaking), provided the central
intuition. Critiques to Anderson’s argument were raised, for
example, in [16–18] where the effects of strong localization
were considered. More generally, the question of the role of
interactions, in particular, the Coulomb interaction in dirty
superconductors cannot be considered settled. In view of
this situation, it makes sense to consider alternative models
where the problem can be analyzed in full detail.
The AdS/CFT correspondence has succeeded in con-

structing a holographic version of superconductors [19,20],
for comprehensive reviews see [21,22]. Thus, the AdS/CFT
correspondence provides a perfect playground to explore
the role of disorder within a model for strongly interacting
superconductivity. This is precisely what we do in this
manuscript by promoting the chemical potential in the
holographic superconductor to a random space-dependent
function. The main rationale for this choice of disorder
relies on the fact that the chemical potential defines the
local energy of a charged carrier placed at a given position x
coupling with the particle number nðxÞ locally. Therefore,
our choice of disorder replicates a local disorder in the on-
site energy. This is the simplest protocol one would
implement. Moreover, once disorder is introduced in such
an interacting system, all observables will become disor-
dered and, therefore, the physics is not expected to depend
on the way disorder is implemented.
In this paper we focus on two aspects. The first one is the

effect of disorder on the critical temperature for super-
conductivity: we find that the critical temperature for
setting the superconductivity is increased by the presence
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of the disorder. The second aspect is the study of certain
universality of the power spectra of the condensate and
charge density as functions of the power spectrum of the
signal defining the noise. Namely, for a given random
signal with power spectrum of the form k−2α we study the
power spectrum of the condensate k−2ΔðαÞ and of the charge
density k−2ΓðαÞ and report some interesting universal
behavior. We interpret this behavior as a particular form
of renormalization of small wavelengths.

II. NOISY HOLOGRAPHIC SUPERCONDUCTOR

To build a noisy holographic s-wave superconductor in
2þ 1 dimensions we start with the action introduced
originally in [19,20]. Namely, we consider the dynamics
of a Maxwell field and a charged scalar in a fixed metric
background:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν − ðDμΨÞðDμΨÞ† −m2Ψ†Ψ

�
:

(1)

The system is studied on the Schwarzschild-AdS
metric:

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2 þ dy2
�
;

fðzÞ ¼ 1 − z3; (2)

where we have set the radius of AdS, R ¼ 1, and the
horizon at zh ¼ 1. Let us now take the following
(consistent) Ansatz for the matter fields:

Ψðx; zÞ ¼ ψðx; zÞ; ψðx; zÞ ∈ R; (3)

A ¼ ϕðx; zÞdt. (4)

The resulting equations of motion read

∂2
zϕþ 1

f
∂2
xϕ −

2ψ2

z2f
ϕ ¼ 0; (5)

∂2
zψþ1

f
∂2
xψþ

�
f0

f
−
2

z

�
∂zψþ 1

f2

�
ϕ2−

m2f
z2

�
ψ ¼0: (6)

In what follows we will choose the scalar to havem2 ¼ −2,
corresponding to a dual operator of dimension 2.
We shall first study the UV asymptotics of Eqs. (5) and

(6). Near z ¼ 0 their solution is given by

ϕðx; zÞ ¼ μðxÞ þ ρðxÞzþ ϕð2ÞðxÞz2 þ oðz3Þ; (7)

ψðx; zÞ ¼ ψ ð1ÞðxÞzþ ψ ð2ÞðxÞz2 þ oðz3Þ; (8)

where μðxÞ and ρðxÞ correspond to space-dependent
chemical potential and charge density respectively. The
functions ψ ð1ÞðxÞ and ψ ð2ÞðxÞ are identified, under the
duality, with the source and vacuum expectation value of an
operator of dimension 2. Subsequent x-dependent coeffi-
cients in this small z asymptotic expansion are determined
in terms of μðxÞ, ρðxÞ, ψ ð1ÞðxÞ and ψ ð2ÞðxÞ. In the IR,
requiring regularity implies that At vanishes at the horizon.
Hence, we consider an asymptotic expansion of the form

ϕðx; zÞ ¼ ð1− zÞϕð1Þ
h ðxÞ þ ð1− zÞ2ϕð2Þ

h ðxÞ þ � � � ;
ψðx; zÞ ¼ ψ ð0Þ

h ðxÞ þ ð1− zÞψ ð1Þ
h ðxÞ þ ð1− zÞ2ψ ð2Þ

h ðxÞ þ � � � ;

where the ellipses stands for higher order terms.
By redefining the scalar as

χðx; zÞ ¼ 1 − z
z

ψðx; zÞ; (9)

we arrive at the following boundary value problem:

χðx; 0Þ ¼ 0; ϕðx; 0Þ ¼ μðxÞ; UV z → 0;

χðx; 1Þ ¼ 0; ϕðx; 1Þ ¼ 0; IR z → 1: (10)

This choice of boundary conditions corresponds to
spontaneous breaking of the Uð1Þ symmetry with order
parameter hOi ∝ ψ ð2ÞðxÞ. From now on we use the angle
brackets associated with O exclusively to refer to average
over x.

