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We propose a generalization of the cavity method to quantum spin glasses on fixed connectivity lattices. Our
work is motivated by the recent refinements of the classical technique and its potential application to quantum
computational problems. We numerically solve for the phase structure of a connectivity q=3 transverse field
Ising model on a Bethe lattice with �J couplings and investigate the distribution of various classical and
quantum observables.
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I. INTRODUCTION

The appearance of finite connectivity trees �e.g., Cayley
trees and Bethe lattices� in the study of spin glasses has a
long history that goes back to the first papers on the
Sherrington-Kirkpatrick �SK� model.1,2 Thouless et al.2

�TAP� showed, by means of a diagrammatic expansion of the
partition function, that in the spin-glass phase the mean-field
theory is defined by the diagrams which describe an infinite
tree with connectivity q�1. They then wrote the mean-field
equations3 for such a tree and simplified the results in the
small coupling and large connectivity regime �since in the
SK model q=N and the couplings Jij �1 /�N�. Those mean-
field equations are known as the TAP equations and the pe-
culiar characteristics of their solutions, in particular their
large number,4 were an important indicator of the complexity
of the spin-glass �SG� phase that arose in parallel with the
remarkable developments in the study of the replicated free
energy.5–7

Many authors have since studied the problem of a spin
glass on the Bethe lattice8–12 with two distinct motivations.
The first of these has been to attempt to find a model of a
short-ranged spin glass where one can rigorously assess Pa-
risi’s picture for the organization of the Gibbs states in short-
range systems.13 The second has come from computer sci-
ence whereby a set of optimization problems can be recast as
frustrated problems on random graphs with the local connec-
tivity of a tree.14

Despite much work, the Bethe lattice has not yielded a
decisive verdict for or against the Parisi picture of a multi-
tude of Gibbs states in the ordered phase of a spin glass
although the case for it is perhaps stronger here than on
regular lattices with short-ranged interactions. This is tied up
with the question of defining the infinite Bethe lattice limit
starting from finite graphs. It is possible to do so either via a
sequence of Cayley trees with random frustrating boundary
conditions or via a sequence of random graphs with fixed
connectivity. The latter sequence has frustrating loops of
typical size diverging O�log�N� / log�q−1�� for a graph with
N points and connectivity q and thus locally looks like a
tree.15 The Cayley tree sequence can always be analyzed in
terms of a recursion relation that we review below and does
not appear to lead to the Parisi structure.10 However, it has
been argued that the random graph problem is fundamentally

different and does lead to replica symmetry breaking
�RSB�.16

Happily, the perspective provided by spin-glass theory on
optimization problems has been quite fruitful regardless.
Starting in the early 1980,17,18 it became clear that much was
gained by the recognition that various optimization problems
in computer science were equivalent to finding ground states
of certain statistical mechanic problems. A typical example
of this connection is given by the k-SAT problem, which asks
“given a Boolean expression J on N bits �i composed of the
conjunction of M clauses, each of which involves exactly k
of the bits, is it satisfiable by some bit assignment?” This can
be recast in Hamiltonian form by writing a cost function
HJ���i�� that evaluates the number of violated clauses. In this
language, the bits naturally become Ising spins, the expres-
sion J becomes a particular instance of some spin glass and
the original question requires determining the ground-state
energy. The large N limit is a problem in statistical mechan-
ics and typical-case analysis for k-SAT becomes the disorder
averaged analysis of spin-glass theory. In this limit, k-SAT
develops several phase transitions as a function of �=M /N,
the number of clauses per bit.19 With increasing �, the most
salient features are that the problem goes from being easily
solved and satisfiable, to an intermediate glassy phase with
many local ground states, and then to a typically unsatisfi-
able phase where the ground-state energy density is positive.

A key role in these developments has been played by the
so-called cavity method—a complex of analytical and nu-
merical techniques refined recently14,16—for studying classi-
cal spin glasses on treelike graphs. Applied to the k-SAT
problem, the cavity method suggests the above phase dia-
gram and provides numerical values for its critical points.
Moreover, the technique can be applied to a particular in-
stance of k-SAT and the information so obtained about the
free-energy landscape now guides the search procedure in
state-of-the-art k-SAT algorithms.14

In this paper we turn to quantum spin glasses on Bethe
lattices, specifically to the problem of extending the cavity
method to their analysis. As in the classical case, there are
two distinct reasons to be interested in these systems. There
is the intrinsic interest of the interplay between quantum me-
chanics and spin-glass behavior, about which the difficulties
of the classical case serve as both caution and enticement. A
second motivation now arises from the rapid recent develop-
ments in quantum computing. In particular, the discovery of
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the ground state of a classical spin system HJ derived from a
computational problem is ideally suited to solution by the
adiabatic algorithm,20 which allows a quantum computer to
solve such a problem by means of an adiabatic change in the
parameters in the Hamiltonian. The adiabatic algorithm
would trace a path in operator space starting from a simpler
Hamiltonian H0 and ending at HJ. For instance, H0 could be
the Hamiltonian for N independent spins in a large transverse
magnetic field Bt and the path could slowly lower the field
and raise the Ising couplings J. Starting from the easily
found ground state of H0 a sufficiently slow evolution will
carry the system to the ground state of HJ. The power of this
algorithm is therefore measured in the scaling of the evolu-
tion time with the number of variables, N.

