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The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional deter-
minantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end,
we express these functions as determinants of N�N matrices and then extrapolate to N→�. This formulation
allows for a quick and accurate numerical evaluation of these quantities for point processes in Euclidean spaces
of dimension d. We also implement an algorithm due to Hough et al. for generating configurations of deter-
minantal point processes in arbitrary Euclidean spaces, and we utilize this algorithm in conjunction with the
aforementioned numerical results to characterize the statistical properties of what we call the Fermi-sphere
point process for d=1–4. This homogeneous, isotropic determinantal point process, discussed also in a com-
panion paper �S. Torquato, A. Scardicchio, and C. E. Zachary, J. Stat. Mech.: Theory Exp. �2008� P11019.�, is
the high-dimensional generalization of the distribution of eigenvalues on the unit circle of a random matrix
from the circular unitary ensemble. In addition to the nearest-neighbor probability distribution, we are able to
calculate Voronoi cells and nearest-neighbor extrema statistics for the Fermi-sphere point process, and we
discuss these properties as the dimension d is varied. The results in this paper accompany and complement
analytical properties of higher-dimensional determinantal point processes developed in a prior paper.
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I. INTRODUCTION

Stochastic point processes �PPs� arise in several different
areas of physics and mathematics. For example, the classical
statistical mechanics of an ensemble of interacting point par-
ticles is essentially the study of a random point process with
the Gibbs measure d��X�= PN�X�dX=exp�−�V�X��dX, pro-
viding the joint probability measure for an N-tuple of vectors
X= �x1 , . . . ,xN� to be chosen. Moreover, some many-body
problems in quantum mechanics, as we will see, can be re-
garded as stochastic point processes, where quantum fluctua-
tions are the source of randomness. With regard to math-
ematical applications, it has been well documented �1� that
the distribution of zeros of the Riemann � function on the
critical line is well represented by the distribution of eigen-
values of a random N�N Hermitian matrix from the Gauss-
ian unitary ensemble �GUE� or circular unitary ensemble
�CUE� in the limit N→�. Nevertheless, it remains an open
problem to devise efficient Monte Carlo routines aimed at
sampling these processes in a computationally efficient way.

In studies of the statistical mechanics of pointlike par-
ticles one is usually interested in a handful of quantities such

as n-particle correlation functions, the distributions of the
spacings of particles, or the distributions of the sizes of cavi-
ties. Although these statistics involve only a small number of
particles, it is not simple to extract them from knowledge of
the joint probability density PN. In general numerical tech-
niques are required because analytical results are rare. It is
then of paramount importance to study point processes for
which analytic results exist for at least some fundamental
quantities. The quintessential example of such a process is
the so-called Poisson PP, which is generated by placing
points throughout the domain with a uniform probability dis-
tribution. Such a process is completely uncorrelated and ho-
mogeneous, meaning each of the n-particle distribution func-
tions is equal to �n, where �=N /V is the number density for
the process. Configurations of points generated from this
process are equivalent to classical systems of noninteracting
particles or fully penetrable spheres �2�, and almost all sta-
tistical descriptors may be evaluated analytically.

One nontrivial example of a family of processes that has
been extensively studied is the class of determinantal PPs,
introduced in 1975 by Macchi �3� with reference to fermi-
onic statistics. Since their introduction, determinantal point
processes have found applications in diverse contexts, in-
cluding random matrix theory �RMT�, number theory, and
physics �for a recent review, see �4��. However, most
progress has been possible in the case of point processes on
the line and in the plane, where direct connections can be
made with RMT �1� and completely integrable systems �5�.
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Similar connections have not yet been found, to the best
of our knowledge, for higher-dimensional determinantal
point processes, and numerical and analytical results in di-
mension d�3 are missing altogether. In this paper and its
companion �6�, we provide a generalization of these point
processes to higher dimensions, which we call Fermi-sphere
point processes. While in �6� we have studied, mainly by
way of exact analyses, statistical descriptors such as
n-particle probability densities and nearest-neighbor func-
tions for these point processes, here we base most of our
analysis on an efficient algorithm �7� for generating configu-
rations from arbitrary determinantal point processes and are
therefore able to study other particle and void statistics re-
lated to nearest-neighbor distributions and Voronoi cells.

In particular, after presenting in detail our implementation
of an algorithm �7� to generate configurations of homog-
enous, isotropic determinantal point processes, we study sev-
eral statistical quantities thereof, including Voronoi cell sta-
tistics and distributions of minimum and maximum nearest-
neighbor distances �for which no analytical results exist�.
Additionally, the large-r behavior of the nearest-neighbor
functions is computationally explored. We provide substan-
tial evidence that the conditional probabilities GP and GV,
defined below, are asymptotically linear, and we give esti-
mates for their slopes as a function of dimension d between
one and four.

The plan of the paper is as follows. Section II provides a
brief review of determinantal point processes and defines the
statistical quantities used to characterize these systems. Of
particular importance is the formulation of the probability
distribution functions governing nearest-neighbor statistics
as determinants of N�N matrices; the results are easily
evaluated numerically. The terminology we develop is then
applied to the statistical properties of known one- and two-
dimensional determinantal point processes in Sec. III. Sec-
tion IV discusses the implementation of an algorithm for
generating determinantal point processes in any dimension d,
and we combine the results from this algorithm and the nu-
merics of Sec. II to characterize the so-called Fermi-sphere
point process for d=1, 2, 3, and 4. In Sec. V we provide an
example of a determinantal point-process on a curved space
�a two-sphere�, and our conclusions are collected in Sec. VI.

II. FORMALISM OF DETERMINANTAL POINT
PROCESSES

A. Definitions: n-particle correlation functions

Consider N point particles in a subset of d-dimensional
Euclidean space E�Rd. It is convenient to introduce the
Hilbert space structure given by square integrable functions
on E; we will adopt Dirac’s bra-ket notation for these func-
tions. Unless otherwise specified, all integrals are intended to
extend over E. A determinantal point process can be defined
as a stochastic point process such that the joint probability
distribution PN of N points is given as a determinant of a
positive, bounded operator H of rank N:

PN�x1, . . . ,xN� =
1

N!
det�H�xi,x j��1	i,j	N, �1�

where H�x ,y� is the kernel of H. In this paper, we focus on
the simple case in which the N nonzero eigenvalues of H are

all 1; the more general case can be treated with minor
changes �7�. We can write down the spectral decomposition
of H as

H = �
n=1

N

�
n
0��
n

0� , �2�

where 	�
n
0�
n=1

N are the eigenvectors of the operator H. The
reason for the superscript on the basis vectors will be clari-
fied momentarily. The correct normalization of the point pro-
cess is obtained easily since �1�

� det�H�xi,x j��1	i,j	Ndx1 ¯ dxN = N! det�H� , �3�

where the last determinant is to be interpreted as the product
of the nonzero eigenvalues of the operator H. Since these
eigenvalues are all unity we obtain det�H�=1, which yields

� PN�x1, . . . ,xN�dx1 ¯ dxN = 1. �4�

Notice that in terms of the basis 	�
n
0�
n=1

N we can also
write

PN�x1, . . . ,xN� =
1

N!
�det�
i

0�x j��1	i,j	N�2. �5�

An easy proof is obtained by considering the square matrix
�ij =
i

0�x j�= �x j �
i
0�. Then,

�det�
i
0�x j��1	i,j	N�2 = det��†�det��� = det��†��

= det��xi��
n=1

N

�
n
0��
n

0���x j��
= det�H�xi,x j�� , �6�

which is the same as �1�.
Determinantal point processes are peculiar in that one can

actually write all the n-particle distribution functions ex-
plicitly. The n-particle probability density, denoted by
�n�x1 , . . . ,xn� is the generic probability density of finding n
particles in volume elements around the given positions
�x1 , . . . ,xn�, irrespective of the remaining N−n particles. For
a general determinantal point process this function takes the
form

�n�x1, . . . ,xn� = det�H�xi,x j��1	i,j	n. �7�

In particular, the single-particle probability density is

�1�x1� = H�x1,x1� . �8�

This function is proportional to the probability density of
finding a particle at x1, also known as the intensity of the
point process. One can see that the normalization is

� �1�x�dx = tr�H� = N . �9�

For translationally invariant processes �1�x�=�, independent
of x. We remark in passing that for a finite system transla-
tional invariance is defined in the sense of averaging the
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location of the origin over Rd with periodic boundary condi-
tions enforced.

