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Zeno dynamics yields ordinary constraints
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The dynamics of a quantum system undergoing frequent measurements~quantum Zeno effect! is investi-
gated. Using asymptotic analysis, the system is found to evolve unitarily in a proper subspace of the total
Hilbert space. For measurements represented by spatial projections, the generator of the ‘‘Zeno dynamics’’ is
the Hamiltonian with Dirichlet boundary conditions.
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Frequent measurement can slow the time evolution o
quantum system, hindering transitions to states differ
from the initial one@1,2#. This phenomenon, known as th
quantum Zeno effect~QZE!, follows from general features o
the Schro¨dinger equation that yield quadratic behavior of t
survival probability at short times@3,4#. Interfering with a
transition at a later stage in its progress leads to a sec
non-Markovian phenomenon, known as the inverse or a
Zeno effect@5–8#, in which decay is accelerated. Both e
fects have recently been seen in the same experimental s
@9#.

However, the QZE does not necessarily freeze everyth
On the contrary, for a projection onto a multidimension
subspace, the system may evolve away from its initial st
although it remains in the subspace defined by the ‘‘meas
ment.’’ This continuing time evolutionwithin the projected
subspace we callquantum Zeno dynamics. It is often over-
looked, although it is readily understandable in terms o
theorem on the QZE@2# that we will recall below.

The aim of this paper is to show that Zeno dynam
yields ordinary constraints. In particular, suppose a sys
has HamiltonianH and the measurement~that will be made
frequently! is checking that the system is within a particul
spatial region. Then the Zeno dynamics that results is g
erned by the same Hamiltonian, but with Dirichlet bounda
conditions on the boundary of the spatial region associa
with the projection. Moreover, the Hamiltonian with the
boundary conditions is self adjoint and remains revers
within the Zeno subspace. This shows that irreversibility
not compulsory, as noted in@10#.

Some of our results are already known in the mathem
cal literature@11#, namely, the case of a free particle. How
ever, our method of proof is completely different~and per-
haps more transparent to the physicist! and extends easily to
the case of nonzero potential.

At the experimental level, besides@9#, the QZE has been
tested on oscillating systems@12#. Although these experi-
ments have invigorated studies on this issue, they deal
one-dimensional projectors~and therefore one-dimension
Zeno subspaces!: the system is forced to remain in its initia
state. This is also true for interesting quantum optical ap
cations@13#. The present paper therefore enters an exp
mentally uncharted area, although the property of bein
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multidimensional measurement is not at all exotic, and
particular, applies to the most basic quantum measurem
position. The latter is the subject of the present paper.

We introduce notation. Consider a quantum systemQ,
whose states belong to the Hilbert spaceH and whose
evolution is described by the unitary operatorU(t)
5exp(2iHt), whereH is a time-independent lower-bounde
Hamiltonian. LetE be a projection operator that does n
commute with the Hamiltonian,@E,H#5” 0, andEH5HE the
subspace defined by it. The initial density matrixr0 of sys-
tem Q is taken to belong toHE

r05Er0E, Tr r051. ~1!

The state ofQ after a series ofE-observations at timest j
5 jT/N ( j 51, . . . ,N) is

r (N)~T!5VN~T!r0VN
† ~T!, VN~T![@EU~T/N!E#N

~2!

and the probability to find the system inHE ~‘‘survival prob-
ability’’ ! is

P(N)~T!5Tr @VN~T!r0VN
† ~T!#. ~3!

Our attention is focused on the limiting operator

V~T![ lim
N→`

VN~T!. ~4!

Misra and Sudarshan@2# proved that if the limit exists, then
the operatorsV(T) form a one-parameter semigroup, and t
final state is

r~T!5 lim
N→`

rN~T!5V~T!r0V †~T!. ~5!

The probability to find the system inHE is

P~T![ lim
N→`

P(N)~T!51. ~6!

This is the QZE. If the particle is constantly checked f
whether it has remained inHE , it never makes a transition to
(HE)'.
©2001 The American Physical Society08-1
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A few comments are in order. First, the final stater(T)
depends on the characteristics of the model investigated
on the measurement performed~the specific forms ofVN and
V depend onE). Moreover, the physical mechanism th
ensures the conservation of probabilities within the relev
subspace hinges on the short-time behavior of the surv
probability: probability leaks out of the subspaceHE like
t2 for short times. Since the infinite-N limit suppresses this
loss, one may inquire under what circumstancesV(T) actu-
ally forms a group, yielding reversible dynamics within th
Zeno subspace.

