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Abstract. It is well known that one can map certain properties of random
matrices, fermionic gases, and zeros of the Riemann zeta function to a
unique point process on the real line R. Here we analytically provide exact
generalizations of such a point process in d-dimensional Euclidean space R

d for
any d, which are special cases of determinantal processes. In particular, we
obtain the n-particle correlation functions for any n, which completely specify the
point processes in R

d. We also demonstrate that spin-polarized fermionic systems
in R

d have these same n-particle correlation functions in each dimension. The
point processes for any d are shown to be hyperuniform, i.e., infinite wavelength
density fluctuations vanish, and the structure factor (or power spectrum) S(k)
has a non-analytic behavior at the origin given by S(k) ∼ |k| (k → 0). The
latter result implies that the pair correlation function g2(r) tends to unity for
large pair distances with a decay rate that is controlled by the power law 1/rd+1,
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which is a well-known property of bosonic ground states and more recently has
been shown to characterize maximally random jammed sphere packings. We
graphically display one-and two-dimensional realizations of the point processes
in order to vividly reveal their ‘repulsive’ nature. Indeed, we show that the point
processes can be characterized by an effective ‘hard core’ diameter that grows like
the square root of d. The nearest-neighbor distribution functions for these point
processes are also evaluated and rigorously bounded. Among other results, this
analysis reveals that the probability of finding a large spherical cavity of radius r
in dimension d behaves like a Poisson point process but in dimension d + 1, i.e.,
this probability is given by exp[−κ(d)rd+1] for large r and finite d, where κ(d)
is a positive d-dependent constant. We also show that as d increases, the point
process behaves effectively like a sphere packing with a coverage fraction of space
that is no denser than 1/2d. This coverage fraction has a special significance in
the study of sphere packings in high-dimensional Euclidean spaces.

Keywords: rigorous results in statistical mechanics, correlation functions
(theory), disordered systems (theory), random matrix theory and extensions
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1. Introduction

It is well known that there is a remarkable connection between the statistical properties of
certain random Hermitian matrices, the zeros of the Riemann zeta function, and fermionic
gases [1]–[6]. Underlying each of these objects are certain one-dimensional point processes
(defined more precisely in section 2) whose statistical properties (under certain limits) are
believed to be identical. The purpose of this paper is to provide generalizations of this
unique point process to point processes in d-dimensional Euclidean space R

d for any d,
and to characterize their spatial statistics exactly. Since the characterization of a point
process can be viewed as the study of a system of interacting ‘point’ particles, exact
descriptions of non-trivial point processes in arbitrary space dimension, which are hard
to come by [8], are of great value in the field of statistical mechanics.

There are three prominent theories of random Hermitian matrices, which model the
Hamiltonians of certain random dynamical systems; see the excellent book by Mehta [3].
If the dynamical system is symmetric under time reversal, then the relevant theory
for integral spin is that of the Gaussian orthogonal ensemble (GOE) or the Gaussian
symplectic ensemble (GSE) for half-integer spin. On the other hand, the Gaussian unitary
ensemble (GUE) models random Hamiltonians without time reversal symmetry, which is
relevant to certain properties of the Riemann zeta function. Although there are distinct
one-dimensional point processes associated with each of these ensembles, our interest here
will be in the GUE because of its relationship to the Riemann zeta function.

The GUE of degree N consists of the set of all N × N Hermitian matrices together
with a Haar measure. This is the unique probability measure on the set of N × N
Hermitian matrices that is invariant under conjugation by unitary matrices such that the
individual matrix entries are independent random variables. Dyson [1] showed that the
eigenvalue distributions of the GUE are closely related to those of the ‘circular unitary
ensemble’ (CUE), which he exactly mapped into a problem of point particles on a unit
circle interacting with a two-dimensional Coulombic force law at a particular temperature.
This point process on the unit circle or, equivalently, on the real line R in the large-N
limit (when suitably normalized) has a pair correlation function (defined in section 2) in
R at number density ρ = 1 given by

g2(r) = 1 − sin2(πr)

(πr)2
. (1)

Equation (1) also applies for the GUE in the limit N → +∞ such that the mean gap
distance between eigenvalues at the origin is normalized; this limit has the effect of
magnifying the bulk of the eigenvalue density on R such that (1) is well defined. We
see that this point process is always negatively correlated, i.e., g2(r) never exceeds unity
(see figure 1) and is ‘repulsive’ in the sense that g2(r) → 0 as r tends to zero. More
generally, Dyson [2] proved that the n-particle correlation function (defined in section 2)
is given by the following determinant:

gn(r12, r13, . . . , r1n) = det

(
sin(πrij)

πrij

)
i,j=1,...,n

. (2)

Montgomery [4] conjectured that the pair correlation function of non-trivial zeros
of the Riemann zeta function (which, according to the Riemann hypothesis, lie along
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Figure 1. Left panel: the pair correlation function g2(r) versus distance r for
the eigenvalues of the GUE/CUE in the large-N limit, which is conjectured to
be the same as the one characterizing the non-trivial zeros of the Riemann zeta
function. Spin-polarized fermions in their ground state in R have the same pair
correlation function. Right panel: the corresponding spectral counterpart, called
the structure factor S(k) (cf (7)), as a function of wavenumber k.

the critical line 1/2 + it with t ∈ R) is given exactly by the GUE/CUE function (1) in
the asymptotic limit (high on the critical line) when appropriately normalized. This
remarkable correspondence was further established by Odlyzko [5], who numerically
verified the Riemann hypothesis for the first 1013 non-trivial zeros of the zeta function
as well as at much larger heights and confirmed that the pair correlation function agrees
with (1). Rudnick and Sarnak [6] proved that, under the Riemann hypothesis, the non-
trivial zeros have n-particle densities for any n given by (2). The reader is referred to the
excellent review article by Katz and Sarnak [7], which discusses the connection between
the zeros of zeta functions and classical symmetric groups, of which the three canonical
random matrix ensembles are but special cases.

For spin-polarized free fermions in R (fermion gas) at number density ρ = 1, it is
known that the pair correlation function in the ground state (i.e., completely filling the
Fermi ‘sphere’) is given by

g2(r) = 1 − sin2(kFr)

(kFr)2
, (3)

where kF is the Fermi radius, which is the one-dimensional analogue of the well-known
three-dimensional result [9]. Therefore, we see that when kF = π, we obtain the
GUE/CUE pair correlation function (1). The repulsive nature of the point process in
this context arises physically from the Pauli exclusion principle.

Very little is known about how to generalize one-dimensional point processes
associated with random matrices and number-theoretic functions to higher dimensions.
In this paper, we analytically obtain exact generalizations of the aforementioned one-
dimensional point process in d-dimensional Euclidean space R

d for any d. These processes
are special cases of determinantal processes. In particular, we obtain the n-particle
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correlation functions for any n, which completely specify the point processes in R
d.

We also show that spin-polarized fermionic systems in R
d have these same n-particle

correlation functions in each dimension. We show that the point processes for any d are
hyperuniform, i.e., infinite wavelength density fluctuations vanish, and the structure factor
(or power spectrum) S(k) has a non-analytic behavior at the origin given by S(k) ∼ |k|
(k → 0). The latter result implies that the pair correlation function g2(r) tends to unity
for large pair distances with a decay rate that is controlled by the power law 1/rd+1. In
three dimensions, such a dominant power-law decay of g2(r) is a well-known property
of bosonic systems in their ground states [10, 12] and, more recently, has been shown to
characterize maximally random jammed sphere packings [13].

Realizations of the point processes are displayed in one and two dimensions, using a
simulation technique described by us elsewhere [14], which vividly reveal their ‘repulsive’
nature. In fact, we show the point processes can be characterized by an effective ‘hard
core’ diameter that grows like the square root of d. The nearest-neighbor distribution
functions for these point processes are also studied by evaluating and rigorously bounding
them. Among other results, this analysis reveals that the probability of finding a large
spherical cavity of radius r in dimension d behaves like a Poisson point process but in
dimension d + 1, i.e., this probability is given by exp[−κ(d)rd+1] for large r, where κ(d)
is a positive d-dependent constant. We also show that as d increases, the point process
behaves effectively like a sphere packing with a coverage fraction of space that is no denser
than 1/2d. As we will see, this value of the coverage fraction has a special significance in
the study of sphere packings in high dimensions.

In section 2, we present background and definitions concerning point processes that are
particularly germane to the ensuing analysis. Section 3 discusses general determinantal
point processes. In section 4, we obtain the determinantal point processes in R

d that
are generalizations of the aforementioned one-dimensional point process associated with
fermions, random matrices, and the Riemann zeta function. We call the most general of
these point processes ‘Fermi-shells’ point processes. The asymptotic properties of various
pair statistics are investigated. We show that spin-polarized fermionic systems in R

d have
the same n-particle correlation functions in each dimension. Section 5 analyzes various
nearest-neighbor functions for the special case of the ‘Fermi-sphere’ point processes in
R

d. We present concluding comments in section 6, including remarks about possible
connections of our point processes to random matrix and number theory.

2. Background on point processes

2.1. Definitions

A stochastic point process in R
d is defined as a mapping from a probability space to

configurations of points x1,x2,x3 . . . in d-dimensional Euclidean space R
d. More precisely,

let X denote the set of configurations such that each configuration x ∈ X is a subset of
R

d that satisfies two regularity conditions: (i) there are no multiple points (xi �= xj if
i �= j) and (ii) each bounded subset of R

d must contain only a finite number of points
of x. We denote by N(B) the number of points within x ∩ B, B ∈ B, where B is the
ring of bounded Borel sets in R

d. Thus, we always have N(B) < ∞ for B ∈ B, but the
possibility N(Rd) = ∞ is not excluded. We note that there exists a minimal σ-algebra
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U of subsets of X that renders all of the functions N(B) measurable. Let (Ω,F ,P)
be a probability space. Any measurable map x : Ω → X is called a stochastic point
process [15, 16]. Henceforth, we will simply call this map a point process. Note that this
random setting is quite general. It incorporates cases in which the locations of the points
are deterministically known, such as that of a lattice.

