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The problem of finding the asymptotic behavior of the maximal density �max of
sphere packings in high Euclidean dimensions is one of the most fascinating and
challenging problems in discrete geometry. One century ago, Minkowski obtained a
rigorous lower bound on �max that is controlled asymptotically by 1 /2d, where d is
the Euclidean space dimension. An indication of the difficulty of the problem can
be garnered from the fact that exponential improvement of Minkowski’s bound has
proved to be elusive, even though existing upper bounds suggest that such improve-
ment should be possible. Using a statistical-mechanical procedure to optimize the
density associated with a “test” pair correlation function and a conjecture concern-
ing the existence of disordered sphere packings �S. Torquato and F. H. Stillinger,
Exp. Math. 15, 307 �2006��, the putative exponential improvement on �max was
found with an asymptotic behavior controlled by 1 /2�0.77865¯�d. Using the same
methods, we investigate whether this exponential improvement can be further im-
proved by exploring other test pair correlation functions corresponding to disor-
dered packings. We demonstrate that there are simpler test functions that lead to the
same asymptotic result. More importantly, we show that there is a wide class of test
functions that lead to precisely the same putative exponential improvement and
therefore the asymptotic form 1 /2�0.77865¯�d is much more general than previously
surmised. This class of test functions leads to an optimized average kissing number
that is controlled by the same asymptotic behavior as the one found in the afore-
mentioned paper. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2897027�

I. INTRODUCTION

A collection of congruent spheres in d-dimensional Euclidean space Rd is called a sphere
packing if no two spheres overlap. Although the practical relevance of sphere packings in high
Euclidean dimensions was appreciated by Shannon in 1948,1 there has been a resurgence of
interest in such problems in both the physical and mathematical sciences.2–11 Shannon showed that
the optimal way of sending digital signals over noisy channels corresponds to the densest sphere
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packing in a high dimensional space.1 These “error-correcting” codes underlie a variety of systems
in digital communications and storage.12 Physicists have investigated sphere packings in high
dimensions to gain insight into classical ground and glassy states of matter as well as phase
behavior in lower dimensions.8,9,13–15 Understanding the symmetries and other mathematical prop-
erties of the densest packings in arbitrary dimension is a problem of long-standing interest in
discrete geometry and number theory.4,5,12,16,17

The packing density or simply density � of a sphere packing is the fraction of space Rd

covered by the spheres. We will call

�max = sup
P�Rd

��P� �1�

the maximal density, where the supremum is taken over all packings that exist in Rd.18 The set of
�Bravais� lattice packings is a subset of the set of sphere packings in Rd.19 In such a packing, space
can be partitioned into identical regions called fundamental cells, each of which contains just one
sphere center. Nonlattice packings include periodic packings �more than one sphere per funda-
mental cell� as well as disordered packings.20

The sphere packing problem seeks to answer the following question: Among all packings of
congruent spheres, what is the maximal packing density �max, i.e., largest fraction of Rd covered
by the spheres, and what are the corresponding arrangements of the spheres?12,17 For arbitrary d,
the sphere packing problem is notoriously difficult to solve. Exact solutions are only known for the
first three space dimensions.5 For 4�d�9, the densest known packings of congruent spheres are
lattice packings. For example, the “checkerboard” lattice Dd, which is the d-dimensional gener-
alization of the fcc lattice �densest packing in R3�, is believed to be optimal in R4 and R5. The
remarkably symmetric E8 and Leech lattices in R8 and R24, respectively, are most likely the
densest packings in these dimensions.11 However, for sufficiently large d, lattice packings are most
likely not the densest, but it becomes increasingly difficult to find dense packing constructions as
d increases.21 For large d, the best that one can do theoretically is to devise the upper and lower
bounds on �max.

The upper and lower bounds on the maximal density �max exist in all dimensions.12

Minkowski22 proved that the maximal density �max
L among all Bravais lattice packings for d�2

satisfies the lower bound

�max
L �

��d�
2d−1 , �2�

where ��d�=�k=1
� k−d is the Riemann zeta function. The large-d asymptotic behavior of the non-

constructive Minkowski lower bound is controlled by 2−d. Since 1905, many extensions and
generalizations of �2� have been derived,12 but none of them has improved upon the dominant
exponential term 2−d. The best currently known rigorous lower bound on �max

