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Abstract. The local purity of large many-body quantum systems can be studied
by following a statistical mechanical approach based on a random matrix model.
Restricting the analysis to the case of global pure states, this method proved to be
successful and a full characterization of the statistical properties of the local purity was
obtained by computing the partition function of the problem. Here we generalize these
techniques to the case of global mixed states. Since the computation of the partition
function is far more challenging than in the pure case, we focus on the computation
of the first moments of the local purity. Finally, we establish a connection with the
theory of twirling maps in quantum channels.
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1. Introduction

In quantum mechanics the purity of a quantum state measures the amount of
indeterminacy which originates either from lack of information on the process that
led to its preparation, or from the correlations that have been established with some
external party (environment). Mathematically speaking the two mechanisms are
strongly interconnected, as the former can always be represented as an instance of
the latter via purification [Il, 2]. For composite quantum system one can distinguish
between global purity (i.e. the purity of the system as a whole), and the local (or
“marginal”) purities (i.e the purities associated with the subsystems that compose it).
Clarifying the connection between the global and local purities of a quantum state is an
important problem of quantum information theory [3 4} 5] which is closely related to the
characterization of bipartite entanglement [6] [7]. In particular, for pure global states,
the local purity of a subsystem provides a direct measure of the bipartite entanglement
between the two parts: the smaller the purity, the larger the bipartite entanglement.
For mixed (non pure) global states instead, the connection between local purity and
entanglement is more subtle: no direct relation between the two quantities exists and
bipartite entanglement measures for the global system can be obtained only by taking
proper convex roof extensions of the local purity (the average being computed over
all convex decompositions of the initial global state). Still, studying how the global
indeterminacy of a composite system affects the indeterminacy of its constituents raises
important theoretical questions which call for a thoughtful investigation [3, 4. [5].

The distribution of the local purity of pure global states of large composite systems,
was studied in Refs. [8, O] by using statistical mechanical methods. In particular a
partition function for a suitable canonical ensemble was introduced and the problem was
translated in terms of the distribution of the eigenvalues of random matrices. Here we
endeavor to generalize the above procedure to a system in a global mixed state. In such a
case, however, the direct computation of the partition function is far more complicated,
since the average over the unitary group does not factorize. On the contrary, a direct
characterization of the first moments associated with the local purity distributions,
appears to be feasible. Therefore, in an attempt to collect some preliminary insight on
the statistical properties of the problem, we focus on this latter issue.

This paper is organized as follows. In Sec. [2| we introduce the notation and set the
basis of the statistical mechanical approach to the problem, starting from the simpler
case of pure states and generalizing it to the case of generic mixed states. In Sec. [3| we
consider the high temperature expansion of the partition function and compute the first
moments of the purity, by making use of Zuber’s solution of some basic integrals over
the unitary group [10]. In Sec. 4| we establish an interesting connection between our
problem and the theory of quantum channels. In particular, we present an alternative
approach for computing the moments, that exploits the properties of twirling maps. We
conclude in Sec. |5 by summarizing our findings and discussing them in terms of future
perspectives.
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2. The statistical approach: partition function

In this section we review the statistical approach introduced in Ref. [§] for studying the
local mixedness properties of pure states and discuss its generalization to the case of
mixed states.

Consider a bipartite system X = AB made up of two subsystems A and B,
described by the Hilbert space Hx = Ha ® Hp, with dimH4 = Ny, dimHg = Np
and dimHyx = N = NyNg. Without loss of generality we will assume that Ny < Np.
The states of X are represented by the set G(Hx) of nonnegative unit-trace operators
(density matrices) on the Hilbert space Hx. The purity of such states, defined as

TaB(p) == TrpQ € [1/N,1], (1)

for each p € &(Hx), provides a characterization of the global mixing of the system
and induces a partition of G(Hx) into a collection of distinct subsets &,(Hx) := {p €
S(Hx) : Trp* = z}. The minimum value of x = 1/N is attained when X is in the
completely mixed state I/N, whereas the maximum z = 1 is attained over the set
S1(Hx) consisting of all pure states |1)) x. For each p € &G(Hy) we can also define its
A-local and B-local purity functions as

ma(p) i=Trph,  ma(p)i="Trph, (2)
with pa = Trp p and pp = Tra p being the reduced density matrices of the subsystem
A and B, respectively.

2.1. Total system in a pure state

On the special set &1(Hx) of pure states p = |[1)x(¢| of X, the A and the B-local
purities coincide

m() = mal[Y)x (W]) = 7(l)x (W) , (3)

and provide a measure of the bipartite entanglement between A and B: the smaller
7(1), the larger the entanglement contained in |1) x (¢)|. The statistical distribution of
(1) on &1(Hx) has been studied in Refs. [8, [0]. This was done by introducing the
partition function

2(9) = [ dutw) e ?™, ()

where the local purity 7(¢) of 1) x plays the role of an effective energy of the system,
is a Lagrange multiplier that fixes the value of the purity /energy and selects an isopurity
manifold [T1], and du(v)) is a (normalized) measure on the space of pure states &1 (Hx).
The natural choice for the latter is induced by the Haar (probability) measure dpg(U)
on the unitary group U(Hx) ~ U(N), through the mapping

V) x = Uxbo)x , (5)
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with |¢g)x an arbitrary reference unit vector of Hyx. Thus the partition function
becomes

2(8) = [ dun(Ux)exp (=6 Te(TralUx o) x (GolUL)?)) - ©)

