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We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum
system in a pure state. By applying general methods of statistical mechanics, we introduce a
fictitious temperature and a partition function and translate the problem in terms of the distribution
of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one
at a positive temperature, associated to very entangled states, and one at a negative temperature,
signalling the appearance of a significant factorization in the many-body wave function. We also
focus on the presence of metastable states (related to 2-D quantum gravity) and study the finite
size corrections to the saddle point solution.

PACS numbers: 03.67.Mn, 03.65.Ud, 68.35.Rh

I. INTRODUCTION

Entanglement is an important resource in quantum in-
formation processing and quantum enabled technologies
[1, 2]. Besides its important applications in relatively
simple systems, that can be described in terms of a few ef-
fective quantum variables, it is also widely investigated in
many-body systems [3, 4], where the bipartite entangle-
ment can be given a satisfactory quantitative definition
in terms of entropy and its linearized versions, such as
purity [5, 6]. The characterization of the global features
of entanglement is more involved, unveiling in general
different features of the many-body wave function [7, 8],
and it is becoming clear that the multipartite entangle-
ment of a large system cannot be fully characterized in
terms of a single (or a few) measure(s).

Entanglement measures the nonclassical correlations
between the different components of a quantum system
and unearths different characteristics of its many-body
wave-function. When the quantum system is large, it be-
comes therefore interesting to scrutinize the features of
the distribution of some bipartite entanglement measure,
such as the purity or the Von Neumann entropy. Besides
being of interest for applications, this is an interesting
problem in statistical mechanics. In [9] we tackled this
problem by studying a random matrix model that de-
scribes the statistical properties of the eigenvalues of the
reduced density matrix of a subsystem A of dimension
N (the complementary subsystem B having the same di-
mension as A). In the limit of large system dimension
N , we introduced a partition function for the canoni-
cal ensemble as a function of a fictitious temperature.
The role of energy is played by purity: different temper-

atures correspond to different entanglement. The most
important result of our analysis was the proof that the
different regions of entanglement, corresponding to dif-
ferent ranges of the fictitious temperature, are separated
by phase transitions.

One puzzle was left open in that paper: in the region
of negative temperatures our solution suddenly ceased to
exist at a critical βg where the average purity of subsytem
A was πAB = 9/4N (a phenomenon quite common in
random matrix theory, as this critical point corresponds
to tesselations of random surfaces, or 2-D quantum grav-
ity). As the partition function exists for all β ∈ R, the
region of factorizable states, where πAB = O (1), was not
covered.

We will show in this paper that the solution in [9] be-
comes metastable for any β < 0 (in the scaling of [9])
and a new stable solution appears which interpolates
smoothly from πAB = 2/N to πAB = 1 as β goes from
0 to −∞. Moreover, we will also study the metastable
solution that is born at β = 0 and follow it through the
region 0 > β > −∞.

This paper is organized as follows. In Sec. II we in-
troduce the notation and set the bases of the statisti-
cal mechanical approach to the problem. In Sec. III we
study positive temperatures, where at very low temper-
atures we find very entangled states. Negative tempera-
tures are investigated in Sec. IV, where it is shown that
two branches exist, a stable one associated to a par-
tial factorization of the many-body wave function, and
a metastable one which contains the 2D-quantum grav-
ity point. The finite size corrections are investigated in
Sec. V. We discuss the implications of our results for
quantum information in Sec. VI and we conclude in Sec.
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VII by summarizing our findings and discussing them in
terms of future perspectives.

II. A STATISTICAL APPROACH TO THE
STUDY OF BIPARTITE ENTANGLEMENT

We start off by describing a statistical approach to the
study of bipartite entanglement for large quantum sys-
tems. We will tackle this problem by introducing a par-
tition function [9].

Consider a bipartite system, composed of two subsys-
tems A and B. The total system lives in the tensor prod-
uct Hilbert space H = HA ⊗ HB , with dimHA = N ≤
dimHB = M . We assume that the system is in a pure
state |ψ

〉
∈ H. The reduced density matrix of subsystem

A reads

ρA = TrB |ψ
〉〈
ψ| (1)

and is a Hermitian, positive, unit-trace N × N matrix.
A good measure of the entanglement between the two
subsystems is given by the purity

πAB = TrAρ
2
A = TrBρ

2
B =

N∑

j=1

λ2j ∈ [1/N, 1], (2)

whose minimum is attained when all the eigenvalues λj
are equal to 1/N (completely mixed state and maximal
entanglement between the two bipartitions), while its
maximum (attained when one eigenvalue is 1 and all oth-
ers are 0) detects a factorized state (no entanglement).

In order to study the statistics of bipartite entangle-
ment for pure quantum states, we consider typical vector
states |ψ

〉
[10, 11], sampled according to the unique, uni-

tarily invariant measure. The significance of this mea-
sure can be understood in the following way: consider
a reference state vector |ψ0

〉
and a unitary transforma-

tion |ψ
〉

= U |ψ0

〉
. In the least set of assumptions on U ,

the measure is chosen in a unique way, being the only
left- and right-invariant Haar (probability) measure of
the unitary group U(N2). The final state |ψ

〉
will hence

be distributed according to the measure mentioned above
(independently of |ψ0

〉
). Notice the analogy with the

maximum entropy argument in classical statistical me-
chanics. By tracing over subsystem B, this measure in-
duces the following measure over the space of Hermitian,
positive matrices of unit trace [10, 11]

dµ(ρA) = DρA(det ρA)M−Nδ(1− TrρA),

= dNλ
∏

i<j

(λi − λj)2
∏

`

ληN` δ

(
1−

∑

k

λk

)
,(3)

where λk are the (positive) eigenvalues of ρA (Schmidt
coefficients), we dropped the volume of the U(N) group
(which is irrelevant for our purposes) and ηN ≡ M −N
is the difference between the dimensions of the Hilbert

spaces HA and HB . In order to study the statistical be-
havior of a large bipartite quantum system we introduce
a partition function from which all the thermodynamic
quantities, for example the entropy or the free energy,
can be computed:

ZAB =

∫
dµ(ρA) exp (−βNαπAB) , (4)

where α is a positive integer (either 2 or 3, as we shall
see) and β a fictitious temperature “selecting” different
regions of entanglement. The value of α needs to be
chosen in order to yield the correct thermodynamic limit
as

Nα〈πAB〉 = O
(
N2
)
, (5)

since N2 is the number of degrees of freedom of the ma-
trix ρA. Around the maximally entangled states (for β >
0 [9]) we have 〈πAB〉 = O (1/N) so α = 3, while around
separable states (for β < 0) we have 〈πAB〉 = O (1) and
hence α = 2. In the following we will assume η = 0, since
this does not change the qualitative picture (the exten-
sion to η 6= 0 being straightforward but computationally
cumbersome).

Since the purity depends only on the eigenvalues of ρA
the partition function reads

ZAB =

∫

λi≥0
dNλ

∏

i<j

(λi−λj)2δ
(

1−
N∑

i=1

λi

)
e−βN

α∑
i λ

2
i ,

(6)
which by introducing a Lagrange multiplier for the delta
function yields

ZAB = N2

∫ ∞

−∞

dξ

2π

∫

λi≥0
dNλ

×eiN2ξ(1−
∑
i λi)−βN

α∑
i λ

2
i+2

∑
i<j ln |λi−λj |.(7)

A physical interpretation of the exponent in the inte-
grand of the partition function can be given as follows
[12]: the eigenvalues of ρA can be interpreted as a gas of
interacting point charges (Coulomb gas) at positions λi’s,
on the positive half-line and with a quadratic potential.
The solution of these integrals is known (as Selberg’s in-
tegral) for the case in which the integration limits are
−∞ < λi < +∞ [12].

The constraint of the positivity of the eigenvalues
makes the computation of this integral far more compli-
cated. Although a exact solution for finite N is unlikely
to be found [23] (but see [9, 13] for the first few mo-
ments), the problem arising from the constraint on the
positivity of the eigenvalues can be overcome in the large
N limit, as we will look for the stationary point of the
exponent with respect to both the λ’s and ξ. In particu-
lar, the contour of integration for ξ lies on the real axis,
but we will soon see that the saddle point for ξ lies on the
imaginary ξ axis. It is then understood that the contour
needs to be deformed to pass by this point parallel to the
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line of steepest descent. For the saddle point we need to
find the minimum of the free energy:

βF = βNα
∑

i

λ2i−2
∑

i<j

ln |λi−λj |−iN2ξ

(
1−

∑

i

λi

)
.