This discussion certainly suggests that a careful study of
the phase transitions encountered on the path between H0
and HJ is in order. However, the necessity of understanding
the “deep” quantum spin-glass phase far from the phase tran-
sition is also clear. The structure of this phase, especially its
nontrivial energy landscape, is probably as important as the
nature of the phase transition. In this paper we take a step
toward understanding the quantum spin-glass phase by gen-
eralizing the cavity method used to study the classical prob-
lem. Compared to the replica method or direct study of the
quantum TAP equations, we believe the cavity method out-
lined in this paper provides much more physically transpar-
ent information about the SG phase. It also may be applied to
many other quantum phase transitions on the Bethe lattice,
whether induced by disorder or more typical symmetry
breaking.

We note that the topic of quantum spin glasses on trees
has been tackled before in the literature from the point of
view of statistical mechanics21 and computational theory.22

However, in order to proceed analytically and due to the
complexity of the problem, these works have employed sev-
eral uncontrolled approximations. We will compare them
briefly in the core of the paper. While we have used approxi-
mations in our �numerical� analysis as well, we believe they
are better controlled since we show how to systematically
improve them and how the results are robust with respect to
the improvements. More evolved computational methods for
tackling very similar problems have appeared in the litera-
ture on dynamical mean-field theory23 and could possibly be
applied to the quantum cavity method on glasses. These
methods may allow a study of the zero-temperature case,
which our approximations could not capture.

Let us turn now to a very brief overview of the results in
this paper. We first formulate the cavity method for the trans-
verse Ising spin glass on a Bethe lattice. This is a Markov
process for the on-site effective action whose stationary
probability distribution can be found numerically using a
population dynamics algorithm. This will be the main result
of the paper. In this way we obtain the phase boundary in the
�Bt ,T� plane, the values of the usual thermodynamic quanti-
ties �free energy, energy, entropy, and qEA, the Edward-
Anderson order parameter24� and more typical “quantum”
quantities such as the single-spin von Neumann entropy. In-
deed, from the fixed-point probability distributions for the
effective actions we can calculate distributions for all of the
statistical properties of the system. This leaves much room
for further work.

The plan of the paper is the following. We introduce the
classical cavity method for uniform ferromagnetic systems
and spin glasses in Sec. II. We propose its generalization to
the quantum spin-glass problem in Sec. III. We apply it to the
numerical study of a Bethe lattice with connectivity three in
Sec. IV. Discussion and directions for further work will be
presented in Sec. V.

II. CLASSICAL CAVITY METHOD

The cavity method is a way of finding the spin-glass free
energy by means of self-consistency equations for the prob-
ability distributions of quantities characterizing the statistics
of the spins �the cavity fields�. It has several virtues com-
pared with the replica method, in particular if applied to spin
glasses with finite connectivity. We will return to them after
we have explained how the cavity method works.

A. Bethe-Peierls method for the ferromagnet

For conceptual clarity we will first recall the “cavity
method” in its simplest form as applied to a ferromagnetic
Ising model living on a Bethe lattice with connectivity q. As
mentioned above, there is considerable subtlety in defining a
sensible infinite tree model; but for this simple case, a se-
quence of Cayley trees with uniform small boundary fields to
break the Ising symmetry will suffice. In any event, we shall
focus here on the local structure of the model.

The classical Hamiltonian is

H = − �
�ij�

Jij�i� j , �1�

where �i� ��1� are Ising spins, Jij =J�0 is a uniform fer-
romagnetic coupling and the sum is over bonds in the Bethe
lattice. To create a cavity, we pick a spin �0 in the Bethe
lattice and imagine removing it;

�2�

Each of �1��0’s neighbors is a cavity spin connected to q−1
spins and sitting at the root of a branch of the original tree.
Notice that in the absence of �0 these q branches are entirely
independent. Similarly, a cavity spin �1 mediates the only
interaction between the q−1 branches sitting above it.

We can define three important operations we can perform
on graphs with cavity spins: iteration, merging, and link ad-
dition �Fig. 1�. For our immediate purposes, the most impor-

Merge

Add Link

σ1 σ2 σ1 σ2

Iterate
σ0

σ2σ1 σ1 σ2

σ1 σ2

σ3

σ1 σ2
σ0

σ3

FIG. 1. The three cavity operations. Although we have not la-
beled them in the figure, the new links are J01, J02, etc.
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tant of these is iteration, which takes q−1 rooted branches of
depth l and links them into a single new branch of depth l
+1 with a new cavity spin at the root. Thus we can construct
an arbitrarily large Cayley tree by iterating inward from its
boundary spins many times followed by a final merge opera-
tion to form the center.

Consider the iteration operation: the added spin �0 re-
ceives thermodynamic information regarding each of the q
−1 branches only through the thermal distribution of the cav-
ity spins �1 , . . . ,�q−1. In the absence of �0, each of these
Ising variables has independent statistics characterized fully
by its thermal probability distribution,

�i��i� =
e	hi�i

2 cosh�	hi�
, �3�

which defines the cavity field hi. Since �1� ��1�, there are
only two possible configurations of the spin, and only 2−1
=1 real numbers are needed to characterize the probability
distribution. In this sense, the cavity field hi is merely a good
parametrization of the distribution �i��i�. We emphasize this
viewpoint because it will naturally generalize to the quantum
case.

