
Physics Reports 435 (2006) 157–182
www.elsevier.com/locate/physrep

Parity doubling among the baryons
R.L. Jaffe∗, D. Pirjol, A. Scardicchio

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Accepted 20 September 2006

editor: J.A. Bagger

Abstract

We study the evidence for and possible origins of parity doubling among the baryons. First we explore the experimental evidence,
finding a significant signal for parity doubling in the non-strange baryons, but little evidence among strange baryons. Next we discuss
potential explanations for this phenomenon. Possibilities include suppression of the violation of the flavor singlet axial symmetry
(U(1)A) of QCD, which is broken by the triangle anomaly and by quark masses. A conventional Wigner–Weyl realization of the
SU(2)L×SU(2)R chiral symmetry would also result in parity doubling. However this requires the suppression of families of chirally
invariant operators by some other dynamical mechanism. In this scenario the parity doubled states should decouple from pions.
We discuss other explanations including connections to chiral invariant short distance physics motivated by large Nc arguments as
suggested by Shifman and others, and intrinsic deformation of relatively rigid highly excited hadrons, leading to parity doubling on
the leading Regge trajectory. Finally we review the spectroscopic consequences of chiral symmetry using a formalism introduced
by Weinberg, and use it to describe two baryons of opposite parity.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The possibility that excited hadrons occur in nearly degenerate pairs of opposite parity—a phenomenon known as
parity doubling—has been considered from time to time since the 1960s. Early arguments were based on Regge theory
[1]. There have been speculations that dynamical symmetries, not appearing in the underlying QCD Lagrangian, might
be responsible for this phenomenon [2,3]. Most recently it has been suggested that parity doubling can be explained by
“restoration” of the underlying SU(2)L × SU(2)R chiral symmetry of QCD at high energies [4–8] and/or in specific
sectors of the spectrum [9,10].

In this paper we carry out a detailed analysis, both phenomenological and theoretical, of parity doubling among the
baryons made of u, d, and s quarks. We do not consider mesons here because there is less data and more controversy.
Given a concordance on meson resonances, our methods could easily be applied.

We address three questions: First, what is the experimental evidence for parity doubling? Second, could a symmetry
of the underlying QCD Lagrangian be responsible for parity doubling? And third, even if the origins of parity doubling
lie elsewhere, SU(2)L × SU(2)R is of fundamental importance for QCD, and is widely discussed in connection with
spectroscopy. What, if any, are its implications for the classification of hadrons? On the first question, we find significant
evidence for parity doubling among non-strange baryons (nucleons and �s), but only weak evidence among hyperons
(�s and �s) with strangeness (S) minus one. There is not enough data to carry out an analysis for �s (S = −2) or �−s
(S = −3). Better information on the existence and classification of baryon resonances would help significantly here.

Turning to the possible origins of parity doubling, the most elegant explanations proposed make use of the fundamental
symmetries of the QCD Lagrangian: chiral SU(2)L × SU(2)R and the singlet axial symmetry U(1)A. Any underlying
symmetry behind parity doubling must involve charges that transform as pseudoscalars, since the multiplets involve
states of opposite parity. The natural candidates are the charges of the isospin axial currents, Qa

5 (a = 1, 2, 3), and the
flavor singlet axial charge, Q5
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In contrast, the U(1)A symmetry of QCD is broken explicitly by a term in the quantum action induced by instantons
[17] and, of course, by quark masses. Thus, its generator, Q5, the associated singlet axial charge, does not commute
with the QCD Hamiltonian [17]. It is also not a symmetry of the QCD vacuum, since, as Coleman showed long ago
[18], a charge that does not commute with the Hamiltonian cannot annihilate the vacuum. Thus Q5|0〉 �= 0. Note,
however, that this does not mean that U(1)A is “spontaneously broken”. In a theory like QCD with a non-perturbative
〈q̄q〉 condensate in addition to instantons and quark masses, the question of whether a chiral symmetry is explicitly
or spontaneously broken is a matter of degree. At one extreme, for zero up and down quark mass, SU(2)L × SU(2)R
is clearly spontaneously broken. As an example of the other extreme, consider QED: Since me �= 0, the axial U(1)A
associated with the current ē���5e is not a symmetry of QED. Its charge does not commute with the Hamiltonian and
does not annihilate the vacuum. In fact one can compute the ēe condensate in perturbation theory. Specifically, in the
MS scheme this is 〈ee〉� =m3/(4�2)f (�), where f (�)= 1 + �+ �/(2�)(5 + 5�+ 3�2)+ O(�2), with �= log(�2/m2)

and � is the renormalization point [19]. Despite the fact that 〈ee〉 �= 0, we say this symmetry is explicitly broken. In
QCD with three colors, the importance of explicit U(1)A symmetry violation can be gauged by the magnitude of the
	′ mass, which comes entirely from explicit symmetry violation and is much greater than the scale of spontaneous
symmetry breaking, f�. Therefore, as discussed by ’t Hooft [17], U(1)A behaves like an explicitly broken symmetry.
This is one place where it is not useful to take the large Nc limit in QCD. There the situation becomes reversed because
the source of explicit U(1)A symmetry violation disappears and the 	′ becomes a ninth pseudoscalar Goldstone boson
(when mu,d,s = 0). In that limit the U(1)A symmetry should be regarded as spontaneously broken. However, we live
in a world with Nc = 3 and explicit breaking of U(1)A dominates.