III. INTRODUCING DISORDER

We are interested in solving the system given by Eqs. (5)
and (6) in the presence of disorder. Let us take the following
form for the noisy chemical potential:

μðxÞ ¼ μ0 þ ϵ
Xk�
k¼k0

ffiffiffiffiffi
Sk

p
cosðkxþ δkÞ

¼ μ0 þ ϵ
Xk�
k¼k0

1

kα
cosðkxþ δkÞ; (11)

where Sk is the power spectrum and δk ∈ ½0; 2π� are random
phases. Ensemble averages means averaging over these
phases. Unless stated otherwise, we consider α ¼ 1. This
means that our noise will be continuous but without well-
defined derivatives in the limit k� → ∞. The correlation
function of the noise is

hμðx0ÞμðxÞi − μ20 ¼
Xk�
k¼k0

1

k2
cosðkðx0 − xÞÞ: (12)
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We observe then that, in the limit k� → ∞, k0 defines the
inverse of the correlation length.
We discretize the space, and impose periodic boundary

conditions in the x direction, leading to k with values:

kn ¼
2πn
L

with 1 ≤ n ≤
L
a
− 1; (13)

where L is the length in the x direction of our cylindrical
space, and a is the lattice spacing in x. Note that there is an
IR scale given by k0 and a UV scale defined by k� ¼ 2π

a . In
the limit of a large number of modes, the form of Eq. (11)
tends to a Gaussian distributed random function; also note
that the power of 1=k determines the differentiability
properties of μðxÞ. We also considered other realizations
of disorder, for example,

μðxÞ ¼ μ0 þ ϵðxÞ; (14)

where ϵðxÞ is a random function in ð−W;WÞ taking
values at different lattice sites (with W ≤ μ0). This is the
extreme limit in which correlation is lost at a lattice site
distance.
We have solved the original system of partial differential

Eqs. (5) and (6) with boundary conditions (10) using finite
difference with a second order central scheme. Most of the
simulations were done independently in MATHEMATICA

and in PYTHON. The latter ones ran in the University of
Michigan Flux cluster. Our typical result contains a grid of
100 × 100 points but we have gone up to 200 × 200 to
control issues of convergence and optimization. We used a
relaxation algorithm to search for the solution and use an
L2 measure for convergence which in most cases reached
10−16. As the source of randomness we used μðxÞ given by
(11) and also (14) for uniform and Gaussian distributions.
The scales involved in the problem are: AdS radius R,

black hole temperature (horizon position) zh (set to 1),
chemical potential μ0 and noise scale k0. There is a
distinction between the noise scale and the strength of
the noise [variance of μðxÞ] which we parametrized by ϵ. In
the realization (11) we have k0 and ϵ. In the context of the
realization (14) when ϵðxÞ takes values in a uniform
distribution in a certain interval, the discretization of the
problem leads to the introduction of a cell in the grid, say of
length a along x. In this case assigning random values to
μðxÞ essentially amounts to introducing a correlation
length, equal to a, such that inside this length the chemical
potential is correlated but outside this length it is not. Note,
however, that the IR scale in this choice continues to be L
which is related to k0 above and the UV scale is a which is
related to k� above. For the realization of the noise
following Eq. (11) we characterized the strength of disorder
by introducing w as ϵ ¼ 2

5
μ0ðw=10Þ, where w ¼ 0 corre-

sponds to the homogeneous case and w ¼ 10 is the largest
ϵmax ¼ 2

5
μ0.We choose this maximum value of the strength

by demanding that μðxÞ remains positive. This means that
our analysis is restricted to a relatively small window of
disorder. It might happen that as for some models of
strongly coupled superfluids [23,24] the superconducting
phase is destroyed for large enough disorder.
For the noise realization given by Eq. (14), the maximum

value ϵmax is μ0 and the dimensionless measure of the
strength of disorder is proportional toW=μ0. Our definition
of w corresponds, in the standard solid state notation, to
1=kFl, where kF is the Fermi momentum and l is the mean-
free path [25,26]. With this choice of scales we have
essentially two dimensionless quantities T=μ0 and the
strength of the noise w. The results we present below
are most marked for the realization given by Eq. (11) but
realizations in Eq. (14) show similar behavior.