(8)
By varying F we find the saddle point equations

− 2βNαλi + 2
∑

j 6=i

1

λi − λj
− iN2ξ = 0, (9)

∑

i

λi = 1. (10)

In the following sections we will separately analyze the
range of positive and negative temperatures, and unveil
the presence of two phase transitions for the system, a
second order one at a positive critical β and a first order
one at a negative critical β.

A. The global picture

Before proceeding to a formal analysis of the phase
transitions, it is convenient to give a qualitative picture
of the behavior of the Schmidt coefficients as the tem-
perature is changed. As the inverse temperature is de-
creased, the density matrix of subsystem A changes as
follows. As β → +∞ all eigenvalues are = 1/N (max-
imally mixed state). As β decreases, we encounter two
phase transitions: one at a positive critical value β+ and
one at a negative critical value β−, both critical values
being to be determined. For β > β+ all eigenvalues re-
main O (1/N), their distribution being characterized, as
we shall see, by the Wigner semicircle law. After the first
phase transition, for β+ > β > β−, the eigenvalues, all al-
ways O (1/N), follow the Wishart distribution, divergent
at the origin. Finally, after the second phase transition,
for β < β−, one eigenvalue becomes O (1), “evaporating”
from the “sea” of eigenvalues O (1/N): this is a signa-
ture of the emergence of factorization in the many-body
wave function, the eigenvalue O (1) being associated with
a significant separability between subsystems A and B.
For β → −∞ the many body wavefunction is fully fac-
torized. Pictorially, the typical eigenvalues vector evolves

starting from β = +∞ to β = −∞ as

(
1

N
,

1

N
, ...,

1

N

)

︸ ︷︷ ︸
β→+∞

−→
(
O
(

1

N

)
, ...,O

(
1

N

))

︸ ︷︷ ︸
+∞>β>β+

−→
(
O
(

1

N

)
,O
(

1

N

)
, ..., 0, ..., 0

)

︸ ︷︷ ︸
β+>β>β−

−→
(
O (1) ,O

(
1

N

)
, ..., 0, ..., 0

)

︸ ︷︷ ︸
β−>β>−∞

−→ (1, 0, ..., 0)︸ ︷︷ ︸
β→−∞

, (11)

where the zeroes in the second and third lines mean an
accumulation of points around the origin, and we will
find that [in the scaling of β given by α = 3 in Eq. (5)],
β+ = 2 and β− = −2.455/N .

III. POSITIVE TEMPERATURES: TOWARDS
MAXIMALLY ENTANGLED STATES

In this section we will consider the range of positive
temperatures: 0 < β < +∞; in particular we will study
the occurrence of a second order phase transition at β = 2
[9]. We will use a novel more general method, that will
enable us to find all solutions and can be easily extended
to negative temperatures.

From the expression of the partition function one can
easily infer that when β → +∞ the typical states belong-
ing to this distribution are maximally entangled states
and correspond to the case λi = 1/N , ∀i ∈ {1, . . . N}. It
then follows that for this range of temperatures the right
scaling exponent in (4)-(5) is α = 3.

In order to estimate the thermodynamic quantities of
the system we solve the saddle point equations (9)-(10) in
the continuous limit, by introducing the natural scaling

λi =
1

N
λ(ti), 0 < ti =

i

N
≤ 1. (12)

In the limit N →∞, Eq. (9) becomes

− βλ+ P

∫ ∞

0

dλ′
ρ(λ′)

λ− λ′ − i
ξ

2
= 0, (13)

which is a singular Fredholm equation of the first kind,
known as Tricomi equation [14]. The function

ρ(λ) =

∫ 1

0

dt δ(λ− λ(t)) (14)

is the density of eigenvalues we want to determine. A
similar equation, restricted at β = 0, was studied by
Page [11].
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β = 0

0.5
1

2
3m

δ
0 0.5 1 1.5 2

0

0.5

1

1.5

2

FIG. 1: Solution domain for different values of temperature:
for each value of β (indicated) the relative full line encloses
the region of the parameter space such that the eigenvalue
density is positive. The line m = δ corresponds to the positive
eigenvalues condition.

According to the Tricomi theorem [11, 14] the solution
of the integral equation (13) lies in a compact interval
[a, b], (0 ≤ a ≤ b). Let us set

m =
a+ b

2
, δ =

b− a
2

, 0 ≤ δ ≤ m. (15)

We map the interval [a, b] into the interval [−1, 1] by
introducing the following change of variables:

λ = m+ xδ, φ(x) = ρ(λ)δ. (16)

We get

1

π
P

∫ 1

−1

φ(y)

y − xdy = g(x), (17)

with

g(x) = − 1

π

(
iξ
δ

2
+ βδm+ βδ2x

)
, (18)

whose normalized solution (
∫
φdx = 1) is

φ(x) = − 1

π
P

∫ 1

−1

√
1− y2
1− x2

g(y)

y − xdy +
1

π
√

1− x2
, (19)

By using the constraint (10), that is

∫ 1

−1
λφ(x) dx = 1, (20)

we can fix the Lagrange multiplier to obtain

φ(x) =
1

π
√

1− x2
[
1 +

βδ2

2
+

2(1−m)

δ
x− βδ2x2

]
.

(21)
The physical solutions must have a density φ(x) that is

nonnegative for all x ∈ (−1, 1). Let us look at the points
where the density vanishes, φ(x) = 0. From (21) one gets

x± =
1

βδ2

(
1−m
δ
±
√

∆

)
, (22)

m

δ

β = 0

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

m

δ

β = 1 < 2

(b)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

m

δ

β = 3 > 2

(c)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

FIG. 2: Contour plots of the free energy in regions of the
parameter space such that φ(x) ≥ 0, for (a) β = 0, (b) β = 1
and (c) β = 3. Darker regions have lower free energy. The
arrows point at the minima.

where

∆ =

(
1−m
δ

)2

+ βδ2
(

1 +
βδ2

2

)
. (23)

For β ≥ 0 one gets that ∆ ≥ 0 for every m and δ, and
φ(x) ≥ 0 for x ∈ [x−, x+]. The level curves x± = ±1 are
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given by m = Γ±1 (δ, β), where

Γ±1 (δ, β) = 1± δ

2

(
1− βδ2

2

)
. (24)

They are symmetric with respect to the line m = 1 and
intersect at δ = 0 and at δ =

√
2/β. Therefore, the

condition (−1, 1) ⊂ [x1, x2] implies that the points (δ,m)
should be restricted to a (possibly cut) “eye-shaped” do-
main given by

max
{
δ,Γ−1 (δ, β)

}
≤ m ≤ Γ+

1 (δ, β), (25)

(recall the constraint m ≥ δ in (15) that expresses the
positivity of eigenvalues). The right corner of the eye is
at

(δ,m) =

(√
2

β
, 1

)
, (26)

and belongs to the boundary as long as β ≥ 2. For β < 2
the eye is cut by the line m = δ. See Fig. 1.

Let us remark that all points inside the region cor-
respond to solutions of the saddle point equations. In
other words we have a two parameter continuous family
of solutions. We will look at the eigenvalue density that
minimizes the free energy density of the system. From
Eqs. (8) and (10) with α = 3 by applying the scaling (12)
we get

fN =
F

N2
=

1

N

∑

i

λ(ti)
2 − 2

N2β

∑

i<j

ln |λ(ti)− λ(tj)|

+
2

N2β

∑

i<j

lnN

= u− 1

β
s+ lnN +O

(
lnN

N

)

= f + lnN +O
(

lnN

N

)
. (27)

Here,

f = lim
N→∞

(
fN −

1

β
lnN

)
(28)

is the free energy density in the thermodynamic limit,
which reads

βf = βu− s, (29)

in terms of the internal energy density u and the entropy
density s,

u =

∫ 1

−1
λ2φ(x)dx,

s =

∫ 1

−1
dx

∫ 1

−1
dy φ(x)φ(y) ln(δ|x− y|). (30)

βf

δ

β = 0

(a)

0 0.5 1 1.5 2

2

4

βf

δ

β = 1

(b)

0 0.4 0.8 1.2

2.5

3

3.5

βf

δ

β = 3

(c)

0 0.2 0.4 0.6 0.8

5

6

7

FIG. 3: Free energy on the boundary of the region of the do-
main where φ(x) ≥ 0, for different temperatures (indicated).
Dashed line: free energy f on the lower boundary of the eye-
shaped domain; full line: free energy on the upper boundary.
The sought minima of the free energy can be inferred from
the graph and coincide with the dots in Figs. 1 and 2.