Then, by noticing that for every Uy € U(N) the reduced density matrix py =
Trp(|) x(¥|) can be written as ps = UAAAUL, with Uy € U(Ny) and Ay =
diag{Aa1,Aa2,...Aan,}, the expression @ becomes

Z(8) = / dpurr (Ua) / do(Aa) e = / do(Aa) e 7T, (7)

where we exploited the fact that the measure induced over the density matrices pa
by duy(Ux) factorizes into the product of a measure over the unitary group dpg(Ua)
(related to the eigenvectors of p4) and a measure do(A4) over the (N4 — 1)-dimensional
simplex of its eigenvalues A4 ; [12 [13]. In particular, it can be shown that [15] 16, [17]

dO’(AA) = CNA,NB(S (1 — Z >\A,i> H G(AA,j))\gﬁiNA

1<i<Ngy 1<j<Ngy
< T Oar—=Aam)?d¥ A4, (8)
1<l<m<Ny4
with
['(N4Np)

(9)

CnunNg = , , ,
e HOngNAfl [(Ng — j)I'(Na—j+1)

and 0(z) and I' being the unit step and the Euler gamma function, respectively. The
derivatives of Z((), evaluated for 5 = 0, yield the moments of 7(¢)) with respect to the
measure du(v), i.e.

My = (T02) Yy = [ a6 m(wy = (-1 S22

(10)
8=0
These functions fully determine the statistical distribution of 7(¢)) on &;(Hx) and, in
the high temperature regime, provide an expansion of Z(3). More generally, in analogy
to what is commonly done in statistical physics, one can also define the moments of

m(¢) for B # 0 as
Mu(8) = ((T053)" ) 0,00y = [ da0) w(w)" =

with dug(¢) being the canonical measure
e_ﬁ 71—("/})

Z(p)

The latter is a deformation of the Haar measure du(y) obtained by including a

(=D)" 0"Z(p)

zZp) o 0 W

dpg(¢) = du(y) (12)

nonuniform weight which explicitly depends upon the local purity, through 5. In
particular, as § increases djuz(¢) enhances the role of the states with lower values of
7(¢) (i.e. larger values of bipartite entanglement), to the extent that for 5 — 400 only
the maximally entangled elements of G;(Hx) contribute to the values (L1]). Since (1))
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is bounded above, one can also consider negative temperatures, where the role of less
entangled states is enhanced, and when 8 — —oo only the separable elements of &1 (H x)
contributes to the values . Consequently, across different ranges of temperatures,
the moments in Eq. characterize the statistical distribution of the local purity
of X computed with respect to a canonical ensemble whose constituents are selected
according to an effective thermal distribution characterized by the parameter S.

In the limit of large N, the S-dependence of the statistics of the local purity (1))
(and hence of the bipartite entanglement of the system) was characterized in Ref. [§, 9]
by identifying the class of states which maximize the distributions , i.e. typical
states with respect to the canonical measure . In this context it was shown that the
system undergoes two main phase transitions, related to different distributions of the
eigenvalues A 4 of the typical states: a second-order phase transition, mentioned above,
associated to a Zy symmetry breaking, and related to the vanishing of some eigenvalues
of pa, followed by a first-order phase transition, associated to the evaporation of the
largest eigenvalue from the sea of the others.

2.2. Total system in a mized state

A natural question is what happens when the global system X is in a mized state p of
purity < 1, rather than in a pure state. A generalization of Eq. is obtained by
replacing 7(v¢)) with (say) the A-local purity m4(p) of Eq. and the measure du (1))
with a proper measure du,(p) on the set &,(Hy). This yields the following definition
of the partition function of the A-local purity

Za(e, B) = / dia(p) P70 = ¢, / du(p) 8(Tr p? — 7) B4 | (13)

where du(p) is a probability measure on the set of mixed states (see below), and
Cy == [[dulp) 6(Tr p* — z)] ~! a normalization factor. An analogous expression for the
B-local purity partition function Zg(x, 3) is obtained by replacing 7m4(p) with 7g5(p) in
Eq. (13): notice, however, that, at variance with the case analyzed in Ref. [8, @], for
x < 1 the partition function Zg(x, 5) will in general differ form Z,(z, 3).

It is worth stressing that the function Z4(z, §) provides only statistical information
on the local mixedness of X, but not directly on its bipartite entanglement properties:
this is due to the fact that for generic mixed states p of X the local purities m4(p)
and 7p(p) are not entanglement measures. A generalization of Eq. that retains
the ability of characterizing the statistical properties of the bipartite entanglement of
X for x < 1 could in principle be constructed by replacing 7 (1)) with the convex-roof
counterpart of m4(p), namely 74(p) = maxe »_;p; ma(1);), where the maximum is taken
over all ensembles € := {p;, [¢;)x }; which yield a convex decomposition of the mixed
state p (see e.g. Refs. [19, 21]). The quantity 74(p) is a proper measure of the bipartite
entanglement, but the resulting partition function does not allow for a simple analytic
treatment and will not be discussed in the present paper.
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Finally, since there is no unique measure on mixed states [22], we need to properly
specify the choice of du(p) which enters in Eq. — the consistency requirement that
for pure states Eq. should reduce back to Eq. (i.e. Z4(1,5) = Z(B)) does not
eliminate such ambiguity. Indeed, as previously discussed for p4, the Hermitian matrix
p can always be diagonalized by a unitary operation, and as consequence we can write
the measure du(p) as the product of a measure on the (N — 1)-dimensional symplex of
the eigenvalues and a measure on the unitary group U(N) related to the eigenvectors.
However, if on the one hand it would be natural to take the Haar measure on U(N)
so that du(p) = du(UxpUL), on the other hand the measure on the eigenvalues can be
chosen in different possible ways [23]. In order to overcome this ambiguity we will use
a balanced purification strategy. Let us introduce hence the composite Hilbert space
Hxx = Hx @ Hx:, where Hx ~ Hx are isomorphic. In this N2-dimensional Hilbert
space, each p of X can be represented by those pure states |¥)xx: which provide a
purification for such density matrix, i.e. which satisfy the identity

p = Trx (|0) xx(¥]) - (14)