L ,

�max
L �

2�d − 1���d�
2d �3�

was obtained by Ball.23 Interestingly, the density of a saturated packing of congruent spheres in Rd

for all d satisfies the lower bound24

� �
1

2d , �4�

and thus has the same dominant exponential term Minkowski’s bound �2�. A saturated packing of
congruent spheres of unit diameter and density � in Rd has the property that each point in space
lies within a unit distance from the center of some sphere. The lower bound �4� is not stringent for
a saturated packing and hence is improvable, as we will see.
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Rogers16,17 found upper bounds on the maximal density �max that asymptotically becomes
d / �2d/2e�. Kabatiansky and Levenshtein25 found an even stronger bound, which in the limit d
→� yields �max�2−0.5990d�1+o�1��. Cohn and Elkies4 obtained and computed linear programming
upper bounds that improve Rogers’ upper bound for dimensions 4–36. Cohn and Kumar11 used
these techniques to prove that the E8 and Leech lattices are the unique densest lattices in R8 and
R24, respectively. They also proved that no sphere packing in R24 can exceed the density of the
Leech lattice by a factor of more than 1+1.65�10−30.

A recent study6 proved that there exists a disordered packing construction in Rd, called the
“ghost” random sequential addition �RSA� packing,26 with a maximal density that achieves the
saturation lower bound �4� for any d. The n-particle correlation function gn �defined below� for
this packing for any n�1 was obtained analytically for all allowable densities and d. Interestingly,
this packing is unsaturated �see Fig. 1� and yet has a maximal density 2−d, suggesting that there
exist disordered saturated packings with densities that exceed the saturation lower bound �4� or
bound �2�. Indeed, the maximal saturation density of the standard disordered RSA packing27

apparently scales as d /2d for large d,10 which has the same asymptotic behavior as Ball’s lower
bound �3�. Spheres in both the ghost and standard RSA packings cannot form interparticle con-
tacts, which appears to be a crucial attribute to obtain exponential improvement on Minkowski’s
bound,7 as we discuss below.

Torquato and Stillinger7 used a conjecture concerning the existence of disordered sphere
packings and an optimization procedure that maximizes the density associated with a “test� pair
correlation function g2�r� to provide the putative exponential improvement on Minkowski’s
100-year-old bound on �max �see Sec. II for details�. The asymptotic behavior of the conjectural
lower bound is controlled by 2−�0.77865¯�d. Moreover, this lower bound always lies below the
density of the densest known packings for 3�d�56, but, for d�56, it can be larger than the
densities of the densest known arrangements, all of which are ordered. These results counterintu-
itively suggest that the densest packings in sufficiently high dimensions may be disordered rather
than periodic, implying the existence of disordered classical ground states for some continuous
potentials. In addition, a decorrelation principle for disordered packings was identified in Ref. 7,

FIG. 1. A configuration of 468 particles of a ghost RSA packing in R2 at a density very near its maximal density of 0.25.
This was generated using a Monte Carlo procedure within a square fundamental cell under periodic boundary conditions.
Note that the packing is clearly unsaturated and there are no contacting particles.
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which states that unconstrained correlations in disordered sphere packings vanish asymptotically
in high dimensions and that the n-particle correlation function gn for any n�3 can be inferred
entirely �up to some small error� from a knowledge of the number density � and pair correlation
function g2�r�. This decorrelation principle,28 among other things, provides justification for the
conjecture used in Ref. 7, and is vividly exhibited by the exactly solvable ghost RSA packing
process6 as well as by computer simulations in high dimensions of the maximally random jammed
state9 and the standard RSA packing process.10

In this paper, we investigate whether the putative exponential improvement of Minkowski’s
lower bound found in Ref. 7 can be further improved by exploring other test pair correlation
functions. We will show that there are simpler test functions that lead to the same asymptotic
result. More importantly, we will demonstrate that there is a wide class of test functions that lead
to the same exponential improvement as in Ref. 7.

II. PRELIMINARIES AND OPTIMIZATION PROCEDURE

A packing of congruent spheres of unit diameter is simply a point process in which any pair
of points cannot be closer than a unit distance from one another.7 A particular configuration of a
point process in Rd is described by the “microscopic” density,

n�r� = �
i=1

�

	�r − xi� . �5�

This distribution can be interpreted in a probabilistic sense,7 which is particularly useful for the
arguments we will present, even in the limit in which no explicit randomness is present, as in the
case in which the spheres are arranged on the sites of a �Bravais� lattice. We define the n-particle
density as the ensemble average