IV. RESULTS

An intuitive way to summarize our results is presented in
Fig. 1 where we track the normalized value of the
condensate hOi=μ2 as a function of the dimensionless
strength of disorder, w. Here h� � �i stands for average in x. A
key feature of this diagram is that increasing disorder leads
to a nonzero condensate in situations where the homo-
geneous case does not condense. The plot in Fig. 1 was
made considering one realization of the noise. We have
performed a preliminary analysis of the variance produced
by the intrinsic randomness of the functions, namely, we
have in some cases considered many realizations of the
same noise ðμ0; k0; k�Þ in Eq. (11). We have found that up
to μ0 around 4.00 this effect is negligible, however for
smaller values of μ0 and with increasing values of the noise
strength, w, the error becomes significant. This enhance-
ment of superconductivity is one of our main results.

FIG. 1 (color online). Average of the condensate as a function
of the strength of disorder using k0 ¼ 1. The value of the
condensate grows with increasing disorder strength, w.
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In a separate plot we explore, in more detail, the change
of critical temperature Tc with the strength of the noise w.
Namely, we set a value (25% of the maximum) for which
we consider the condensate to be clearly nonzero and find
the smallest value of the homogeneous chemical potential
for which this value of disorder w leads to a nonzero
condensate. The results are plotted in Fig. 2 which
represents our version of the phase diagram of disordered
superconductors as presented, for example, in [26] for
realistic s-wave superconductors. We will briefly compare
our results with the literature in the conclusions.
We note that the parameter k0 affects the results numeri-

cally. Recall that the scale k0 is related to the compacti-
fication length of the x coordinate. What ultimately matters
is the value of this length Lwith respect to the range in the z
coordinate which is fixed to one. The simulations used to
generate Figs. 1 and 2 used k0 ¼ 1. For example, taking
k0 ¼ 2π leads to a more modest increment in the value of
the condensate. Similarly, considering noise realizations of
the form given in Eq. (14) leads to qualitatively similar
results but the numerical enhancement is more modest.
One result that is rather generic is that for a highly

irregular chemical potential, we find a very smooth depend-
ence of the condensate on the coordinate x. A typical form of
μðxÞ and its corresponding OðxÞ are represented in Fig. 3.

On the other hand, the opposite happens for the charge
density. A noisy chemical potential will translate into an
even noisier charge density. A typical form of μðxÞ and its
corresponding ρðxÞ are represented in Fig. 4.
This kind of smoothing/roughening points to a renorm-

alization of sorts, where higher harmonics in O are sup-
pressed with respect to their spectral weight in μ. Here we
pursue this idea further. To characterize this renormaliza-
tion quantitatively we consider a boundary chemical
potential of the form presented in Eq. (11) but considering
now different values for α. The choice of this parameter α
determines the degree of differentiability (smoothness) of
the initial profile. To make the concept of renormalization
more precise we consider the power spectrum of the signal
μðxÞ which is essentially proportional to k−2α; we also
consider the power spectrum of the condensateOðxÞwhich
we find numerically well approximated by k−2Δ. We find
that Δ≃ 1.9þ 1.0 α is therefore larger than α signaling
that the weight of the high-k harmonics is smaller inO than
in μ. Similarly, we approximate the power spectrum of the
charge density ρðxÞ as k−2ΓðαÞ, but this time we find Γ < α.
Below we present a plot of Δ and Γ versus α for a wide
range of values. The error bars were computed based on
considering many realizations of the given noise.
We havegathered evidence that this behavior is also rather

independent of the value of the mass of the scalar field, or, in
the field theory language, it is independent of the conformal
dimension of the order parameter. For example, we have
confirmed a similar behavior form2 ¼ 0. This universality of
renormalization group (RG) is one of the main observations
of ourwork and its origin seems to be in the strongly coupled
nature of the problem. Theweak field theory intuitionwould
dictate thatΔ should bewell approximated by the conformal
dimension associated with the order parameter and here we
verify that it is not.
It is also interesting to point out that this behavior does

not depend on any of the parameters of our theory, i.e. k0,
μ0 or ϵ. This means that we can redo Fig. 5 for the charge
density in the normal phase. This particular case is
interesting, since the theory becomes linear and we can
therefore separate variables. Being that the case, we can
recompute the power spectrum solving the equations of
motion using a simple MATHEMATICA NDSolve command
and we get Γ ¼ −1.0þ 1.0 α. The slope of this fit agrees
with that found both for the condensate and the charge

FIG. 2 (color online). Phase diagram, dependence of the critical
temperature on the strength of the noise.