Thanks to this identification we can now induce a measure on &(#Hx) by sampling the
pure states on Hxxs according to the unique, unitarily invariant Haar measure which,
as usual, is induced by the Haar measure on the unitary group U(N?) through the
mapping |V)xx := Uxx/|Vo)xx/, where |¥o)xx: is an arbitrary reference vector and
Uxx € U(N 2). With this choice the partition function becomes

Za(e. ) = Cs / djusr (U 8 (& = (T ([0) e (9])7) €77 (e 9 (D),
(15)
where we used the fact that py = Trgp = Trp(Trx/|V)xx (¥|). Analogously to

what we have seen for the pure case, x+ = 1, by writing p = UXAXU)T( with Ay =
diag(A1, Ag, ..., An), we get

Za(w, ) = Cx/d,uH<UX> /da(Ax) 5(1: — TrA?X) e A T((TraUxAXUXD?) - (16)

where dug (Ux) is the Haar measure on U(N) and

da(AX):ON5<1— > /\i) IT o) JI v=x)%a¥a, @)

1<i<N 1<i<N 1<i<j<N
with
['(N?)
Cy = | (18)
DN+ 1) []cpen D(R)?

Therefore, we have identified the measure dyu,(p) of Eq. with
dps(p) = deuH(UX)da(AXﬁ(x Ty A§(> . (19)

Notice that in the case of pure states, i.e. x = 1, the density operator of the system
reduces to p = 1) x (¥, where |¢) x = Ux|¢o)x, |to) x being an arbitrary reference state




Statistical distribution of the local purity in a large quantum system 7

(see Eq. ), and the matrix Ax becomes a rank one projection. Thus the expression
(16) reduces to (6]), namely

Z4(1,8) = Z(B) - (20)

2.3. Asymptotic behavior and analysis of moments

For x < 1, the integration over the unitary group U (N) in Eq. does not factorize,
making the computation of the partition function far more complicated than for the
case of a pure state . The only notable exception is the case of maximally mixed
states (i.e. x = 1/N), when the Dirac delta in Eq. selects a unique diagonal matrix
Ax (the totally mixed state of X). This makes the exponent equal to e=#/V4 for all Ux
and yields the following exact expression

Z4(1/N,B) = e #/Na (21)

Otherwise, for intermediate values of the purity, 1/N < z < 1, the situation is much
more complicated. Still, as we will show in the following, at small 8 the evaluation of
the moments M (x, 3) associated with Z4(z, ) admits an exact analytical treatment.
The latter are formally defined as

)" 9"Z4(x,B)
./\/lf x, ) = / dyt, ™ (p) = ( . 22
(z,8) tz5(p) T4(p) EAC T (22)
and represent the average value of 7';(p) with the canonical measure

with dy.(p) given by Eq. (19). For pure states (z = 1) the M (x, 8) coincide with
the moments M,,(3) defined in Eq. (11): at 5 = 0, in the large N limit the expression
for such quantities has been computed in Ref. [§], while the exact expressions for first
five of them can be found in Ref. [24]. In the case of a totally mixed state (x = 1/N)
Eq. yields instead values which are independent of the temperature 3, namely

M (1/N, B) = M (1/N,0) = Ny™" . (24)
For intermediate values of x, by expanding Eq. up to the first order in 3, we get

Incidentally, notice that in agreement with Eq. , the S-corrections of Eq. vanish
when z = 1/N. The above expression shows that, at least in the high temperature
regime, we can focus on the unbiased moments M?#(z,0).

3. Moments of the purity at 5 =0

3.1. First moment

In this section we compute the exact first moment of the purity M2 (z,0), by making use
of Zuber’s solution of some basic integrals over the unitary group [10]. In particular, we
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will show that the only dependence on the spectrum of the density matrix of the global
system is in terms of its purity =, whose value is fixed in the partition function (13).
Let us fix the spectrum of the global density matrix p of the system:

Ax = diag(Ang(a-1)+8); (26)
witha=1,...,Nyand f =1,..., Ng. A purification of Ax in the space Hxx/, with
X =ABand X' = A'B is

Wixx = D> Y Vs [aBap @ |aB)am, (27)

1<a<N4 1<B<Np
where we have set, for simplicity, Aag = Anga—1)+s and |af)ap = |a)a ® |B) B, {|a)a}
and {|6)s} ({|la)a'} and {|B)p'}) being the reference basis in Hy and Hp (Ha and
Hp), respectively. The set of vectors in Hxyxs with the same Schmidt coefficients is
given by Uxx/|V)xx/, where Uxyx: = Ux ® Uxs, with Ux,Ux, € U(N), and yields
the set of density matrices with the same spectrum Ay, namely p = U XAXU)T(. By
partial tracing over subsystem B one obtains the set of reduced density matrices
pa(U) = Trp(Trx (Ux x| W) x x/ (WU +,)). Notice that this expression does not depend
on Ux: € U(N):
pa= Y Y A Trs(UaslaB)as(as|Uly)