We introduce a simple graphical convention for cavity
spins,

=
�4�

The open circle indicates a spin variable and the wiggly line
indicates the effective field attached to it. With this notation,
an iteration operation can be represented as,

J02

=
σ0

σ2

ψ2
ψ0

ψ1

σ1

σ0

J01

�5�

where the filled circle indicates summing out a spin variable.
More formally, the state of the spin �0 depends on the state
of the q−1 spins as

�0��0� =
1

Z
�

�1,. . .,�q−1=�1
exp		�

i

J0i�0�i


�1��1� . . . �q−1��q−1� , �6�

where Z is a normalization factor so ��0
���0�=1. In terms of

cavity fields this equation implies that

h0 =
1

	
�
i=1

q−1

tanh−1�tanh�	J0i�tanh�	hi�� � U��hi�,�J0i�� .

�7�

Finally, to solve the ferromagnet, we note that all the Jij
=J and apply uniform boundary fields �say slightly positive�
to the Cayley tree “leaves.” From this uniform starting point,
we expect to find fixed points for the cavity fields under
iteration given by

h =
q − 1

	
tanh−1�tanh�	J�tanh�	h�� . �8�

This is precisely the Bethe-Peierls self-consistency equation
for a mean-field ferromagnetic in a lattice of coordination
number q.

B. Classical spin glass on a Cayley tree

The careful reader will have noticed that until Eq. �8� we
did not anywhere exploit the uniformity of Jij or hi in the
foregoing discussion. With this foundation laid, we can make
short work of the classical Bethe lattice Ising spin glass.
Again, we consider a Bethe lattice defined as a limit of Cay-
ley trees with fixed boundary conditions rather than as a limit
of random graphs. The Hamiltonian is now

HJ = − �
�ij�

Jij�i� j , �9�

where the Jij are independent identically distributed �i.i.d.�
random variables drawn from some distribution P�J�. For
simplicity and because of its connection to computational
problems, we will restrict our attention to the �J model,

P�Jij� =
1

2
��Jij − J� +

1

2
��Jij + J� , �10�

although much of the discussion has broader validity.
The iteration Eq. �6� is still valid for particular realiza-

tions of the J; but since these are random variables, it now
defines a Markov process for the cavity fields. Throughout
the graph, these fields will be site-dependent random vari-
ables; but deep inside the tree, they ought to be distributed
according to a probability distribution P�h� that represents a
fixed point of the Markov process.25 This fixed-point distri-
bution will satisfy

P�h� =� 
i=1

q−1

dhiP�hi����h� − U��hi�,�J0i���J. �11�

In terms of the spin distribution, this becomes the functional
equation,

P��� =� 	
i=1

q−1

D�iP��i�
������� − �0��;��i�,�J0i����J,

�12�

where �0��� is given by Eq. �6�.
This distribution is the order parameter for the spin glass.

It is a � function at h=0 in the high-temperature phase. As
the temperature is lowered, P�h� broadens to have finite sup-
port below some mean-field-like phase transition. Defining
�=T /J, this phase transition is located at �c=1 / tanh−1� 1

�q−1
�.

It is possible to write the free energy per site in terms of P�h�
as

F =� 
i=1

q

dhiP�hi�Fq+1 −
q

2
� 

i=1

2

dhiP�hi�F2, �13�
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Fq+1 = −
1

	
�ln �

�0,�1,. . .,�q

exp		�
i=1

q

J0i�0�i

i=1

q

�i��i��J,�,

�14�

F2 = −
1

	
�ln �

�1,�2

exp�	J12�1�2��1��1��2��2��J,�. �15�

This rather complicated looking expression is actually sim-
ply the average change in free energy due to a merge opera-
tion minus q

2 times the average change in free energy due to
a link addition. Graphically,

F =

〈
F

⎛
⎜⎜⎝

ψ3

ψ2ψ1

⎞
⎟⎟⎠− q

2
F
(

ψ2ψ1

)〉

J,ψ

�16�
where F of a diagram is the free energy of a system with
spin variables given by the unfilled circles.

It is possible to see that if P satisfies Eq. �11� then
�F /�P�h�=0. Other expressions for the free energy F have
appeared in the literature but it has been shown that they are
all equivalent to each other if the consistency Eq. �11� is
verified. The role of the free energy in the cavity method is
secondary as one does not solve the variational problem, as
in the replica method, by working on the free energy directly.
Rather, one finds the probability distribution P by analytical
or numerical methods and then derives all of the statistical
observables from P.26 The equivalence of the two formula-
tions has been put forward in Refs. 12 and 16 and in many
other works.