�n�r1, . . . ,rn� = � �
i1�i2�. . .�in

	�r1 − xi1
� . . . 	�rn − xin

�� , �6�

which is a non-negative quantity. Henceforth, we will assume that the random process is transla-
tionally invariant, i.e., statistically homogeneous. It follows that there is no preferred origin in the
packing and thus the n-particle densities �n�r12,r13, . . . ,r1n� only depend on relative displace-
ments, where r1j �r j −r1. In particular, the one-particle density �1�r�= 		�r−x1�
=� is a constant
called the number �center� density. The packing density � defined earlier is related to the number
density � for spheres of unit diameter via the relation

� = �v1�1/2� , �7�

where v1�r�=
d/2rd /��d /2+1� is the volume of a sphere of radius r. The surface area of such a
sphere is s1�r�=2
d/2rd−1 /��d /2�. If we divide �n by �n, we get the n-particle correlation function
gn�r12,r13. . . ,r1n�, which clearly is also a non-negative function. As will become clear shortly, the
pair correlation function g2�r12� has particular importance to us. If the point process is addition-
ally rotationally invariant �i.e., the packing is statistically homogeneous and isotropic�, the pair
correlation function g2�r� depends only on the distance r��r�.

In Ref. 2, g2-invariant processes were examined in order to gain insights about the nature of
disordered sphere packings. A g2-invariant process is one in which a given non-negative pair
correlation g2�r� function has a fixed functional form for all r over the range of densities 0��
��*. The terminal density �* is the maximum achievable density for the g2-invariant process
subject to satisfaction of certain necessary conditions on the pair correlation. In particular, they
considered those test g2�r�’s that are distributions on Rd depending only on the radial distance r.
For any test g2�r� associated with a packing, i.e., g2�r�=0 for r�1, they maximized the corre-
sponding density �, i.e.,
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max � �8�

subject to the following two conditions:

g2�r� � 0 for all r , �9�

S�k� = 1 + ��2
�d/2�
0

�

drrd−1Jd/2−1�kr�
�kr�d/2−1 �g2�r� − 1� � 0 for all k . �10�

Condition �10� states that the structure factor S�k� �trivially related to the Fourier transform of
g2�r�−1�29 must also be non-negative for all wavenumbers. It is a known necessary condition on
the existence of a point process,2,30 but it is generally not sufficient.31

Recently, Torquato and Stillinger7 conjectured that a disordered sphere packing in Rd at
number density � exists for sufficiently large d if and only if the conditions �9� and �10� are
satisfied. The maximum achievable density is the terminal density �*, which then implies the
lower bound

�max � �*. �11�

There is mounting evidence to support this conjecture. First, the aforementioned decorrelation
principle states that unconstrained correlations in disordered sphere packings vanish asymptoti-
cally in high dimensions and that the gn for any n�3 can be inferred entirely from a knowledge
of � and g2. Second, other necessary conditions on g2, such as the Yamada condition32 as well as
others,7 appear to only have relevance in very low dimensions. Third, one can recover the form of
known rigorous bounds �see �2� and �3�� for specific test g2’s when the conjecture is invoked.
Finally, in these two instances, configurations of disordered sphere packings on the torus have
been numerically constructed with such g2 in low dimensions for densities up to the terminal
density.33,34

Interestingly, the optimization problem defined above is the dual of the infinite-dimensional
linear program �LP� devised by Cohn and Elkies3,4 to obtain upper bounds on the maximal
packing density. In particular, let f�r� be a radial function in Rd such that

f�r� � 0 for r � 1,

�12�
f̃�k� � 0 for all k .

Then the number density � is bounded from above by

min
f�0�

2d f̃�0�
. �13�

The radial function f�r� can be physically interpreted to be a pair potential. The fact that its
Fourier transform must be non-negative for all k is a well-known stability condition for many-
particle systems with pairwise interactions.35 We see that whereas the LP problem specified by
�8�–�10� utilizes information about pair correlations, its dual program �12� and �13� uses informa-
tion about pair interactions. As noted in Ref. 7, even if there does not exist a sphere packing with
g2 satisfying conditions �9� and �10�, the terminal density �* can never exceed the Cohn–Elkies
upper bound. Every LP has a dual program36 and when an optimal solution exists, there is no
duality gap between the upper-bound and lower-bound formulations. Recently, Cohn and Kumar37

proved that there is no duality gap.
By means of the aformentioned LP problem and conjecture concerning the existence for a

certain test function g2, it was found in Ref. 7 that in the limit d→�,

043301-5 Optimal density and kissing number of pack J. Math. Phys. 49, 043301 �2008�

Downloaded 06 Apr 2008 to 128.112.83.39. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



�max � �*  2−�3/2�d+�1/ln 2��d/2�+2.12497¯d1/3+�1/6�log2 d+log2�3.2761¯�, �14�

where the terms neglected are monotonically decreasing with d. The first term in the series
provides the putative exponential improvement of Minkowski’s lower bound �2�. In the following,
we will be interested mainly in the exponential improvement of Minkowski’s lower bound, and so
we simplify the right-hand side of �14� by writing it as

�*  2−��3/2�−�1/2 ln 2��d = 2−0.77865¯d. �15�

This is not to be intended as an asymptotic expansion of �* in the sense of Poincaré �the ratio of
the right-hand side to the left-hand side does not go to unity when d→��; however, it is an
asymptotic expansion in such sense for log2 �*.