In order to compute the entropy density one integrates
the Tricomi equation (17) and obtains

∫ 1

−1
φ(x)dx

∫ 1

−1
φ(y)dy ln |y − x|

=

∫ 1

−1
dxφ(x) ln(x+ 1)

−π
∫ 1

−1
dxφ(x)

∫ x

−1
g(y)dy. (31)

We get

u(δ,m, β) = 1− (1−m)2 +
δ2

2
− βδ4

8
, (32)

s(δ,m, β) = −2(1−m)2

δ2
− β2δ4

16
+ ln

δ

2
, (33)
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φ(x)

x

β ≥ β+

�1 �0.5 0 0.5 1

0.1

0.3

0.6

1 2 3 4
0.

0.4

0.8

1.2

λ

ρ(λ)

β = 2

β = 10

β = 4

FIG. 4: (Up) Density of the eigenvalues for β ≥ β+ = 2.
(Down) Density of the eigenvalues for β = 2, 4 and 10. In the
temperatures range β ∈ [2,∞] the solution is given by the
semicircle law.

and thus

βf(δ,m, β) = β − β(1−m)2 +
2(1−m)2

δ2
+
βδ2

2

−β
2δ4

16
− ln

δ

2
. (34)

The contour plots of the free energy are shown in Fig. 2.
Note that f , as well as u and s, is symmetric with respect
to the line m = 1. This Z2 symmetry will play a major
role in the following. The only stationary point (a saddle
point) of the free energy density f is at the right corner
of the eye (26), see Figs. 1 and 2. Thus, the absolute
minimum is on the boundary.

For β ≥ β+, where

β+ = 2, (35)

the point (26) is also the absolute minimum, whereas for
0 < β < β+ the absolute minimum is at the right upper
corner of the allowed region, δ = Γ+

1 (δ, β), namely at

m = δ, with β
δ3

4
+
δ

2
− 1 = 0. (36)

See the dots in Figs. 1 and 2. The behavior of the free
energy at the boundaries of the allowed domain is shown
in Fig. 3 for different temperatures.

We will study the behavior of our system starting from
high values of β, that is low values of internal energy
u (purity). The analysis of lower values of β, down to

β = 0 and even below, will be done in the next section.
For β > β+, by setting from (26) m = 1 and

β =
2

δ2
(37)

and recalling (21), one gets the semicircle law (see Fig. 4)

φ(x) =
2

π

√
1− x2, (38)

whence, by (16),

ρ(λ) =
β

π

√
λ− a

√
b− λ, (39)

where

a = 1− δ = 1−
√
β+
β
, b = 1 + δ = 1 +

√
β+
β
. (40)

This distribution is displayed in Fig. 4. Observe that as
β becomes larger the distribution becomes increasingly
peaked around 1. This simply means that all eigenvalues
tend to 1/N in the natural scaling (12): for tempera-
tures T = 1/β close to zero the quantum state becomes
maximally entangled.

By plugging (26) into (32) and (33) we get for β > β+

u = 1 +
δ2

4
= 1 +

1

2β
, (41)

s = −1

4
+ ln

δ

2
= −1

4
− 1

2
ln(2β), (42)

and thus

βf =
2

δ2
+

3

4
− ln

δ

2
= β +

3

4
+

1

2
ln(2β). (43)

At higher temperatures 0 ≤ β ≤ β+ the solution ac-
quires a different physiognomy. By plugging (36) into
(21)

φ(x) =
2

πδ

√
1− x
1 + x

(
1 + (2− δ)x

)
, (44)

see Fig. 5, yielding, by (16),

ρ(λ) =
4

πb2

√
b− λ
λ

(
b− 2 +

2(4− b)
b

λ

)
, (45)

with b = 2δ. This is a Wishart distribution. See Fig. 5.
The change from semicircle to Wishart is accompanied
by a phase transition (the first of a series!) as we shall
presently see.

The half width δ = b/2 is related to β by (36)

β =
4

δ3
− 2

δ2
, (46)

which runs monotonically from β = 2 when δ = 1 to
β = 0 when δ = 2. Moreover, it reaches a minimum
equal to

βg = − 2

27
(47)
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φ(x)

x

β = 1

�1 �0.5 0 0.5 1

0.1

0.3

0.6

1 2 3 4 5 6
0.

0.2

0.4

0.6

0.8

λ

ρ(λ)

β = 0

β = 2/3

βg

FIG. 5: (Up) Density of the eigenvalues for β = 1. (Down)
Density of eigenvalues for β = 0, β = 2/3, and β = βg =
−2/27 (dashed). In the range of temperatures β ∈ (βg, β+),
with β+ = 2, the solution is given by the Wishart distribution.

β

δ

0
βg

−−

1 2 3

0.5

1

1.5

2

FIG. 6: Plot of Eq. (46) for positive (solid line) and negative
(dashed line) temperatures. The minimum βg = −2/27 is
attained at δ = 3.

at δ = 3. Therefore, the above solution can be smoothly
extended down to βg, which is slightly negative, but not
below. See Fig. 6. We will study the solution for negative
temperatures in the next section. Note, incidentally, that
the inverse function of (46) can be explicitly written

δ(β) =
1

β

√
2β

3

(
∆̃− 1

∆̃

)
, (48)

with ∆̃ = (
√
−β/βg +

√
1− β/βg)1/3.

For β ≤ β+ the internal energy (average purity) u is
obtained by plugging (46) into (32)

u =
3

2
δ − δ2

4
. (49)

Therefore, at β = 0 (δ = 2) one gets u = 2, at β+ = 2
(δ = 1) one gets u = 5/4, and at βg = −2/27 (δ = 3) one
gets u = 9/4 (see the next section for the significance of
these values). From (46) and (33) one can also compute
the entropy and the free energy for β ≤ β+

s = −9

4
+

5

δ
− 3

δ2
+ ln

δ

2
, (50)

βf =
9

δ2
− 9

δ
+

11

4
− ln

δ

2
, (51)

in terms of the function δ(β) ∈ (1, 3] introduced in Eq.
(48).

Notice that βf is the generating function for the con-
nected correlations of πAB . The radius of convergence
in the expansion around β = 0, namely 2/27, defines
the behavior of the late terms in the cumulants se-
ries. Another interesting observation is that the func-
tion r(x) = u(β = −x/2) is the generating function of
the number of rooted non-separable planar maps with n
edges on the sphere (Sloane’s A000139 also in [17, 18]),
namely

r(x) = 2 + x+ 2x2 + 6x3 + 22x4 + 91x5 + 408x6

+1, 938x7 + 9, 614x8 + 49, 335x9 + ... . (52)

The counting of rooted planar maps on higher genus sur-
faces is an unsolved problem in combinatorics and we
conjecture it to be related to 1/N corrections of our for-
mulas.

We are now ready to unveil the presence of the first
critical point at β+ = 2. Let consider the density of
eigenvalues (38) and (44) (or their counterpart (39) and
(45)). The phase transition at β+ is due to the restora-
tion of a Z2 symmetry P (“parity”) present in Eqs. (32),
(33) and (34), namely the reflection of the distribution
ρ(λ) around the center of its support (m = δ = b/2 for
β ≤ β+ and m = 1 for β > β+). For β ≤ β+ there are
two solutions linked by this symmetry, and we picked the
one with the lowest f ; at β+ this two solutions coincide
with the semicircle (39), which is invariant under P and
becomes the valid and stable solution for higher β. In
order to explicitly show the presence of a second order
phase transition in the system for β = β+ we look at the
expression of the entropy density s = β(u − f), which
counts the number of states with a given value of the
purity. The expression for β < β+ is given in Eq. (50),
while for β ≥ β+ it is given in Eq. (42).

At β = β+ we get δ = 1 and s = −1/4− ln 2. On the
other hand the first derivative of s with respect to δ is
discontinuous at δ = 1. However, also β as a function
of δ, as given by (46) and (37), has a discontinuous first
derivative at δ = 1. By recalling that

ds

dβ
=

ds

dδ

/dβ
dδ
,

d2s

dβ2
=

d2s

dδ2

/(dβ
dδ

)2

− ds

dδ

d2β

dδ2

/(dβ
dδ

)3

, (53)
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FIG. 7: Entropy and its second derivative with respect to β.
The entropy is continuous in β+ while its second derivative
presents a finite discontinuity.

one easily obtains that the discontinuities compensate
and in the critical region, β → β+, we have

s ∼ −1

4
− ln 2− β − β+

4
+ θ(β − β+)

(β − β+)2

16
, (54)

where θ is the step function. The entropy s is continuous
at the phase transition, together with its first deriva-
tive, although the second derivative is discontinuous, as

shown in Fig. 7. Notice that the entropy is unbounded
from below when β → +∞. The interpretation of this re-
sult is quite straightforward: the minimum value of πAB
is reached on a submanifold (isomorphic to SU(N)/ZN
[19]) of dimension N2− 1, as opposed to the typical vec-
tors which form a manifold of dimension 2N2 − N − 1
in the Hilbert space H. Since this manifold has zero vol-
ume in the original Hilbert space, the entropy, being the
logarithm of this volume, diverges.