It is also possible to write the two-particle probability
density explicitly:

�2�x1,x2� = H�x1,x1�H�x2,x2� − �H�x1,x2��2, �10�

which has the following normalization:

� �2�x1,x2�dx1dx2 = N�N − 1� . �11�

In general the normalization for �n is given by N! / �N−n�!,
or the number of ways of choosing an ordered subset of n
points from a population of size N. For a translationally in-
variant and completely uncorrelated point process �10� sim-
plifies according to �2=�2.

We also introduce the n-particle correlation functions gn,
which are defined by

gn�x1, . . . ,xn� =
�n�x1, . . . ,xn�

�n . �12�

Since �n=�n for a completely uncorrelated point process, it
follows that deviations of gn from unity provide a measure of
the correlations between points in a point process. Of par-
ticular interest is the pair correlation function, which for a
translationally invariant point process of intensity � can be
written as

g2�x1,x2� =
�2�x1,x2�

�2 = 1 − �H�x1,x2�
�

�2

. �13�

Closely related to the pair correlation function is the total
correlation function, denoted by h; it is derived from g2 via
the equation

h�x,y� = g2�x,y� − 1 = − �−2�H�x,y��2, �14�

where the second equality applies for all determinantal point
processes by �13�. Since g2�r�→1 as r→� �r= �x−y�� for
translationally invariant systems without long-range order, it
follows that h�r�→0 in this limit, meaning that h is generally
an L2 function, and its Fourier transform is well defined.

Determinantal point processes are self-similar; integration
of the n-particle probability distribution with respect to a
point gives back the same functional form.1 This property is
desirable since it considerably simplifies the computation of
many quantities. However, we note that even complete
knowledge of all the n-particle probability distributions is
not sufficient in practice to generate point processes from the
given probability PN. This notoriously difficult issue is
known as the reconstruction problem in statistical mechanics
�8–11�. When in Sec. IV we discuss an explicit constructive
algorithm to generate realizations of a given determinantal
process, the reader should keep in mind that the ability to

write down all the n-particle correlation functions gn is not
the reason why there exists such a constructive algorithm.

B. Exact results for some statistical quantities

We have seen that the determinantal form of the probabil-
ity density function allows us to write down all n-particle
correlation functions gn in a quick and simple manner. How-
ever, we can also express more interesting functions, such as
the probability of having an empty region D or the expected
number of points in a given region, as properly constructed
determinants of the operator H. This property has been used
in random matrix theory to find the exact gap distribution of
eigenvalues on the line in terms of solutions of a nonlinear
differential equation �12�. The relevant formula is a special
case of the result �4� that the generating function of the dis-
tribution of the number points nD in the region D is

�znD� = �
n�0

P�nD = n�zn = det�I + �z − 1��DH�D� , �15�

where �D is the characteristic function of D, I is the identity
operator, and z�R. We will also denote Pn� P�nD=n�.
Therefore, the probability that the region D is empty is ob-
tained by taking the limit z→0 in the previous formula. The
result is

P0 = det�I − �DH�D� . �16�

Equation �16� may be written more explicitly. Consider the
eigenvalues i of �DH�D. By the definition of the determi-
nant, Eq. �16� takes the form

P0 = �
i=1

N

�1 − i� , �17�

where the product is over the nonzero eigenvalues of �DH�D
only �of which there are N, the number of particles�. First

notice that for the nonzero i we have i= ̃i, where 	̃i
i=1
N

are the N eigenvalues of H�DH. In fact one can show that
the traces of all the powers of these two operators are the
same using �D

2 =�D ,H2=H, and the cyclic property of the
trace operation. This condition is sufficient for N finite, and
the limit N→� can be taken afterward. The operator H�DH
can now be written in a basis 	
n
n=1

N as the matrix

Mij�D� = �
D


i�x�
 j�x�dx , �18�

and the determinant in �16� as

P0 = det��ij − Mij� . �19�

We will be using this formula often in the following analysis.
The probability P0 has a unique role in the study of various
point processes �2�, in particular when D=B�0;r�, a ball of
radius r �for translationally invariant processes the position
of the center of the ball is immaterial�. In this context, P0 is
called the void exclusion probability EV�r� �2,13–15�, and we
will adopt this name and notation in this paper �in �6� we
have studied this quantity in an appropriate scaling limit,
when d→��.

1One could think in terms of effective interactions and renormal-
ization group. The determinantal form of the probabilities �n then is
a fixed point of the renormalization operation of integrating out one
or more particles.
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However, there are statistical quantities of great impor-
tance which cannot be found with the above formalism. For
example, one can examine the distribution of the maximum
or minimum nearest-neighbor distances in a determinantal
point process, or the “extremum statistics,” and these quan-
tities cannot be found easily by the above means. One could
also explore the distribution of the Voronoi cell statistics or
the percolation threshold for the PP. To determine these
quantities we will have to rely on an explicit realization of a
determinantal point process. The existence and the analysis
of an algorithm to perform this task is a central topic of this
paper.

We introduce now some quantities which characterize a
PP �2,13–15�. We start with the above expression EV�r� for
the probability of finding a spherical cavity of radius r in the
point process. Analogously, one can define the probability of
finding a spherical cavity of radius r centered on a point of
the process, which we denote as EP�r�. EP can be found in
connection with EV using the following construction. Con-
sider the probability of finding no points in the spherical
shell of inner radius � and outer radius r, which we call
EV�r ;��. This function can be obtained by either of the pre-
vious formulas �16� or �19�. It is clear that EV�r�=EV�r ;0�. It
is also true that for sufficiently small � the probability of
having two or more points in the sphere of radius � is neg-
ligibly small compared to the probability of having one par-
ticle. Hence, the probability ��r ;�� of finding no particles in
the spherical shell B�0;r� \B�0;�� conditioned on the pres-
ence of one point in a sphere of radius � and volume v��� is

��r;�� =
EV�r;�� − EV�r;0�

�v���
, �20�

and by taking the limit �→0 of this expression we find that

EP�r� = lim
�→0

��r;�� . �21�

That EP�0�=1 can be seen from the following argument. Set
r=�+0+. Then EV��+0+;��=1 because the region is infini-
tesimal and hence empty with probability 1, and EV�� ;0�
�1−�v��� since for sufficiently small � we have at most one
point in the region. One line of algebra provides the result.

Using this expression, we can derive an interesting and
practical result for EP. First, notice that EV�r ;�� contains the
matrix Mij�r ;�� defined by �18�, which when �→0 becomes

Mij�r;�� � Mij�r� − v���
i�0�
 j�0� . �22�

Moreover, if we assume that I−M is invertible, we can see
that to first order in �M

det�I − M + �M� = exp�ln det�I − M + �M��

= exp	tr�ln�I − M + �M��


� exp	tr�ln�I − M�� + tr��M�I − M�−1�


� det�I − M�	1 + tr��M�I − M�−1�
 . �23�

From �23� we find the final result:

EP�r� = EV�r�tr�A�I − M�−1� , �24�

where Aij =
i�0�
 j�0� /�. Notice that for r→0 we have M
→0, and EP�0�=tr�A�=�i�
i�0��2 /�=H�0,0� /�=1 as ex-
pected.

These two primary functions can be used to define four
other quantities of interest. Two are density functions,

HV�r� = −
�EV�r�

�r
, �25�

HP�r� = −
�EP�r�

�r
, �26�

which can be interpreted as the probability densities of find-
ing the closest particle at distance r from a random point of
the space or another random point of the process, respec-
tively. The other two functions are conditional probabilities,

GV�r� =
HV�r�

�s�r�EV�r�
, �27�

GP�r� =
HP�r�

�s�r�EP�r�
, �28�

which give the density of points around a spherical cavity
centered, respectively, on a random point of the space or on
a random point of the process. We note that s�r� is the sur-
face area of the d-dimensional sphere of radius r. We will
study the behavior of these functions for some determinantal
PPs in Secs. III and IV of this paper.