I<a<N4 1<B<Np

= > > AassllUasla)as(aBlUslis . (28)

1<a<Na 1<B,j<Np

The purity is given by

WA(UXAXU;() =Tr sz = Z Z Z AarB1 Aazfs

1<ay,a2<Ny 1<31,62<Np 1<j1,j2<Np
XAB<a252’UixB|j2>B(j1\UAB|04151>AB
X AB<04151‘UI\B’j1>B<j2|UAB\04252>AB ; (29)

which, by the completeness relation for subsystem A, becomes

WA(UXAXU;[() = Z Z Z Z >‘O¢151)‘O<252

1<a1,02<N4 1<B1,82<Np 1<i1,i2<Ny4 1<j1,j2a<Np
X ap{Q2Ba|Ul gli1jo) ap (i1 |Uaplarfi) an
X AB<041B1‘ULB’i2j1>AB (i2J2|UaB|oa32) aB- (30)
Let us now compute the first moment of the purity at 8 = 0. By recalling

that Z4(z,0) = 1, dpo(p) = dpw(p), and dp,(p) = C’xduH(UX)dU(AX)cS(x —Tr A%),
we get

M0 = [ duato) wi(0)
_c, / do(Ax)S(z — Tr AZ) MA(Ay) = (MA(Ay)),, (31)

where

M) i= [ dun(Ux) m3(UxAXUL) (32)
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From the average over the unitary group of the first moment particularizes to

Mf(AX> - Z Z Aa1B1 Aazfs

1<a1,02<N4 1<51,82<Np
E E T T
X / d/j“H(UX)Uiljlaalﬁl Ui2j27042,82 Uazﬁg,iljz Ualﬁl,igjl ) (33)
1<i1,i2<Na 1<j1,j2<Np

where Uijaps = ap(ij|UaplaB)ap. This integral can be explicitly computed by using
Zuber’s solution [10]:

/duH(U)Uml---Uinjn(U)Uglzl---Uzinzn = > Clo] ] 0lias lr@)3(as Fro(@): (34)
T,0€Sn 1<a<n
with

®(1))2® ([0
Clo] = (x 53!)2)82&)([ D (35)

[Y|=n

where C[o] is the sum over the Young diagrams Y of the character x*)([¢]) of the
symmetric group S, associated to Y, depending on the conjugacy class [o] of the
permutation o, si(I) is the dimension of the representation, and (a, b) is the Kronecker
delta. Applying this solution to we get

M?(AX) = Z Z AarB1 Aaszfs

1<a1,02<Ny 1<51,82<Np

X Z C[g]fl (7‘)5(0[151, 047'0'(2)57'0'(2))5(042527 aTO’(l)ﬂTU(l))

T,0€S52

— Z Z Z Z Clo]f(T)S([T05), ) Xay) By Maregay Bucay

1<a1,02<Ng 1<1,82<Np T,0€52 c€C(S2)

(36)
where fi(7) depends on the permutation 7w € Sy

f1<7'[') = Z 5(i17iﬂ(1))5(7;27iﬂ(2)) Z 5(j17jw(2))5(j27jw(1))7 (37)

1<i1,io<Na 1<51,j2<Np
s € Sy is the transposition (swapping) of pairs of nearby indices ([s] = [2])
is(l) = ig and ’is(g) = il s (38)

and C(S) = {[1?],[2]} is the set of the conjugacy classes of the symmetric group S.
From it can be easily inferred that the only possible contributions of the spectrum
are related to the conjugacy classes of the symmetric group Ss:

[ros] = [17] = ( > X Aaﬁ>2=1,

1<a<N4 1<B<Np

[ros] =[2] = ( >y Agﬁ) = TrA%. (39)

1<a<N4 1<B<Np
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By summing and by using the explicit expressions of the coefficients (35]) [10]
1 1

oo+ PNy (40)

C[1?] =

we get

N4(N3Z —1) Np(N3%-1)

A A\LVB B\‘VA 2
Ax) = Tr A%. 41
The first moment of the purity of subsystem A, is the average of over the spectrum
of the system. By plugging into , we finally get
Na(N3 -1 Np(N?% -1
Mi(#,0) = ]\/;2<N§ - 1> J\];(N? - 1):’7‘
AYVB AYVB

(42)

Some special cases:— It is worth noticing that for a balanced bipartition Ny = Ng =

VN > 1 Eq. (42) yields

Mf(m,O):\/N(1+$) 1+

N+1 N
At x =1 (i.e. pure global states), Eq. coincides with that obtained in Refs. [8 24].

Finally, consider the case in which p is maximally mixed, i.e. is the density matrix I /N.
In this case z = 1/N and Eq. gives

(43)

M (1/N,0) = NL : (44)

in agreement with the general result .