Now we want to express the entropy density s as a
function of the internal energy density u. From (49) and
(41) we get

u =





1 + δ2

4 , 0 < δ ≤ 1,

3
2δ − δ2

4 , 1 < δ ≤ 2,

(55)

that can be easily inverted

δ =





2
√
u− 1, 1 < u ≤ 5

4 ,

3−
√

9− 4u, 5
4 < u ≤ 2.

(56)

From (50) and (42) one gets the entropy density as a
function of δ

s =





− 1
4 + ln δ

2 , 0 < δ ≤ 1,

− 9
4 + 5

δ − 3
δ2 + ln δ

2 , 1 < δ ≤ 2.

(57)

Finally, by plugging (56) into (57), we obtain the entropy
of the submanifold of fixed purity, s = (lnV )/N2 as a
function of its internal energy u = NπAB :

s(u) =





1
2 ln(u− 1)− 1

4 , 1 ≤ u ≤ 5
4 ,

ln
(

3
2 −

√
9
4 − u

)
− 9

4 + 5

2
(

3
2−
√

9
4−u

) − 3

4
(

3
2−
√

9
4−u

)2 ,
5
4 ≤ u ≤ 2.

(58)

This function is plotted in Fig. 8.
Let us discuss the significance of these results. The

present section was devoted to the study of positive tem-
peratures T = 1/β > 0. In this range of temperatures,
the eigenvalues of the reduced density matrix of our N2-
dimensional system are always of O (1/N). As a conse-
quence, the value of energy (purity) in Eq. (2)

πAB =

N∑

j=1

λ2j '
1

N

∫
λ2ρ(λ)dλ = O

(
1

N

)
(59)

is always small: there is therefore a lot of entanglement

in our system. There are however, important differences
as purity changes (it is important to keep in mind that
in the statistical mechanical approach pursued here, the
Lagrange multiplier β fixes the value of energy/purity).
When 1/N < πAB < 5/4N the eigenvalues are dis-
tributed according to the semicircle law (Fig. 4), while
for 5/4N < πAB < 2/N they follow the Wishart dis-
tribution (Fig. 5), the two regimes being separated by
a second-order phase transition. The value πAB = 2/N
corresponds to infinite temperatures β = 0 and there-
fore to typical vectors in the Hilbert space (according to
the Haar measure). One is therefore tempted to extend
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FIG. 8: Entropy density s versus internal energy density u =
N〈πAB〉. See Eq. (58).

these results to negative temperatures [9] and one can
indeed do so up to πAB = 9/4N , corresponding to the
slightly negative temperature βg = −2/27. However, as
we have seen, a mathematical difficulty emerges, as this
value represents the radius of convergence of an expan-
sion around β = 0 and no smooth continuation of this
solution seems possible beyond βg. In the next section
we will see that two branches exist for negative β: one
containing the point β = βg and in which purity is al-
ways of O (1/N) and one in which purity is of O (1). The
latter becomes stable for sufficiently large −β’s through
a first order phase transition.

Before continuing, we remind that larger values of pu-
rity, towards the regime πAB = O (1) yield separable
(factorized) states. We are therefore going to look at
the behavior of our quantum system towards separabil-
ity (regime of small entanglement).

IV. NEGATIVE TEMPERATURES

A. Metastable branch (quantum gravity)

By analytic continuation, the solution at positive β of
the previous subsection can be turned into a solution for
negative β, satisfying the constraints of positivity and
normalization. In this section we will study this ana-
lytic continuation and its phase transitions, but we an-
ticipate that this is metastable for sufficiently large −β’s
(namely for β < −2.455/N) and that it will play a sec-
ondary role in the thermodynamics of our model. How-
ever, our interest in it is spurred by one of its critical
points, at β = −2/27 ≡ βg which corresponds to the
so-called 2-D quantum gravity free energy (see [15]), pro-
vided an appropriate double-scaling limit (jointly β → βg
and N →∞) is performed.

In more details, the eigenvalue density (45) at β =
βg = −2/27, i.e. δ = 3 [see between Eqs. (46) and (48),
and Fig. 6] reads

ρ(λ) =
2

27π

√
(6− λ)3

λ
, (60)

and from (49) u = 9/4 (see Fig. 7 and 9). The derivative
at the right edge of eigenvalue density in Fig. 5 vanishes.

By expanding (46) for δ → 3

β = − 2

27
+

2

81
(δ − 3)2 − 16

729
(δ − 3)3 +

10

729
(δ − 3)4

− 16

2187
(δ − 3)5 +O

(
(δ − 3)6

)
, (61)

that is, by setting x =
√

2(β − βg)/9 → 0,

δ = 3

(
1 + x+

4

3
x2 +

35

18
x3 +

80

27
x4 +

1001

216
x5 +O

(
x6
))

,

(62)
and therefore for β → βg

βf =
3

4
− log

3

2
+

9

4
(β − βg)−

81

16
(β − βg)2

−81
√

2

5
(β − βg)5/2 +O

(
(β − βg)3

)
. (63)

In fact, if one relaxes the unit trace condition, our parti-
tion function Z has been studied in the context of random
matrix theories [16] before. The objects generated in this
way correspond to chequered polygonations of surfaces.
Our calculations show that the constraint Tr ρA = 1 is
irrelevant for the critical exponents in this region.

However, this is not a real critical point of our Coulomb
gas. As this is an analytic continuation of the solution
obtained for β > 0, we are not assured that this is indeed
a stable branch. In the next section we will show that
a first order phase transition occurs at a lower value of
β, namely at β ' −2.455/N in this scaling (and there-
fore the exponent α needs to be lowered from 3 to 2 for
negative β). The new stable phase will take over for
all negative β, where β = −∞ corresponds to separa-
ble states. However the analytic continuation described
here, although metastable, exists for all negative β and
we can study in more detail the behavior of the eigenvalue
density (21) and of its free energy (34). The solution is
straightforward but lengthy and is given in the following.
It is of interest in itself because, as we shall see, it en-
tails a restoration of the Z2 symmetry that was broken at
the phase transition at β = 2 described in the previous
section.

Recall that the density φ(x) must be nonnegative for
all x ∈ (−1, 1). This condition for β < 0 gives x /∈
(x+, x−), with x± given by (22)-(23). The level curves
x± = ±1 are given by m = Γ±1 (δ, β), with Γ±1 in (24),
while the level curves ∆ = 0 are given by m = Γ±2 (δ, β)
with

Γ±2 (δ, β) = 1± δ2
√
−β
(

1 +
βδ2

2

)
, (64)

They are symmetric with respect to the line m = 1 and
intersect at δ = 0 and at δ =

√
−2/β. Moreover, they

are tangent to Γ±1 at the points

(δ,m) =

(√
− 2

3β
, 1± 2

3

√
− 2

3β

)
, (65)
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FIG. 10: Metastable branch. Domain of existence for the
solution (m, δ) for negative temperatures.

as shown in Fig. 10. Therefore, the condition (−1, 1) ∩
[x1, x2] = ∅ implies that the points (δ,m) should be re-
stricted to a (possibly cut) eye-shaped domain given by

max {δ, h−(β, δ)} ≤ m ≤ h+(β, δ), (66)

where

h±(δ, β) =





Γ±1 (δ, β), 0 ≤ δ ≤
√
− 2

3β ,

Γ±2 (δ, β), δ >
√
− 2

3β .

(67)

m

δ

β = βg

(a)

1 2 3

1

2

3

m

δ

β = −1

(b)

1 2 3

1

2

3

m

δ

β = −5

(c)

1 2 3

1

2

3

FIG. 11: Metastable branch. Contour plots of the free energy
in regions of the parameter space such that φ(x) ≥ 0, for (a)
β = βg, (b) β = −1 and (c) β = −5. Darker regions have
lower free energy.

The right corner of the eye is given by

(δ,m) =

(√
− 2

β
, 1

)
(68)

and belongs to the boundary as long as β ≤ −2. For
β ≥ −4 the eye is cut by the line m = δ. See Fig. 10.