In this paper, we show that Zeno dynamics for a posit
measurement yields a particular kind of dynamics within
subspace defined by that measurement, namely, unitary
lution with the restricted Hamiltonian, and with the doma
of that ~self-adjoint! operator defined by Dirichlet boundar
conditions. This elucidates the reversible features of the e
lution for a wide class of physical models. As a spinoff, o
proof provides a rigorous regularization of the example c
sidered in@10# ~where it was suggested that the Trotter pro
uct formula could be used to demonstrate the result!.

We start with the simplest spatial projection.Q is a free
particle of massm on the real line, and the measurement i
determination of whether or not it is in the intervalA
5@0,L#,R. The Hamiltonian and the corresponding evo
tion operator are

H5
p2

2m
, U~ t !5exp~2 i tH !. ~7!

H is a positive-definite self-adjoint operator onL2(R) and
U(t) is unitary. We study the evolution of the particle whe
it undergoes frequent measurements defined by the proje

EA5E dx x
A
~x!ux&^xu, ~8!

wherex
A

is the characteristic function

x
A
~x!5H 1 for xPA5@0,L#

0 otherwise
. ~9!

Thus,EA is the multiplication operator by the functionxA .
We study the following process. We prepare a particle i
state with support inA, let it evolve under the action of its
Hamiltonian, perform frequentEA measurements during th
time interval @0,T#, and study the evolution of the syste
within the subspaceHEA

5EAH. We will show that the dy-

namics inHEA
is governed by the evolution operator

V~T!5exp~2 iTHZ!EA , ~10!

with

HZ[
p2

2m
1VA~x!, VA~x!5H 0 for xPA

1` otherwise
. ~11!

This is the operator obtained in the limit~4!. In other words,
the system behaves as if it were confined inA by rigid walls,
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inducing the wave function to vanish on the boundariesx
50, L ~Dirichlet boundary conditions!.

We now prove our assertion. Let the particle be initia
(t50) in A. We recall the propagator in the position repr
sentation@14,15#

G~x,t;y![^xuEAU~ t !EAuy&5x
A
~x!^xuU~ t !uy&x

A
~y!

5x
A
~x!A m

2p i t\
expF im~x2y!2

2\t GxA
~y!, ~12!

wheret5T/N is the time when the first measurement is c
ried out and the particle found inEA . To study the properties
of G we choose a complete basis inL2(A)

un~x!5^xuun&5A2

L
sinS npx

L D , n51,2, . . . , ~13!

At this point, one should not confuse the selection of a ba
for the space with the selection of a domain for the Ham
tonian. For the free particle on the interval with Dirichl
boundary conditions,$un% provides a basis of eigenfunc
tions, but even if one took Neumann~or whatever! boundary
conditions ~leading to a different self-adjoint operator! the
basis~13! could still be used. The functions$un% would sim-
ply not be eigenfunctions. Even though this last observat
is well known, correspondence prior to publication has co
vinced us of the need to emphasize these facts of functio
analysis for clarity. In this basis,

HZuun&5Enuun&, En5
\2n2p2

2mL2
, ~14!

and the matrix elements ofG are

Gmn~ t ![^umuEAU~ t !EAuun&

5E
0

L

dxE
0

L

dy um~x!A m

2p i t\
expF im~x2y!2

2\t Gun~y!.

~15!

Let r 5x2y, R5(x1y)/2, andl5m/2\t, so that

Gmn~l!5A l

ipE0

L

dRE
2r 0(R)

r 0(R)

dr um~R1r /2!