3.2. k-th moment

The technique shown in the previous section can be easily generalized in order to
compute from higher moments at 5 = 0. We get

M) = [ dun(Ux) (AU

= > > II 2

1<at, .., <NA 1<B1,...,82, <Np 1<i<2k

X Z Z /dMH(UX) H Uiejuaeﬁz

1<, 02 <NA 1<51,.,J2k <N p 1<e<2k
| | T T
X Ua2m52m7i2m71j2mUa2m7162m717i2mj2m71 : (45)
1<m<k

Equation for n = 2k gives

MiAx)= > > > Y clolfimalroste) [T Aowwpus

1<an,...,as <Ny 1<B1,...,B2, <N T,0E€52) c€C(S2x) 1<i<2k

(46)
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where fi(7) depends on the permutation m € Sy
fk(ﬂ-) = Z Z H 5(i€7i7r(€)) H 5(j2m—17jﬂ'(2m))5(j2m7j7r(2m—1)>
1<y, iog <Na 1<]1,...,J2k <Np 1<0<2k 1<m<k
(47)

and, analogously to Eq. , s is the swapping of pairs of nearby indices

is(%fl) = ’igg and is(zg) = Z.Qg,1 Vi = 1, k. (48)
Observe that when k& = 1 we retrieve M7 (Ax) (see Eq. (36)). The different
contributions of the spectrum can be classified in terms of the the conjugacy classes
of the symmetric group, as shown in Eq. (39). However, for k& > 1, they do not
depend only upon the purity z = Tr A%, but exhibit a more complex dependence on
the spectrum, through its higher order invariants Tr A%, with k& > 2. Thus the integral
on the spectrum (31 is in general non trivial.

3.3. Second moment

Now let us fully compute the second moment of the purity for arbitrary bipartite
states, with purity « € [1/N, 1], generalizing some results found for pure states, v = 1,
[8, 14, 24]. The second moment can be directly computed by setting k£ = 2 in Eq. .
The expression for the coefficients C[r] in (34)), when 7 € C(S,) is [10]

. N* —8N? 46
= (N —3)(N —2)(N —1)N2(N + 1)(N + 2)(N +3)
i 1

CRY - - m oy ove o 9
ol N%+6

B ) 1O S 3 QNG YO VR G ey
ca IN? 3

B = NN (N DMV T DN T (N 1 3)
oW = > . (49)

(N =3)(N—=2)(N—=1)N(N +1)(N+2)(N +3)
The symmetric group S, consists of five conjugacy classes, that yield the following
contributions to the integral in terms of the spectrum of p:

[ros] = [1'] = ( >y Aaﬁ>4:1

1<a<N4 1<B<Npg

> Aalfh)( > > >‘a262>2:T1"A§(

1<a1<Nj 1<81<Np 1<a2<Ny 1<B2<Np

7
[ros] = [2 ¢< >N ) (Tr A%)?
(2

[Tos] = =

1<a<N4 1<B<Np

[Tos] = = a161> ( Z Z )‘a2ﬁ2> = TrA?X
1<a1<Na 1<ﬂ1<NB

1<a2<Ny4 1<82<Np
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[Tos] = [4] = Z Z /\aﬁ = Tr A%,

1<a<N4 1<B<Np

with 7,0 € Sy and s € S, defined in being k = 2. By gathering all we get
M (Ax) = { [0[14]N§Nj§ +C[2,1%]2N4 (N3 +2) N},
+ C[2°]N; (N3 +2) N, + C[3,1]8N3 N7,
+ Cl4]2N4 (2N3 + 1) Np |
+TrA% [C[ 2N, (N2 +2) N
C[2, 1]2N3NE (N3 + 3N} + 14)
C[2°]2NaNp (N3 (Nj +4) +2 (Nj + 1))
C[3,1]8NaNg (N3 (N3 +2) + 2N +1)
CJ4NG (N3 +8) N3 |
+ (Tr A2 )2[0 IN% (N2 +2) N3
+ C[2,1’]2NoNp (N3 (Ng +4) +2 (N3 +1))
[2°]NANZ (2N3 + 3N + 4)
[3,1]24N3 N3
42N, N (2N2 (N3 + 1) + 4N2 + 1) ]
+Tr A [0[14]8NANB
+C[2,1%]8N4Np (N3 (N} +2) + 2N + 1)
+ C[2%]24N3 N3
+ C[3,1]8N3N7 (N3 + N7 +6)
+ CUISNANp (N3 (N3 +2) +2NE +1) |
Tr AL [0[14]2NA (2N% +1) Np + C[2, 124N (N2 + 8) N
+ C[2*)2N4ANg (2N3 (NE + 1) + 4N} + 1)
+C[3,1]8NoNg (N3 (Ng +2) + 2Ng +1)
+ C[4]2N3Np (N3 + 3Nj + 14) } } (51)
from which it follows
My (Ax) = enyny | (NG = 1)(NANE(NG — 1) — 2N3(6Ng — 7) +22)
+Tr A% (2NAN(N] — 1)(Ng — 1)(NiNE — 14))
+ (TrA%)? (N3 — 1)(NEN3 + NgN3 — 14N3NE + 6N3 + 30)
+ Tr A3 40(N3 — 1)(Nj — 1)
+ Tr A% (=10N4Ng) (N3 — 1)(N3 —1)|, (52)
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where
1

N3ANZ(N3ANZ —7)2—36
This expression generalizes the already known result for the pure case, when Tr A% = 1
for all k [I7, 18]. In particular if Ng = N4 = VN we get

(53)

CNA7NB =

M (Ax) = { :0[14]N3 + C[2,1%]2N?*(N +2)

+ C[22IN2(N +2) + O[3, 1]8N? + C[4]2N (2N + 1)]

+Tr A% [CL2N3 (N +2) + C[2, 124AN2(2N +7)
[22]2N(N(N +6) + 2)
[3, SN (N(N +4) + 1) + C[4J4AN(N + 8)}

+
+

+ C22N2(5N + 4) + C[3,1]24N? + C42N (2N (N + 3) + 1)]
e AL [O[1Y8N? + C[2, 128N (N(N + 4) + 1)

+ C[2%]24N? 4+ C[3,1]16N*(N + 3) + C[4]8N(N(N +4) + 1)