From the definitions in �25�–�28� in conjunction with �19�
and �24�, it is possible to express HV, HP, GV, and GP as
numerically solvable operations on N�N matrices. The re-
sults are

HV�r� = EV�r�tr�I − M�−1�M

�r
� , �29�

HP�r� = HV�r�tr�A�I − M�−1�

− EV�r�trA�I − M�−1�M

�r
�I − M�−1� , �30�

GV�r� =  1

�s�r�
�tr�I − M�−1�M

�r
� , �31�

GP�r� = GV�r� −  1

�s�r�
� �

�r
	ln tr�A�I − M�−1�
 . �32�

The form GP�r�=GV�r�− G̃�r� �which serves as a definition

of G̃� in �32� is of particular interest. If the correction term

G̃�r��0 for all r, positivity and monotonicity of GP �which
must be proven independently� are then sufficient to ensure
that, for appropriately large r, GP�r��GV�r� in scaling. Al-
though we have been unable to develop analytic results for

the large-r behavior of G̃, numerical results, which are pro-

vided later �see Fig. 10�, suggest that G̃�0 and G̃→0 mono-

tonically as r→� for d�2, and G̃→constant for d=1. As
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both behaviors are subdominant with respect to the linear
growth of GV, we expect that GP and GV possess the same
linear slope for sufficiently large r.

An important point to address is the convergence of the
results from �19� in the limit N→�. We expect that the cal-
culations for finite but large N provide an increasingly sharp
approximation to the results from the N→� limit. Figure 1
presents the calculation of EP for a few values of N with d
=1; it is clear that the numerical calculations quickly ap-
proach a fixed function for N�40, and it is this function
which we accept as the correct large-N limit. The results for
higher-dimensional processes are similar, and we will as-
sume that this convergence property holds throughout the
remainder of the paper.

C. Hyperuniformity of point processes

Of particular significance in understanding the properties
of determinantal point processes is the notion of hyperuni-
formity, also known as superhomogeneity. A hyperuniform
point pattern is a system of points such that the variance
�2�R�= �NR

2�− �NR�2 of the number of points NR in a spherical
window of radius R obey

�2�R� � Rd−1 �33�

for large R �8�. This condition in turn implies that the struc-

ture factor S�k�=1+�ĥ�k� has the following small-k behav-
ior:

lim
�k�→0

S�k� = 0, �34�

meaning that hyperuniform point patterns do not possess
infinite-wavelength number fluctuations �8�. Examples of hy-
peruniform systems include all periodic point processes �8�,
certain aperiodic point processes �8,16�, one-component
plasmas �8,16�, point processes associated with a wide class
of tilings of space �17,18�, and certain disordered sphere
packings �6,9,19,20�. It has also been shown �6� that the
Fermi-sphere determinantal point process, described below,
is hyperuniform.

The condition in �34� suggests that for general translation-
ally invariant nonperiodic systems

S�k� � k� �k → 0� �35�

for some ��0. However, hyperuniform determinantal point
processes may exhibit only certain scaling exponents �. One
can see for a determinantal point process that

S�k� = 1 − F	�H�2
�k� , �36�

where F denotes the Fourier transform and we have without
loss of generality set �=1. Equation �36� therefore suggests
that

F	�H�2
�k� � �1 − k�� �k → 0� . �37�

Taking the inverse Fourier transform of �37� gives the fol-
lowing large-r scaling of �H�r��2:

�H�r��2 � −  1

�d/2�� 2��� + d

2
�

r�+d�−
�

2
�� �r → �� . �38�

The negative coefficient and the negative argument of the
Gamma function in �38� are crucially important. Since
�H�r��2�0 for all r, it must be true that ��−� /2��0, and this
condition restricts the possible values of the scaling exponent
�. Namely, the behavior of the Gamma function requires that
� fall into one of the intervals �0, 2�, �4, 6�, �8, 10�, and so
forth. We remark that the integer-valued end points of these
intervals are indeed valid choices for � and imply that
�H�r���0 for sufficiently large r. These values of � are
therefore types of “limiting values” that overcome the other-
wise dominant r−��+d� asymptotic scaling of �H�r��2. We pro-
vide an example of a determinantal point process with the
critical scaling �=2 in Sec. III C; the resulting large-r be-
havior for H�r� is seen to be Gaussian.

III. PROPERTIES OF KNOWN DETERMINANTAL POINT
PROCESSES

A. One-dimensional processes

By far the most widely studied examples of determinantal
point processes are in one dimension. In fact, the connection
to RMT led others to explore the statistical properties of
these systems even prior to the formal introduction of deter-
minantal point processes. To make this connection explicit,
consider an N�N random Gaussian Hermitian matrix, i.e., a
matrix whose elements are independent random numbers dis-
tributed according to a normal distribution. This class of ma-
trices defines the Gaussian unitary ensemble. It is possible to
see �1� that the distribution induced on the eigenvalues of
these random matrices is

�N�1, . . . ,N� =
1

ZN
�
i�j

�i −  j�2 exp− �
i

i
2� , �39�

where ZN is an appropriate normalization constant. By a
standard identity for the Vandermonde determinant,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

p(r
)

N = 5
N = 50
N = 100

FIG. 1. �Color online� Convergence of the d=1 numerical re-
sults using �19� for EP with respect to increasing matrix size N.
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�
i�j

�i −  j�2 = �det�i
n�1	i,n	N�2, �40�

and by combining the rows of the matrix i
n appropriately we

find

�
i�j

�i −  j�2 = �det�Hj�i��1	i,j	N�2, �41�

where the functions Hn�x� are the Hermite orthogonal poly-
nomials normalized such that the coefficient of the highest
power xn of Hn is unity. Taking into account the weight e−x2

,
we can write in agreement with �5�

pN =
1

N!
�det�
 j�i��1	i�j	N�2, �42�

where the orthonormal basis set is


n�x� =
1

�zn

Hn�x�exp�− x2/2�; �43�

zn is a normalization factor. Therefore, this distribution is
equivalent to the one induced by a system of noninteracting,
spinless fermions in a harmonic potential. We note without
proof that the other canonical random matrix ensembles
�Gaussian Orthogonal Ensemble and Gaussian Symplectic
Ensemble� can also be expressed as determinantal point pro-
cesses by introducing an internal vector index for the basis
functions �1,4�.

Another prominent example of a d=1 determinantal point
process is given by the unitary matrices distributed according
to the invariant Haar measure; the resulting class is termed
the circular unitary ensemble �21�. The eigenvalues of these
matrices can be written in the form  j =ei�j with � j
� �0,2�� ∀ j�N; they are distributed according to �5� with
the basis


n��� =
1

�2�
exp�in�� . �44�

Notice that the eigenvalues represent the positions of free
fermions on a circle, where the Fermi sphere has been filled
continuously from momentum 0 to N−1.

Another possible one-dimensional process is obtained by
changing the exponent x2 in �39� to an arbitrary polynomial.
This generalization has interesting connections to the combi-
natorics of Feynman diagrams and to random polygoni-
zations of surfaces �22�. For other examples of one-
dimensional determinantal point processes, we refer the
reader to �4�.

B. Exact results in one dimension

For historical reasons, the most studied descriptor of de-
terminantal point processes is the gap distribution function,
which represents the probability density of finding a chord of
length s separating two points in the system for d=1; we
denote this function by p�s�. For canonical ensembles of ran-
dom matrices exact solutions for p�s� have been written in
terms of solutions of well-known nonlinear differential equa-
tions �1�. We start with the following observation: after an

appropriate rescaling of the eigenvalues, the gap distribution
of eigenvalues of a random matrix is a universal function,
depending only on the “nature” of the ensemble �unitary,
orthogonal or symplectic� which defines the small-r behavior
of g2. For example, the two ensembles the GUE and CUE
defined above will have the same gap distribution in the limit
N→�. In the case of the GUE the limit is taken for the
eigenvalues

i = z +
�

�2N
yi, �45�

where z is in the “bulk” of the distribution ��z���2N−� for
N large�. One can prove that all the eigenvalues of a large
random matrix will fall in an interval of size 2�2N with
probability 1 in the large-N limit. After this rescaling, the
kernel H converges to the “sine kernel” in the large-N limit
�12,23�:

HN�1,2� ——→
N→�

H�y1,y2� =
sin���y1 − y2��

��y1 − y2�
. �46�

From this result one can find the n-particle correlation func-
tions. In particular, one finds for g2

g2�x,y� = 1 −  sin���x − y��
��x − y� �2

. �47�

Application of this procedure to the CUE leads to the very
same kernel; for a wider class of examples relevant to phys-
ics, see �24�. Convergence of the kernel implies weak con-
vergence of all the n-particle correlation functions to univer-
sal distributions. These distributions are defined by the sine
kernel, one of a small family of kernels which appear to be
universal �12,23� in controlling large-N limits of various sta-
tistical quantities of apparently different distributions. The
study of the analytic properties of the kernels in this family
yields a complete solution for the Janossy probabilities and
edge distributions in one-dimensional systems.