In what follows, we will show that we can obtain a conjectural lower bound asymptotically
equal to �14� with a simpler test function. Then we will demonstrate that the requirement of
hyperuniformity30 in Ref. 7 is actually a necessary condition that arises only from the optimization
procedure. A point process is called hyperuniform if the structure factor29 vanishes in the limit
k→0, i.e., infinite wavelength density fluctuations vanish; see Ref. 30. Finally, we will show some
examples of how enlarging the space of test functions where the optimization is performed does
not change the asymptotic exponential behavior, although nonexponential improvement is found.
Although these results do not constitute a proof of lower bounds, they strongly suggest that an
estimate of the asymptotic behavior of the solutions to the LP lower-bound problem can be
achieved and that physical intuition is gained about the spatial structures they describe.

III. STEP PLUS DELTA FUNCTION REVISITED

Following Torquato and Stillinger,7 we choose the following test g2�r�:

g2�r� = �r − 1� +
Z

s1�1��
	�r − 1� . �16�

Here, the parameter Z has the interpretation of the average kissing number. The structure factor
becomes

S�k� = 1 − 2d/2��1 +
d

2
� Jd/2�k�

kd/2 2d� + 2d/2−1��d

2
� Jd/2−1�k�

kd/2−1 Z � 1 − a�k�2d� + b�k�Z , �17�

which defines the functions a ,b. The terminal density is defined by the linear program �8�–�10�. Z
is then a free parameter to be optimized appropriately. A positive value of Z requires contacting
spheres, which is to be contrasted with the ghost RSA process, depicted in Fig. 1, in which spheres
can never touch and whose density cannot exceed 1 /2d. It was shown7 that optimizing Z leads to
a density that surpassses 1 /2d.

Unlike Torquato and Stillinger,7 here we do not impose hyperuniformity29,30 �requiring the
structure factor to vanish at k=0� to simplify the optimization. Moreover, we are also interested in
finding the largest average kissing number Z that �for a given d� satisfies the constraints. In this
latter case, it is � that must be chosen appropriately. These are two infinite-dimensional LP
problems.

There is a graphical construction that will help us look for such points and that will be helpful
also in cases where more parameters are to be varied. For any given k, the set of allowed points
in the �� ,Z� plane �i.e., those for which S�k��0� is the half plane above �below� the line 1
−a�k�2d�+b�k�Z=0 for positive �negative� a. Upon changing k by a small step to k+�, we repeat
the construction and find the intersection of the two half-planes. By letting k vary over the positive
reals and letting �→0, we find a limiting finite, convex region B which gives the allowed values
of � ,Z. This region is the set internal to the curve obtained by solving the equations
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S�k,�,Z� = 0,
�

�k
S�k,�,Z� = 0, �18�

with respect to � ,Z. This is depicted in Fig. 2. It is not difficult to prove that the region B is indeed
internal to the entire spiral. It will suffice to observe that the distance of a point on the spiral from
the origin is a monotonically increasing function �for sufficiently large k�.

Now the terminal density �* is the x-component of the rightmost point in B. Analogously the
y-component of the topmost point in B gives the predicted terminal kissing number Z**.

The terminal density is found at the first zero of b�k�, which is located at the first zero of the
Bessel function of order d /2−1. As customary, we call this number jd/2−1,1. The value of ��* ,Z*�
is then found by finding the point on the spiral corresponding to k= jd/2,1:

�* =
2−d

a�jd/2−1,1�
= 2−3d/2 �jd/2−1,1�d/2

��1 + d/2�Jd/2�jd/2−1,1�
, �19�

FIG. 2. �Top panel� For d=16, the set B of allowed packing densities and kissing numbers. The rightmost point is the
maximal packing density �

*
and its corresponding kissing number Z

*
. The topmost point is the maximal kissing number

Z
**

which corresponds to packing density �
**

=0. �Bottom panel� As in the top panel, the region B of allowed packing

densities and kissing numbers for d=16. For convenience in plotting, the horizontal and vertical axes represent the
functions ����log10��2d���, and ��Z�log10��Z��, where ��x�=sign x, respectively �although in this way the small region
�2d���1, �Z��1 had to be left out of the graph�. This figure shows how the solution of the equations S�k ,� ,Z�=0,
�S�k ,� ,Z� /�k=0 for varying k form an ever-growing spiral in which the allowed region B is completely contained. So this
geometrical construction proves that every point in B are solutions to the LP problem S�k ,� ,Z��0, ��0, Z�0 for every
k�0.
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Z* =
a��jd/2−1,1�

b��jd/2−1,1�a�jd/2−1,1�
=

a��jd/2−1,1�
b��jd/2−1,1�

2d�*. �20�

By using the asymptotic formulas, valid for large �,

j�,1 = � + 1.85576 ¯ �1/3 + O��−1/3� , �21�

J��j�−1,1� = − J�−1� �j�−1,1� = 1.11310 ¯ �−2/3 + O��−4/3� , �22�

we find

�* � 2−�3/2�d+�1/ln 2��d/2�+2.12497¯d1/3
 2−�0.77865¯�d. �23�

Notice that this is the same case that was treated in Ref. 7 but there hyperuniformity was imposed
and the Minkowski bound was recovered. Here, we are not imposing hyperuniformity and the
resulting terminal structure factor is not hyperuniform. The form of S�k� at the terminal point
�* ,Z* is given in Fig. 3. Notice that the first zero is at k= jd/2−1,1�d /2. This can be interpreted as
the appearance of a structure with length scale �1 /d in the system at large d. However, since a
sphere packing corresponding to such a S�k� could not be hyperuniform, it cannot be a Bravais
lattice.

Following Ref. 7, we checked whether the Yamada condition32 on the number variance is
satisfied by the pair correlation �16�. As in Ref. 7, we found a violation only for d=1.

The terminal kissing number is given by the topmost point in B which is point k**, where
a�k**�=0. It can be easily proved that b��k**�=0 as well so that

Z** = −
1

b�jd/2,1�
 2��1/ln 2�−1�d/2, �24�

with an associated density �**=0, which is a singular point. The equality is valid in any dimen-

sion and the asymptotic result applies for large d. One must regard the singular zero-density limit
point on the top boundary of B �and perhaps a positive small interval in its vicinity� with caution
because such a zero-density state may not be realizable by a packing. However, we should note
that the optimal kissing number Z** has the same asymptotic form as the kissing number associ-

ated with the maximal density �*,7 which to our knowledge has no obvious realizability problems.
This means that, except for a small positive density interval around zero, most of the upper
boundary of B for positive densities is apparently realizable.

FIG. 3. The structure factor for the terminal density �
*

=0.0046692, Z
*

=217.121 in d=16. Notice the zero at k*= j7,1

=11.086¯ and the rapid asymptoting to the value S���=1.
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IV. STEP PLUS DELTA FUNCTION WITH A GAP

This case was analyzed in Ref. 7 before by imposing hyperuniformity. Here we show that in
order to find the terminal density, one does not need to impose hyperuniformity29 from the begin-
ning but rather that it arises as a necessary condition from the optimization procedure. We will
show that the same asymptotic behavior of the terminal density found in the previous example is
obtained �modulo nonexponential prefactors�.

We choose the test function

g2�r� = �r − �1 + ��� +
Z

s1�1��
	�r − 1� , �25�

depending on two parameters Z ,� and the density of centers �. Performing the integrals gives the
corresponding structure factor

S�k� = 1 − a��1 + ��k�2d�1 + ��d� + b�k�Z , �26�

where the functions a ,b were defined in the previous section. Again we look for the rightmost
point in the set, which is now given by