We have up to this point assumed that the underlying
lattice is in fact a tree and that the removal of a spin to create
a cavity completely decouples the neighboring branches. On
such models, the cavity method we have described is exact.
An important generalization of the cavity method arises in its
heuristic application to locally treelike random graphs where
the typical loop size diverges logarithmically and any finite
neighborhood is a simple tree. In this case however, the de-
coupling of cavity spins is not exact and it is necessary to
introduce the so-called “replica symmetry breaking” ansatz
on the structure of thermodynamic states in order to correctly
describe the frozen �glassy� phase. Although this is a vital
component of the modern understanding of such glasses, we
have not included it in our quantum treatment below because
we believe their is still much to be understood about the
quantum model on the much simpler trees. We refer the in-
terested reader to Ref. 16 for a more detailed description of
replica symmetry breaking in the classical cavity method.

Now, having introduced the cavity method in classical
statistical mechanics we go on to generalize it to quantum
mechanics.

III. QUANTUM CAVITY METHOD

A. Exact framework

We consider the modification of the Hamiltonian �1� due
to the introduction of a transverse magnetic field,

H = − �
�ij�

Jij�i
z� j

z − Bt�
i

�i
x. �17�

This is called the transverse field Ising spin glass in the lit-
erature. The Ising variables of the previous section have been
replaced by Pauli matrices �z and the magnetic field couples
to the matrices �x. The fact that �z and �x do not commute
gives rise to a host of interesting new features due to the
interplay of quantum mechanics and disorder.27

The usual Suzuki-Trotter decomposition allows us to re-
write the problem in terms of Nt Ising spins per quantum spin
where the number Nt needs to be sent to infinity eventually.
The additional dimension which is introduced in this way is
the usual imaginary time. The �i

z� j
z interactions are time-

translation invariant �the disorder is correlated in the time
direction�, while the �x terms give a ferromagnetic nearest-
neighbor interaction in the time direction. Before writing the
Hamiltonian let us introduce some notation.

For any finite Nt we will refer to the Ising spin configu-
ration at a given site i as a “rod” of spins. The rod at site i is
described by Nt spins �i�t�, where t takes values from 0 to 	
in steps of t=	 /Nt, with periodic boundary conditions
��0�=��	�. This notation is convenient if the limit Nt→� is
eventually performed since the rod is represented by a func-
tion ��t� : �0,	�→ �−1,1� with �i�0�=�i�	�. The rod statis-
tics are described by a probability distribution ����t��, a
functional of ��t�, that gives a positive real number for every
configuration ��t�. The normalization condition reads
����t������t��=1.

The partition function is written as

Z = �
��i�t��

e−	H���, �18�

where the Hamiltonian is

	H = − �
t

�
�ij�

tJij�i�t�� j�t� − ��
t

�
i

�i�t��i�t + t� .

�19�

We can also write this as a sum over links of the energy of a
link,

	Hij = − �
t

tJij�i�t�� j�t� −
1

q
��

t

�i�t��i�t + t� ,

�20�

where a fraction 1 /q of the imaginary-time interaction is
associated to each link �there are q links per spin�. Here �
= 1

2 ln coth�	Bt /Nt�.
Notice that ��0 so the system is ferromagnetic. More-

over when 	Bt /Nt�1 then ��1, and the coupling along the
time direction is strongly ferromagnetic. In particular, for
Bt=0 the spins in any given rod are locked together as Nt
useless copies of a single Ising spin. Thus, the results reduce
to the classical case smoothly.

The spatial treelike structure of the original problem is
reflected in the treelike structure of the interaction between
rods. We can therefore imagine an iteration process with rods
replacing the spins, in which we have q−1 cavity rods
�i��i�t�� which are merged, and determine the state of the
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rod �0��0�t�� �see Fig. 2�. This corresponds to a recursion
relation for the calculation of the partition function of the
branches analogous to the classical Eq. �6�,

�0��0�t�� =
1

Z
�

��i�1�t��
e−�i=1

q−1	H0i
i=1

q−1

�i��i�t�� . �21�

Just as in the classical case, this iteration equation is al-
ready enough to solve an interesting ferromagnetic problem.
Consider the case q=2 and Jij =J. For q=2 our Bethe lattice
is a simple chain of spins. Moreover with all J’s being equal
we can take J�0 without loss of generality. We then recover
the well-known ferromagnetic Ising chain with a transverse
field, an exactly solvable system. One way to solve it is to
use Onsager’s transfer-matrix method. In fact, the iteration
Eq. �21� can be rewritten as just such a transfer-matrix equa-
tion, where � is the 2N dimensional vector and e−	H01 is the
transfer matrix T,

Z�0 = T · �1. �22�

The fixed point of this iteration gives the eigenvector � cor-
responding to the largest eigenvalue Z. In the limit Nt→�,
this is an exact solution which contains all the information
about classical and quantum phase transitions.

Returning to the case of the spin glass, we can write down
the quantum cavity fixed-point equation analogous to the
classical Eq. �11� immediately;

PFP�����t��� = �������t�� − �0���t�;�J0i,�i�i=1
q−1���J0i,�i

=� �i=1

q−1
D�iPFP��i�dJ0iP�J0i��������t��

− �0���t�;�J0i,�i�i=1
q−1�� , �23�

where the iterated rod action �0���t� ; �J0i ,�i�i=1
q−1� is given by

Eq. �21� and P�J0i� is the fixed prior distribution for cou-
plings Eq. �10�. This is a functional equation for PFP�������,
the fixed-point probability distribution of the effective distri-
bution describing iterated cavity rods. In the limit Nt→�, it
is exact but difficult to solve in closed form. It is certainly
possible that analytic progress can be made, but we have not
succeeded this far. However, it is amenable to numerical
study at finite Nt under certain approximations and also per-
haps by continuous time Monte Carlo for Nt→�. In the re-
mainder of this section we will explore the finite Nt ap-
proach.