Once the limiting kernel is identified, a solution for the
gap distribution p�s� still requires a detailed mathematical
analysis �12�. An approximate form for p�s�, known as
Wigner’s surmise, was suggested by Wigner in 1951:

p�s� =
32s2

�2 exp−
4s2

�
� , �48�

and it is an extremely good fit for numerical data. However,
our primary focus in this work is on the asymptotic behavior
of the conditional probability GV, and we therefore look for
an exact solution for this function. First, we note without
proof �25� that EV�s� for d=1 may be expressed in terms of a
Painlevé V transcendent. Namely, let �̃�s� be a solution of
the nonlinear equation

�s�̃��2 + 4�s�̃� − �̃��s�̃� − �̃ + ��̃��2� = 0, �49�

subject to the boundary condition

�̃�s� � −
s

�
−  s

�
�2

�50�

as s→0. We may then write EV�s� in the form
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EV�s� = exp��
0

2�s  �̃�t�
t
�dt� . �51�

We recall that EV�s� may also be expressed in terms of GV
via the relation

EV�s� = exp− 2�
0

s

GV�x�dx� . �52�

By making a change of variables and comparing �51� and
�52�, we conclude that

GV�s� = −
�̃�2�s�

2s
. �53�

Equation �53� allows us to develop small- and large-s expan-
sions of GV in terms of the equivalent expansions for �̃.

To describe the small-s behavior of GV, we substitute an
expansion of the form

�̃�s� = −
s

�
−  s

�
�2

+ �
n=3

N

bnsn �54�

into �49� and solve order by order for the coefficients bn.
Upon converting the solution to a result for GV using �53�,
we obtain

GV�s� = 1 + 2s + 4s2 + 8 −
8�2

9
�s3 + 16 −

20�2

9
�s4

+ 32 −
16�2

3
+

64�4

225
�s5

+ 64 −
112�2

9
+

448�4

675
�s6 + O�s7� . �55�

The derivation of the large-s expansion is similar. We
choose an expansion of the form

�̃�s� = b0s2 + b1s + b2 + �
n=3

N

bns2−n �56�

and substitute this equation into �49�. After converting the
result to an asymptotic series for GV with �53�, we obtain

GV�s� =
�2s

2
+

1

8s
+

1

32�2s3 +
5

64�4s5 +
131

256�6s7

+
6575

1024�8s9 +
1 080 091

8192�10s11 +
16 483 607

4096�12s13 + O�s−15� .

�57�

By looking at Fig. 2, one can see that the expansions are
quite good for the ranges in s where they are valid. Equations
�49�, �55�, and �57� constitute the solution to our problem.
Although it is natural to ask if there is a corresponding non-
linear differential equation that characterizes GV in higher
dimensions, we are not aware of any work in this direction,
and this issue remains an open problem.

C. Two-dimensional processes

There are a few examples of determinantal point pro-
cesses in two dimensions. The seminal example is provided
by the complex eigenvalues of random non-Hermitian matri-
ces �26,27�. The kernel of such a determinantal point process
is given by

HN�z,w� =  1

�
�exp−

1

2
��z�2 + �w�2���

k=0

N−1
�zw̄�k

k!
, �58�

where N is the rank of the matrix and z ,w�C. Incidentally,
�58� can be related to the distribution of N polarized elec-
trons in a perpendicular magnetic field, filling the N lowest
Landau levels. In the limit N→� �58� becomes

H�z,w� =  1

�
�exp−

1

2
��z�2 + �w�2 − 2zw̄�� , �59�

which is a homogeneous and isotropic process ��=H�z ,z�
=1 /�� in C. It is instructive to examine the pair correlation
function, which after some algebra can be written as

g2�z1,z2� = 1 − exp�− �z1 − z2�2� . �60�

From this expression one finds that the correlation between
two points decays like a Gaussian with respect to the dis-
tance separating the points. Letting r= �z1−z2�, we may write
the associated structure factor of the system as

S�k� = 1 − exp−
k2

4
� , �61�

which has the following small-k behavior:

S�k� �
k2

4
+ O�k4� �k → 0� . �62�

We see that the determinantal point process generated by the
Ginibre ensemble is hyperuniform with an exponential scal-
ing �=2 for small k, corresponding to an end point of one of
the “allowed” intervals for determinantal PPs; the large-r
behavior of the kernel H�r� is Gaussian �H�r�=exp�−r2 /2��.
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(r
)
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Asymptotic expansion

FIG. 2. �Color online� Comparison of the exact form of GV for
the d=1 determinantal point process with the small- and large-r
expansions in �55� and �57�.
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Other ensembles of two-dimensional determinantal point
processes can be found in simple systems. For example, the
n zeros of an analytic Gaussian random function f�z�
=�k=0

n akz
k also form a determinantal point process on the

open unit disk �28,29�. The limiting kernel governing these
zeros is called the Bargmann kernel:

H�z1,z2� =  1

�
� 1

�1 − z1z2�2 �63�

and is inherently different from �59�.

IV. AN ALGORITHM FOR GENERATING
DETERMINANTAL POINT PROCESSES

We are able to write down an algorithm, which we call the
Hough-Krishnapur-Peres-Virag �HKPV� algorithm, after �7�,
to generate determinantal point processes due to the geomet-
ric interpretation of the determinant in �N as the volume of
the simplex built with the N vectors v j = 	�
 j

0�
1	j	N. In the
original paper �7� this algorithm is sketched and then proved
to produce the correct distribution function pN. The algo-
rithm is extremely powerful and versatile, and we believe it
is important to provide as many details as possible about it
and its implementation �which has not been done before, to
our knowledge�. Therefore, we dedicate the present section
to provide a complete description of the HKPV algorithm
and enough details �with some tricks� for its efficient imple-
mentation.

Set HN�H, the kernel of the determinantal point process.
Pick a point �N distributed with probability

pN�x� = HN�x,x�/N . �64�

With this point build the new operator AN−1, defined by

AN−1 = HN��N���N�HN. �65�

This operator has with probability 1 a single nonzero eigen-
value and N−1 null eigenvalues. When expressed as a matrix
in the basis 	�
n

0�
1	n	N, AN−1 takes the form

�AN−1�i,j = 
i
0��N�
 j

0��N� . �66�

Consider the N−1 null eigenvectors of AN−1; we will denote
them as 	�
i

1�
i=1
N−1 and call �
N

1 � the only eigenvector with a
nonzero eigenvalue. The null eigenvectors can be found eas-
ily by means of a fast routine based on singular value de-
composition �SVD�, but we will see one that can proceed
without it.

Next, build the new operator HN−1:

HN−1 = HN�
n=1

N−1

�
n
1��
n

1��HN. �67�

To simplify the computation, notice that by completeness of
the basis 	�
n

1�
n=1
N in the eigenspace of HN:

HN�
n=1

N−1

�
n
1��
n

1� + �
N
1 ��
N

1 ��HN = HN, �68�

and since �
N
1 � is the only eigenvector orthogonal to the null

space:

AN−1 = tr�AN−1��
N
1 ��
N

1 � . �69�

From this equation we conclude that

HN−1 � HN�
n=1

N−1

�
n
1��
n

1��HN = HNI −
1

tr�AN−1�
AN−1�HN.

�70�

Once HN−1 is obtained, we repeat the procedure with HN
→HN−1, generating the point �N−1 from the probability dis-
tribution

pN−1�x� = HN−1�x,x�/�N − 1� �71�

and the operators AN−2, HN−2. As the number of iterations
increases, we constantly reduce the rank of the operators by
1: tr�HN�=N, tr�HN−1�=N−1, etc. Therefore, after we have
placed the last point �1, we are left with an operator of rank
0, and the algorithm stops. Reference �7� shows that the
N-tuples ��1 , . . . ,�N� are distributed according to the distri-
bution �1�.

The whole procedure requires O�N2� steps for every real-
ization, which is equal to the number of function evaluations
necessary to create the matrices A. Therefore, the algorithm
is computationally quite light. The only subroutine that re-
quires some work is the extraction of the random points from
the probability distributions pn�x�. For d=1 one can use a
numerically implemented inverse cumulative distribution
function technique �30�, and the computational cost of this
procedure is independent of N. For d�2 if the distributions
are not very peaked, a rejection algorithm is sufficient. The
rejection algorithm works by sampling points from a uniform
distribution on the domain. A tolerance value near the maxi-
mum of the probability density of the point process is set,
and the point is accepted if a uniform random number chosen
between 0 and the tolerance value is less than the probability
density at that point. Otherwise, the point is rejected, and the
process repeats. Unfortunately, it is difficult to estimate the
computational cost of this algorithm as a function of the
number of particles N.