�* =
2−d

�1 + ��da��1 + ��jd/2−1,1�
�27�

Z* =
�1 + ��a���1 + ��k�

b��jd/2−1,1�a��1 + ��jd/2−1,1�
. �28�

We now need to maximize the value of �* over �. Clearly, we can increase � to increase �*
indefinitely until a��1+��jd/2−1,1� becomes zero, namely, when �1+��jd/2−1,1= jd/2,1, which gives
�2 /d. The prefactor goes to a constant: �1+��d�1+2 /d�de2 and does not change the
asymptotic dependence on d. This would suggest that the density can be increased without bound
by adjusting the other parameters. This is not the case, however, since when we increase � we
encounter the first “global” obstacle �by which we mean at wavenumbers k far from the first zero
of b�k�, which was setting the relevant k scales up to now� at the value of � when �1+��d2d�*
=Z*−1. Notice that a�0�=b�0�=1 and both functions decrease monotonically until their first
zeros; here we have S�0�=1− �1+��d2d�*+Z*=0 and any further increase of � would make
S�0��0. Thus, hyperuniformity has arisen as an optimality condition. Of course one should make
sure that there is not a disconnected region in the parameter space �� ,� ,Z� with better terminal
density �* but where hyperuniformity does not hold. We have searched the parameter space by
discretizing the relevant range of k and solving, using MATHEMATICA, the LP problem �8�–�10�. We
have not been able to find another allowed region of the parameters disconnected from the pre-
vious one.

Henceforth, we assume that the global terminal value �* is indeed obtained by imposing
hyperuniformity29 and maximizing with respect to the remaining parameters �the two operations
can be performed in any order�. We notice that now we have reduced the problem to the case that
has been analyzed in Ref. 7. We will not repeat that analysis here but refer the reader to that paper.
It is important to observe that in Ref. 7, the resultant asymptotic scaling laws for the terminal
density �* and the kissing number Z* coincide with the ones presented in the previous section,
where we found �*2−�0.77865¯�d and Z** 20.22134¯d. Although the nonexponential terms are
different from those in the previous section, it is remarkable that the same exponential scaling laws
arise for two different cases. This strongly suggests that a large class of test functions can possess
this asymptotic behavior. With this in mind, we go on to analyze the next case in which the test
pair-correlation function consists of a hard core with two delta functions and a gap.
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V. STEP PLUS TWO DELTA FUNCTIONS WITH A GAP

In this section, we find the solution of the optimization problem �8�–�10� for the family of
pair-correlation functions g2�r� composed of unit step function plus a gap and two delta functions,
one at contact and the other at the end of the gap:

g2�r� = ��r − �1 + ��� +
Z2

s�1��
	�r − 1� +

Z1

s�1 + ���
	�r − �1 + ��� . �29�

This family depends on three parameters � ,Z1 ,Z2 and we need to optimize them in order to find
the optimal terminal density �*. The structure factor is

S�k� = 1 + Z22d/2−1��d/2�
Jd/2−1�k�

kd/2−1 + Z12d/2−1��d/2�
Jd/2−1�k�1 + ���
�k�1 + ���d/2−1

− ���d/2 + 1��1 + ��d23d/2Jd/2��1 + ��k�
�k�1 + ���d/2 �30�

�1 + Z2c�k� + Z1b�k� − �1 + ��d2d�a�k� , �31�

where the last line defines the functions a ,b ,c. Notice that a�0�=b�0�=c�0�=1 and
�a�k�� , �b�k�� , �c�k���1 follow from the properties of the Bessel functions. It is also convenient to
reabsorb the factor �1+��d2d in the definition of �, i.e., �1+��d2d�→�. We will restore the
proper units at the end of the calculation. The solution of this optimization problem for arbitrary
d is a formidable task. However, guided by the results of the previous section, we assume we can
find an improvement on the previous bound even after imposing hyperuniformity.

Therefore, we fix the value of Z2=�−Z1−1 and are left with the other two parameters to
optimize. Inserting this value of Z2 in �31�, we find the reduced optimization problem

S�k� = �1 − c�k�� − �a�k� − c�k��� + �b�k� − c�k��Z1 � 0. �32�

By using the fact that c�k��1, we might as well study the optimization problem

S�1��k,�,�,Z1� �
S�k�

1 − c�k�
� 1 − ��k�� + ��k�Z1 � 0, �33�

��k� =
a�k� − c�k�

1 − c�k�
, �34�

��k� =
b�k� − c�k�

1 − c�k�
. �35�

Formally, this problem is analogous to the previous case with one delta function with gap and can
be studied in the very same fashion. The process of having solved for Z2 and changed the
functions a ,b to � ,� can be thought of as a renormalization process that allows to integrate out
one delta function to reduce the problem to a simpler one.

The mathematical problem of finding the terminal fraction is formally identical to that of the
previous section, although the constitutive functions � ,� are more complicated. However, as long
as a numerical analysis is concerned this does not present further difficulties.