We must first parametrize our generic vector � in the
2Nt-dimensional space of the configurations of the rods. In
principle it is described by 2Nt −1 real numbers, which can be

reduced by a factor O�Nt� by exploiting time-translation
symmetry and the periodic boundary conditions. A natural
way to parametrize it is in term of the effective action of the
rod,

����t�� = e−S���, �24�

where we expand S in a series of increasing clusters of in-
teracting spins. Here,

S��� = − log Z − ht�
t

��t� − �
t,t�

t2C�2��t� − t���t���t��

− �
t,t�,t�

t3C�3��t� − t,t� − t����t���t����t�� + . . . �25�

In principle, the sum includes up to Nt-spin interaction terms
�the normalization factor has been included as a spin-
independent term in the effective action�. In practice, we
truncate the action expansion at second order to keep the
numerical requirements manageable. We comment below on
the limits in which this truncation is exact. Notice that C�2��t�
is the kernel for two points interactions, not the dynamical
two-point correlation function, often denoted as c�2��t�
= ���t���0��.

The functions h ,C�i� are random quantities characterized
by the Markov process defined by the iteration procedure. By
writing the representations of the vectors � in terms of the
effective action �Eq. �25�� we can rewrite the iteration equa-
tion as

e−S��,�h0,C0�� = �
��1�t��,. . .,��q−1�t��

e−�i=1
q−1	H0i

j=1

q−1

e−S��,�hj,Cj��.

�26�

This gives an implicit update map from the “old” q−1 pa-
rameters hj ,Cj

�2� ,Cj
�3� , . . . and the couplings J0j ,Bt to the

“new” parameters h0 ,C0
�2� ,C0

�3� , . . . The statistics generated
by this Markov process and in particular its fixed-point dis-
tribution,

P�h,C�2�,C�3�, . . .� , �27�

are the solution of the problem.

B. Approximations

1. Action representation

By parametrizing the quantum dynamics through the ac-
tion expansion �25� we do not make any a priori assump-
tions about the nature of the spin-spin correlations in the
time direction—that is, if we could keep all of the terms in
the expansion, it would be an exact treatment. We avoid in
this way the spherical approximation which has been used in
Ref. 21 since the results thus obtained do not reduce to the
well-known classical results for Bt=0.

In practice, however, we truncate the cavity actions to
second order. Most usefully, this corresponds to the leading-
order term in a large connectivity expansion of the effective
action. Indeed, in a large q treatment, in which the couplings
Jij must be scaled as 1 /�q for the disordered model, one

Iterate

FIG. 2. Iteration of cavity rods. There are periodic boundary
conditions in the imaginary-time �vertical� direction. Other cavity
operations are analogous.
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finds that the one-body and two-body terms in the effective
action for the rod at the root of a tree are O�1 /q0�, the three-
body and four-body terms are O�1 /q1� and so on.23 The trun-
cation to second order is thus both exact and necessary in the
q→� limit.28 We note that the oft-used static
approximation29 is thus incorrect even at infinite connectivity
for disordered models. The truncation to second order is also
exact at high temperature, regardless of the value of q.

Numerical investigations of small systems suggest that
the higher-order interactions are quantitatively small more
generally even at q=3. This is especially true at small Bt,
where the strong ferromagnetism in the timelike nearest-
neighbor bonds dominates. We note that there is also some
error in the numerical fitting of an iterated cavity distribution
to a truncated action. This problem is reminiscent of a maxi-
mum entropy model for the statistics of signals and the in-
verse Ising problem of computer science.30 However, even in
the disordered system, the interaction of the spins along
imaginary time is always ferromagnetic and the problem
does not present the difficulties that usually accompany the
inverse problems in general statistical mechanics. In other
words, although the original problem is fundamentally frus-
trated, none of this frustration appears in the single-spin dy-
namics. The frustration is taken care of in the treatment of
the relevant parameters h ,C�i� as random numbers.

For comparison, we note that our approach is closely re-
lated to self-consistent dynamical mean-field theory �DMFT�
methods, which also truncate to nonlocal two-point interac-
tions in the single-spin effective action �these are the so-
called Weiss functions or bare Green’s functions of DMFT
treatments�. However, DMFT techniques cannot be used
straightforwardly for disordered systems. One cannot assume
that the imaginary-time propagator �or action� for a spin is
equal to that of the spins which surround it but rather that
they come from the same probability distribution. If this ob-
servation is taken into account then we expect to recover
functional equations for the distribution of single-site
Green’s functions analogous to those we have proposed for
the single-site action.