0.0 0.2 0.4 0.6 0.8 1.0

5.98

5.99

6.00

6.01

6.02

6.03

x

x

0.0 0.2 0.4 0.6 0.8 1.0
0.17560

0.17565

0.17570

0.17575

0.17580

0.17585

0.17590

0.17595

x

O x

0
2

FIG. 3 (color online). Initial chemical potential profile μðxÞ ¼
6.0þ 0.1

P
100
n¼1

1
2πn cosð2πnxþ δnÞ (left panel) and the corre-

sponding condensate profile (right panel).

0.0 0.2 0.4 0.6 0.8 1.0

5.98

5.99

6.00

6.01

6.02

6.03

x

Μ�x�

0.0 0.2 0.4 0.6 0.8 1.0
�10.6

�10.4

�10.2

�10.0

�9.8

�9.6

x

Ρ�x�

FIG. 4 (color online). Initial chemical potential profile μðxÞ ¼
6.0þ 0.1

P
100
n¼1

1
2πn cosð2πnxþ δnÞ (left panel) and the corre-

sponding charge density profile (right panel).

D. AREÁN et al. PHYSICAL REVIEW D 89, 106003 (2014)

106003-4



density in the broken phase (Fig. 5) [27]. As for the ordinate
we expect the apparent discrepancy to vanish for numerics
with thinner grids.

V. CONCLUSIONS

In this paper we report two interesting findings: (i) The
critical temperature of holographic superconductors
increases with the increase in the strength of disorder
and (ii) the power spectrum of the condensate and charge
density are governed by fairly universal relations depend-
ing on the power spectrum of the original random signal.
Let us cautiously compare our results with the situation

in the condensed matter literature. In the condensed matter
literature about superconductors some results point to a
degrading of Tc with the strength of the disorder [17,26].
Other results, however, point to an enhancement of Tc [28].
The precise role of the interactions in these studies is hard
to gauge. Our results clearly point to an enhancement of Tc
but we should warn the reader that the role of interactions in
our context is central and direct comparison with previous
studies in the condensed matter literature will require a
considerable amount of work likely at the level of [2] for
dirty superconductors, that is, an analysis able to sum the
electron-electron perturbation theory to all orders.
It might be more pertinent to compare our results with

the literature for strongly coupled disordered superfluids.
Indeed the numerical simulations of [23,24] have shown
that disorder can trigger an insulator to superfluid phase
transition in systems that can be of relevance both for
superfluids and high-Tc superconductors.

It is worth pointing out that other holographic discus-
sions, which could be considered as technical precursors to
our work in that they solved simplified versions of our
system, seem to also point to an enhancement of Tc. For
example, [29] considered a time-dependent stimulation that
lead, for a range of frequencies to increasing Tc, see
however [30] (also [31]). Spatially modulated chemical
potentials considered, for example, in [32] and [33] (see
also [34]) point instead to a reduction of Tc.
The universality of the result k−α↦ðk−ΔðαÞ; k−ΓðαÞÞ for

the order parameter and the charge density seems to be a
general property of the gravity equations of motion.
We have also provided supporting evidence that this result
is largely independent of the value of the mass of the
scalar field. An immediate and intriguing conclusion is that
the operator mostly responsible for the RG is not neces-
sarily the one to which the scalar field couples. This
“universality” is interesting in the framework of the
AdS/CFT and deserves further investigation.
The enhancement of Tc with the strength of the noise in

holographic superconductors deserves more scrutiny. It
could be an important prediction of holographic super-
conductivity. It would be particularly interesting to consider
other types of holographic superconductors (like, for
instance, p wave [35]), and carry out a similar analysis
there. We leave this for future investigation.
In this manuscript we focused largely on the behavior of

the condensate and the charge density averaged over the x
direction. There seems to be a rich structure in the x
dependence of such quantities (see Figs. 3 and 4). In
particular, the condensate seems to show potential islands
of superconductivity. It would be interesting to pursue the
appearance of islands of superconductivity and the effect of
different noises on the conductivity (see [36]). We hope to
address such questions in a separate publication.
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