A. Numerical results in one dimension

We have implemented the algorithm described above to
study a determinantal point process on the circle x
� �0,2��, where 
n�x�=exp�inx� /�2� are the N orthonor-
mal functions with n=0, �1, �2, . . . , �N /2. This en-
semble, as mentioned above, is equivalent to the one gener-
ated by the eigenvalues of unitary random matrices chosen
according to the Haar measure. Eigenvalues of matrices from
the CUE can be generated easily by means of a fast SVD
algorithm �21�; however, plenty of exact results exist. There-
fore, we study this one-dimensional determinantal process as
a test both for the performance of our implementation of the
algorithm and for the convergence of the results to the N
→� limit.

We have implemented the algorithm in both PYTHON and
C��, noticing little difference in the speed of execution, and
run it on a regular desktop computer. As mentioned above,
the algorithm runs polynomially in N with the sampling of
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the distribution pn limiting the computational speed. One
point, however, which requires attention is the loss of preci-
sion of the computation. Due to the fixed precision of the
computer calculations, the matrix Hn ceases to have exactly
integral trace, diminishing the reliability of the results. Typi-
cally, one observes deviations in the fifth decimal place after
�50 particles have been placed, thereby limiting the size of
the configurations that can be generated. We have devised an
“error correction” procedure in which the numerical matrix

Hn is projected onto the closest Hermitian matrix H̃n which
has eigenvalues 1 or 0 only. To be more specific, note that Hn
admits a singular value decomposition of the form Hn
=VSV*, where S is a diagonal matrix containing the singular
values. The singular values may analytically be either 0 or 1
since the eigenvectors of Hn span an n-dimensional subspace
of the initial N-dimensional Hilbert space. Unfortunately, the
limited numerical precision of the computer results in devia-
tions in these singular values that aggregate with increasing
iteration number. Our error-correction method calculates the
SVD of Hn at a given iteration, projects the diagonal ele-
ments of S to either 0 or 1 as appropriate to enforce tr�Hn�
=n, and proceeds using the modified Hermitian operator

H̃n=VS̃V*, where S̃ is the corrected diagonal matrix. This
projection corrects for a great part, but not all, of the error;
however, the algorithm is slowed by this modification. Note
that the error correction does not need to be performed dur-
ing every iteration; one can speed the calculations consider-
ably by making SVD projections intermittently. The number
of particles in each configuration can therefore be pushed to
N�100, regardless of the dimension. We have been able to
generate between 75 000 and 100 000 configurations of
points in each dimension. In general, the error-correction
procedure generates more reliable statistics for a given value
of N compared to the uncorrected algorithm, and we there-
fore expect that any residual error not captured by the matrix
projection is minimal. Table I provides a comparison of the
error-corrected algorithm with the regular implementation.

As a preliminary check for our implementation of the
HKPV algorithm, we have calculated the pair correlation

function g2 and compared the results to the exact expression
in �75� below �Fig. 3�. The comparison is quite favorable and
suggests that the point configurations are being generated
correctly by the implementation of the algorithm. The con-
vergence to the results of the thermodynamic limit can be
achieved with a small particle number N�40 and several
thousand configurations, which is easily done with the
HKPV algorithm. As discussed above, our error-correction
procedure is capable of generating �100 points within rea-
sonable computational effort, and fewer configurations are
then needed to recover the thermodynamic limit.

We mention a few characteristics of g2 which arise from
the determinantal nature of the point process. First, the sys-
tem is strongly correlated for a significant range in r, and
g2�r�→0 as r→0. This correlation hole �31–34� is indica-
tive of a strong effective repulsion in the system, especially
for small point separations. In other words, the points tend to
remain relatively separated from each other as they are dis-
tributed through space. Second, g2	1 for all r, meaning that
it is always negatively correlated; again, this quality is in-
dicative of repulsive point processes, which are characterized
by a reduction of the probability density near each of the
coordination shells in the system. We show in a separate
paper �6� that at fixed number density, g2 approaches an ef-
fective pair correlation function g

2
*�r�=��r−D� as d→�,

suggesting that the points achieve an increasingly strong ef-
fective hard core D���d� as the dimension of the system
increases. At fixed mean nearest-neighbor separation this ob-
servation implies that g2�r�→ g̃

2
*�r�=1 for all r�0 as d

→� �as g2�0�=0 for any d�, implying that the points become
completely uncorrelated in this limit. We will show momen-
tarily that the latter limit is difficult to interpret due to the
dimensional dependence of the density �.

Figure 4 presents the results for the gap distribution func-
tion p�r� using both the HKPV algorithm and a numerical
calculation based on the determinant in �19�. As with the
calculation of g2, the comparison between the numerical re-
sults and the simulation is favorable. This curve, as expected,
has the same form as the one reported in the random matrix

TABLE I. Comparison of the trace of the kernel Hn for gener-
ating a configuration of 109 points using the regular HKPV algo-
rithm and SVD error correction. Note that tr�Hn� analytically indi-
cates the number of points remaining to be placed while n is the
number of points already placed; an asterisk indicates divergence of
the trace.

Particle number n tr�Hn�, regular tr�Hn�, error correction

1 108.00000 108.00000

10 99.00000 99.00000

20 89.00000 89.00000

30 79.00000 79.00000

40 68.99953 69.00000

50 58.78875 59.00000

53 63.20972 56.00000

60 * 49.00000

108 * 1.00000
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FIG. 3. �Color online� Comparison of the exact expression �75�
for g2�r� with the results from the HKPV algorithm for d=1, �=1.
The results from the simulation are obtained using 75 000 configu-
rations of 45 particles.
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literature �1� and scales with r2 as r→0. We stress, however,
that this function represents the distribution of gaps between
points on the line and does not discriminate between gaps to
the left and to the right of a point. The random matrix litera-
ture oftentimes describes this quantity as a “nearest-
neighbor” distribution, which it is not. As mentioned in the
discussion following �25� and �26�, the void and particle
nearest-neighbor distribution functions are given by the func-
tions HV and HP, respectively, and require that distance mea-
surements be made both to the left and to the right of a point;
the numerical and simulation results for these functions are
also given in Fig. 4.

The function HV is clearly different from p. HP has a
similar shape to the gap distribution function; however, HP
peaks more sharply around r�0.725 while p has a less in-
tense peak near r�1. This observation is justified from a
numerical standpoint since point separation measurements
are made in both directions from a given reference point with
only the minimum separation contributing to the final histo-
gram of HP. In contrast, every gap in the point process is
used for constructing the histogram of p. As a result, we
expect the first moment of HP to be less than that of p, and
this result is exactly what we observe in Fig. 4.

The form of HV may at first seem confusing in the context
of our discussion above concerning the inherent repulsion of

the determinantal point process. Unlike HP and p, the void
nearest-neighbor function HV has a nonzero value at the ori-
gin and is monotonically decreasing with respect to r. To
understand this behavior, it is useful to examine the behavior
of the corresponding GV and GP functions, which are plotted
in Fig. 5. We recall from �27� and �28� that GV and GP are
related to conditional probabilities which describe, given a
region of radius r empty of points �other than at the center
for GP�, the probability of finding the nearest-neighbor point
in a spherical shell of volume s�r�dr, where s�r� is the sur-
face area of a d-dimensional sphere of radius r. Of particular
relevance to the behavior of HV is the fact that GV�0�=1 and
s�0�=2 for d=1. Therefore, the dominant factor controlling
the small-r behavior of HV is the spherical surface area s�r�
�6�. Since s�0� is nonzero for d=1, it follows from �27� that
HV�0� is nonzero in contrast to HP�0�.

The behavior of both GP and GV is of particular interest in
this paper. We conjecture that both functions are linear for
sufficiently large r in any dimension. We show elsewhere �6�
that, as r→0, GP�r����d�r2+O�r4� and GV�r��1+O�rd�,
where ��d� is a dimensionally dependent constant �for d=1
this is evident in Fig. 5�. Additionally, we believe that GV
and GP obtain the same slope in the large-r limit, and we will
provide further commentary on this notion momentarily �see
Fig. 10�. It is clear from Fig. 5 that the results from the
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FIG. 4. �Color online� Comparison of numerical and simulation results with d=1, �=1 for �left� the gap distribution function p�r�,
�center� HP�r�, and �right� HV�r�.
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simulations are in agreement with the numerical results for a
wide but limited range of r, and they begin to deviate re-
spectably for r sufficiently large. This is due to the fast decay
of both HP/V and EP/V to zero, therefore giving very small
statistics �and a large degree of uncertainty� at these values
of r. This said, the numerical results are clear and provide
strong support for our claims above.