We proceed in the following way: for a fixed � we find the rightmost point of allowed region,
�*��� ,Z1,*���, by finding the first zero of ��k�, call it k*,

�*��� =
1

��k*�
, �36�
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Z1,*��� =
���k*�

���k*���k*�
. �37�

We then maximize the value of �*��� with respect to variations of �. Generically, increasing
� increases the value of �* until a positivity condition is violated �for small k�. It turns out that the
first condition to be violated is S�1��0��0. So in practice we find the terminal value of � by
solving the equation

S�1��0,�,�*���,Z1,*���� = 0, �38�

with respect to �. Notice that this is now a “strong” hyperuniformity requirement, since S�1��k�
k2 near the origin implies S�k�k4 near the origin, since 1−c�k�k2. We are tempted to
conjecture that this is a universal feature: adding more delta functions to g2 and solving the LP
problem, we obtain structure factors S�k� that become increasingly flatter at the origin. Hence, at
least in this respect, the structure factor looks increasingly similar to that of a lattice.

As can be seen from Table I and Fig. 4 �here the proper normalization for � has been
restored�, the improvement on the previous bound is relevant but the asymptotic exponent is the
same. Analytically, it is not difficult to obtain the rate of exponential decay �dictated mainly by the
Stirling expansion of the gamma functions and the scaling of the first zero of � with d for large d�,
which turns out to be the same as the previous cases, namely,

�*  2−�3/2−1/2 ln 2�d. �39�

It is plausible, therefore, that the incorporation of any finite number of delta functions in a test g2

will not improve the exponent in �39�. This exponent fits the numerical data very well. A best fit
of the data in Table II using the functions d ,d1/3 , log2 d, appearing in the analysis in the previous
section and invoking the existence conjecture of Ref. 7 yields the putative lower bound

TABLE I. Estimates of the maximal densities for selected dimensions up to
d=150. �bk is the densest known packing, �CE is the upper bound of Cohn
and Elkies, �1,*

is the terminal density for a single delta function, and �2,*
for two delta functions.

d �bk �CE �
*,1 �

*,2

3 0.740 49 0.779 82 0.576 65 0.633 06
4 0.616 85 0.647 74 0.425 26 0.478 85
5 0.465 27 0.525 06 0.305 91 0.354 37
6 0.372 95 0.417 76 0.213 60 0.249 66
7 0.295 30 0.327 57 0.147 13 0.179 91
8 0.253 67 0.253 67 0.099 85 0.124 67

12 0.049 45 0.083 84 0.019 15 0.0257 21
15 0.016 85 0.034 33 0.005 16 0.007 22
19 0.0041 21 0.0098 85 0.0008 45 0.0012 33
24 0.001 93 0.001 93 8.24�10−5 0.0001 25
31 1.18�10−5 1.93�10−4 2.91�10−6 4.57�10−6

36 6.14�10−7 3.59�10−5 2.57�10−7 4.13�10−7

56 2.33�10−11
¯ 1.25�10−11 2.13�10−11

60 2.97�10−13
¯ 1.67�10−12 2.87�10−12

64 1.33�10−13
¯ 2.22�10−13 3.83�10−13

80 1.12�10−16
¯ 6.52�10−17 1.15�10−16

100 ¯ ¯ 2.28�10−21 4.11�10−21

150 8.44�10−39
¯ 1.27�10−32 2.30�10−32
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�max � �* � 2−�0.77865¯�d+2.12��0.04�d1/3+0.39��0.08�log2�d�+. . . . �40�

The first term is fixed by our analysis; the d1/3 is term is consistent with the analytic value 2.1247
in Eq. �14�. The subleading term log2 d in this expression is very difficult to obtain analytically
and we have not succeeded in this task. However, it is clear that there is an improvement from the
value 1

6 =0.1666¯ appearing in �14�. The improvement is also evident from the numbers in Table
I.

It is noteworthy that for large d, the optimum gap ��2.77¯ /d �from a best fit analysis�. This
scaling with d is slightly different from that found in the previous section and in Ref. 7 �there
��1.81 /d�. The scaling of � with d, ��1 /d is necessary in order not to introduce an exponential
suppression of density. In fact, for large d, �1+c /d�d→ec multiplies the density � in all the
formulas �and hence it reduces the terminal value by e−c�. A larger gap, say, O�d−�1−���, would
suppress the density by an exponentially large amount e−d�

.
Table I compares the final results of our analysis for the conjectured lower bound on the

maximal density to the previous lower bound, the best known packings, and the optimal upper
bound in Ref. 4 for selected dimensions up to d=150. As in the previous cases, the Yamada
condition32 is violated only for d=1. This supports the conclusion reached in Ref. 7 that the
Yamada condition appears to only have practical relevance in very low dimensions.