The contour plots of the free energy (34) are shown
in Fig. 11. The free energy density f has no stationary
points for β < 0. The behavior of the free energy at the
boundaries of the allowed domain is shown in Fig. 12 for
different temperatures. For β ≤ −2 the right corner of
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the eye is the absolute minimum, whereas for −2 < β < 0
the absolute minimum is at the right upper corner of the
allowed region, namely at

m = δ, with δ = h+(β, δ), (69)

that is

β
δ3

4
+
δ

2
− 1 = 0, for− 2

27
≤ β ≤ 0, (70)

and

δ− 1 = δ2

√
−β
(

1 + β
δ2

2

)
, for− 2 ≤ β ≤ − 2

27
. (71)

Note that (70) coincides with (36) and thus is the prolon-
gation of the curve (46) which runs monotonically from
β = 0 when δ = 2 to its minimum βg = −2/27 at δ = 3.

On the other hand, (71) is given by the curves

β = − 1

δ2
± 1

δ3

√
−δ2 + 4δ − 2

= − 1

δ2
± 1

δ3

√
(2 +

√
2− δ)(δ − 2 +

√
2), (72)

which run from β = βg when δ = 3 (with derivative zero)

up to β = −3/2 +
√

2 when δ = 2 +
√

2 (with derivative

−∞) and then from β = −3/2 +
√

2 when δ = 2 +
√

2
(with derivative +∞) up to β = −2 when δ = 1. See
Fig. 13.

Let us look at the eigenvalue density (21). When βg ≤
β ≤ 0 the solution is obtained by plugging (36) into (21)

φ(x) =
2

πδ

√
1− x
1 + x

(
1 + (2− δ)x

)
, (73)

with 2 ≤ δ ≤ 3, and is Wishart. At βg one gets δ = 3
and

φ(x) =
2

3π

√
(1− x)3

1 + x
, (74)

whose derivative at the right edge x = 1 vanishes. On
the other hand, when −3/2 +

√
2 ≤ β ≤ βg by (72) one

gets

φ(x) =
1

πδ
√

1− x2
[

1

2

(
δ +

√
−δ2 + 4δ − 2

)
+ 2(1− δ)x+

(
δ −

√
−δ2 + 4δ − 2

)
x2
]
, (75)

with 3 ≤ δ ≤ 2 +
√

2, while for −2 ≤ β ≤ −3/2 +
√

2

φ(x) =
1

πδ
√

1− x2
[

1

2

(
δ −

√
−δ2 + 4δ − 2

)
+ 2(1− δ)x+

(
δ +

√
−δ2 + 4δ − 2

)
x2
]
, (76)

with 1 ≤ δ ≤ 2 +
√

2. Note that this eigenvalue density diverge both at the left edge x = −1 and at the right edge
x = +1.

At β = −2 one obtains δ = 1 and

φ(x) =
2x2

π
√

1− x2
. (77)

One gets the above density for all β ≤ −2, where the
Z2 symmetry is restored. The interesting behavior of the
eigenvalue density as β is varied is displayed in Fig. 14.

The values of (m, δ) [that define the eigenvalue domain,
see Eq. (15)] and the thermodynamic functions u (inter-
nal energy density) and s (entropy density) are shown
in Figs. 15, 16, respectively. Their explicit expressions
are given for positive temperatures in Sec. III, while for
negative temperatures are given in the following.

In the gravity branch, for βg ≤ β ≤ 0 (2 ≤ δ ≤ 3) we

get

m = δ, β =
4

δ3
− 2

δ2
,

u =
3

2
δ − δ2

4
,

s = −9

4
+

5

δ
− 3

δ2
+ ln

δ

2
,

βf =
11

4
− 9

δ
+

9

δ2
− ln

δ

2
. (78)

Beyond a second order phase transition at the critical
temperature βg we get that for −3/2 +

√
2 ≤ β ≤ βg

(3 ≤ δ ≤ 2 +
√

2) both u and s increase together with
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FIG. 12: Metastable branch. Free energy on the boundary
of the region of the domain where φ(x) ≥ 0, for different
temperatures (indicated). Dashed line: free energy βf on
the lower boundary of the eye-shaped domain; full line: free
energy on the upper boundary. The sought minima of the
free energy can be inferred from the graph and coincide with
the dots in Figs. 10 and 11.
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FIG. 13: Metastable branch. β vs δ. See Eq. (72).

the eigenvalue density halfwidth δ,

m = δ, β = − 1

δ2
+

1

δ3

√
−δ2 + 4δ − 2,

u = 2δ − 3

8
δ2 − δ

8

√
−δ2 + 4δ − 2,

s = −2 +
15

4δ
− 15

8δ2
+

1

8δ

√
−δ2 + 4δ − 2 + ln

δ

2
,

βf =
5

2
− 25

4δ
+

17

8δ2
−
(

3

8δ
− 2

δ2

)√
−δ2 + 4δ − 2

− ln
δ

2
, (79)

and then decrease for −2 ≤ β ≤ −3/2 +
√

2 (1 ≤ δ ≤
2 +
√

2),

m = δ, β = − 1

δ2
− 1

δ3

√
−δ2 + 4δ − 2,

u = 2δ − 3

8
δ2 +

δ

8

√
−δ2 + 4δ − 2,

s = −2 +
15

4δ
− 15

8δ2
− 1

8δ

√
−δ2 + 4δ − 2 + ln

δ

2
,

βf =
5

2
− 25

4δ
+

17

8δ2
+

(
3

8δ
− 2

δ2

)√
−δ2 + 4δ − 2

− ln
δ

2
. (80)

Finally, beyond another second order phase transition
for β ≤ −2 (0 ≤ δ ≤ 1), when the Z2 symmetry is
restored, we get

m = 1, β = − 2

δ2
,

u = 1 +
3

4
δ2 = 1− 3

2β
,

s = ln
δ

2
− 1

4
= −1

2
ln (−2β)− 1

4
,

βf = −5

4
− 2

δ2
− ln

δ

2
= −5

4
+ β +

1

2
ln (−2β) .(81)

Finally, we record the interesting behavior of the mini-
mum eigenvalue a = m− δ: see Fig. 17. For −2 < β < 2,
a coincides with the origin (left border of the solution
domain). This variable can be taken as an order pa-
rameter for both the second order phase transitions at
β = −2 and at β+ = 2. The Z2 symmetry is broken for
−2 < β < 2. Notice, however, that the gravity critical
point at βg = −2/27 remains undetected by a.

Let us briefly comment on the fact that the analytic
continuation of the solution at positive β described in
the previous subsection has not led us towards separable
states. The eigenvalues remain of O (1/N) (and so does
purity) even though the temperature can be (very) neg-
ative (as β crosses 0). In order to find separable states
we will have to look at the stable branch in the following
subsection.
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FIG. 14: Metastable branch. Eigenvalue density for β = −1/27, βg = −2/27, β . βg and β < β− = −2. From left to right,
notice how the distribution (initially Wishart, whose derivative at the rigth edge of the domain diverges) gets first a vanishing
derivative at the right edge, then develops a singularity there and eventually restores the Z2 symmetry that was broken at the
phase transition at β = 2 described in the previous section.
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FIG. 15: Average and width of the solution domain m and δ
[Eq. (15)] as a function of β. Solid line: stable branch. Dotted
line: metastable branch.

B. Stable branch of separable states

In this section we will search the stable solution of
the system at negative temperatures. As anticipated in
Sec. II, from the definition (4) of the partition function
one expects that, for any N , as β → −∞ the system
approaches the region of the phase space associated to
separable states: here the purity is O (1) and the right
scaling in Eqs. (4)-(5) is α = 2. In other words, by
adopting the scaling N2 for the exponent of the parti-
tion function, we will explore the region β = O (1/N)
of the scaling N3 introduced for positive temperatures.
Notice that the critical point β = −2/27 for the solution
at negative temperatures now reads β = −(2/27)N and
escapes to −∞ in the thermodynamic limit.