+ T AL [C[1Y2N 2N + 1) + C[2, 124N (N +8)
+ C[2*]12N(2N (N +3) + 1) + C[3,1]8N(N(N +4) + 1)
+ CJ4JAN?(2N + 7)] } (54)
that is
M (Ax) = ey [ (N® —2N* — 11N? + 26N? + 8N — 22)
+ Tr A% (2N° — 4N* — 26N 4+ 56 N? — 28N)
+ (Tr A%)? (N° — 15N3 + 20N? + 24N — 30)
+ Tr A% 40(N —1)?
+TrA% (=10N)(N — 1)2] : (55)
with
1

NTNNZ 72— 36 (56)

In the thermodynamical limit, N >> 1, we find
1 1
A _ 2
M ——N(1+x) +O(—N2>. (57)

From Egs. , and we can now compute the exact expression for the
second cumulant of the purity at 5 = 0:

K3 (2, 0) = M3 (,0) — (M7(x,0))°
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NaMil(z,0)

NaMi(1,B)
NAM{(1/N, B)

Figure 1. (Color online) First moment of the purity as a function of 5. The red line
refers to the set of totally mixed states, with M4} (1/N,3) = 1/N4. The black line
refers to pure states for § > 0. Finally the blue line corresponds to the first moment of

the local purity at § = 0, for arbitrary mixed states, while the light-blue region refers
to high temperatures.

2(N2 —1)(N% —1)(N3N3 +11)
(N2N2% —1)2(N4Ng — 13N% N3 + 36)
2(N%3 — 1)(N2 — 1)(=2N4Np)(N2NZ + 11)
(N2NZ — 1)2(N4NE — 13N2 N3 + 36)
2 2(N3 — 1)(Ng — 1)(NiNg — AN3NE + 15)

+x

T T INING —1)2(NINL — 1BN2NZ + 36)
40(NZ —1)(N — 1)
T AS . A B
+H{TrAy) NZNZ(N2NZ — 7)2 — 36
“10NANg) (N2 — 1)(N2 — 1

N3NZ(N3NZ —7)2—36
See Ref. [14], 24] for the case x = 1, when all the traces are 1.

3.4. High temperature expansion of the first moment of the purity

We can now compute the approximate expression for the second moment of the purity
for small 3, by plugging Egs. and in Eq. 7 with n = 2:
Mi(z, 8) ~ M (2,0) + 8 [(M7(2,0))* — M3 (x,0)]
O Np(NI—1) | Na(NE—1)
- N3NZ -1 N%NZ -1
2(N3 — 1)(Vg — 1)(NANG + 11)
TP T ININE S 1)2(NANE — 13N2NZ 1 36)
2(N3 — 1)(NG — 1)(=2N4Np)(NANE +11)
(N2N% —1)2(N4Nj — 13N3N3Z + 36)
, 2(N3 — (N3 — D(NANS — ANANE + 15)
(N3N% —1)2(N4{Nj — 13N3NZ + 36)
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40(N% —1)(N3 —1)

“ N2NZ(N2NZ —17)2—36

(—=10N4NB)(N3 — 1)(N% —1)

— (TrAX)

_ 4
Ay e Nz (N2 Ng 72— 36 (59)
For a balanced bipartition, Ng = N4 = v/ N, we get
Mi(z, B) ~ M (2,0) + 8 [(M{(,0))* = My (z,0)]
VN(1 + )
~ 1+N
sl 2(N? +11)
(N + 1)2(N* — 13N2 + 36)
. AN(N? +11)
Y (N + 1)2(N* — 13N + 36)
o, 2(N* 4N 4 15)
(N +1)2(N* — 13N2 + 36)
40(N — 1)2
_ 3
(Tr Ax ). N2(N? —7)2 — 36
B i (=10N)(N —1)?
(Tr A%). NE(NZ —7) = 36’ (60)

and in the thermodynamical limit
l+x 28 , 1

One might wonder whether higher order cumulants follow a pattern similar to (61)).

M (z, B) ~

Notice that suggests a convergence radius for the high temperature expansion
B. ~ N3/2(14-x) /222, which grows indefinitely when 2 — 0, in accordance with Eq. .
See also Fig. [I]
Equation at © = 1 can be compared with the results of Ref. [§] where § was
replaced by the scaled quantity 8 = 8’N3/2. With this choice our expression yields
ML, BN?2) ~ Mi(L,0) + FNY2 [(M(1,0))° = M3 (1,0)]
2
~(1-08)—, 62
-8 (62)
in perfect agreement with the behavior reported in Fig. 2 of Ref. [§]. Figure [1| yields an
overview and summarizes our results.

4. An alternative approach based on Twirling

In this section we will establish an interesting connection between our problem and
the theory of quantum channels. In particular, we present an alternative approach for
computing the moments M (z,0) of Eq. which exploits the properties of twirling
transformations [25), 26, 27, [19] 20].