B. Fermi-sphere determinantal point process for dÐ2

1. Definition of the Fermi-sphere point process

Here we study the determinantal point process of free
fermions on a torus, filling a Fermi sphere. A detailed de-
scription of this process in any dimension may be found in
an accompanying paper �6�. We consider this example be-
cause it is the straightforward generalization of the one-
dimensional CUE process described above. However, sam-
pling of this ensemble cannot be accomplished with methods
other than the algorithm introduced above; this limitation is
in contrast to the two examples from Sec. III C, where the
ensemble may be generated from zeros of appropriate ran-
dom complex functions. Nevertheless, it is difficult to con-
struct another procedure that can be generalized to higher
dimensions since zeros of complex functions and random
matrices are naturally constrained to d	2.

We consider the determinantal point process obtained by
“filling the Fermi sphere” in a d-dimensional torus, i.e., x
� �0,2��d; our choice of the box size is for convenience and
without loss of generality. We therefore consider all func-
tions of the form


n =  1

2�
�d/2

exp�i�n,x�� �72�

with

�n�2 	 �F
2�N� , �73�

where �F
2�N� is implicitly defined by the total number of

states contained in the reciprocal-space sphere. This process

is translationally invariant for any N, both finite or infinite,
and isotropic in the limit N→�; it possesses the symmetry
group of the boundary of the set �73�, a dihedral group which
approximates SO�d� very well for N sufficiently large. The
pair correlation function can be easily calculated for any N
��, and it is well defined in the thermodynamic limit:

g2�x� = 1 −
1

N2�
n

�
n�

exp�i�n − n�,x�� , �74�

where n and x are d-dimensional real vectors, and the sums
extend over the set �73�, which contains N points. In the limit
N→� the sums become integrals over a sphere of radius
kF=2������1+d /2��1/d, where �=N / �2��d is the number
density. The resulting pair correlation function is given by

g2�r� = 1 − 2d���1 + d/2��2

�kFr�d ��Jd/2�kFr��2, �75�

where Jd/2 is the Bessel function of order d /2 �cf. �6��. This
pair correlation function is clearly different from �60� for d
=2; the two are therefore not equivalent, even in the thermo-
dynamic limit. One can also find the limiting kernel

H�x,y� =  �2d/2���1 + d/2�
�kF�x − y��d/2 �Jd/2�kF�x − y�� , �76�

which is also different from �59� and �63� for d=2.2

Figure 6 shows configurations of points generated for the
d=2 and d=3 Fermi-sphere point process alongside corre-
sponding configurations for the Poisson point process in
these dimensions. The repulsive nature of the determinantal
point process is immediately apparent from these figures;
note especially that the Fermi-sphere point process discour-
ages clustering of the points in space. In contrast, clustering
is not prohibited in the Poisson point process, and small two-
and three-particle clusters are easily identified. Of particular
interest is that the Fermi-sphere point process distributes the
points more evenly through space due to the effective repul-
sion in the system. This characteristic reflects the hyperuni-
formity of the point process �8�, and we will have more to
say about this property momentarily.

2. Calculation of g2 and nearest-neighbor functions for dÐ2

Figure 7 shows the numerical and simulation results for
the pair correlation function g2 with d=2; a comparison of
the results provides strong evidence that the HKPV algo-
rithm correctly generates configurations of points for the
Fermi-sphere point process even in higher dimensions. Note
that the d=2 correlations are significantly diminished with
respect to the form of g2 for d=1; this behavior is in accor-
dance with a type of decorrelation principle �35,36� for the
system. Namely, we expect that as the dimension of the sys-
tem increases, unconstrained correlations in the system di-

2Different fillings of the spectrum give rise to different families of
determinantal point processes. In �6� we present another example of
a determinantal point process such that states with momenta k,
where 0	k	k1 or k2	k	k3, are filled. We called these systems
Fermi-shell point processes.
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FIG. 5. �Color online� Numerical results using �19� for GP and
GV with d=1, �=1. Also included are representative simulation
results and estimated errors from the HKPV algorithm under the
same conditions as in Fig. 3.
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minish. We also remark that all higher-order correlation
functions gn can be written in terms of the pair correlation
function g2 for any determinantal point process. We prove
this claim in an accompanying paper �6�. It is therefore clear
that the HKPV algorithm is a powerful method by which one
can study determinantal point processes in higher dimen-
sions.

Figure 8 contains results for the nearest-neighbor particle
and void density functions HP and HV for d=2, 3, and 4. In
all cases the numerical results coincide with the simulation

results. We do note that for d=3 and 4 we have implemented
the error-correction procedure described in Sec. IV A to in-
crease the reliability of the simulation results as well as the
particle numbers. As mentioned above, running the algorithm
without error correction generally results in a loss of preci-
sion in the trace of the kernel matrix H during computation;
the error introduced by this loss of precision as measured by
deviation from the “exact” numerical results increases with
respect to increasing particle number, and we notice that the
errors are more acute for d=3 and 4. Although some error
still remains in the results even after projecting the matrix H
onto the nearest Hermitian projection matrix, the results in
these figures leave us confident that the computations are
reliable.

In contrast to the d=1 process, HV for d=2,3 ,4 ap-
proaches 0 as r→0; for d=3 and 4, HV and HP in fact pos-
sess very similar overall shapes. The small-r behavior of HV
in these cases is due to the behavior of s�r� for d�2; namely,
s�r��rd−1 for all d, and for d�2 we observe that s�0�=0 as
opposed to the d=1 case, where s�0�=2. We have already
shown with generality that GV�r�→1 as r→0, a result which
may be observed in Fig. 9. One can see from these figures
that GV�r�→1 as r→0 in each dimension, reinforcing the
dominance of s�r� in the small-r behavior of HV�r�.

For d=2, the shape of HV resembles the corresponding
curve for a Poisson point process; nevertheless, these two
processes are inherently different. We may easily see the
deviation between the two processes by noticing that HP and
HV do not coincide for any dimension and that GP and GV
both increase linearly for sufficiently large r. The latter ob-
servation implies that HV�r��s�r�EV�r� for large r, which is
the case for the Poisson point process. However, we show
elsewhere �6� that EV for the Fermi-sphere point process in
dimension d �finite� behaves similarly to the corresponding
function for a Poisson point process except in dimension d
+1. Further justification for this claim is also developed later
in this paper.

With regard to HP, we remark that in each dimension
HP�0�=0, in agreement with the repulsive nature of the point
process. However, it is worthwhile to note that, in light of the
connection to noninteracting fermions described above, we
can associate this repulsion with a type of Pauli exclusion
principle, which for noninteracting fermions is purely quan-
tum mechanical in nature and arises solely from the con-
straint of antisymmetry of the N-particle wave function. The
determinantal form of the wave function is the manifestation
of this antisymmetry in any dimension, thereby providing
some physical insight into the strong small-r correlations for
this determinantal point process. We stress that in the case of
noninteracting fermions the repulsion does not arise from
any true interaction among the particles and is purely a con-
sequence of the aforementioned antisymmetry.

We show in an accompanying paper �6� that, for any d,
HP�rd+1 for small r, and we observe this behavior in our
results. It is also true �6� that HV�rd−1, EV�1−��d�rd, and
EP�1−��d�rd+2 as r→0, where ��d� and ��d� are dimen-
sionally dependent constants. These properties imply that
GP�r2 and GV�1 for small r as with the d=1 case. Figure
9 shows these trends in greater detail. With regard to the
large-r behavior of GP and GV, the linearity of both curves

FIG. 6. Upper panels: A d=2 configuration of N=109 points
distributed according to �left� a Fermi-sphere determinantal point
process and �right� a Poisson point process. Lower panel: A d=3
configuration of N=81 points distributed according to �left� the
Fermi-sphere determinantal point process and �right� a Poisson
point process. All configurations have �=1.
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apparently holds in each dimension. A surprising detail, how-
ever, is that GP and GV appear to converge with respect to
increasing dimension. To understand this observation, we re-

call from �32� that GP=GV− G̃; Fig. 10 provides plots of

G̃�r� for d=1, 2, 3, and 4.