3un~R2r /2!exp@ ilr 2#, ~16!

wherer 0(R)5L2uL22Ru. We now use the asymptotic ex
pansion

g~l!5A l

ipE2a

a

dx f~x!eilx2
5gstat~l!1gbound~l!,

~17!

where

gstat~l!5 f ~0!1
i

4l
f 9~0!1O~l22! ~18!
8-2
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and

gbound~l!5
eila2

2iaAipl
@ f ~a!1 f ~2a!#1O~l23/2! ~19!

are the contributions of the stationary pointx50 and of the
boundary, respectively. By expanding the inner integral
Eq. ~16! as in Eqs.~17!–~19!, one gets
e
at
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q

u
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e
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A l

ipE2r 0(R)

r 0(R)

dr um~R1r /2!un~R2r /2!exp@ ilr 2#

5um~R!un~R!1
i

4l

d2

dr2
@um~R1r /2!un~R2r /2!# r 50

1O~l23/2!. ~20!

~Note that the contribution of the boundary vanishes ide
cally.! Using this result, we integrate by parts and after
straightforward calculation obtain
s

Gmn~ t !5E
0

L

dRFum~R!un~R!2
i t

\
um~R!

2\2

2m

d2

dR2
un~R!G1O~ t3/2!5^umuun&2

i t

\ K umU p2

2mUunL 1O~ t3/2!

5dmnS 12
i t

\
EnD1O~ t3/2!. ~21!

With this formula, we may carry out the limit required in Eq.~4!. At time T, in the representation~13!, the propagator become

Gmn~T!5^muV~T!un&5 lim
N→`

(
n1 . . . nN21

Gmn1
~T/N!Gn1n2

~T/N!•••GnN21n~T/N!5dmne
2 iTEn /\. ~22!
ro-

gain
s

This is precisely the propagator of a particle in a square w
with Dirichlet boundary conditions. This in turn proves th
HZ is given in Eq.~11! and has eigenbasis~13!. Note also
that thet3/2 contribution in Eq.~21! drops out in theN→`
limit since it appears asN3O(1/N3/2).

At this point ~and for reasons similar to those mention
earlier! it is worth emphasizing that the basis given in E
~13! is only one of many~infinite in fact! possibilities for a
basis for the interval. Any one of these would be valid, b
not all would be equally convenient. Thus, with a ba
whose functions did not vanish at the endpoints, the do
nant contribution of orderl21/2 in gbound(l) would have
given a nondiagonal term in Eqs.~20!–~22!. The matrix rep-
resentation ofG ~in this basis! would in that case still need to
be diagonalized, leading back to the matrix we have fou
using a more convenient basis. Our point is that one m
always choose to use the basis$un% of Eq. ~13!. For that
choice, the calculation is easiest and the resulting interpr
tion transparent.

At this point, we have recovered, using rather differe
techniques, the result of Friedman@11#. Continuing to use
our approach of asymptotic analysis, the result may be g
eralized to a wide class of systems. Let

H5
p2

2m
1V, U~ t !5exp~2 i tH !, ~23!

whereV is a regular potential.~It may be unbounded from
below, for exampleV(x)5Fx, although within the projected
ll

.

t

i-

d
y

a-

t
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regionA the total HamiltonianH should be lower bounded.!
The measurement performed is again application of the p
jector ~8! and we study the short-time propagator

G~x,t;y!5x
A
~x!A m

2p i t\
expF im~x2y!2

2\t G
expF2

i t ~V~x!1V~y!!

2\ GxA
~y!. ~24!

The basis to be used for representing the propagator is a
that of the Hamiltonian with Dirichlet boundary condition
in @0,L#

HZuun&5S p2

2m
1VD uun&5Enuun&, un~x!ux50,L50.

~25!

As before (r 5x2y, R5(x1y)/2, l5m/2\t),

Gmn~l!5A l

ipE0

L

dRE
2r 0(R)

r 0(R)

dr umS R1
r

2D
3e2 i tV(R1r /2)/2\unS R2

r

2De2 i tV(R2r /2)/2\eilr 2
.

~26!

Using the asymptotic expansion~17!–~19!, a calculation
identical to the previous one yields
8-3
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Gmn~ t !5E
0

L

dRFun~R!um~R!2
i t

\
un~R!S 2\2

2m

d2

dR2

1V~R!D um~R!G1O~ t3/2!

5^unuum&2
i t

\ K unUS p2

2m
1VD UumL 1O~ t3/2!

5dnmS 12
i t

\
EnD1O~ t3/2! ~27!

and the limiting propagator at timeT again reads

Gmn~T!5dnme2 iTEn /\. ~28!