For explanatory purposes we start in Sec. by deriving a general expressions
for the moments M#(z = 1,0) associated with the case in which p is pure (i.e. the
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quantities M,, of Eq. ) and verify that it yields the exact value given by Lubkin [14]
for n = 1. The case of mixed states is then addressed in Sec. [4.2]showing that for n = 1
it reproduces the results of Sec. 3.1}

4.1. Pure initial states

Let us consider a fixed (normalized) pure state of the global system X = AB,
|to) x, and parametrize the pure states of Hy as in , ie. |Y)x = Ux|to)x, with
Ux € U(Hx) ~ U(N) distributed according to the Haar measure duy(U). Its local
purity can be expressed as

() = Z Tr <B<€|UAB|¢O>AB<¢O|UJ;B|€>B B<€/|UAB|@/)0>AB<@/J0|UI;B|€/>B>

1<00'<Npg
= Y anlol (ULsl)(C1Uas) [o)az anvol (Ulsl€)p(tUaz) [Wo)an . (63)
1<V <Np

where {|¢) g} is an orthonormal basis of Hp, and the cyclicity of the trace was used. We
can recast this expression into a more compact form by doubling the Hilbert space, i.e.
adding two auxiliary copies A" and B’ of A and B, respectively. We get

w(yp) = Tr [(UAB ®@ Uap) <|¢0>AB<¢0| ® |o) 4 <w0|> (ULB ® UL’B’)
X (Sppr ® Laar) } : (64)

where the trace is over all degree of freedom (i.e. AA’BB’), I 44/ is the identity operator
on AA’, and

SB|B’ = Z |€>B<él| ® |€/>B’ <£| 5 (65)
1<(0/<Np
is the SWAP operator on BB’ — this is the unitary, self-adjont transformation which,
for all operators ©p and Y g/, gives
Spp (O @ Yp)Spp =T ® Op. (66)

Remembering that first moment M{(x = 1,0) = M; of Eq. is obtained by
averaging over all possible Uy, we can then write

M= T (T (o) (ol @ o) xo{ol) (Seimr ® Law) ) (67)

where X = AB, X' = A'B’, and where 7 is the Completely Positive, Trace Preserving
(CPTP) twirling channel [25] 26] 27, 28] which transforms the operators O xy: of X X’
into

T (O x) — / dun(U) (Ux @ Ux') Oxxr (UL @ UL). (68)

This map plays an important role in quantum information theory where it was first
introduced as a tool for characterizing the distillability of bipartite entanglement [20 19].
It has several properties which allows us to simplify the calculation. For instance
it is known that 7 maps all the states of the system into (generalized) Werner
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states [25] 26]. Furthermore it is self-adjont — i.e. its description in Heisenberg picture
coincides with 7(3). In particular this last property can be used to rewrite @ as

My = (x{ol @ xool) T (Smar © Law) (ohx @ o)x) . (69)

Explicit expressions for the action of 7 can be obtained by exploiting the symmetry
of duy(U). In particular it is possible to show that 73 (Oxx+) can be decomposed as
a linear combination of the projections on the symmetric and anti-symmetric subspaces
of XX’ = ABA'B’ (with respect to the bipartition AB|A’B’). Introducing then the
SWAP operator which exchanges X with X’ this can then be written as

NIXX’_SX\X’ NSX\X’_[XX’
2
TP (Oxx/) = N(NZ - 1) Tr Oxx + N(NZ 1) Tr(SxxOxx) (70)
. N Tr @XX’ — Tr(SX|X’@XX/) I NTY(SX\X’@XX’) —Tr @XX/
- XX’ X|X7"
N(N2 1) N(N2 1)

(71)
where N = N4Np is the dimension of H,p. (Here Ixx is the identity operator while
SX\X’ = SAB\A’B’ = SB|B’ X SA|AI is the SWAP which exchanges AB with A/B/).

Thanks to this expression we can now easily compute the value of My, either

using Eq. or Eq. . Consider for instance the first approach. We have first
to compute the quantities Tr Oxx and Tr(Sx|x'Oxx/) with ©xxs being the operator

|th0) x (thol @ [tho) x+ (1ho]. This is

Tr(|to) x (vo| @ [tho) x/ (o) =1,

Tr ((Spipr @ Sajar)|to) as(Wol @ [vo) s (Po]) =1, (72)
where in the second expression we used the fact that [)) 4p ® |¢)) 45 is invariant uder
Sx|xr, 1e. (Spp @ Saja)([V)ap @ [V)ap) = |¥)ap @ |¥)ap. Replacing all this in
Eq. we get

_ Ixx + Sxixr

T (Itho) x (¥o| ® |tho) x+ (o) = m ; (73)
and thus
M, = m Tr ((]ABA’B’ + Spip @ Sajar) (Seip @ Laa) >
1
:m<Tr (SB|B/®IAA/>—|—TI“ (IBB’®SA|A/>> (74)

(here we exploited the fact that 5123\3/ = Igp'). Now we can use N = NyNp and the
identities

Tr (Spp ® Iaa) = NgN3, Tr(Ipp @ Saja) = NaNp, (75)
to get
NA + NB
—_ATB 76
M NuiNg+1° (76)

which coincides with the correct value [14].
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We mention that the same techniques can also be applied to higher moments M,,.
The extension of Eq. (| . for n > 2 is obtained by introducing 2n copies of AB organized

in the n pairs, i.e. A1B1A|B|, AyBALBY, -+, A,B, Al Bl,. We then introduce the
following generalized twirling transformation acting on XX’ = A1 B1A| B}, AyBy AL BY),
-, AnB AL Bl e
TP (Oxx/) = /d/LH(U> UeUw---@U)oxx UlelUle.-.oU),  (17)
2 2n
with ©xxs being a generic operator on Hyy: := ’H®2” This channel is a proper

generalization of the map 7 whose properties can be established along the lines of
Ref. [10]. With this choice Eq. then can be expressed as

Mk =1,0) = My = Te (T (Jwe) (@2 ) (s§ @ 1§)) . (78)

where [U®2)®" = @7 (|1)) 4,5, ® |¢)A/B/) I4 being the identity on the 2n copies of