2. Finite discretization error

Finally, we comment on where in the �� ,Bt� phase dia-
gram the fixed Nt approach will give reliable results. As men-
tioned above, on the classical line Bt=0, all spins in a rod are
locked together by divergent nearest-neighbor interactions
and the Trotter decomposed system �for any Nt� reduces to
the classical system exactly. In the opposite limit of large Bt
at fixed Nt, the planes of the Trotter system decouple as �
→0. Each of these planes is an exact copy of the original
Bt=0 spin-glass model except with couplings Jij /Nt. These
will therefore undergo independent thermal phase transitions
at �=�c /Nt, and no �=0 critical field will be detected. This
explains the phenomenon of “asymptotic critical lines” that
we note in our finite Nt phase diagrams.

More generally, for the finite Nt approximation to be
valid, Nt�ktyp, where ktyp is the typical number of kinks in a
rod. For a single spin in a transverse field, a straightforward
calculation shows �k�=2	Bt tanh 	Bt, which for large 	Bt
reduces to �k��2	Bt. Within the paramagnetic phase this

calculation remains nearly exact although in the spin-glass
phase �k� will be suppressed by the presence of longitudinal
cavity fields. However, this inequality Nt�2	Bt remains a
good indicator of the quality of the approximation and agrees
with the regions where it clearly breaks down.

Thus, this expansion is particularly useful, close to line
Bt=0, and we will see that it gives reasonable results and
insights into the structure of the problem also deep in the
quantum spin-glass phase. On the other hand, the other re-
gion of interest T=0, Bt�Bt

crit should not be addressed with
this expansion unless the description of the spins in terms of
continuous time functions ��t� turns out to be treatable in the
future. In this paper, we will not be able to make definitive
statements about the nature of the quantum phase transition
which occurs at this point; but we are definitely able to make
statements about the nature of the spin-glass phase when
quantum effects are not negligible.

In Sec. IV we show how a simple minded Trotter discreti-
zation with Nt relatively small �Nt=6–11� delivers a great
deal of information about the quantum spin-glass phase.

IV. NUMERICAL RESULTS

We solve the fixed point Eq. �23� numerically using a
population dynamics algorithm analogous to that of Mezard
and Parisi.16 We represent P��� by a finite population of
Nrods rod actions ��i���t��=e−Si���t���, where the expansion
�Eq. �25�� of Si is truncated to second order. Each rod action
is therefore specified by 1+ �Nt

2 � distinct numbers �h ,C�2��t��
after exploiting the periodicity of imaginary time.

This population is initialized from an appropriate uniform
distribution and then iterated as follows:

�1� Select q−1 rods �i randomly from the population and
q−1 random J0i.

�2� Use Eq. �21� to calculate the effective action on an
iterated cavity spin �0 from these rods. In principle, higher-
order interactions may be generated, but we truncate them by
finding the second-order action that exactly reproduces the
free energies of a series of domain-wall configurations of
varying width.

�3� Randomly replace one element of the population with
�0.

�4� Repeat until convergence in some measure of the
population, for example, the order parameter qEA.

In practice, this procedure converges quickly deep in ei-
ther the glassy or paramagnetic phase but slows near the
phase transition as the flow of P��� under the iteration equa-
tion near the paramagnetic fixed point becomes marginal.

Given PFP���, we can calculate the sample averaged free
energy density and local observables such as the link energy,
site magnetization, Edwards-Anderson order parameter qEA
= ���i�T

2�i and reduced von Neumann entropy SvonN
=−tr �0 log2��0� by standard Monte Carlo sampling of these
quantities. The free-energy density is given by Eq. �16�. The
reduced entropy and transverse magnetization may be de-
rived in the usual way from the reduced density matrix �0 for
a spin. We calculate this by performing a merge operation
onto a “broken rod” �see Fig. 3�, in which periodic boundary
conditions are not enforced. The various elements of the re-
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duced density matrix correspond to imposing different values
on the top and bottom spin of the broken rod and summing
out all other spins in the partition function. Finally, calculat-
ing the average internal energy can be done by averaging the
Hamiltonian �17�.

A. Numerical results

1. Phase diagram

We present numerical results for an investigation of the
q=3 connectivity model using a naive �exact� approach to
the exponential summation involved in the cavity iteration
and merging operations.31 Figure 4�a� shows the phase dia-
gram calculated at Nt=10, Nrods=2500, and Niter
�1000Nrods and suggestively fit to Nt→� using asymptotic
expansions in 1 /Nt

2. Qualitatively, all is as might be expected
as follows:

�i� At any Nt, the phase transition curve predicts a Bt=0
critical temperature in agreement with the analytic prediction
of �c=1 / tanh−1�1 /�q−1��1.13.

�ii� The upturn in the Nt=10 phase boundary at low tem-
perature is due to the finite discretization of time, which
leads to an asymptotic phase transition line at �=

�c

Nt
�0.113.

�iii� While the fits to Nt→� are certainly approximate, we
believe that the true �=0 critical field lies between 1.5 and 2.
We believe continuous time techniques will allow dramatic
refinement of this estimate and investigation of the quantum
critical region.

Our phase diagram clearly disagrees with that of Kopec
and Usadel,21 who treated the identical model using a soft
spherical approximation and found that both the critical tem-
perature and critical transverse field were depressed relative
to our values. Presumably this suppression of ordering arises
due to the stronger effect of fluctuations in the softened
model.