It is clear from these curves that in each dimension G̃ for
large r is positive and scales more slowly than r in each
dimension. We therefore expect that the large-r slope of GP

is equal to the asymptotic slope of GV according to �32�.
Since numerical results for GV are more easily and more
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accurately obtained, we assume this asymptotic convergence
and provide results for the asymptotic slope of GV below.
Table II collects our calculations for the slope of GV in each
dimension for large r. The slopes are calculated by fitting the
large-r portion of each quantity to a function of the form

F�x� = a0x + a1 + �
i=2

n

ai1

x
�i−1

. �77�

It has been conjectured in �6� that as the dimension d
�finite� of the system increases, the asymptotic slope of GV
and GP should approach the corresponding value for a Pois-
son point process in dimension d+1. The results in Table II
indicate that this claim closely holds for d=3 and 4, meaning
that the convergence of processes is relatively quick with
respect to increasing dimension. Based on the analysis in �6�,
we therefore expect this trend to continue for higher dimen-
sions.

3. Voronoi statistics of the Fermi-sphere point process for d=2

To demonstrate the utility of the HKPV algorithm in sta-
tistically characterizing a point process, we have also in-
cluded statistics for the Voronoi tessellation of the d=2
Fermi sphere point process in Table III. Specifically, we pro-
vide results for the probability distribution of the number of
cell sides pn and the average area of an n-sided cell �An�.
Similar results have been reported in the literature for
Voronoi tessellations of Poisson point processes �37� and de-
terminantal point processes generated from the eigenvalues

of complex random matrices �38�; we also provide the com-
parison in Table III. Visual representations of the data are
shown in Fig. 11.

The topology of the plane enforces the constraints that
�n�=6 and �A�=1 /� �=1 at unit density� for any point pro-
cess, where n is the number of cell sides and A is the area of
a cell. We notice that the distribution pn is more sharply
peaked for the Fermi-sphere point process than in the Pois-
son point process, which is a consequence of the effective
repulsion among the particles. With regard to the average
areas of cells, is appears that Fermi-sphere cells with smaller
n have larger areas than Poisson cells, again likely due to the
repulsion of the points; however, Poisson cells with a greater
number of sides tend to have larger areas than Fermi-sphere
cells, a result which can be attributed to the more even dis-
tribution of points in the Fermi-sphere process through
space, which is related to the hyperuniformity of the point
process. Figure 12 shows a typical Voronoi tessellation for
the Fermi-sphere point process compared to the equivalent
tessellation for a Poisson point process. We immediately no-
tice that the determinantal point process tends to avoid clus-
tering of particles, resulting in a narrower distribution of cell
sizes within the tessellation; such clustering is not precluded
in the Poisson tessellation, resulting in isolated regions of
small �or large� cells.

In order to rationalize these properties, we utilize the hy-
peruniformity �superhomogeneity� of the Fermi-sphere point
process. Voronoi tessellations of hyperuniform point pro-
cesses share several unique characteristics which distinguish
them from general point processes. For example, Gabrielli
and Torquato �17� have provided the following summation
rule, which holds for all hyperuniform point processes in any
dimension:

lim
V→�
��

j=1

N�S�

wiwj� = �
j=−�

+�

Cij = 0, �78�

where V is the system volume, N�S� is the number of points
in a large subset S of V, wi=vi−1 /�, vi is the size of Voronoi
cell i, and Cij = �wiwj� defines the correlation matrix between
the sizes of different Voronoi cells. We note that this rule is
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FIG. 10. �Color online� Plots of G̃�r�=GV�r�−GP�r� for d=1, 2, 3, and 4.

TABLE II. Large-r slopes of GV for each dimension. The d=1
slope is taken from the asymptotic expansion in �57�. Given errors
are estimated based on the approximate error for d=1.

d GV

1 �2 /2 �exact�
2 2.499�0.015

3 1.680�0.025

4 1.323�0.049
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essentially a discretization of the condition that S�0�=0 for a
hyperuniform point process, meaning that infinite-
wavelength number fluctuations vanish within the system;
therefore, the result in �78� is unique to tessellations of hy-
peruniform point processes. Additionally, Gabrielli and
Torquato have shown that arbitrarily large Voronoi cells or
cavities are permitted in hyperuniform point processes de-
spite the fact that these processes possess the slowest growth
of the local-density fluctuation with R �the size of the win-
dow� �17�. We particularly emphasize the result that the
probability distribution of the void regions must decay faster
in R than the equivalent distribution for any nonhyperuni-
form process.

We show elsewhere �6� that the structure factor in any
dimension d for the Fermi-sphere point process has the fol-
lowing nonanalytic behavior at the origin:

S�k� � k �k → 0� , �79�

and the large-R number variance is controlled by

�2�R� � Rd−1 ln�R� . �80�

The unusual asymptotic scaling �2�R� /Rd−1=ln�R� for the
Fermi-sphere point process has also been observed in three-
dimensional maximally random jammed sphere packings
�39�, which can be viewed as prototypical glasses since they

are both perfectly rigid mechanically and maximally disor-
dered.

The peaking phenomenon observed in the Voronoi statis-
tics of the Fermi-sphere point process therefore reflects the
fact that the probability of observing large Voronoi cells must
be less than the corresponding probability for the Poisson
point process, which is not hyperuniform. The more even
distribution of the Voronoi cells through space in the Fermi-
sphere point process prevents the probability distribution of
the cell sizes from decaying more slowly than the corre-
sponding distribution for the Poisson point process, where
clustering of the points increases the likelihood of observing
both smaller and larger Voronoi cells.

The comparison between the Voronoi statistics of the
Fermi-sphere point process and the Ginibre ensemble in Fig.
11 highlights the similarities between the two determinantal
point processes. Namely, the distributions pn for each system
are sharply peaked around n=6 and narrower than the corre-
sponding result for the Poisson point process. However, no-
table differences between the statistics are also apparent. The
distribution pn for the Fermi-sphere point process is more
sharply peaked than the corresponding result for the Ginibre
ensemble. The larger probability in the Ginibre ensemble of
observing cells with a fewer or larger number of sides n is
directly related to the correlations among the particles in the
system.

TABLE III. Voronoi statistics for several point processes with d=2. FPP, Fermi-sphere point process; PPP, Poisson point process; CRM,
complex random matrix. Results for the PPP and CRM are from �38�. The systems have been normalized to unit number density ��=1�.

n 3 4 5 6 7 8 9 10

FPP; pn 0.00124 0.05483 0.26770 0.38099 0.22136 0.06287 0.01013 0.00082

PPP; pn 0.0113 0.1068 0.2595 0.2946 0.1986 0.0905 0.0295 0.0074

CRM; pn 0.0022 0.069 0.2676 0.356 0.217 0.0715 0.0147 0.0019

FPP; �An� 0.49229 0.69469 0.85291 1.0024 1.1474 1.2900 1.4385 1.6051

PPP; �An� 0.342 0.558 0.774 0.996 1.222 1.451 1.688 1.938

CRM; �An� 0.53 0.721 0.869 1.003 1.133 1.259 1.382 1.50
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FIG. 11. �Color online� Left: Distribution pn of the number of sides n of Voronoi cells for the Fermi-sphere point process �FPP�, Poisson
point process �PPP�, and eigenvalues of a complex random matrix �CRM�. Right: Expectation value of the area of an n-sided Voronoi cell
�An� for the FPP, PPP, and CRM.
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C. Comparison of results across dimensions

In order to compare statistical quantities across dimen-
sions, it is generally preferable to enforce a fixed mean
nearest-neighbor separation  since this quantity determines
the length scale of the system �Fig. 13�. This constraint is
easily obtained via a rescaling of the density according to the
relation

��� = �1�1

�
�1/d

, �81�

where �1� denotes the mean nearest-neighbor separation at
unit density. Equation �81� easily follows from the scaling of
the density � with the size of the system. Of particular inter-
est are the values of �1� for each dimension and ��1�, the
number density at which the system has unit mean nearest-
neighbor separation. These quantities may be read from
Table IV.