A ie. A= A1A) - A Al and with S being the SWAP operator which exchanges
BBy --- B, with BB} -- B’ pairwise, i.e. S (@2n) _ ?:1533-\3;-

4.2. Mized initial states

Consider now the case with x < 1. Following the parameterization introduced in Secs.
and , we split the average over the set &, (H x) of the density matrixes of global purity
x, as an average over the unitary rotations of acting on Hx followed by an average
over the space of the eigenvalues p — see Eq. . Specifically this is accomplished by
writing p(U) = Uap Aap UZXB , with U, p being a generic unitary transformation on
Hap, while Ayp represents a given arbitrary choice of the system spectrum, see Eq.
. For convenience, let us rewrite the puriﬁcation of the density matrix p as
(W) aBab = Z Z \/_ ) 4 B® ) ®|[B) (79)
1<a<N4 1<B<Np
where now the ancillary systems, isomorphic to A and B, are labelled by a and b,
respectively. The reduced density matrix ps(U) = Trp p(U) can thus be written as

pa(U) = Trpa(Uap| V) apa(¥|UY )
= Z Bab<Q|UAB|\D>ABab<\I/|UIXB|Q>Bab ; (80)

1<g<NaNZ
with {|¢)ga} being an orthonormal basis of Bab. Similarly the local A-purity of pa(U)
becomes

7alp) = Tr p4(U) = Z Tr (Bab<Q|UAB|\IJ>ABab<\IJ|ULB|Q>Bab

1<q,¢’<NaN%

X Bab<q/|UAB|\IJ>ABab<\Ij|Ule|q,>Bab)
= > asa(Y|UL19) (¢ 1UaBI ) aBay

1<q,¢’<NaN%

X 48ab (YU 510 Bap(2|UaB|¥) aBab (81)
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which, once more, can be casted as an expectation value on |¥)®? by doubling the space
(see Eq. ) Therefore by integrating over Usp we get,

M) =Tr (T (19) 00 © [9) 500 (9]) (Spagpran © Law ) )

= (o (W] @ xar(01) TO (Spara @ Law ) (W) xa @ [ W), (82)
where 7 being the twirling transformation on XX’ of Eq. with X = AB,
X'=A'B, x =ab, and 2’ = a'b' (here A';a', B’/ are the auxiliary copies of A, a, B,
and b respectively). The above expression is the average purity of the subsystem A
computed for states p having the same spectra Ax.

To compute the above quantity this time we use the last identity of Eq. .
According to Eq. we have to compute TrOxys and Tr(Sxx/Oxx:) with Oxx/
being the operator SBab|B’a’b’ R Lpa = SB|B’ & Sb|b’ & Sa|a/ ® Iaa. That is

Trapap (Spabpray @ Laar) = Trapap (Spp @ Spy @ Sajr @ Laar)

= Tr(Spp) Tr(Laa) Sppy @ Sajr = N3Np Sppy @ Sajar (83)

Traparp (SAB|A’B’(SBab|B’a’b’ ® [AA’>) = Trapap (IBB’ ® Saa @ Sy @ Sa|a’)
= TI'([BB/) TT(SA|A/) Sb‘b’ ® Sala/ = NENA Sb‘b’ ® Sala/ . (84)
Thus from Eq. we get
Np(N%—1)
<2><S oy @ 1 ) _ Ne(Va—-1)
T Bab|Brat @ L4 NEINZ 1
Na(NE - 1)
N3N% —1
where we used N = NoNpg. Replace now this into Eq. and employ the identities
(e (91 @ s (9]) (e © S (1900 @ [ W) 0 ) = Tr A

(W1 @ a0 ) (S0 © o) (1) @ [ W) =1 (36)
The final result is thus

Ipp @ Ixar @ Sy @ Sajar

SB|B’ X SA|A’ ® Sb|b’ ® Sa|a’ ) (85)

Np(N% —1) Na(N3 —1)
MMAx) = 52— Tr A2 + 55—~
! N2N3 —1 X ONINZ -1
which is Eq. and depends upon the spectrum Ax only through its purity. By
averaging upon on Ay while keeping fix x gives us the same result .

(87)

5. Conclusions

From the results obtained in the previous sections one can infer that the same
phenomenon of concentration of measure that occurs for the eigenvalues of the reduced
density matrices of pure states [8, 9] occurs in the present case as well. Indeed, we
observe that for large N the leading order of all k-moments equals the k-th power of
the first moment , that, for a balanced bipartition Ny = N5 = /N, reads

M (2, 0) = (IJN@ Lo (#) | (88)
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This observation spurs from the calculation of the second moment :

(1+z)? 1
M (z,0) = — t0(+3 ) (89)
Therefore,
1
M3 (,0) = Mi(z,0)* + O (m) : (90)

By observing that the contributions of @(1/N) to the second moment come from the
coefficients proportional to C[14] in (46)), i.e. the identity permutation o = 0, and
conjecturing that the leading contribution for all the k-th moments comes only from
C [1%] ~ 1/N* one gets

M) (z,0) = (%)k +0 (W) : (91)

Another check of the validity of derives by the interpolation between maximally
mixed and pure global states. See Fig. The scaling with N is preserved, therefore
allowing to interchange the x — 1 and N — oo limits.

This uncovers the issue of computing the subdominant terms in the k-th moments
expansion that become instead leading order terms in the k-th cumulants. This could be
possible if we had an appropriate asymptotic expansion of the combinatorics coefficients
C, which we do not know. We leave this as a challenge for future work.
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