Figure 4�b� shows the instance averaged single-site von
Neumann entropy SvonN which has a remarkably clear maxi-
mum near the phase transition curve above the classical line.
This reflects the strength of quantum correlations even at the
finite temperature phase transition. See Ref. 32 for discus-
sion of local measures of entanglement at finite temperature.

Zooming in on the horizontal stripe at Bt=1 indicated on
the phase diagram, we find that qEA vanishes linearly at the
critical temperature �Fig. 5�a��. This reflects the underlying
broadening transition in P���, which can be seen sharply in
the variances of each of the effective action coefficients
�Figs. 5�b� and 5�c��. We use this behavior to estimate sharp
transition points despite softening due to critical slowing in
the convergence of our procedure.

Finally, we note that much of the phase diagram is sur-
prisingly stable to variation in Nt. We have explored various
regions of the phase space at Nt=6,7 ,8 ,9 ,10,11. The clas-
sical line �Bt=0� at all temperatures is completely stable

ψ2
ψ1

FIG. 3. Merging of two cavity rods onto a “broken” central rod.
Here Nt=3; but instead of imposing periodic boundary conditions
everywhere we depict ��0� and ��Nt� as independent spins. Each
vertical link corresponds to a � coupling while each horizontal link
corresponds to a Jij /2Nt coupling. The dashed lines connecting the
cavity rods indicate identification of the top and bottom spins for
each rod and the wiggly line indicates an effective action. By im-
posing different values on the top and bottom spins of the broken
rod and summing out the rest, the elements of the reduced density
matrix �0 may be determined.
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FIG. 4. �a� Phase diagram at q=3. The solid phase transition curve has been calculated at Nt=10, Nrods=2500, and Niter=1000Nrods on a
fine mesh in the �� ,Bt� plane. The vertical dotted line is the asymptotic critical line for large Bt at Nt=10 �i.e., �=�c /Nt�. The points marked
x with error bars indicate Nt→� fits based on Fig. 6. The dashed transition curve is a weighted quadratic fit through the estimated
low-temperature points and the Nt=10 points in the range 0.5���1. This leads to an estimated Bt

c=1.775�0.03. As this fit is clearly
heuristic, we have suggested a much larger range for our estimate of Bt

c in the figure. The stars and stripes indicate points in the phase space
which we have investigated in more detail below. �b� The average von Neumann entropy SvonN �in bits� of a central spin as a function of
�� ,Bt� at Nt=8. The dashed line indicates the estimated region of validity of the discretization approximation �Bt�Nt� /2�.
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down to Nt=1 as expected. Perhaps more surprisingly, mov-
ing between Nt=8 and 10, qEA is essentially stable below
Bt=1 down to temperatures ��0.15. Of course, the high-
field low-temperature part of the phase transition curve
moves downward as the finite discretization asymptote goes
toward the �=0 axis. See Fig. 6 for the low-temperature
critical curves estimated using vertical stripes run at five dif-
ferent temperatures �corresponding to 	=3.5,4 ,4.5,5 ,5.5�
at various Nt.

2. Structure of the glassy phase

Since the order parameter is a probability distribution of
an action, there is a rich structure to be investigated at even
a single point �� ,Bt� within the glassy phase. In Fig. 7, the
marginal probability distribution of the field term h in the
cavity action is shown at the four points indicated on Fig.
4�a�. The two lower distributions lie on the classical line
�Bt=0�; one deep within the glassy phase and one near the
transition. It is clear that the distinctive features of the clas-
sical solution are reproduced here: a Gaussian-type structure
around h=0 near the phase transition with the appearance of
delta function spikes on the integer fields deep within the
phase. At Bt=1, the qualitative picture of spread from narrow
Gaussian near the phase transition to broader bumpier distri-
bution remains. It is less clear whether the sharply defined
spikes on integer fields would remain at �=0 with large Bt.

Further structure can be found in the nontrivial probability
distribution for the interaction terms that develop in the spin-
glass phase. Figure 8 shows the histogram for various mar-
ginal and h-conditioned distributions of the nearest-neighbor
and next-nearest-neighbor interaction terms at ��=0.25, Bt
=1� �cf. Fig. 7 �top left��. We can qualitatively understand
many features of these distributions as follows:

�i� The two-spin interactions are ferromagnetic and the
effect of coupling to neighboring rods is only to enhance the
ferromagnetic interaction from the bare nearest-neighbor in-
teraction on a single rod ���. Indeed, this � sets the mini-
mum strength of C��T�, as can be seen in the top row.

�ii� The strength of two-spin interactions are strongly an-
ticorrelated with the strength of the cavity field h as can be
seen from the decomposition of the full marginal distribu-

tions of C��t� and C�2�t� into the small �middle column� and
large �right column� cavity field conditioned distributions.
Large cavity fields on a central spin come from large fields
biasing neighboring rods. These fields pin the neighboring
spins more strongly and reduce the ability of those spins to
mediate interactions in time between the central rod spins
reducing the effective two-spin interaction.

�iii� The multimodal spikiness in these distributions re-
flects the spikiness in the low-temperature cavity field distri-
butions through the field-interaction correlation.

Unfortunately, we have yet to develop a more significant
analytic understanding of these correlations or a means to
extrapolate them to zero temperature in the presence of the
transverse field.