It is not difficult to show, using �81�, that ��1�=�1�d. We
note that, for sufficiently large �, the mean nearest-neighbor
separation increases with the dimension of the system; how-
ever, the opposite trend is observed for small �. For interme-
diate values of the density, the trend becomes less discern-

ible. At unit density, we observe that �1� decreases between
d=1 and d=2 but then increases again for d�2; indeed, we
measure this trend directly in Table IV. Estimates for �1�,
which are developed elsewhere �6�, suggest that �1� contin-
ues to increase with respect to increasing dimension; if this
result is true, then we therefore expect that as d→�, ��1�
→�. From the definitions of g2 and kF in �75�, one can show
that g2�r�=g2

�1���1�r�, where g2
�1� is the form of the pair cor-

relation function at unit density. Therefore, as �1� increases,
the curve representing g2 shifts to the left, implying that for
large dimensions g2 is approximately given by unity for all r,
and the system is uncorrelated. This behavior is a direct con-
sequence of enforcing a fixed mean nearest-neighbor separa-
tion on the system as opposed to a fixed density.

After appropriate rescaling, we compare the results for GP
and GV in Fig. 14. The results strongly suggest that GV�r�
→1 as d→�, which is in agreement with the conclusions
drawn from the analysis above. We also notice that both GP
and GV decrease in slope as the dimension of the system
increases; thus, if GP and GV possess the same r→�
asymptotic slope, then it must be true that GP saturates at
unity for large r in the limit d→�. This behavior is surpris-
ing in the context of our description of g2 above. The fact
that g2→1 for large d indicates a decorrelation of the system
for higher dimensions, leading us to expect Poisson-like be-
havior in the system as conjectured in �6�. The behavior of
GV corroborates this notion as does the convergence of GP
and GV for large d. However, our understanding of HP and
EP from the discussion above along with the bounds from
�6�, which sharpen with increasing dimension at fixed , sug-
gest instead that HP→H

P
*=��r−1� and EP→E

P
*=��1−r�

for large d, where ��x� is the Dirac delta function, ��x� is the
Heaviside step function, and H

P
* and E

P
* are effective gener-

alized functions. As shown in �6�, the only functional form
for GP that agrees with these conclusions and the observed
behavior in Fig. 14 is GP→G

P
*=��r−1� as d→� for fixed

mean nearest-neighbor separation.
We rationalize these observations by noting that the effec-

tive hard core of the fermionic system as described in �6� has
been encoded in the functional form of GP due to the con-

FIG. 12. Left: Voronoi tessellation of the d=2 Fermi-sphere
point process at number density �=1. Right: Voronoi tessellation of
a d=2 Poisson point process at number density �=1. Both: Tessel-
lations are performed with periodic boundary conditions using N
=109 points.
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FIG. 13. �Color online� Left: HP�s� for the Fermi-sphere point process at unit mean nearest-neighbor separation  for d=1,2 ,3 ,4. Right:
EP�s� for the Fermi-sphere point process at unit mean nearest-neighbor separation  for d=1,2 ,3 ,4.
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straint of fixed mean nearest-neighbor separation. It is this
constraint which produces the limiting forms of HP and EP
for high dimensions, meaning that the environment around
any given particle greatly resembles a saturated system of
hard spheres. However, the scaling of g2 with �1� men-
tioned above means also that the particles only see large-r
correlations from the corresponding form of g2 at unit den-
sity, resulting in Poisson-like behavior for this function �6�,
which is then translated into the value of unity for GV in high
dimensions. In other words, the particle quantities contain
the information about the effective hard core under the con-
straint of fixed mean nearest-neighbor separation, but the
void quantities are Poisson-like to account for both the scal-
ing of g2 and the small- and large-r constraints shown nu-
merically in Sec. IV B that must be enforced regardless of
how the infinite-dimensional limit is taken.

Figure 15 shows the distributions of the extremum
nearest-neighbor distances at fixed mean nearest-neighbor
separation based on calculations from configurations gener-
ated with the HKPV algorithm. We have been unable to write
these quantities in determinantal form amenable to numerical
calculation, and therefore the HKPV algorithm is an attrac-
tive means through which to study these quantities. We note
that the maximum and minimum nearest-neighbor spacings
appear to converge to a value of unity as the dimension of
the system increases; this behavior is expected in the context
of the discussion for HP above. The convergence of these
quantities is more easily seen in Fig. 16; we have also in-
cluded the values of �1� for reference, but there is strong
evidence to suggest that the limiting value of the extremum
quantities for large d is unity.

V. DETERMINANTAL PROCESSES IN CURVED SPACES

In this last section, we present an example of how the
HKPB algorithm is not limited to point processes in Euclid-
ean spaces described above. With an appropriate choice of
the basis functions 
n it can in principle be adapted to simu-
late point processes on other domains and topologies. Of
particular interest in this regard is the generation of point
processes on a curved space, like the two-sphere S2 in Fig.
17. Here, we consider the spherical harmonics as basis func-
tions for a spherical geometry; 
n=Yl,m�� ,
� are a basis for
the square-integrable functions on the two-sphere S2. Since
m=−l , . . . , l so that for any l there are 2l+1 different values
of m, we decided to choose the lowest �N−1� /2 values of l
and all the corresponding m’s. Once these functions have
been chosen, the algorithm provides a relatively simple
means to generate the point process. We have not embarked
in an extensive analysis of the statistical properties of this
process as we leave that for future work. We note, however,
from previous observations that a short-distance effective in-
teraction among the points is logarithmic and repulsive, and
we expect a fluidlike configuration on the surface of the
sphere. Also, for N→� at fixed sphere radius it is not diffi-
cult to conjecture that the nearest-neighbor functions will
tend to those we already discussed for the Fermi-sphere pro-
cess on torus. On the other hand, for finite N this problem
could be relevant to the problem of packing of spheres in
non-Euclidean geometries. This is a promising direction for
future research.

VI. CONCLUDING REMARKS

Our focus in this paper has been on characterizing the
statistical properties of high-dimensional determinantal point
processes through both numerical calculations and algorith-
mic generations of point configurations. We first compared
the results for n-particle distribution functions and nearest-
neighbor functions obtained by the two methods to cross-
check consistency and accuracy. We then proceeded using
both methods to elucidate the small- and large-r behaviors of
the nearest-neighbor distribution functions and the extrema

TABLE IV. Values of �1� and ��1� for each dimension.

d �1� ��1�

1 0.725728 0.725728

2 0.649823 0.422270

3 0.654511 0.280382

4 0.679561 0.213262
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FIG. 14. �Color online� Comparison of GP �left� and GV �right� across dimensions at unit mean nearest-neighbor separation . Results are
from numerical calculations using �19�.
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statistics in dimensions one to four. Our results strongly sug-
gest that both GP and GV are linear for sufficiently large r,
and we obtain numerical estimates of the common slope in
this limit. This behavior is to be contrasted with the equiva-
lent forms of GP and GV for equilibrium systems of hard
spheres and for Poisson point processes. It is known for the
former systems that both functions saturate for sufficiently
large r while GP�r�=GV�r�=1 for all r in the latter processes
�2�. The linearity of GP and GV in the determinantal case is
thus unique in the context of general point processes. We
have also shown, in accordance with �6�, that in the limit as
d→� both GP and GV must saturate at unity in accordance
with the behavior of the aforementioned bounds; again, this
claim is supported by the numerical evidence we have pre-
sented here. Also, as the dimension d grows, we observed
that the functions HP and HV become concentrated around
their maximum as do the distributions of extrema of nearest-
neighbor distances M* and M*.

By using the HKPV algorithm to generate configurations
of points we have shown that the determinantal nature of the
n-particle probability density has a significant effect on the
Voronoi cell statistics of the Fermi-sphere point process in
two dimensions. Namely, the probability distribution of cell
sides is more peaked around n=6 �hexagons� than the corre-
sponding distribution for either the Poisson point process or
the Ginibre ensemble �38� �the distribution of complex ei-
genvalues of random complex matrices�. The effective sepa-
ration of the points, resulting in a sharper peak in the distri-
bution of the number of sides of the Voronoi cells, is closely
related to the hyperuniformity of the system.

Finally, to show how the algorithm can be used for gen-
erating determinantal processes on curved spaces, we have
presented an example of a determinantal point process on the
two-sphere.
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FIG. 15. �Color online� Distributions of the maximum �M*�s�; left� and minimum �M*�s�; right� nearest-neighbor distances across
dimensions at unit mean nearest-neighbor separation . Results are simulated using the HKPV algorithm.
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FIG. 16. �Color online� Average maxima and minima nearest-
neighbor distances with standard deviations across dimensions at
unit mean nearest-neighbor separation; results are obtained using
the HKPV algorithm. Also included for reference is the unit mean
nearest-neighbor separation, which is fixed for each dimension.

FIG. 17. �Color online� Configuration of 37 points on the unit
sphere using the HKPB algorithm with the spherical harmonics as
basis functions.
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