A point process is completely statistically characterized by specifying the countably
infinite set of n-particle probability density functions ρn(r1, r2, . . . , rn) (n = 1, 2, 3 . . .) [16].
The distribution-valued function ρn(r1, r2, . . . , rn) has a probabilistic interpretation: apart
from trivial constants, it is the probability density function associated with finding n
different points at positions r1, . . . , rn and hence has the non-negativity property

ρn(r1, r2, . . . , rn) ≥ 0 ∀ri ∈ R
d (i = 1, 2, . . . , n). (4)

The point process is statistically homogeneous or translationally invariant if for every
constant vector y in R

d, ρn(r1, r2, . . . , rn) = ρn(r1 + y, . . . , rn + y), which implies that

ρn(r1, r2, . . . , rn) = ρngn(r12, . . . , r1n), (5)

where ρ is the number density (number of points per unit volume in the infinite volume
limit) and gn(r12, . . . , r1n) is the n-particle correlation function, which depends on the
relative positions r12, r13, . . ., where rij ≡ rj − ri and we have chosen the origin to be at
r1. We call g2(r) = g2(−r) the pair correlation function.

For translationally invariant point processes without long-range order, gn(r12, . . . , r1n)
→ 1 when the points (or ‘particles’) are mutually far from one another, i.e., as |rij| → ∞
(1 ≤ i < j < ∞), ρn(r1, r2, . . . , rn) → ρn. Thus, the deviation of gn from unity provides a
measure of the degree of spatial correlation between the particles, with unity corresponding
to no spatial correlation. Note that for a translationally invariant Poisson point process,
gn is unity for all values of its argument.

It is useful to introduce the total correlation function h(r) of a translationally invariant
point process, which is related to the pair correlation function via

h(r) ≡ g2(r) − 1, (6)

and decays to zero for large |r| in the absence of long-range order. Note that h(r) = 0
for all r for a translationally invariant Poisson point process. An important non-negative
spectral function S(k), called the structure factor (or power spectrum), is defined as
follows:

S(k) = 1 + ρh̃(k), (7)

where h̃(k) is the Fourier transform of h(r). For a translationally and rotationally invariant
point process, it is useful to consider the cumulative coordination number Z(r), defined
to be the expected number of points found in a sphere of radius r centered at an arbitrary
point of the point process, which is related to the pair correlation function as follows:

Z(r) = ρs1(1)

∫ r

0

xd−1g2(x) dx, (8)

where

s1(r) =
2πd/2rd−1

Γ(d/2)
(9)
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is the surface area of a d-dimensional sphere of radius r. It is clear that since g2(r) is a
non-negative function, Z(r) is a monotonically increasing function of r.

The Fourier transform of an L1 function f : R
d → R is defined by

f̃(k) =

∫
Rd

f(r) exp [−i(k · r)] dr, (10)

where L1 denotes the space of absolutely integrable functions on R
d. If f : R

d → R is
a radial function, i.e., f depends only on the modulus r = |r| of the vector r, then its
Fourier transform is given by

f̃(k) = (2π)d/2

∫ ∞

0

rd−1f(r)
J(d/2)−1(kr)

(kr)(d/2)−1
dr, (11)

where k is the modulus of the wavevector k and Jν(x) is the Bessel function of order ν.

The inverse transform of f̃(k) is given by

f(r) =
1

(2π)d/2

∫ ∞

0

kd−1f̃(k)
J(d/2)−1(kr)

(kr)(d/2)−1
dk. (12)

2.2. Number variance and hyperuniformity

We denote by σ2(A) the variance in the number of points N(A) contained within a window
A ⊂ R

d. The number variance σ2(A) for a specific choice of A is necessarily a positive
number and is generally related to the total correlation function h(r) for a translationally
invariant point process [18]. In the special case of a spherical window of radius R in R

d,
it is explicitly given by

σ2(R) = ρv1(R)

[
1 + ρ

∫
Rd

h(r)α(r; R) dr

]
, (13)

where σ2(R) is the number variance for a spherical window of radius R in R
d and α(r; R)

is the volume common to two spherical windows of radius R whose centers are separated
by a distance r divided by v1(R), the volume of a spherical window of radius R, given
explicitly by

v1(R) =
πd/2

Γ(1 + d/2)
Rd. (14)

We will call α(r; R) the scaled intersection volume.
For large R, it has been proved that σ2(R) cannot grow more slowly than γRd−1,

where γ is a positive constant [17]. We note that point processes (translationally invariant
or not) for which σ2(R) grows more slowly than the window volume (i.e., as Rd) for
large R are examples of hyperuniform (or superhomogeneous) point patterns [18, 19].
This classification includes all periodic point processes [18], certain aperiodic point
processes [18, 19], one-component plasmas [18, 19], point processes associated with a wide
class of tilings of space [20, 21], and certain disordered sphere packings7 [16, 22, 23].

7 A sphere packing is a point process in which there is a minimal positive distance between any pair of points.
According to [16], a disordered sphere packing in R

d is one in which the pair correlation function g2(r) decays to
its long-range value of unity faster than |r|−d−ε for some ε > 0.
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Hyperuniformity implies that the structure factor S(k) has the following small k behavior:

lim
k→0

S(k) = 0. (15)

The scaled intersection volume α(r; R) appearing in (13) and its associated Fourier
transform will play a prominent role in this paper. The former quantity is defined by
a convolution integral involving the indicator function w for a d-dimensional spherical
‘window’ of radius R centered at position x0 [18], i.e.,

w(|x− x0|; R) = Θ(R − |x − x0|), (16)

where Θ(x) is the Heaviside step function

Θ(x) =

{
0, x < 0,
1, x ≥ 0.

(17)

Specifically, the scaled intersection volume is given by

α(r; R) =
1

v1(R)

∫
Rd

w(r1 − x0;R)w(r2 − x0;R) dx0. (18)

The scaled intersection volume has the support [0, 2R], the range [0, 1], and the following
alternative integral representation [16]:

α(r; R) = c(d)

∫ cos−1[r/(2R)]

0

sind(θ) dθ, (19)

where c(d) is the d-dimensional constant given by

c(d) =
2Γ(1 + d/2)

π1/2Γ[(d + 1)/2]
. (20)

Torquato and Stillinger [16] found the following series representation of the scaled
intersection volume α(r; R) for r ≤ 2R and for any d:

α(r; R) = 1 − c(d)x + c(d)

∞∑
n=2

(−1)n (d − 1)(d − 3) · · · (d − 2n + 3)

(2n − 1)[2 · 4 · 6 · · · (2n − 2)]
x2n−1, (21)

where x = r/(2R). For even dimensions, relation (21) is an infinite series, but for odd
dimensions, the series truncates such that α(r; R) is a univariate polynomial of degree d.
In even dimensions, the scaled intersection volume involves transcendental functions (e.g.,
for d = 2, α(r; R) = 2π−1[cos−1(r/2R)− (r/2R)(1−r2/4R2)1/2] for 0 ≤ r ≤ 2R). Figure 2
provides plots of α(r; R) as a function of r for the first five space dimensions. For any
dimension, α(r; R) is a monotonically decreasing function of r. At a fixed value of r in
the interval (0, 2R), α(r; R) is a monotonically decreasing function of the dimension d.

The Fourier transform of the scaled intersection volume function (19), which is given
by

α̃(k; R) =
[w̃(k; R)]2

v1(R)
, (22)
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Figure 2. Left panel: the scaled intersection volume α(r;R) for spherical windows
of radius R as a function of r for the first five space dimensions. The uppermost
curve is for d = 1 and lowermost curve is for d = 5. Right panel: corresponding
Fourier transforms for the case R = 1. The uppermost curve is for d = 5 and the
lowermost curve is for d = 1.

where

w̃(k; R) =
(2π)d/2

k(d/2)−1

∫ R

0

rd/2J(d/2)−1(kr) dr

=

(
2π

kR

)d/2

RdJd/2(kR) (23)

is the Fourier transform of the window indicator function (16). Therefore, the Fourier
transform of α(r; R) is the following non-negative function of k:

α̃(k; R) = 2dπd/2Γ(1 + d/2)

(
Jd/2(kR)

kd/2

)2

. (24)

It has been shown that finding the point process that minimizes the number variance
σ2(R) is equivalent to finding the ground state of a certain repulsive pair potential with
compact support [18]. This problem is directly related to an outstanding problem in
number theory involving generalized zeta functions and lattices [24]. Understanding such
ground states can be facilitated by utilizing ‘duality’ relations that link ground states in
real space to those in Fourier space [25].

3. Determinantal point processes

We will be able to obtain the appropriate d-dimensional generalizations of point processes
corresponding to the eigenvalues of the GUE, the zeros of the Riemann zeta function, or
the one-dimensional fermionic gas by appealing to the notion of a determinantal point
process in R

d [26]. Determinantal point processes were introduced by Macchi [26], who
originally called them fermion point processes. Soshnikov [27] presented a review of
this subject and discussed applications to random matrix theory, statistical mechanics,
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quantum mechanics, and representation theory. It is also noteworthy that examples
of determinantal point processes arise in self-avoiding random walks [29] and uniform
spanning trees [30].