We will show that the solution (45), according to which

u
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| ||
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FIG. 16: Internal energy density u and entropy density s
versus β. Solid line: stable branch. Dotted line: metastable
branch.
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β
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0.1
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0

FIG. 17: Minimum eigenvalue a = m− δ versus β. Solid line:
stable branch. Dotted line: metastable branch.
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all the eigenvalues are O (1/N), becomes metastable in
the region of negative temperatures, and the distribu-
tion of the eigenvalues minimizing the free energy is such
that one eigenvalue is O (1): this solution in the limit
β → −∞ will correspond to the case of separable states.
By following an approach similar to that adopted for pos-
itive temperatures, we will first look for the set of eigen-
values {λ1, . . . , λN} satisfying the saddle point equations
(9)-(10) with α = 2, getting as in Sec. III a continuous
family of solutions. We will select among them the set
maximizing (β < 0) the free energy (8), with α = 2:

fN =

N∑

i=1

λ2i −
2

N2β

∑

1≤i<j≤N

ln |λj − λi|. (82)

As emphasized at the beginning of this section, since we
are approaching the limit β → −∞ the states occupying
the largest volume in phase space are separable; we then
define λN = µ as the maximum eigenvalue and conjecture
it to be of order of unity, whereas the other eigenvalues
are O (1/N):

λN = µ = O (1) ,
∑

1≤i≤N−1

λi = 1− µ. (83)

From this it follows that we need to introduce the natural
scaling only for the first N − 1 eigenvalues in order to
solve the saddle point equations in the continuous limit
and then estimate the thermodynamic quantities:

λi = (1− µ)
λ(ti)

N − 1
, (84)

0 < ti =
i

N − 1
≤ 1, ∀i = 1, . . . , N − 1.

In particular we will separately solve the saddle point
equations (9)-(10), corresponding to the minimization of
the exponent of the partition function with respect to
the first N − 1 eigenvalues and the Lagrange multiplier
ξ, given, in the limit N →∞, by

P

∫ ∞

0

ρ̄(λ′)dλ′

λ− λ′ − i
ξ

2
(1− µ) = 0, (85)

with

∫ ∞

0

λρ̄(λ)dλ = 1,

and we will then consider the condition deriving from the
saddle point equation associated to µ

2µβ + iξ = 0. (86)

The function ρ̄ introduced in (85) is the density of the
eigenvalues associated to λ1, . . . λN−1 in (84) and has
the same form (14) introduced for ρ(λ) in the regime
of positive temperatures. By the same change of vari-
ables introduced in Sec. III, Eqs. (15)-(16), the solution
of the integral equations (85) can be expressed in terms
of φ̄(x) = ρ̄(λ)δ:

φ̄(x) =
1

π
√

1− x2
(

1− 2x(m− 1)

δ

)
. (87)

and the Lagrange multiplier is ξ = −i4(m−1)/(δ2(1−µ)).
The region of the parameter space (m, δ) such that the
density of eigenvalues φ̄ is nonnegative reads

max

{
δ, 1− δ

2

}
≤ m ≤ 1 +

δ

2
, (88)

which is the same expression of the domain found for the
range of positive temperatures (25) when β = 0, namely
Γ±1 (δ, 0) = 1 ± δ/2 (see Fig. 18, which is the analog of
Fig. 1). This is consistent with the change in temperature
scaling from N3 in the case of positive temperatures to
N2 in the case of negative temperatures: we are “zoom-
ing” into the region near β → 0− of the range of tem-
peratures analyzed in [9] and Sec. III. Summarizing, as
could be expected from what we have shown for positive
temperatures, the solution of the saddle point equations
is a two parameter continuous family of solutions. We
now have to determine the density of eigenvalues that
maximizes the free energy of the system. From Eqs. (83)
and (82) we get

fN = µ2 − 2

N2β

∑

1≤i<j≤N

ln |λj − λi|+O
(

1

N

)
(89)

and by applying the scaling (84)

fN = µ2 − 1

β
ln (1− µ) + fred(δ,m, β)

+
1

β
lnN +O

(
lnN

N

)

= f +
1

β
lnN +O

(
lnN

N

)
, (90)

where

f = lim
N→∞

(
fN −

1

β
lnN

)
= µ2 − 1

β
ln (1− µ) + fred,

(91)
is the free energy density in the thermodynamic limit,
and

fred(δ,m, β) = − 1

β

∫ 1

−1
dxφ̄(x)

∫ 1

−1
dyφ̄(y) ln(δ|x− y|)

=
2(m− 1)2

βδ2
− 1

β
ln

(
δ

2

)
(92)

is the reduced free energy density of the sea of eigenval-
ues.

It is easy to see that βfred(m, δ), has no stationary
points, but only a global minimum βfred = 1/2 at
(δ,m) = (2, 2), see arrow in Fig. 18; this point yields
the Wishart distribution found at β = 0 for the case of
positive temperature (see also [9]):

φ̄(x) =
1

π

√
1− x
1 + x

, ρ̄(λ) =
1

2π

√
4− λ
λ

, (93)

where one should remember that the λ’s are also scaled
by 1− µ, see Eq. (84).
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FIG. 18: Contour plot of the reduced free energy βfred(δ,m)
of the sea for negative temperatures. The arrow points at the
minimum.
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FIG. 19: Reduced free energy βfred on the boundary of the
triangular domain in Fig. 18 for the case of negative tem-
peratures. Solid line: upper boundary; dashed line: lower
boundary.

We stress that this result is valid for all β < 0. In order
to check this solution one has to compute the free energy
on the boundary of this domain, see Fig. 19 (which is the
analog of Fig. 3). One gets that the free energy density
is given by

f(µ, β) = µ2 − 1

β
ln (1− µ) +

1

2β
. (94)

A new stationary solution, in which the largest isolated
eigenvalue µ becomes O (1), can be found by minimizing
the free energy density and yields

µ(β) =
1

2
+

1

2

√
1 +

2

β
, (95)

being defined only for β < −2; this expression can also be
obtained directly by the saddle point equation (86) cor-
responding to the isolated eigenvalue µ. This eigenvalue,
O (1), evaporates from the sea of eigenvalues O (1/N), as

0.

0.2

0.4

0.6

0.8

ρ(λ)

4(1− μ)

Nμ
• •

Nλ

FIG. 20: Evaporation of the eigenvalue µ = O (1) from the
sea of eigenvalues O (1/N).
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FIG. 21: Reduced free energy as a function of µ for different
values of β(< 0). Notice the birth of a stationary point for
β = −2 that becomes the global minimum for β ≤ β−.

pictorially represented in Fig. 20. The isolated eigenvalue

moves at a speed −dµ/dβ = 1/(2
√
β4 + 2β3), which di-

verges at β = −2: another symptom of criticality. How-
ever, this new solution, when it appears at β = −2, is not
the global minimum of βf : as we shall see it eventually
becomes stable at a lower value of β. We get for β < −2
(i.e. 0 < µ < 1)

u = µ2 =
1

2
+

1

2β
+

1

2

√
1 +

2

β
, (96)

s = ln(1− µ)− 1

2
= ln

(
1

2
− 1

2

√
1 +

2

β

)
− 1

2
,(97)

βf = βu− s =
1− 2µ

2(1− µ)
− ln (1− µ)

= 1 +
β

2
+
β

2

√
1 +

2

β
− ln

(
1

2
− 1

2

√
1 +

2

β

)
,(98)

We are now ready to unveil the presence of a first or-
der phase transition in the system. In Fig. 21 we plot
the free energy density as a function of µ for different
values of β. For β > −2 there is a global minimum of βf
at µ = 0; µ is still in the sea of the eigenvalues O (1/N)
and the stable solution is given by the Wishart distri-
bution (73) with the potentials (78) (remember that, in
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FIG. 22: Free energy and maximum eigenvalue at negative
temperatures. The two solutions are exchanged at β− '
2.45541, where there is a first order phase transition. Full
line: solution of mimimal free energy; dashed line: solution of
higher free energy.

the zoomed scale considered here, βg corresponds to the
very large inverse temperature Nβg). At β = −2 there
appears a stationary point for the free energy density
corresponding to µ = O (1) [see (95)]; notice however
that βf at this point remains larger than its value at the
global minimum, until β reaches β−. Finally, for β < β−
the global minimum of βf moves to the right, to the so-
lution containing µ = O (1). Summarizing, for β > β−
the solution of saddle point equations maximizing the
free energy of the system is such that all eigenvalues are
O (1/N), at β = −2 there appears a metastable solu-
tion for the system with one eigenvalue O (1), and for
β ≤ β− this becomes the stable solution, that maximizes
the free energy, whereas the distribution of the eigen-
values found in Sec. III becomes now metastable. The
maximum eigenvalue is then a discontinuous function of
the temperature at β = β− and in the limit β → −∞,
µ approaches 1: the state becomes separable. This criti-
cal temperature β− is the solution of the transcendental
equation f(β−, 0) = f(β−, µ−), that is

µ−
2(1− µ−)

= − ln(1− µ−), (99)

which yields

µ− ' 0.71533, β− = − 1

2µ−(1− µ−)
' −2.45541.