Again, the simplicity of the proof is due to the choice of th
basis~25!, satisfying Dirichlet boundary conditions.

We have also obtained an improvement with respec
earlier approaches to this problem. The aforementioned th
rem by Misra and Sudarshan@2# requires that the Hamil-
tonian be lower bounded from the outset. However, we n
only require that the Hamiltonian be lower bounded in t
Zeno subspace. Despite the fact that for unbounded po
tials ~such asV5Fx)H may not be lower bounded on th
real line, the evolution in the Zeno subspace is governed
the Hamiltonian

HZ5
p2

2m
1VA~x!, VA~x!5H V~x! for xPA

1` otherwise
~29!

that can be lower bounded inA, yielding abona fidegroup
for the evolution operators.

The above calculation and conclusions may readily
generalized to higher dimensions, so long as the meas
ment projects onto a set inRn with a smooth boundary~ex-
cept, at most, a finite number of points!. We again takex,y
PRn and let the measurement projection be defined
A,Rn, which is not necessarily bounded. Again settingr
5x2y, R5(x1y)/2, Eq. ~26! becomes

Gmn~l!5S l

ip D n/2E
A
dRE

D(R)
dr um~R1r/2!

3e2 i tV(R1r/2)/2\un~R2r/2!

3e2 i tV(R2r/2)/2\eilr2
, ~30!

whereD(R) is the transformed integration domain forr. The
n-dimensional asymptotic expansions~17!–~19! read@16#

gstat~l!5 f ~0!1
i

4l
n f ~0!1O~l22!, ~31!

gbound~l!5O~l21/2!3 f ~boundary!1O~l23/2!, ~32!

and the theorem follows again becausef vanishes on the
boundary ~Dirichlet!. The proof is readily generalized t
01210
o
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y

nonconvex and/or multiply-connected projection domai
the only difficulty being that the integration domain in E
~30! must be broken up. It is interesting to notice that
those points at which the boundary fails to have a conti
ously turning tangent plane, the asymptotic contribution
the discontinuity in the boundary in Eq.~32! would be of yet
higher order inl.

In conclusion, for traditional position measuremen
namely projections onto spatial regions, we have shown
Zeno dynamics uniquely determines the boundary con
tions, and that they turn out to be of Dirichlet type. This
also relevant for problems related to the consistent histo
approach@17–19#, where different boundary conditions wer
proposed. For us, the frequent imposition of a projection,
traditional idealization of a measurement, provides all
decohering of interfering alternatives that is needed. On
other hand, in the works just cited, one seeks a restric
propagator~using the path decomposition expansion@20#!
and such interference can occur.

A second issue discussed in these works~especially@18#!
is the validity of the Trotter product formula in certain case
Again, our implicit use of this formula@in Eq. ~24!, etc.# is
nothing more than its use for a particle in an ordinary pot
tial ~in particular, the Trotter formula isnot used in connec-
tion with the potentially singular projection operation b
‘‘ E’’ !. This is because the propagator of Eq.~24! provides
time evolution under asequenceof operations: the particle
evolves under the Hamiltonian~23! ~on the entire line! for a
time t, and then one applies the projection~left and right
multiplication by the operatorEA). Our results are also rel
evant for understanding the physical features of ‘‘decoher
free’’ subspaces, which are of great interest in quantum co
putation@21#. The Zeno mechanism not only forces the sy
tem to remain in a given subspace, it also constrains
~sub!dynamics in this space, determining the behavior of
wave function on the boundary and yielding a unitary,deco-
herence freeevolution. Besides its theoretical interest, th
feature might lead to potential applications and practi
implementations of the Zeno constraints.

The present paper has implications for the notion of ‘‘ha
wall,’’ as used for example in elementary quantum mech
ics. Everyone would agree~we expect! that this notion is an
idealization. However, in many cases where this idealizat
is useful the ‘‘wall’’ is dynamic rather than static, the resu
of some fluctuating atomic presence. In this article, we h
a sufficient condition for the validity of this notion in a dy
namic situation. Moreover, there is a quantitative framew
~arising from our asymptotic analysis and finite-time-interv
QZE effects! for gauging the effects of less than perfect ha
walls.
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