Without loss of generality, the number density is set to unity (ρ = 1) in the ensuing
discussion. Let H(r) = H(−r) be a translationally invariant Hermitian-symmetric kernel
of an integral operator H. A translationally invariant determinantal point process in R

d

exists if the n-particle density functions for n ≥ 1 are given by the following determinants:

ρn(r12, r13, . . . , r1n) = det[H(rij)]i,j=1,...,n, (25)

where H(0) = 1. By virtue of the non-negativity of the ρn in the pointwise sense (cf (4))
and (25), it follows that H must have non-negative minors and H must be a non-negative
operator, which implies that H(r) is positive semidefinite. The latter implies that the
Fourier transform H̃(k) of the kernel H(r) is non-negative, and this property together
with the condition H(0) = 1 =

∫
Rd H̃(k) dk implies that H̃(k) ≤ 1, i.e.,

0 ≤ H̃(k) ≤ 1 for all k. (26)

It follows that any positive semidefinite Hermitian-symmetric kernel H(r) = H(−r) whose
Fourier transform satisfies the inequalities in (26) describes a determinantal point process
with a pair correlation function given by

g2(r) = 1 − |H(r)|2, (27)

such that

0 ≤ g2(r) ≤ 1 and g2(0) = 0, (28)

and a n-particle density given by (25). We see that the total correlation function for a
determinantal point process is given by

h(r) = −|H(r)|2. (29)

The fact that the n-particle density functions can be written in terms of the
determinant specified by (25) leads to bounds on ρn. For example, it trivially follows
that

ρn(r12, r13, . . . , r1n) ≤ 1. (30)

A less obvious but stronger upper bound is as follows:

ρn(r12, r13, . . . , r1n) ≤ ρ2(r12)ρ2(r13) · · ·ρ2(r1n). (31)

We remark also that

ρn(r12, . . . , r1n) ≤ ρm(r12, . . . , r1m) ∀m ≤ n. (32)

Each of these inequalities is a consequence of the determinantal form for ρn and the
characteristics of H ; in particular, (32) follows directly from Fischer’s inequality [31] and
an appropriate partition of the matrix representation for the operator H. Equation (31) is
a result of the more general Hadamard–Fischer inequalities [31] and the relation H(0) = 1.
The positive semidefinite character of H is essential for these inequalities to hold.
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A unique property of determinantal point processes is that each of the n-particle
correlation functions gn can be expressed completely in terms of the pair correlation
function g2. Namely, at unit density we may write

g2(r) = 1 − [H(r)]2 (33)

⇒ H(r) = ±
√

1 − g2(r). (34)

Therefore,

gn(r12, . . . , r1n) = det [H(rij)]1≤i<j≤n

= det

[
±

√
1 − g2(rij)

]
1≤i<j≤n

. (35)

The right side of (34) is well defined for all r ∈ R
+ since 0 ≤ g2(r) ≤ 1 ∀r. We note

that in general H(r) may be either positive or negative for a given value of r as in (2);
therefore, the sign of the square root in (34) must be chosen appropriately. Our ability to
express each gn in terms of the pair correlation function g2 is a reflection of the fact that
the n-particle correlation functions depend on a common kernel H ; such a reformulation
is generally not possible for an arbitrary point process. Thus, one can infer the behavior
of the n-particle correlation functions for n ≥ 3 solely from a knowledge of the behavior
of g2.

A trivial example of a determinantal point process is the case in which H(0) = 1 and
H(r) = 0 for r �= 0. The resulting pair correlation function is given by g2(0) = 0 and
g2(r) = 1 ∀r �= 0, and this function belongs to the same equivalence class as the pair
correlation function of the Poisson point process with respect to Lebesgue measure on the
non-negative reals R

+ (i.e., the functions differ only on a set of measure zero). Note that
Costin and Lebowitz [33] have considered the conditions under which a pair correlation
function of the form g2(r) = 1 − exp(−λr) is a determinantal point process in R

d.
We note in passing that the number of points in a determinantal point process that

falls in a compact set A ⊂ R
d has the same distribution as a sum of independent

Bernoulli(λA
i ) random variables, where λA

i are the eigenvalues of the operator H [28].
Moreover, Hough et al [28] presented an algorithm for generating determinantal point
process in R

d, which we apply elsewhere [14].

4. New determinantal point processes in R
d and their connection to

fermionic gases

4.1. ‘Fermi-sphere’ point processes in R
d

Here we obtain the appropriate generalization of (1) that corresponds to a determinantal
point process in R

d. First, we make the simple observation that the pair correlation
function specified by (1) is related to the Fourier transform α̃(k; R) of the one-dimensional
scaled intersection volume evaluated at k = r and R = π, namely,

g2(r) = 1 − α̃(r; π)

2π
, (36)
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where α̃(k; R) is given by (24) for d = 1. A natural generalization of this pair correlation
function in R

d is to replace the one-dimensional Fourier transform in (36) with its d-
dimensional counterpart (24) evaluated at k = r and divided by (2π)d, i.e.,

g2(r) = 1 − α̃(r; R)

(2π)d
. (37)

However, the value of R in each dimension must be chosen so that such a pair correlation
function corresponds to a determinantal point process in that dimension. In other words,
if we take the positive semidefinite function H(r) to be given by the following radial
function:

H(r) =

√
α̃(r; R)

(2π)d/2
=

√
Γ(1 + d/2)

πd/4

Jd/2(rR)

rd/2
, (38)

R must be determined so that the conditions (26) and (28) are satisfied. Noting that the
expansion of |H(r)|2 for small r to leading order is given by

|H(r)|2 =
Rd

2dπd/2Γ(1 + d/2)
+ O(r2), (39)

and using the condition that g2(0) = 0 (cf (28)) yields that

R = K ≡ 2
√

π [Γ(1 + d/2)]1/d. (40)

Now we must show that a pair correlation function (37) with R = K satisfies the
bounds of (28) and the bounds (26) on the spectral function H̃(k). The square of the
function H(r), specified by (38), is clearly positive and achieves its maximum value of
unity at the origin when R = K and tends to zero in the limit r → ∞, and hence the
bounds of (28) are satisfied when R = K. Referring to relation (23) for the Fourier
transform of the window indicator function, we see that the Fourier transform of (38)
with R = K is simply the indicator function

H̃(k) = w(k; K) = Θ(K − k), (41)

which automatically satisfies (26), where w is specified by (16) and K is given by (40).
In summary, we have demonstrated that there is a determinantal point process in R

d

with n-particle densities given by (25) with the kernel

H(r) =

√
α̃(r; K)

(2π)d/2
, (42)

where K is given by (40). We will call such a determinantal point process a ‘Fermi-
sphere’ point process because H̃(k) corresponds to a spherical window indicator function
in Fourier space and, as we will see, corresponds to the ground state of a fermionic system
in which the Fermi sphere is completely filled (see section 3). In particular, the pair
correlation function of such a point process8 is given by

g2(r) = 1 − 2dΓ(1 + d/2)2
J2

d/2(Kr)

(Kr)d
. (43)

8 Note that for arbitrary density ρ, the corresponding pair correlation function is still given by (43) but with
K = ρ1/d2

√
π Γ(1 + d/2)1/d, which reduces to (40) for unit density.
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Moreover, the corresponding structure factor, at unit number density, takes the form

S(k) = 1 − α(k; K), (44)

where α(k; K) is the scaled intersection volume of two d-dimensional spheres of radius
K separated by a distance k, i.e., the function α(r; R), specified by (21), with the
replacements r → k and R → K. Relation (44) is easily obtained by taking the Fourier
transform of the total correlation function defined by (29), where H(r) is given by (42),
and employing the definition (7) for the structure factor. It follows from the properties of
α(k; K) in (44) that the structure factor S(k) obeys the following bounds for all k:

0 ≤ S(k) ≤ 1, (45)

and achieves its maximum value of unity for k ≥ 2K. The corresponding cumulative
coordination number is given by

Z(r) = v1(r) − d

∫ r

0

J2
d/2(Kx)

x
dx. (46)

Note that the first term in (46) is precisely the cumulative coordination number for a
Poisson point process in R

d and that the second term is strictly negative for any r > 0,
which is a reflection of the short-range repulsive nature of the point process. We will show
that for sufficiently large r, the dominant contribution to Z(r) will be the Poissonian term
v(r). We will see that it is the cumulative coordination number Z(r), rather than the pair
correlation function (contrary to conventional wisdom), that enables one to identify and
quantify an effective ‘hard core’ diameter of the determinantal point processes.

It is instructive to examine the asymptotic behaviors of g2(r), S(k), and Z(r) for the
Fermi-sphere point process. By virtue of the asymptotic properties of the Bessel function
of arbitrary order, the small-r and large-r forms of the pair correlation function (43) are
respectively given by

g2(r) =
K2

d + 2
r2 − (d + 3)K4

2(d + 2)2(d + 4)
r4 + O(r6) (r → 0) (47)

and

g2(r) = 1 − 2Γ(1 + d/2) cos2 (rK − π(d + 1)/4)

K πd/2+1 rd+1
(r → ∞). (48)

We see that g2(r) tends to zero quadratically in r in the limit r → 0, independently
of the dimension. The coefficient of the quadratic term in (47) for positive d attains
its maximum value of π2/3 = 3.2898 . . . for d = 1 and monotonically decreases with
increasing dimension, asymptoting to 2π/e = 2.3114 . . . in the limit d → ∞. Moreover,
g2(r) tends to unity for large pair distances with a decay rate that is controlled by the
power law 1/rd+1 for any d ≥ 1.

The latter result implies that the structure factor S(k) tends to zero linearly in k in
the limit k → 0. Using (21) and (44), it is easy to verify that as k tends to zero at ρ = 1,

S(k) =
c(d)

2K
k + O(k3) (k → 0), (49)

where c(d) is a d-dependent positive constant given by (20). We see that at unit density,
the point process in R

d for any d is hyperuniform, and the structure factor S(k) has a
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Figure 3. Left panel: comparison of the pair correlation functions for d = 1 and
3. Right panel: the corresponding structure factors.

non-analytic behavior at the origin given by S(k) ∼ |k| (k → 0). The coefficient of the
linear term in (49) for positive d attains its minimum value of 1/(2π) = 0.1591 . . . for
d = 1 and monotonically increases with increasing dimension such that it asymptotes to
e1/2/(2π) = 0.2624 . . . in the limit d → ∞. In three dimensions, this unusual linear non-
analytic behavior of the structure factor at k = 0 is a well-known property of bosons
in their grounds states [10]–[12] and, more recently, has been shown to characterize
maximally random jammed sphere packings [13].