(100)
Therefore, the branch (97)-(98) is stable for β < β− while
it becomes metastable for β− < β < −2. On the other

hand, the solution µ = 0, corresponding to

u = µ2 = 0, (101)

s = β(u− f) = −1

2
, (102)

βf =
1

2
, (103)

has a lower free energy for β− < β < 0, and a higher one
for β < β−. See Fig. 22.

At β− there is a first order phase transition. At this
fixed temperature the internal energy of the system goes
from ur = 0 up to ul = µ2

− ' 0.5117, while the entropy
goes from sr = −1/2 down to sl = −1/2 + ln(1− µ−) '
−1.75643. One gets ∆s/∆u = β−. Therefore, the en-
tropy density as a function of the internal energy density
reads

s(u) =





β−u− 1
2 , 0 < u < µ2

−,

ln(1−√u)− 1
2 , µ2

− ≤ u < 1.

(104)

It is continuous together with its first derivative at u =
µ2
−, while its second derivative is discontinuous. Notice

that ∆u = ∆s/β− is the specific latent heat of the evapo-
ration of the largest eigenvalue from the sea of the eigen-
values, from O (1/N) up to µ−.

A few words of interpretation are necessary. As we
have seen, it has been necessary to follow the stable
branch of the solution in order to obtain separable states
at negative temperatures. The analytic continuation
of the stable solution for positive temperatures would
yield an unstable branch in which all eigenvalues remain
O (1/N). By contrast, the new stable solution consists
in a sea of N − 1 eigenvalues O (1/N) plus one isolated
eigenvalue O (1).

Let us discuss this result in terms of purity, like at the
end of Sec. III (we stress again that β is a Lagrange multi-
plier that fixes the value of the purity of the reduced den-
sity matrix of our N2-dimensional system). Assume that
we pick a given isopurity manifold in the original Hilbert
space, defined by a given finite value πAB of purity. If
we randomly select a vector belonging to this isopurity
manifold, its reduced density matrix (for the fixed bi-
partition) will have one finite eigenvalue µ ' √πAB and
many small eigenvalues O (1/N) (yielding a correction
O (1/N) to purity). In this sense, the quantum state is
largely separable. The probability of finding in the afore-
mentioned manifold a vector whose reduced density ma-
trix has, say, two (or more) finite eigenvalues µ1 and µ2

(such that µ2
1 + µ2

2 ' πAB , modulo corrections O (1/N))
is vanishingly small. By contrast, remember (from the
results of Sec. III) that if the isopurity manifold is char-
acterized by a very small value O (1/N) of purity, the
eigenvalues of a randomly chosen vector on the mani-
fold are all O (1/N) (being distributed according to the
semicircle or Wishart, depending on the precise value of
purity, as seen in Sec. III). This is the significance of the
statistical mechanical approach adopted in this article.
We will come back to this point in Sec. VI.
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FIG. 23: Finite N version of Fig. 22. Free energy and maximum eigenvalue in the saddle point approximation as function of
β at N = 30. The local minimum is in blue, the global one in red. The two minima swap stability at β = −1.935. Notice
the birth of the new local minimum at β = −1.8 (for N = ∞ this takes place at β = −2) and the exchange of stability at
β = −1.93 (for N =∞, β = −2.45).

V. FINITE SIZE SYSTEMS

The results of the previous section refer to N → ∞.
In order to understand how finite-N corrections affect
our conclusions we have numerically minimized the free
energy for various temperatures. The two phases of the
system discussed in the previous section correspond to
the two solutions obtained by minimizing the free energy
βfN (82) on the N dimensional simplex of the normal-
ized eigenvalues. Indeed, we have numerically proved
that βfN (β) presents two local minima at negative tem-

peratures: for 0 ≥ β > β
(N)
− the minimum giving the

lower value of βfN (β) corresponds to the distribution of
eigenvalues (45), found in the last section; the other min-
imum is reached when the highest eigenvalue is O (1).

The point β = β
(N)
− is a crossing point for these two

solutions, and for β ≤ β
(N)
− these two solutions are in-

verted, see Fig. 22 (and 21). Summarizing, there exists
a negative temperature at which the system undergoes

a first-order phase transition, from typical to separable
states.

The first thing to notice is that qualitatively the phase
transition remains of first order even for finite N . The
second is that the finite N corrections are quite relevant
for the location of the phase transition and the value of
the maximum eigenvalue as a function of β. For example,

for N = 30, the negative critical temperature β
(30)
− =

−1.935 instead of −2.455. This is evinced from Fig. 23,
which is the finite size version of Fig. 22. This can be
understood, as the corrections to f(µ) around µ = 0 are
quite large. In the limit µ = 1/N there is a hard wall for
the maximum eigenvalue µ, as the condition

∑
i λi = 1

cannot be satisfied if µ < 1/N . It is therefore likely
that all sorts of large corrections occur as µ tends to
1/N , probably yielding an effective size to the corrections
which is a lower power of 1/N (or even possibly 1/ lnN).
The limits µ→ 0 and N →∞ do not commute.

To further explore this effect we minimized βfN with
respect to λ1, . . . , λN−1, for fixed values of the largest
eigenvalue λN = µ and for different temperatures. The
results for N = 30 are shown in Fig. 24. One can
see that between β = −1.8 and β = −2.5 there is a
competition between two well defined local minima, cor-
responding to the two solutions discussed above. At

β = β
(30)
− = −1.935 their free energies are equal. For

higher β the global minimum corresponds to the solu-

tion (45), whereas on the other side of β
(30)
− the solution

with µ = O (1) minimizes βfN . Similar corrections are

observed for the value of β = β
(N)
µ at which the second

minimum is born. See Fig. 25.

We have seen that for β > β− the stable solution has no
detached eigenvalue. By taking into account the scaling
β → β/N we get that the solution is given by the very
first part of the gravity branch (78). In particular, the
maximum eigenvalue is given by b/N = (m + δ)/N =
2δ/N . On the other hand for β < β− the maximum
eigenvalue is given by (95). Therefore, we get

µ =





1
2 + 1

2

√
1 + 2

β , β ≤ β−,

2
N δ(β/N), β− < β < 0,

(105)
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FIG. 24: Finite N version of Fig. 21. βfN−lnN as a function of the maximum eigenvalue µ, obtained by numerical minimization
over the remaining N − 1 eigenvalues for various β. Observe the formation of a new minimum and the exchange of stability,
although the critical values of β at which these phenomena occur differ from the theoretical ones, due to large finite N
corrections. However, it is clear that at small µ, 1/N corrections tend to increase the value of βfN , making the critical value
β− move towards 0, as observed in the numerics.

βμ

N
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�1.75
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�1.85

FIG. 25: Value of β at which the second minimum is born
as a function of N . The solid curve is a best fit returning

β
(N)
µ = −1.997 − 6.04/N . The asymptotic value should be 2

and is in good agreement with the constant of the fit.

with δ(β) given by (46)-(48). The numerical results for
N = 40 are compared with the expressions in Eq. (105)
in Fig. 26. The agreement is excellent.

The corresponding free energy follows from (98) and
(78) with the appropriate scaling

βf =





1 + β
2 + β

2

√
1 + 2

β − ln
(

1
2 − 1

2

√
1 + 2

β

)
, β ≤ β−,

11
4 − 9

δ(β/N) + 9
δ(β/N)2 − ln δ(β/N)

2 , β− < β < 0.

(106)

Notice that in order to have a finite size scaling of the

critical temperature β
(N)
− one should take into account

O (1/N) corrections to the expression of βf and then

evaluate the intersection between the two branches, but
this analysis goes beyond our scope.
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FIG. 27: Entropy density s versus internal energy density u. Notice that the unit on the abscissae is 1/N in the left panel.
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FIG. 26: Maximal eigenvalue in the saddle point approxima-
tion as function of β. The points are the result of a numerical
evaluation for N = 40, while the full line is the expression in
Eq. (105).

VI. OVERVIEW

Let us summarize the main results obtained in this ar-
ticle in more intuitive terms, by focusing on those quan-
tities that are more directly related to physical intuition.

In the statistical mechanical approach adopted in this ar-
ticle, the temperature plays the usual role of a Lagrange
multiplier, whose only task is to fix the value of energy
(purity in our case). A given value of β determines a set
of vectors in the projective Hilbert space whose reduced
density matrices have a given purity (isopurity manifold
of quantum states). The distribution of the eigenvalues
of (the reduced density matrices associated to) these vec-
tors is that investigated in this article and yields infor-
mation on the separability (entanglement) of these quan-
tum states. The distribution of eigenvalues is the most
probable one [12] (in the same way as the Maxwell dis-
tribution of molecular velocities is the most probable one
at a given temperature). Let us therefore abandon tem-
perature in the following and fully adopt purity as our
physical quantity.