FIG. 4. �Color online� Comparison of different results for the maximal density �max vs dimension d. From bottom to top:
Torquato–Stillinger result �Ref. 7� �1-delta function with gap�, one of the results of this paper �2-delta functions with a
gap�, densest known packings �Ref. 12�, and the Cohn–Elkies upper bound �Ref. 4�.

TABLE II. Terminal density �
*

for two delta functions and a gap, corre-
sponding optimal gap �, and optimal average kissing number Z1,*

for large

d.

d � Z1,*
�

*

200 0.013 508 1.57�1018 1.06�10−43

250 0.010 895 7.15�1021 4.18�10−55

300 0.009 132 2.94�1025 1.49�10−66

350 0.007 862 1.12�1029 4.96�10−78

400 0.006 903 2.93�1025 1.56�10−89

450 0.006 154 1.38�1036 4.73�10−101

500 0.005 553 4.67�1039 1.40�10−112
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VI. CONCLUSIONS AND OPEN QUESTIONS

The problem of finding the asymptotic behavior of the maximal density �max of sphere
packings in high dimensions is one of the most fascinating and challenging problems in geometry.
In this paper, we have shown how using the LP lower bounds and a conjecture concerning the
existence of disordered sphere packings based on pair-correlation information, the asymptotic
conjectural lower bound7

�max � 2−�0.77865¯�d, �41�

which provides the putative exponential improvement on Minkowski’s century-old lower bound
�2�, is actually much more general than one could have initially surmised. Precisely the same
exponential improvement arises for a simpler pair-correlation function than the one employed in
Ref. 7 and survives also for a considerable enlargement of the family of test functions g2. This
family of functions includes two delta functions with a gap �which we have shown improves upon
the prefactor multiplying 2−�0.77865¯�d given in Ref. 7� and, we argue, any finite number of delta
functions. If this is true, as we believe, it signifies that the decorrelation principle alone has a huge
predictive power, since an exponential improvement of Minkowski’s bound has proved to be an
extremely difficult task. We also showed that the asymptotic lower bound on the kissing number,
Zmax�20.22134¯d �found in Ref. 7� is robust for a large family of test functions.

One outstanding open question is certainly in which sense this is to be interpreted as an
asymptotic bound. Based on our present, limited knowledge of optimal sphere packings, we
foresee diverse scenarios. In one case, for sufficiently large d, the importance of higher-order
correlations is to be neglected altogether and the bound becomes exact by virtue of the decorre-
lation principle. This would mean that the asymptotic Kabatiansky–Levenshtein upper bound is
far from optimal: a provocative possibility. In a second scenario, it could be that “special dimen-
sions” continue to exist for which the neglect of higher-order correlations is impossible. In this
case, the lower bound obtained by our methods would not apply to these special dimensions but
will continue to apply to the other dimensions. On the other hand, if the frequency of appearance
of these dimensions over the integers decreases to zero, the decorrelation principle is safe. A third
but more pessimistic possibility is that these dimensions are actually becoming more and more
frequent, and our conjectural bound would apply only to the subset of remaining dimensions.
However, there is absolutely no evidence at present for either the second or third scenario. Our
best guess at the moment is that the optimal packings in very high dimensions will possess no
symmetry at all and therefore are truly disordered. If so, then the decorrelation principle dictates
that pair correlations alone completely characterize the packing in high d, implying that the form
of the asymptotic bound �41� is exact!

The fact that pair correlations can completely specify an optimal packing may seem to be
counterintuitive, but we can now identify even low dimensions where this phenomenon occurs.
Specifically, whenever the LP bounds are exact �i.e., achieve some packing�, pair-correlation
information is sufficient to determine the optimal packing! This outcome, in all likelihood, occurs
in R2, R8, and R24.4,11 This implies that whenever LP bounds are not sharp in low dimensions
�albeit without a duality gap37 for any d�, information about high-order correlations are required to
get optimal solutions.

Another interesting question arises because our procedure, like Minkowski’s, is nonconstruc-
tive. Specifically, it is an open question whether there exist packing constructions that realize our
test g2’s. If such packings exist, are they collectively or strictly jammed?38 For future investiga-
tions, it would be fruitful to determine whether there are periodic or truly disordered packings that
have pair-correlation functions that approximate well the ones studied in this paper. If these
packings could be identified, one should attempt to ascertain whether the higher-order correlations
diminish in importance as d→� in accordance with the decorrelation principle. If such packings
exist �or better, if a d-dependent family of them does�, they would enable one to place the putative
exponential improvement on Minkowski’s bound on a firm, rigorous foundation. We are currently
investigating these questions.
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