In figure 3, we compare pair statistics in both real and Fourier space for d = 1 and 3
at unit density. We see that the amplitudes of the oscillations in g2(r) that are apparent
for d = 1 are significantly reduced in the corresponding three-dimensional pair correlation
function. The smallest value of r for which g2(r) attains its maximum value of unity,
which we denote by r0, is determined by the first positive zero of Jd/2(Kr), which for
sufficiently large d is given by

Kr0 =
d

2
+ 1.472 9154d 1/3 +

1.301 687

d 1/3
− 0.007 942

d
+ O

(
1

d 5/3

)
(d → ∞). (50)

Since K increases with increasing d and grows like
√

2πd/e for large d, r0 grows like the
square root of d for large d. Similarly, the smallest value of k for which S(k) attains its

maximum value of unity grows with increasing d and for large d grows like
√

d.
The results immediately above enable us to obtain the following small-r and large-r

forms of the cumulative coordination number:

Z(r) = v1(r)

[
dK2

(d + 2)2
r2 − d(d + 3)K4

2(d + 2)2(d + 4)2
r4 + O(r6)

]
(r → 0) (51)

and

Z(r) = v1(r) − 1 + O(r−1) (r → ∞). (52)

It is straightforward to prove that the asymptotic result (52) is a rigorous lower
bound on Z(r) for all r using the identity

∫ ∞
0

dx J2
d/2(xK)/x = 1/d, the inequality
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Figure 4. Cumulative coordination number Z(r) as a function of r for d = 3 and
17 compared to the corresponding lower bounds obtained from the inequality (53).

∫ ∞
0

dx J2
d/2(xK)/x ≥

∫ r

0
dx J2

d/2(xK)/x for all positive r, and relation (46). Indeed, since

Z(r) is always non-negative, we have the lower bounds

Z(r) ≥
{

0, r < D,
v1(r) − 1, r ≥ D,

(53)

where the length scale

D =
Γ(1 + d/2)1/d

√
π

(54)

is the zero of v1(r) − 1. The length scale D can be regarded as an upper bound on the
effective hard core diameter, which clearly grows with increasing dimension as vividly
illustrated in figure 4, which compares the exact form of Z(r) with the lower bound (53)
for d = 3 and 17. For large d, the effective hard core diameter is given by the asymptotic
expression

D =

√
d

2πe

[
1 +

ln(d)

2
+ O(1)

]
(d → ∞), (55)

which is seen to grow like the square root of d. This growth of the effective hard
core diameter with dimension is a conceptually important conclusion that runs counter
to conventional understanding of corresponding fermionic systems, which identifies the
inverse ‘Fermi’ radius, i.e., K−1 = 1/[2

√
πΓ(1 + 1/d)1/d] (a decreasing function of d) with

an effective hard core diameter. We elaborate on this point in section 3.
The hyperuniformity of the point process implies that the number variance σ2(R)

for a spherical window of radius R must grow slower than Rd (i.e., the window volume)
for large R. However, the fact that the large-r behavior of the pair correlation function
is controlled by the power law 1/rd+1 means that σ2(R) must also grow faster than the
surface area of the window or Rd−1. In particular, upon substitution of (43) into (13), an
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Figure 5. Top panel: a realization of 50 points of a Fermi-sphere point process in a
linear ‘box’ subject to periodic boundary conditions. Bottom panel: a realization
of 100 points of a Fermi-sphere point process in a square box subject to periodic
boundary conditions.

asymptotic analysis reveals that for large R

σ2(R) =

{
dπ(d−4)/2

2Γ[(d + 1)/2]Γ(1 + d/2)1/d
ln(R) + C(d)

}
Rd−1 + O(Rd−2) (R → ∞), (56)

where C(d) is a d-dimensional constant of order unity. We remark that a similar
asymptotic scaling is expected to hold even when the observation window is non-spherical;
a discussion of this point has been provided in [32]. We see that the number variance
scaled by the window surface area, σ2(R)/Rd−1, grows like ln(R), independently of the
dimension. This unusual number variance growth law in three dimensions has also been
recently seen in maximally random jammed sphere packings [13], which can be viewed
as prototypical glasses because they are simultaneously perfectly rigid mechanically and
maximally disordered. Note that the coefficient multiplying ln(R) in (56) decays to zero
exponentially fast as d → ∞, and, therefore, the surface-area term Rd−1 increasingly
becomes the dominant one in the large-d limit. This behavior should be contrasted with
that of the number variance for a Poisson point process, which grows like the window
volume, i.e., Rd.

Figure 5 graphically depicts the Fermi-sphere point processes in one and two
dimensions, which are generated using the algorithm of Hough et al [28]. Details and
applications of this algorithm are reported by us elsewhere [14].
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Figure 6. Comparison of the pair correlation function of the Fermi-sphere point
process to that of the Fermi-shells point process for d = 2. In the latter case,

kF = 2
√

π, k
(1)
F = 4 and k

(2)
F =

√
k2
F + (k(1)

F )2.

4.2. ‘Fermi-shells’ point processes in R
d

Here we consider a generalization of the Fermi-sphere point process in which H̃(k) is
an indicator function for concentric rings in reciprocal space; we denote the resulting
determinantal process as the ‘Fermi-shells’ point process. Without loss of generality,

define 2m radii k
(j)
F , where j ∈ {1, 2, . . . , 2m− 1, 2m} and m ∈ N, such that the region of

d-dimensional space within the ball B(0; k
(1)
F ) is empty, the annulus between k

(2)
F and k

(1)
F

is filled, and so forth. We therefore have m filled concentric rings in reciprocal space. Since
the conditions for a determinantal point process are fulfilled for any indicator function
in reciprocal space [33], the pair correlation function will still be given by (27). The
calculation of H(r) proceeds as follows:

H(r) =

(
1

2π

)d m∑
j=1

[
F{Θ(k

(2j)
F − k)} − F{Θ(k

(2j−1)
F − k)}

]
, (57)

which implies

H(r) =

(
1

2π

)d/2 m∑
j=1

⎡
⎣

(
k

(2j)
F

r

)d/2

Jd/2(k
(2j)
F r) −

(
k

(2j−1)
F

r

)d/2

Jd/2(k
(2j−1)
F r)

⎤
⎦ , (58)

where F denotes the Fourier transform to coordinate space.

It is important to note that the values of the various k
(j)
F are not independent of each

other and are constrained by the density (here set to unity) according to

m∑
j=1

[(
k

(2j)
F

)d

−
(
k

(2j−1)
F

)d
]

= (2
√

π)dΓ(1 + d/2). (59)

The filling of Fermi shells generally introduces a greater level of short-range
correlations relative to the Fermi-sphere case (see figure 6).
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4.3. Spin-polarized fermionic gas in R
d

Note that we do not know of any correspondence of the general Fermi-shells point process
in R

d for any d ≥ 2 to random matrix theory or the zeros of any generalized zeta function
in number theory. However, we can show that a spin-polarized fermionic gas in R

d for any
d ≥ 1 has the same n-particle densities. For simplicity, this comparison will be made for
the Fermi-sphere case, i.e., we will demonstrate that the ρn are given by (25) with H(r)
given by (42) provided that the Fermi radius kF = K = 2

√
πΓ(1 + d/2)1/d.

We first recall some general properties of the n-particle density functions ρn for a
ground-state non-interacting gas of fermions in R

d, d ≥ 1. Assume that we have N spin-
polarized fermions in a volume V with number density ρ = N/V . The n-particle density
functions are defined for all n ≤ N with respect to the ground state |φ0〉 by

ρn(x1, . . . ,xn) = 〈φ0|
n∏

i=1

[ψ∗(xi)ψ(xi)] |φ0〉, (60)

where the operators ψ∗(x), ψ(x) are the creation and annihilation field operators,
respectively. Using the momentum representation, the field operators are defined in terms
of the particle creation and annihilation operators a∗

k, ak:

ψ(x) =
∑
k

φk(x)ak, (61)

ψ∗(x) =
∑
k

φk(x)a∗
k, (62)

φk(x) =

(
1

V

)1/2

exp [i(k,x)] , (63)

φk(x) =

(
1

V

)1/2

exp [−i(k,x)] , (64)

where (k,x) =
∑d

i=1 kixi is the Euclidean inner product of two real-valued vectors. The
field operators for fermions must satisfy the following anticommutation relation:

{ψ(xi), ψ
∗(xj)} = δ(xi − xj). (65)

Wick’s theorem along with the anticommutation relation (65) immediately allows
us to write the expectation value in (60) as a determinant (equivalently, see Macchi’s
discussion of fermion processes [26]):

ρn(x1, . . . ,xn) =
∑
σ∈Sn

(−1)σ

n∏
i=1

〈φ0|ψ∗(xi)ψ(xσ(i))|φ0〉 (66)

= det [〈φ0|ψ∗(xi)ψ(xj)|φ0〉]1≤i,j≤n , (67)

where Sn denotes the permutation group for n objects. Namely, Wick’s theorem relates
the n-particle density functions to the n! ways of pairing the 2n creation and annihilation
field operators; anticommutation of the operators introduces the factor of (−1)σ in (66).
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For the ground-state system, the argument of the determinant in (67) may be
evaluated by filling the Fermi sphere up to the Fermi radius kF, with the result

G(x,x′) = 〈φ0|ψ∗(x)ψ(x′)|φ0〉 =

(
kF

2π

)d/2

r−d/2Jd/2(kF|x − x′|). (68)

Since G is a translationally invariant function, we will abuse notation slightly and write
G(x,x′) = G(|x − x′|) = G(r; kF), making the parameterization with kF explicit.

In accordance with our established convention and without loss of generality, let ρ = 1.
For a system of N spin-polarized fermions, the Fermi radius kF is given exactly by

kF = 2
√

π {Γ [(d/2) + 1]}1/d = K. (69)

Therefore, we may equivalently write for (68)

G(r; K) = π−d/4
√

Γ [(d/2) + 1]r−d/2Jd/2(rK) = H(r). (70)

The result in (70) shows that our proposed Fermi-sphere point process corresponds exactly
to the one generated by a system of non-interacting fermions in d dimensions.

The connection for d = 1 between this system of non-interacting fermions and the
CUE of random matrix theory implies that the correlations in the ground state resulting
from the Pauli exclusion principle are equivalent to those induced on a d = 2 Coulomb
gas constrained to the unit ring and interacting via a logarithmic pair potential at finite
temperature T = 1/2 in units such that Boltzmann’s constant kB = 1. The argument in
the appendix shows that this reduction of the probability density to a classical particle
system with at most two-body interactions is peculiar to the choice of the indicator
function in reciprocal space; in general, one must include at least three-body interactions
to describe the system appropriately.