Entropy counts the number of states with a given value
of purity and is in this sense proportional to the loga-
rithm of the volume in the projective Hilbert space. The
explicit expressions of the entropy density s, which is the
logarithm of the volume of the isopurity manifold, as a
function of the purity πAB of the state vectors in that
volume, can be read directly from Eqs. (58) and (104) by
taking into account the correct scaling:

s(πAB) =





1
2 ln(NπAB − 1)− 1

4 ,
1
N < πAB ≤ 5

4N ,

ln
(

3
2 −

√
9
4 −NπAB

)
− 9

4 + 5

2
(

3
2−
√

9
4−NπAB

) − 3

4
(

3
2−
√

9
4−NπAB

)2 ,
5

4N < πAB ≤ 2
N ,

β−πAB − 1
2 ,

2
N < πAB ≤ µ2

−,

ln
(
1−√πAB

)
− 1

2 , µ2
− < πAB < 1,

(107)

with µ2
− ' 0.512 and β− ' −2.455 given by (99)-(100). The plot of s vs πAB in the two regions πAB = O (1/N)
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and πAB = O (1) is shown in Fig. 27. By exponentiating
the expression (107) we get the volume V = exp (N2s)

(i.e. the probability) of the isopurity manifolds

V (πAB) ∝





e−
N2

4 (NπAB − 1)N
2/2, 1

N < πAB ≤ 5
4N ,

(
3
2 −

√
9
4 −NπAB

)N2

exp

[
N2

(
− 9

4 + 5

2
(

3
2−
√

9
4−NπAB

) − 3

4
(

3
2−
√

9
4−NπAB

)2

)]
, 5

4N < πAB ≤ 2
N ,

exp
[
N2
(
β−πAB − 1

2

)]
, 2

N < πAB ≤ µ2
−,

e−
N2

2

(
1−√πAB

)N2

, µ2
− < πAB < 1.

(108)
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FIG. 28: Volume V = exp(N2s) of the isopurity manifolds
versus their purity πAB for N = 50.
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FIG. 29: Minimum eigenvalues as a function of πAB . At
πAB = 5/4N the gap vanishes.

This is plotted in Fig. 28 for N = 50. The presence
of discontinuities in some derivatives of entropy detects
the two phase transitions. At πAB = 5/4N there is a
second order phase transition signaled by a discontinuity
in the third derivative. Indeed, in general, if s, u and T
are entropy, energy and temperature, respectively, and
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FIG. 30: Maximum eigenvalue as a function of πAB .

C = du/dT is the specific heat, one gets ds/du = β =
1/T and d2s/du2 = −1/(T 2C) = −(1/T 3)(ds/dT )−1.
Discontinuities of the nth derivative of ds/dT translate
therefore in discontinuities of the (n + 1)-th derivative
of ds/du. The first order phase transition, which takes
place between πAB = 2/N and πAB = µ2

− ' 0.512 is
signaled by discontinuities in the second derivative of the
entropy at those points. Observe that entropy is un-
bounded from below: at both endpoints of the range of
purity, πAB = 1/N (maximally entangled states) and
πAB = 1 (separable states), when the isopurity mani-
fold shrinks to a vanishing volume in the original Hilbert
space, the entropy, being the logarithm of this volume,
diverges, and the number of vector states goes to zero
(compared to the number of typical vector states). See
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Fig. 28.
The presence of the phase transitions can be easily read

out from the behavior of the distribution of the Schmidt
coefficients, i.e. the eigenvalues of the reduced density
matrix ρA of one subsystem. From Eq. (56) we get the
expression of the minimum eigenvalue λmin = a = m− δ
as a function of πAB

λmin =





1
N

(
1− 2

√
NπAB − 1

)
, 1

N < πAB ≤ 5
4N ,

0, 5
4N < πAB ≤ 1.

(109)

which is shown in Fig. 29. The second order phase transi-
tion at πAB = 5/4N , associated to a Z2 symmetry break-
ing, is detected by a vanishing gap. On the other hand,
the maximum eigenvalue λmax coincides with the upper
edge of the sea of eigenvalues b = m+δ, as given by (56),
until it evaporates according to Eq. (96). Thus,

λmax =





1
N

(
1 + 2

√
NπAB − 1

)
, 1

N < πAB ≤ 5
4N ,

2
N

(
3− 2

√
9
4 −NπAB

)
, 5

4N < πAB ≤ 2
N

√
πAB ,

2
N < πAB < 1,

(110)

as shown in Fig. 30.

In the different phases the distribution of the eigen-
values of ρA have very different profiles. See Fig. 31.
While for 1 ≤ πAB ≤ 5

4N the eigenvalues (all O (1/N))
follow Wigner’s semicircle law, they become distributed
according to Wishart for larger purities, 5

4N ≤ πAB ≤ 2
N ,

across the second order phase transition. This is a first
signature of separability: some eigenvalues vanish and
the Schmidt rank decreases. For even larger values of
purity, 2

N ≤ πAB ≤ 1, across the first order phase tran-
sition, one eigenvalue evaporates, leaving the sea of the
other eigenvalues O (1/N) and becoming O (1). This is
the signature of factorization, fully attained when the
eigenvalue becomes 1 at πAB = 1.

We tried to give an overview of the phenomenology of
these phase transitions in Fig. 32, where we also showed
the presence of the metastable branches discussed in
Sec. IV. The global picture is both rich and involved and
it would not be surprising if additional features would be
unveiled by future investigation.

VII. CONCLUSIONS

We have obtained a complete characterization of the
statistical features of the bipartite entanglement of a
large quantum system in a pure state. The global picture
is interesting as several locally stable solutions exchange
stabilities. On the stable branch (solutions of minimal
free energy) there is a second order phase transition, as-
sociated to a Z2 symmetry breaking, and related to the
vanishing of some Schmidt coefficients (eigenvalues of the
reduced density matrix of one subsystem), followed by a
first order phase transition, associated to the evaporation
of the largest eigenvalue from the sea of the others.

In the different phases the distribution of the Schmidt
coefficients have very different profiles. While for large
β (small purity) the eigenvalues (all O (1/N)) follow
Wigner’s semicircle law, they become distributed accord-
ing to Wishart for smaller β and larger purity, across the
first transition. For even smaller (and eventually neg-
ative) values of β, when purity becomes finite, across
the second phase transition, one eigenvalue evaporates,
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FIG. 32: Overview of the “evolution” of the eigenvalue densities as a function of purity (1/N ≤ πAB ≤ 1). The straight
segment represents the stable branch: the distribution starts as a delta function, evolves into a semicircle, undergoes a second-
order phase transition at πAB = 5/4N (Z2 symmetry breaking), becomes Wishart and undergoes a first-order phase transition
between 2/N ≤ πAB ≤ 0.5117, during which one eigenvalue evaporates from the sea of the others O (1/N) and becomes O (1).
A metastable branch is born at πAB = 2/N : it starts as Wishart, undergoes a second-order phase transition at πAB = 9/4N
(2-D gravity), develops a singularity at its right edge through a second order phase transition at πAB = 9/4N , then its support
starts decreasing, undergoes a second-order phase transition at πAB = 7/4N (Z2 symmetry restoration) and eventually becomes
sharply peaked (with two singularities). The diamonds indicate the three second order phase transitions.

leaving the sea of the other eigenvalues O (1/N) and be-
coming O (1). This is the signature of separability, this
eigenvalue being associated with the emergence of factor-
ization in the wave function (given the bipartition). This
intepretation is suggestive and hints at a profound mod-
ification of the distribution of the eigenvalues as β, and
therefore purity, are changed. Remember that β, viewed
as a Lagrange multiplier in this statistical mechanical ap-
proach, localizes the measure on set of states with a given
entanglement (isopurity manifolds [19]).

It would be of great interest to understand whether the
phase transitions survive even in the multipartite entan-
glement scenario, if one views the distribution of purity
(over all balanced bipartitions) as a characterization of
the global entanglement of the many-body wave function
of the quantum system [8]. This description of multipar-
tite entanglement displays the symptoms of frustration
[20], catapulting the problem into one of the most fasci-

nating arenas of modern statistical mechanics [21].
While we were completing this work a paper appeared

in which an aspect of this problem is discussed, although
with a different emphasis [22]. In order to connect our
results to those in [22], notice that the probability distri-
bution of the purity P (u) is proportional to the volume
of the isopurity manifold and therefore

lnP (u) ' N2s(u), (111)

where s is the entropy and N〈πAB〉 = u is the internal
energy. See Eq. (108).
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