Finally, we emphasize that the phase transition is signaled
by a singular broadening of P rather than any singularity in
its first moments or in the structure of the typical imaginary-
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FIG. 6. �Color online� The phase transition curve in the high-
field low-temperature regime at various Nt. The vertical dashed
lines indicate the finite discretization critical asymptotes. The esti-
mated curve for Nt→� in Fig. 4�a� is given by fitting Bt�Nt�
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paucity of data but are suggestive nonetheless.
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time action. This can be seen in the smooth evolution of
�C�2t��J through the phase transition in Fig. 9�a� and the
similarly smooth evolution of the average two-point correla-
tion function ���0���t��J. This is in contrast to the ferromag-
netic case in which the distribution P��� would exhibit spon-
taneous symmetry breaking but remain deterministic.

V. DISCUSSION AND FURTHER WORK

The cavity method has a long and illustrious history in the
study of statistical systems—from Bethe’s early work on the
Ising ferromagnet to modern studies of random constraint
satisfaction problems in computer science. In this paper, we
have introduced a variant for studying disordered quantum
systems within an imaginary-time formalism. This represents
an intuitively appealing natural synthesis of the classical dis-
ordered model techniques with the quantum homogeneous
models studied in DMFT. We note that our framework can
simply adapt to study many other transverse field Ising sys-
tems on trees with fixed or fluctuating connectivity, such as
the ferromagnet, diluted ferromagnet, or biased glass.

We have shown that the transverse field Ising glass on a
Bethe lattice of connectivity three has a phase transition line
all the way from the classical Bt=0 and T=1.13 to the quan-
tum Bt�1.75 and T=0. At finite temperature, the transition
is classical and mean-field-like. Inside the frozen phase the
picture is similar to the classical case: when a randomly cho-

sen spin is extracted from the graph, its effective action
�analogous to the cavity field� is well defined in the paramag-
netic region but is a random functional in the spin-glass
phase. In this phase all of the local observables, classical and
quantum, are therefore also random variables. In principle
one could also study the properties of the entanglement of
distant spins, which cannot be done in the better known but
fully connected SK model.

The reader, familiar with classical spin-glass theory, will
have noticed our avoidance of the important issue of replica
symmetry breaking �RSB�, which is widely believed to be a
feature of a correct treatment of the random graph Bethe
lattice. In this connection, we note that our simpler treatment
is indeed correct for models on Cayley trees with fixed
boundary conditions. Quantum RSB phenomena certainly
deserve further study: the conceptual difficulties of the RSB
ansatz become even thornier in the presence of quantum tun-
neling. We note that formally breaking replica symmetry at
the one step level �1RSB� should be straightforward in our
framework. In analogy with Ref. 16, one should introduce
populations of populations of effective actions and weigh
them according to their free energy �as one does for different
solutions of the TAP equations�. This straightforward modi-
fication of the algorithm makes it computationally consider-
ably more time consuming. For this first pass, we decided
not to embark on such a project.

Unfortunately, we are not aware of quantum Monte Carlo
or other numerical studies on the transverse Ising model on

FIG. 7. �Color online� The distribution of the field term of the cavity rod action at the four different points in phase space labeled by the
stars on Fig. 4. The distinctive distribution of the low-temperature replica symmetric classical spin glass is reproduced in the bottom left
corner while the three other points all lie closer to the phase boundary in the � or Bt directions.
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the Bethe lattice with which to compare our results. The
primary difficulty that has prevented the direct simulation of
this system is that it requires a very large number of spins to
approximate the infinite system effectively. Since a random
graph with fixed connectivity has an extensive number of
loops of lengths ��O�ln N / ln�q−1��, N needs to be expo-
nentially larger than any statistically relevant length scale
�e.g., the coherence length�.

Another direction for further development would be to
find a spin-glass �or otherwise� model amenable to analytic
treatment within the quantum cavity method. A “soft spin”
Gaussian model would do since the path integrals to be per-
formed in an iteration could be computed exactly. However,
we do not believe this model has a spin-glass phase in the
absence of higher-order couplings. Whether one could treat

(a) (b)

FIG. 9. �Color online� �a� The average next-to-nearest-neighbor interaction in time C�2��2t� of a cavity rod action at Bt=1, varying the
temperature. The bars indicate the variance of C�2��2t�. Notice the zero variance above the critical temperature. �b� Single-site imaginary-
time correlation function ���0���t��J at �=0.25 for various Bt passing through the transition at Bt

c�1.85.

FIG. 8. �Color online� Histograms of nearest-neighbor �top row� and next-nearest-neighbor �bottom row� interactions in imaginary time
at �=0.25 and Bt=1 �in the SG phase�. The second and third column provide the conditional distribution of the interactions given �h� is small
or large.
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such a coupling perturbatively is a question worthy of further
exploration.

Note added. Recently, several other groups33,34 have inde-
pendently developed quantum cavity techniques inspired by
somewhat different approaches to the quantum problem. Ref-
erence 35 provides a quantitative comparison of the error in
several of these related techniques. In an important develop-
ment, Ref. 36 describes a continuous time version of the
quantum cavity method described here which they apply to a
ferromagnetic model.
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