We also mention the significance of (54) in defining an effective hard core on the system
of non-interacting fermions in each dimension. This issue is equivalent to assigning an
appropriate length scale for the widely studied (see, e.g., [37]) Fermi correlation hole. An
argument primarily due to Slater [38] suggests that the correlations which result from
antisymmetry in the many-body wavefunction extend outward for a distance r0 � k−1

F .
The reasoning behind this choice of length scale relies on the introduction of an exchange
hole into the system with approximate spherical symmetry and a radius determined by
the de Broglie wavelength associated with the Fermi radius kF. This notion has been
quantified for interacting atomic systems by considering, for example, the difference of
distribution functions derived from Hartree–Fock and Hartree wavefunctions [39], but the
k−1

F scaling for the non-interacting case is still reported in modern texts [40].
However, we recall from (40) that as d increases, the value of the Fermi radius also

increases; in fact, kF ∼
√

d for sufficiently large d. This behavior implies that k−1
F → 0 as

d → +∞, meaning that the effective hard core diameter would become negligibly small
for sufficiently large d if it were to scale as k−1

F . This conclusion contradicts the fact that
g2(r) → 0 pointwise as d → +∞ for all r ∈ [0, +∞). In other words, the range in r over
which one finds a small probability of finding two particles in close proximity increases
with dimension, requiring a different means by which to quantify the extent of the effective
hard core.
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The definition of Z(r) in (8) suggests that instead we take the value of D in (54)
as a measure of the effective hard core diameter. We note that since Z(r) is a non-
negative monotonically increasing function of r and, therefore, non-zero for some range
in r over which its lower bound is zero, D must represent an upper bound to the effective
hard core radius. This representation of the effective hard core diameter is quantitatively
well defined for any dimension due to the inclusion of the xd−1 factor under the integral
in (8) from the surface area of the d-dimensional ball; it is this factor which appropriately
rescales g2 such that (53) represents a true lower bound on Z(r) in any dimension by the
argument above. It is also for this reason that neither g2(r) nor S(k) alone is sufficient to
define the effective hard core diameter in a quantitative manner. In contrast to Slater’s
scaling of the effective hard core diameter, D ∼ kF in any dimension by the definition of
the Fermi radius, which is in accordance with the high-dimensional behaviors of both g2

and kF.

5. Nearest-neighbor functions

It is useful to characterize point processes by examining other quantities besides the
n-particle correlation functions. One popular descriptor used in one dimension is the
so-called ‘gap’ distribution function p(z) [3], which characterizes the spacing between
the points. In the random matrix theory literature, this quantity often has erroneously
and misleadingly been called the ‘nearest-neighbor-spacing’ distribution because gaps to
the right of some reference point are considered. However, p(z) makes no distinction
between gaps to the left or right of some reference point. The quantity p(z) dz gives the
probability of finding a gap (a line interval empty of points) of length between z and
z + dz. The function p(z) is called the chord length probability density in the theory of
random media [34, 35].

In the case of random matrix theory, there exist exact representations of p(z) for the
spacings of the eigenvalues in the GOE, GUE, and GSE, but they can only be determined
numerically for general situations. A remarkably accurate approximation for the GOE in
the infinitely large matrix limit is the so-called Wigner surmise. The Wigner surmise has
been generalized to any of the aforementioned ensembles as follows:

pβ(z) = Aβzβe−Bβz2

, (71)

where the parameters Aβ and Bβ, which depend on reciprocal temperature β, are obtained
from the normalization of both p(z) and its first moment, or the average gap size 〈z〉. For
the GOE, GUE, and GSE, β = 1, 2, and 4, respectively, and A1 = π/2, B1 = π/4,
A2 = 32/π2, B2 = 4/π, and A4 = 262 144/(729π2), B4 = 64/(9π).

For d ≥ 2, the gap distribution function is strictly not a meaningful descriptor of
point processes. The natural generalizations of p(z) in higher dimensions are the nearest-
neighbor functions [35, 36]. Nearest-neighbor functions describe the probability of finding
the nearest point of a point process in R

d at some given distance from a reference point
in the space. Such statistical quantities are called ‘void’ or ‘particle’ nearest-neighbor
functions if the reference point is an arbitrary point of the space or an actual point of the
point process, respectively.
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5.1. Definitions

First, we recall the definitions of the void and particle nearest-neighbor probability density
functions HV(r) and HP(r), respectively:

HV(r) dr = Probability that a point of the point process lies at
a distance between r and r + dr from an arbitrary
point in the space.

(72)

HP(r) dr = Probability that a point of the point process lies at
a distance between r and r + dr from another point
of the point process.

(73)

It is useful to introduce the associated dimensionless ‘exclusion’ probabilities EV(r) and
EP(r) defined as follows:

EV(r) = Probability of finding a spherical cavity of radius r
empty of any points in the point process.

(74)

EP(r) = Probability of finding a spherical cavity of radius r
centered at an arbitrary point of the point process
empty of any other points.

(75)

It follows that the exclusion probabilities are complementary cumulative distribution
functions associated with the density functions and thus are related to the latter via

EV(r) = 1 −
∫ r

0

HV(x) dx (76)

and

EP(r) = 1 −
∫ r

0

HP(x) dx. (77)

Differentiating the exclusion–probability relations with respect to r gives

HV(r) = −∂EV

∂r
(78)

and

HP(r) = −∂EP

∂r
. (79)

The nth moment of HP(r) is defined as

λn =

∫ ∞

0

rnHP(r) dr. (80)

Of particular interest to us is the mean nearest-neighbor distance

λ ≡ λ1 =

∫ ∞

0

rHP(r) dr

=

∫ ∞

0

EP(r) dr. (81)
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It is useful to express the density functions HV(r) and HP(r) as a product of two
functions as follows:

HV(r) = ρs1(r)GV(r)EV(r) (82)

and

HP(r) = ρs1(r)GP(r)EP(r), (83)

where s1(r) is the surface area of a d-dimensional sphere of radius r given by (9). The
quantities GV(r) and GP(r) are called the ‘conditional’ nearest-neighbor functions and
have the following interpretation:

ρs1(r)GV(r) dr = Given that a spherical cavity of radius r
centered at an arbitrary point in the space is
empty of any points of the point process, the
probability of finding a point in the spherical
shell of volume s1(r) dr surrounding the
arbitrary point.

(84)

ρs1(r)GP(r) dr = Given that a spherical cavity of radius r
centered at a randomly selected point of
the point process is empty of any other
points, the probability of finding a point
in the spherical shell of volume s1(r) dr
surrounding the randomly selected point.

(85)

Thus, it follows that the exclusion probabilities are also given by

EV(r) = exp

[
−ρs1(1)

∫ r

0

xd−1GV(x) dx

]
(86)

and

EP(r) = exp

[
−ρs1(1)

∫ r

0

xd−1GP(x) dx

]
. (87)

We remark that knowledge of any one function H , E, or G (either void or particle) is
sufficient for determining the other two functions via the relations mentioned above.

5.2. Series representations

The nearest-neighbor functions can be expressed as infinite series whose terms are integrals
over the n-particle density functions [35, 36]. For example, the void and particle exclusion
probability functions for a translationally invariant point process are respectively given
by

EV(r) = 1 +
∞∑

k=1

(−1)k ρk

k!

∫
Rd

gk(r
k)

k∏
j=1

Θ(r − |x − rj |) drj (88)
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and

EP(r) = 1 +
∞∑

k=1

(−1)k ρk

k!

∫
Rd

gk+1(r
k+1)

k+1∏
j=2

Θ(r − r1j) drj. (89)

The corresponding series for HV(r) and HP(r) are obtained from the series above using (78)
and (79).

In general, exact evaluations of the aforementioned infinite series are not possible,
except for simple processes such as the Poisson point process. In the latter instance,
because ρn = ρn, both series (88) and (89) can be summed exactly to give

EV(r) = EP(r) = exp[−ρv1(r)], (90)

where v1(r) is the volume of a d-dimensional sphere of radius r given by (14). Therefore,
for a Poisson point process, we have from (78), (79), (82), and (83) that

HV(r) = HP(r) = ρs1(r) exp[−ρv1(r)], GV(r) = GP(r) = 1. (91)

We see that there is no distinction between the void and particle quantities for the Poisson
distribution, which is generally not the case for correlated point processes.

5.3. Rigorous bounds

Torquato has given rigorous upper and lower bounds on the so-called canonical n-point
correlation function Hn(xm;xp−m; rq) (with n = p + q and m ≤ p) for point processes in
R

d. Since the void and particle exclusion probabilities and nearest-neighbor probability
density functions are just special cases of Hn, then we also have strict bounds on them
for such models. Let X represent either EV, HV, EP, or HP and X(k) represent the kth
term of the series for these functions. Furthermore, let

W � =
�∑

k=0

(−1)kX(k) (92)

be the partial sum. Then it follows that for any of the exclusion probabilities or nearest-
neighbor probability density functions, we have the bounds

X ≤ W �, for � even,

X ≥ W �, for � odd.
(93)

Application of the aforementioned inequalities yields the first three successive bounds
on the non-negative void exclusion probability:

EV(r) ≤ 1, (94)

EV(r) ≥ 1 − ρv1(r), (95)

EV(r) ≤ 1 − ρv1(r) +
ρ2

2
s1(1)

∫ 2r

0

xd−1vint
2 (x; r)g2(x) dx, (96)

where vint
2 (x; r) = v1(r)α(x; r) is the intersection volume of two d-dimensional

spheres (cf (18)). The corresponding first two non-trivial bounds on the non-negative
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nearest-neighbor probability density function HV(r) are as follows:

HV(r) ≤ ρs1(r), (97)

HV(r) ≥ ρs1(r) −
ρ2

2
s1(1)

∫ 2r

0

xd−1sint
2 (x; r)g2(x) dx, (98)

where sint
2 (x; r) ≡ ∂vint

2 (x; r)/∂r is the surface area of the intersection volume vint
2 (x; r).

Bounds on the conditional function GV(r) follow by combining the bounds above on EV(r)
and HV(r) and definition (82). For example, we obtain the following bounds:

GV(r) ≤ 1

1 − ρv1(r)
(99)

and

GV(r) ≥
1 − (ρ/s1(r))s1(1)

∫ 2r

0
xd−1sint

2 (x; r)g2(x) dx

1 − ρv1(r) + (ρ2/2)s1(1)
∫ 2r

0
xd−1vint

2 (x; r)g2(x) dx
, (100)

which should only be applied for r such that GV(r) remains positive. The bounds above
lead to the following properties of the nearest-neighbor functions at the origin:

EV(0) = 1, HV(0) = 0, GV(0) = 1. (101)

Similarly, the first three successive bounds on the particle exclusion probability are
given by

EP(r) ≤ 1, (102)

EP(r) ≥ 1 − Z(r), (103)

EP(r) ≤ 1 − Z(r) +
ρ2

2

∫
Rd

∫
Rd

Θ(r − r12)Θ(r − r13)g3(r12, r13, r23) dr2 dr3, (104)

where Z(r) is the cumulative coordination number defined by (8). The corresponding first
two non-trivial bounds on the non-negative nearest-neighbor probability density function
HP(r) are as follows:

HP(r) ≤ ρs1(r)g2(r), (105)

HP(r) ≥ ρs1(r)g2(r) − ρ2

∫
Rd

∫
Rd

δ(r − r12)Θ(r − r13)g3(r12, r13, r23) dr2 dr3, (106)

where δ(r) is the radial Dirac delta function. Bounds on the conditional function GP(r)
follow by combining the bounds on EP(r) and HP(r) and definition (83). For example,
we obtain the following bounds:

GP(r) ≤ g2(r)

1 − Z(r)
(107)

and

GP(r) ≥
g2(r) − (ρ/s1(r))

∫
Rd

∫
Rd δ(r − r12)Θ(r − r13)g3(r12, r13, r23) dr2 dr3

1 − Z(r) + (ρ2/2)
∫

Rd

∫
Rd Θ(r − r12)Θ(r − r13)g3(r12, r13, r23) dr2 dr3

, (108)
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which should only be applied for r such that GP(r) remains positive. The bounds above
lead to the following properties of the nearest-neighbor functions at the origin:

EP(0) = 1, HP(0) = 0, GP(0) = 0. (109)

We now obtain bounds on the mean nearest-neighbor distance λ at unit density
using the aforementioned upper and lower bounds on EP(r). Let us define the following
distances:

λL =

∫ r0

0

[1 − Z(r)] dr (110)

and

λU =

∫ +∞

0

exp[−Z(r)] dr, (111)

where r0 is the location of the zero of 1−Z(r). In the light of the bounds (103) and (127),
it is clear that λL and λU bound λ from below and above, respectively, i.e.,

λL ≤ λ ≤ λU. (112)

5.4. Results for Fermi-sphere point processes

5.4.1. Exact determinantal representations. The Fermi-sphere point process is unique in
that both the particle and void exclusion probabilities may be expressed as determinants
over N × N matrices, the elements of which are related to overlap integrals of the basis
functions φk = (1/

√
V ) exp[i(k,x)] on B(0; r), a d-dimensional ball of radius r centered

at the origin (the exact location of the ball’s center is irrelevant since the point process
is translationally invariant). The thermodynamic limit can then be taken appropriately.
We provide the details of this analysis elsewhere [14] and immediately state the results:

EV(r) = det[I − M(r)], (113)

EP(r) = EV(r) tr{A[I − M(r)]−1}, (114)

where I is the N × N identity matrix, and the matrices M(r) and A are defined by

Mij(r) =

∫
B(0;r)

φi(x)φj(x) dx, (115)

Aij = φi(0)φj(0)/ρ, (116)

where ρ is the number density. We recall that knowledge of EV(r) and EP(r) is sufficient
for determining all of the remaining nearest-neighbor functions HV/P (r) and GV/P (r).
Note that as r → 0, Mij(r) → 0 for all i and j, which provides the necessary results
EV(0) = 1 and EP(0) = tr(A) =

∑
i |φi(0)|2/ρ = H(0) = 1. We mention that these

determinants must be evaluated numerically but essentially exactly for finite N × N
matrices, where N is chosen to be sufficiently large to capture accurately the behavior
of the system in the thermodynamic limit. Evidence for this convergence is provided in
another paper [14].
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5.4.2. Bounds, comparison to exact results, and link to sphere packings. We now obtain
bounds for nearest-neighbor functions for the Fermi-sphere point process and compare
them to the corresponding aforementioned exact results. Using the identity

s1(1)

∫ 2r

0

xd+1vint
2 (x; r) dx =

2d

d + 2
r2[v1(r)]

2, (117)

the leading order term of the small-r expansion (47), and the upper bound (96), we obtain
the weaker upper bound

EV(r) ≤ 1 − ρv1(r) + ρ2 dK2

(d + 2)2
r2[v1(r)]

2, (118)

which is exact through terms of order r2(d+1). Therefore, we also have

HV(r) = ρs1(r) − ρ22(d + 1)K2

d(d + 2)2
r3[s1(r)]

2 + O(r2d+3) (119)

and

GV(r) = 1 + ρv1(r) + ρ2v1(r)
2 + O(r2d+1). (120)

We see that up through order r2d+1, GV(r) ≥ 1. This bound will be shown to apply for
any r.

Employing the inequality g3(r12, r13, r23) ≤ g2(r12)g2(r13) (cf (31)) in the upper
bound (104) on EV(r) and lower bound (106) on HP(r), we find the following
corresponding weaker bounds:

EP(r) ≤ 1 − Z(r) +
Z2(r)

2
(121)

and

HP(r) ≥ ρs1(r)g2(r) − ρs1(r)g2(r)Z(r). (122)

These bounds in conjunction with the analogous evaluations of the bounds (107) and (108)
on the conditional pair function GP(r) yields its exact small-r behavior up through terms
of order r4:

GP(r) =
K2

d + 2
r2 − (d + 3)K4

2(d + 2)2(d + 4)
r4 + O(r6). (123)

Comparing this expansion to (47) reveals that GP(r) = g2(r) up through terms of order
r4.

We can also show that

GV(r) ≥ 1 for all r (124)

and

GP(r) ≥ g2(r) for all r. (125)
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These results are obtained from definitions (86) and (87) and the following upper bounds
on the exclusion probabilities:

EV(r) ≤ exp[−ρv1(r)] for all r (126)

and

EP(r) ≤ exp[−Z(r)] for all r. (127)

To prove (126) and (127), we recall the series representations of EV and EP in (88)
and (89), respectively, which we may rewrite in the following more compact form:

EP/V (r) = 1 +
+∞∑
k=1

(−1)kE
(k)
P/V , (128)

E
(k)
V =

ρk

k!

∫
Rd

gk(r
k)

k∏
j=1

Θ(r − |x − rj|) drj, (129)

E
(k)
P =

ρk

k!

∫
Rd

gk+1(r
k)

k+1∏
j=2

Θ(r − r1j) drj. (130)

It is important to note that the series in (128) converge absolutely for all r ∈ R
+, which

is easily seen from the inequalities

E
(k)
V ≤ ρk

k!

∫
Rd

k∏
j=1

Θ(r − |x − rj|) drj =
[ρv1(r)]

k

k!
, (131)

E
(k)
P ≤ ρk

k!

∫
Rd

k+1∏
j=2

g2(r1j)Θ(r − r1j) drj =
[Z(r)]k

k!
. (132)

Equations (131) and (132) follow directly from the inequalities in (30) and (31),
respectively. It is therefore true that

|EV(r)| ≤ 1 +

+∞∑
k=1

E
(k)
V ≤

+∞∑
k=0

[ρv1(r)]
k

k!
= exp[ρv1(r)] < +∞, (133)

|EP(r)| ≤ 1 +

+∞∑
k=1

E
(k)
P ≤

+∞∑
k=0

[Z(r)]k

k!
= exp[Z(r)] < +∞, (134)

and absolute convergence of the series in (128) implies convergence of those series, which

in turn allows us to conclude that the sequences E
(k)
P/V → 0 as k → +∞.

We now wish to compare the series in (128) with the following series representations
of the proposed upper limits in (126) and (127):

E
(UL)
V (r) = 1 − ρv1(r) +

+∞∑
k=2

[−ρv1(r)]
k

k!
, (135)

E
(UL)
P (r) = 1 − Z(r) +

+∞∑
k=2

[−Z(r)]k

k!
. (136)
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Figure 7. Left panel: upper and lower bounds on EV(r) for d = 4 and ρ = 1
as obtained from (95) and (126) compared to the corresponding exact evaluation
of it. Right panel: upper and lower bounds on EP(r) for d = 4 and ρ = 1 as
obtained from (103) and (127), respectively, compared to the corresponding exact
evaluation of it.

Note that the series in (128), (135), and (136) agree up to their second terms; the
alternating series test then implies that the contribution from the remaining terms is
no greater than the magnitude of the third terms in the series. Equations (131) and (132)
therefore show that the series in (135) and (136) in actuality do bound the series in (128)
from above, thereby proving the claims. The lower bounds in (124) and (125) immediately
follow from monotonicity and positivity of the exponential function along with (86)
and (87).

The left panel of figure 7 compares the upper bound (126) and lower bound (95) of
EV for a Fermi-sphere point process for d = 4 to the corresponding exact evaluation.
The right panel of the same figure compares the upper and lower bounds on EP(r)
for d = 4 as obtained from (103) and (127), respectively, to the corresponding exact
evaluation of it. The upper bounds on both exclusion probabilities provide reasonable
estimates of the exact results as compared to the corresponding lower bounds. Figure 8
compares upper and lower bounds on GP(r) for d = 4 as obtained from (103) and (127),
respectively, to the corresponding exact evaluation of it. Not surprisingly, the bounds
become better estimators as the dimension increases and therefore can be profitably used
in high dimensions, where exact evaluations are difficult to obtain. The left panel of
figure 9 shows the upper bound (126) and lower bound (95) for a Fermi-sphere point
process for d = 17. It is seen that the bounds essentially converge to unity for the range
0 ≤ r ≤ 0.8 and are relatively close to one another for 0.8 ≤ r ≤ 1.1. The right panel
of figure 9 depicts the analogous bounds on EP(r) for d = 17. Note that the bounds on
EV(r) behave almost exactly like the bounds on EP(r) at this value of d. This graphically
suggests that as d becomes large, the exact expressions for EV(r) and EP(r) approach the
same step function, which we demonstrate below.
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Figure 8. Upper and lower bounds on GP(r) for d = 4 and ρ = 1 as
obtained from (103) and (127), respectively, compared to the corresponding exact
evaluation of it.

Figure 9. Left panel: upper and lower bounds on EV(r) for d = 17 and ρ = 1 as
obtained from (95) and (126). Right panel: upper and lower bounds on EP(r)
for d = 17 and ρ = 1 as obtained from (103) and (127).

We now show that both EP and EV tend to the same step function Θ(D − r) in the
large-d limit, where D is the estimate of the effective hard core diameter defined by (54).
We begin by utilizing the following upper bound on EP(r):

EP(r) ≤
{

1, r < D,
exp[1 − v1(r)], r ≥ D.

(137)

This upper bound is obtained by combining lower bound (53) on the cumulative
coordination number Z(r) and upper bound (127), and hence is a weaker upper bound
on EP(r) than (127). As d tends to infinity, we see that the upper bound (137) tends to
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the step function Θ(D − r), i.e.,

EP(r) ≤ Θ(D − r) (d → ∞). (138)

Now we show that EP is bounded from below by the same step function in this limit, i.e.,

EP(r) ≥ Θ(D − r) (d → ∞). (139)

To prove this, we note that the lower bound (103) on EP(r) tends to a unit step function
as d becomes large (cf figure 9) whose discontinuity location cannot exceed the zero of
1 − Z(r), D0, which can be estimated to be given by

D0 =

[
(d + 2)2Γ(1 + d/2)

dK2

]1/(d+2)

. (140)

This estimate, which bounds the zero from below and becomes increasingly accurate
as d tends to infinity, is obtained by substituting the leading term of the asymptotic
expansion (51) into 1 − Z(r) and solving for D0. For large d, D0 has the asymptotic
expansion

D0 =

√
d

2πe

[
1 − ln(d)

2
+ O(1)

]
(d → ∞). (141)

Comparison of this expansion to the corresponding one for D (cf (55)) reveals that D
bounds D0 from above for sufficiently large d and D0 → D in the limit d → ∞. Thus, the
lower bound on EP(r) in this limit is given by (139). Combination of this lower bound
with upper bound (138) leads to the following high-dimensional behavior:

EP(r) → Θ(D − r) (d → ∞), (142)

where we recall that D grows like
√

d for large d (cf (55)). Following the analogous analysis
using the lower bound (95) and upper bound (126) on EV(r), we can show

EV(r) → Θ(D − r) (d → ∞). (143)

It is noteworthy that this analysis means that the lower bound (53) on the cumulative
coordination number Z(r) becomes exact in the limit d → ∞. This in turn implies an
‘effective’ pair correlation function g∗

2(r) that tends to the following step function as d
tends to infinity:

g∗
2(r) → Θ(r − D) (d → ∞). (144)

This effective pair correlation function g∗
2(r) is to be distinguished from the true pair

correlation function (37), which tends to unity for distances beyond the length scale D,
but remains a quadratic function of r for small r. Because the effective pair correlation
function is based on the behavior of Z(r), which weights the true g2(r) by rd−1 (due to the
appearance of s1(r), the surface area of a sphere of radius r), g∗

2(r) tends to a step function
in the high-dimensional limit. The fact that the oscillations of g2(r) seen in low dimensions
(cf figure 3) effectively vanish in the large-d limit is consistent with the decorrelation
principle [16], which, roughly speaking, states that unconstrained correlations that exist
in low dimensions vanish as d tends to infinity, and all higher-order correlation functions
gn for n ≥ 3 may be expressed in terms of g2 within some small error.
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We have already shown in (35) that the latter claim is true for any determinantal
point process. The former claim is seen from the form of g∗

2 in (144), which immediately
suggests that asymptotic unconstrained correlations in the Fermi-sphere point process
diminish with respect to increasing dimension d. In other words, g2 flattens at unity for
sufficiently large r as d becomes large, which implies that long-range correlations between
any two particles in the system diminish with respect to increasing dimension, leaving
only the small-r correlations, which extend outward for a greater range in r as d increases.
This conclusion in conjunction with (35) implies that for sufficiently large d and for large
particle separations, gn ≈ det I = 1, where I is the n×n identity matrix. Therefore, all n-
particle correlations also diminish for large particle separations and large d in accordance
with a decorrelation of the system. We remark that the fact that g2(r) → 0 as r → 0 does
not affect the statement of the decorrelation principle for the Fermi-sphere point process;
borrowing the language of quantum mechanics, these correlations arise from the constraint
of antisymmetry in the many-particle wavefunction and therefore must be enforced in any
dimension.

For sufficiently large d this analysis implies that the system reduces to a sphere packing
with an effective hard core diameter equal to D. The connection to sphere packings implies
that the fraction of space φ covered by the spheres at unit number density is bounded
from above by the following inequality:

φ ≤ v1(D/2) =
1

2d
. (145)

Interestingly, Minkowski proved a lower bound on the coverage fraction of the densest
lattice sphere packings that asymptotically is controlled by 1/2d [41]. We remark on the
significance of this result in section 6.

5.4.3. Mean nearest-neighbor distance. We now obtain analytical estimates of the mean
nearest-neighbor distance λ at unit density using the general upper and lower bounds on
λ (cf (110) and (111)). Consider the arithmetic average of (110) and (111):

λ =
λL + λU

2
. (146)

For low dimensions, the arithmetic averages of the upper and lower bounds for the
Fermi-sphere point process provide reasonable estimates of λ, as seen in table 1 for
the first four space dimensions, also including the corresponding exact results. We see
that the estimate λ captures the non-monotone dependence of the mean nearest-neighbor
distance with dimension. Moreover, the table shows that the upper bound becomes the
dominant contribution to λ as d increases and λ becomes increasingly accurate as the
space dimensions increases.
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Table 1. Comparison of estimates of the mean nearest-neighbor distance λ for
the first four space dimensions of the Fermi-sphere point process at unit density
to the corresponding ‘exact’ values.

d Upper bound Lower bound Average of bounds Exact D

1 0.917 808 0.658 199 0.788 003 0.725 728 0.5
2 0.688 071 0.581 193 0.634 632 0.649 823 0.564 190
3 0.670 304 0.593 975 0.632 139 0.654 511 0.620 350
4 0.687 631 0.625 009 0.656 320 0.679 561 0.670 938

Note that the use of the upper bound (137) enables us to obtain the following weaker
but analytically solvable upper bound on λ:

λ ≤ λU ≤ λU∗ = D +

∫ ∞

D

exp[1 − v1(r)] dr

= D

[
1 +

Γ(1/d, 1)e

d

]
, (147)

where Γ(x, a) is the incomplete gamma function. For large d, we have the asymptotic
expression

λU∗ = D

[
1 +

Γ(0, 1) e

d
+ O

(
1

d2

)]

= D

[
1 +

0.596 347 3622 . . .

d
+ O

(
1

d2

)]
(d → ∞). (148)

Moreover, using the lower bound

λ ≥
∫ D0

0

[1 − Z(r)] dr, (149)

where D0 is the zero of 1−Z(r), and the aforementioned asymptotic analysis of the lower
bound on EP(r), yields

λ ≥ D0 (d → ∞). (150)

In summary, combination of the bounds (147) and (149) and the asymptotic
expression (141) enables us to conclude that the mean nearest-neighbor distance
approaches the length scale D as d becomes large, i.e.,

λ → D (d → ∞), (151)

which asymptotically grows like the square root of d according to (55) and, as we concluded
above, specifies the location of the step-function discontinuity of EP(r), EV(r) and g∗

2(r)
in the large-d limit. Table 1 shows that the length scale D is already an accurate estimate
of the mean nearest-neighbor distance for d = 4.

It is noteworthy that the asymptotic mean nearest-neighbor-distance formula (151)
is precisely the same as the asymptotic form of the mean nearest-neighbor distance
of a Poisson point process. The latter for any dimension at unit density is given by
Γ(1 + 1/d) Γ(1 + d/2)1/d/

√
π [35], which in the high-dimensional limit is exactly equal to
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Figure 10. The mean nearest-neighbor distance λ as a function of density ρ
for various dimensions. The cases d = 1 and 4 are exact evaluations and the
instance d = 17 is obtained from the upper bound prediction (147) in conjunction
with (152).

D. The fact that the mean nearest-neighbor distance for the Fermi-sphere point process
behaves like that of a Poisson point process in the high-dimensional limit is not surprising
in the light of the decorrelation principle [16].

Note that the expression for the mean nearest-neighbor distance λ(ρ) for any density
ρ can be related to the corresponding quantity λ(1) at unit density by the simple scaling
relation

λ(ρ) =
λ(1)

ρ1/d
. (152)

Figure 10 shows the mean nearest-neighbor distance as a function of density for various
dimensions; the cases d = 1 and 4 are exact evaluations and the instance d = 17 is
obtained from the upper bound prediction (147) and the scaling relation (152), which is
expected to be a highly accurate estimate.

5.4.4. Large-r behavior. We conclude this section by making some remarks about the
conditional nearest-neighbor functions GV(r) and GP(r). The fact that the exclusion
probabilities EV(r) and EP(r) tend to the same step function in the high-dimensional
limit implies that GV(r) and GP(r) have the same large-r behavior as d tends to infinity.
In fact, our exact evaluations of GV(r) and GP(r) for a finite range of r in low dimensions
indicate that each function becomes linear in r for large r and the ratio GP(r)/GV(r)
tends to unity. Figure 11 shows our evaluations of both GV(r) and GP(r) for the first
four space dimensions for the range 0 ≤ r ≤ 1.4 (see our companion paper [14] for further
numerical details).

In one dimension, one can show that the nearest-neighbor void functions are directly
related to a radial function that is a solution to a second-order non-linear differential
equation [42]. This differential equation can be evaluated exactly for small and large r.
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Figure 11. Exact calculations of both GV(r) and GP(r) for the first four space
dimensions.

In particular, using this asymptotic analysis leads to the following large-r behavior for
GV(r) for the one-dimensional Fermi-sphere point process:

GV(r) =
π2

2
r + O(r−1) (r → ∞). (153)

The coefficient π2/2 can be compared to the corresponding Wigner surmise prediction of
16/π, which is obtained via the one-dimensional relation that exactly links EV(r) to the
gap distribution function p(z) [43],

EV(r) =

∫ ∞

2r

(z − 2r)p(z) dz, (154)

and equation (71) with β = 2. Presumably, GP(r) has the same asymptotic behavior
for d = 1, a conclusion supported by our numerical results [14]. Interestingly, both
conditional probability functions having the same linear behavior for large r implies that
the corresponding exclusion probability functions have the following large-r behavior for
finite d:

EV(r) = EP(r) → exp[−κ(d)rd+1] (r → ∞), (155)

where κ(d) is a positive d-dependent constant.
Thus, this analysis reveals that the probability of finding a large spherical cavity of

radius r for a Fermi-sphere point process in dimension d behaves similarly to that of a
Poisson point process but in dimension d + 1. For a Poisson point process, the constant
κ(d) = π(d+1)/2/Γ[(d + 3)/2] (cf (90)), and therefore if EV(r) for a Fermi-sphere point
process in R

d for large r behaved exactly like that for a Poisson point process in R
d+1,

then GV(r) would be given by

GV(r) = GP(r) =

√
π Γ(d/2)

Γ[(d + 1)/2]
r + O(1) (r → ∞). (156)
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For the first four space dimensions, the coefficients multiplying r in (156) are given by
π = 3.14 . . ., 2, π/2 = 1.57 . . ., and 4/3 = 1.33 . . ., respectively. This can be compared
to the exact coefficients, which for d = 1, 2, 3 and 4 are given by π2/2 = 4.93 . . .,
2.815 ± 0.048, 1.597 ± 0.043, and 1.297 ± 0.045, respectively. The last three values are
estimates that we have obtained on the basis of extrapolations from the evaluations of
GV(r) (see [14] for further numerical details). We see that the probability of finding a
large spherical cavity of radius r in R

d is approximately the same as that for a Poisson
point process in R

d+1, implying linear growth of GV(r) or GP(r) for large r. It is not
unreasonable to conclude that this approximation becomes increasingly accurate as d
increases. Further justification for this remarkable behavior is given in section 6.

6. Conclusions and discussion

We have obtained and characterized a new class of determinantal point processes in R
d,

the most general of which we call Fermi-shells point processes. The n-particle correlation
functions for any n and d, which completely characterize the point process, are determined
analytically. We focused primarily on a special case, the Fermi-sphere point process,
which in one dimension is identical to the point process that characterizes the spacings
of the eigenvalues of the GUE (as well as the CUE), the conjectured spacings of the non-
trivial zeros of the Riemann zeta function, and the positions of spin-polarized fermions
in their ground state (i.e., completely filling the Fermi ‘sphere’). We are not aware of
any correspondence of the general Fermi-shells point process in R

d for any d ≥ 2 to
random matrix theory or the zeros of any generalized zeta function in number theory.
If our determinantal point processes have connections to random matrices in arbitrary
space dimension, the latter must be non-Hermitian. For example, Ginibre [44] showed
that there are two-dimensional determinantal point processes that correspond to complex
eigenvalues of random non-Hermitian matrices. Thus, it is an open question whether the
Fermi-shells point process has any correspondence to random matrices.

We analyzed in great detail properties of pair statistics, including the pair correlation
function, the structure factor, and cumulative coordination number, as a function of
spatial dimension d. The point processes for any d are shown to be hyperuniform such
that the structure factor (or power spectrum) S(k) has a non-analytic behavior at the
origin given by S(k) ∼ |k| (k → 0). The latter result implies that the pair correlation
g2(r) tends to unity for large pair distances with a decay rate that is controlled by the
power law 1/rd+1. In three dimensions, such a dominant power-law decay of g2(r) is a
well-known property of bosonic systems in their ground states [10, 12] and, more recently,
has been shown to characterize maximally random jammed sphere packings [13]. We also
graphically displayed one-and two-dimensional realizations of the point processes in order
to vividly reveal their ‘repulsive’ nature and demonstrated that they can be characterized
by an effective ‘hard core’ diameter that grows like the square root of d.

Our study of the nearest-neighbor functions of the Fermi-sphere point process resulted
in some noteworthy conclusions. For example, we have seen that the probability of finding
a large spherical cavity of radius r in R

d is approximately the same as that for a Poisson
point process in R

d+1, implying linear growth of GV(r) or GP(r) for large r. This is a
remarkable result because it represents the first class of non-trivial point processes that we
are aware of whose conditional nearest-neighbor functions do not asymptote to a constant;
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see [36, 45, 46] and [43] for examples of correlated equilibrium and non-equilibrium point
processes that possess GV(r) or GP(r) with constant asymptotes, respectively. It is clear
that the unusual property of linear growth of GV or GP for large r is due to the long-
range nature of the repulsive interactions. Since a Fermi-sphere point process in R

d is
always hyperuniform, i.e., large wavelength density fluctuations vanish, the probability
of finding a large spherical cavity must be smaller than the corresponding quantity for
any point process that is not hyperuniform, such as a Poisson point process in R

d. The
probability of finding a large spherical cavity is of course smaller in a Poisson point process
in dimension d+1 compared to that in dimension d. Moreover, it is easy to show that the
asymptotic form (155) for EV(r) or EP(r) for large r is always between the aforementioned
corresponding rigorous upper and lower bounds on the exclusion probabilities.

We also found that the Fermi-sphere point process becomes a sphere packing in the
high-dimensional limit with an effective hard core diameter equal to the length scale D
(cf (54)). Thus, the fraction of space φ covered by the spheres at unit number density
is bounded from above by 1/2d. This coverage fraction has a special significance in the
study of sphere packings; it arises not only in Minkowski’s famous century-old lower
bound on the density of the densest lattice sphere packings [41] but also in lower bounds
for saturated and disordered packings [16] as well as the highest achievable density in the
‘ghost’ random sequential addition packing [8]. It should be noted, however, that there is
strong evidence that there exist disordered sphere packings not only with φ greater than
1/2d [47]–[50] but also with densities that exponentially improve on Minkowski’s lower
bound [16, 23].

Elsewhere [14] we report results on the extremes of the nearest-neighbor statistics
as well as Voronoi statistics of the Fermi-sphere point processes in the first four space
dimensions. In other work, we will quantify clustering and percolation properties of
Fermi-sphere point processes.
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Appendix. On the presence of intrinsic n-particle interactions (with n ≥ 3) for
general determinantal point processes

Our purpose here is to show that the n-particle probability density function for an
arbitrary determinantal point process, even in one dimension, cannot be written as a
Boltzmann factor of N classical particles interacting through one-and two-body potentials
at a finite temperature. Although this claim is true for each of the canonical ensembles
of random matrix theory, we show via a counterexample in one dimension that intrinsic
n-particle interactions with n ≥ 3 are generally necessary for describing the system.

It is relatively straightforward to express the n-particle probability density function for
the CUE as a Boltzmann factor of a classical system of pairwise-interacting particles. In
analogy with the formalism of the one-dimensional Fermi-sphere point process introduced
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in section 4.1, we fill the Fermi line at a constant density. Thus, may write [3]

det[exp(inxm)]n,m =
∏
n<m

[exp(ixn) − exp(ixm)]; (A.1)

therefore,

|det[exp(inxm)]n,m|2 = exp

[
−2

∑
n<m

ln | exp(ixn) − exp(ixm)|
]

(A.2)

= exp

[
−2

∑
n<m

ln | sin(xn − xm)/2|
]

. (A.3)

For small eigenvalue separations Δxnm = xn −xm, the result in (A.3) reduces to the form

| det[exp(inxm)]n,m|2 ≈ exp

[
−2

∑
n<m

ln |(Δxnm/2)|
]

, (A.4)

and the probability distribution of the CUE eigenvalues can indeed be written as a
pairwise-interacting potential, which in this example is logarithmic for small particle
separations. It is important to note that this reformulation of the probability density
is very much peculiar to the method of filling the Fermi sphere. Suppose instead that we
decide to fill only the states n = 0, 2, 3; i.e., the state n = 1 is skipped. We may then
express the three-body form of the probability density as

|det[exp(inxm)]n,m|2 =
64

(2π)3
[3 + 2 cos(x − y) + 2 cos(x − z) + 2 cos(y − z)]

× sin

(
x − y

2

)2

sin

(
x − z

2

)2

sin

(
y − z

2

)2

, (A.5)

where we have used x, y, and z to represent x0, x2, and x3; the subscripts denote the state
n of each particle. The last three factors have the form of the pair interaction in (A.3).
To check whether the pre-factor containing cosines can be written in the same form, we
write

V (x, y, z) = − ln[3 + 2 cos(x − y) + 2 cos(x − z) + 2 cos(y − z)]. (A.6)

Assume that V (x, y, z) = v(x, y) + v(y, z) + v(z, x). It must then be true that

v(x, y) = 1
2

[
V (x, y, y)− 1

3
V (y, y, y)

]
(A.7)

=
ln(3)

3
+

1

2
ln[5 + 4 cos(x − y)], (A.8)

but by substituting this expression into (A.6), we see that we do not recover the original
functional form. Therefore, we have shown by contradiction that for general determinantal
point processes, the interaction potential must contain at least intrinsic three-body terms.
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