Like any explicitly broken symmetry, if the matrix elements that violate U(1)A symmetry are small in a sector of
the spectrum, some of its consequences will follow. In the case at hand, parity doubling will be seen in a sector of
the spectrum if the matrix elements of the divergence of the flavor singlet axial current are dynamically suppressed
in that sector [20]. Other consequences of the symmetry are not obtained: for example the parity doubled states
do not necessarily form representations of U(1)A. For the sake of clarity, we refer to this phenomenon as “dynamical
suppression of U(1)A symmetry violation” rather than “U(1)A symmetry restoration”.1

To summarize, either chiral symmetry or U(1)A could be responsible for parity doubling. In both cases extra
dynamical mechanisms must be at work. For SU(2)L × SU(2)R , chirally invariant operators must be suppressed. If
so, hadrons form chiral multiplets, not necessarily limited to parity doublets, and they decouple from pions. U(1)A is
more conventional: parity doubling can result if operators that violate the symmetry are suppressed.

We also briefly explore some other proposed dynamical origins for parity doubling. We consider the possibility that
parity doubling is not directly associated with a symmetry of the underlying Lagrangian, but instead is a consequence of
an intrinsic deformation of excited hadrons. If baryons can be accurately described as intrinsically deformed systems,
if the intrinsic state spontaneously violates parity, and if the intrinsic state is rigid, i.e. the matrix element between the
state and its parity image is small, then when collectively quantized, the spectrum would exhibit parity doubling. This
is, in fact, an old idea [1,2,22], developed in early geometrical models of baryons. The arguments in support of this
mechanism seem to apply best to states of high angular momentum, and there is evidence for parity doubling at high J
among non-strange baryons. However we also find strong evidence for parity doubling among baryons with J = 1/2
and 3/2, which is hard to motivate from this point of view. We also discuss the arguments given by Shifman [8] that the
chiral invariance of perturbative QCD, valid at short distances, together with certain dynamical assumptions motivated
by the Nc → ∞ (Nc is the number of colors in QCD) limit, lead to parity doubling among mesons, and perhaps by
extension, baryons.

Finally, although SU(2)L ×SU(2)R is in general not apparent in the spectrum, it is not devoid of implications for the
spectrum of baryons. Weinberg has shown that hadrons can be classified into multiplets under an SU(2)L × SU(2)R
symmetry where the axial generators are associated with pion–hadron vertices, provided hadron–hadron scattering
amplitudes obey certain constraints at asymptotic energies [23,24]. Weinberg’s “mended” chiral symmetry does not
naturally lead to parity doubling, but it can accommodate it for special choices of the hadrons’ assignments into
SU(2)L × SU(2)R representations. We explore the possible spectroscopic consequences of chiral symmetry in the
context of Weinberg’s work on “mended symmetries”, and comment on the relation of this approach to the contracted
spin-flavor symmetry emerging in the large Nc limit [25,26].

1 In an earlier version of this paper we argued that suppression of U(1)A violation would be less likely among strange baryons. We no longer
believe this to be required. We thank Manohar for discussions on this point.
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The remainder of the paper is organized as follows. In the next section we examine the experimental situation. Despite
all the theoretical work, we know of no systematic attempt to quantify the evidence for parity doubling. Typically, papers
on the subject include graphs or tables where the reader is invited to see some evidence for a correlation between states
of opposite parity (for a recent example, see Ref. [7]). It is difficult, however, to factor in the (often large) widths
of states and the fact that some states are much better established than others. Also it is not clear which state to
pair with which. Some previous attempts to quantify the evidence for (or against) parity doubling can be found in
Refs. [27,28].

We introduce a measure of the correlation between states of opposite parity, �(I, J, S), that has some statistical
basis. Specifically, we test the hypothesis that two functions, positive and negative parity spectral densities for each
isospin (I), strangeness (S), and spin (J), are identical within a tolerance 
, which measures the extent of symmetry
breaking. We construct the spectral functions for each I and J from the baryons accepted by the Particle Data Group
[29], including widths, and weighting resonances to reflect their reliability. We have no a priori standard with which to
compare Nature’s value of �(I, J, S). Instead we construct a set of “alternative realities” by scrambling the parities of
the known states. As an ensemble, this set is free from correlations, so the comparison between �(I, J, S) computed
over this ensemble with the value obtained from Nature’s assignment of parities gives a measure of the significance of
the correlation. The method and our results are discussed in detail in Section 2.

In Section 3 we look at the fundamental symmetries of QCD to see which, if any, could be responsible for the
phenomenon of parity doubling. We review the realizations of chiral symmetry and briefly summarize the arguments of
our recent paper [11] on the way that massless Goldstone bosons transforming non-linearly undermine the predictions
of linearly realized chiral symmetry for baryon masses and couplings. We go on to state the conditions on the chiral
effective Lagrangian that must be satisfied in order to obtain parity doubling, irrespective of the underlying dynamical
mechanism responsible for it. We describe the phenomenon of “dynamical suppression of U(1)A breaking”, and show
that it can lead to parity doubling in a sector of the Hilbert space of QCD. We also summarize and review arguments
for parity doubling from chiral symmetry restoration at short distances, and due to intrinsic hadron deformation. For
completeness we summarize the spectroscopic predictions of Weinberg’s approach in Section 4, where we introduce a
new example that reproduces naturally some of the predictions of SU(2)L × SU(2)R restoration, without fine tuning
of the coefficients in the chiral Lagrangian. Finally in Section 5 we summarize our results and discuss areas for
further work.

2. What is the experimental evidence?

In this section we evaluate the experimental evidence for parity doubling among the baryons. We have chosen to
study the baryons as listed by the Particle Data Group (PDG) [29]. There is still much uncertainty concerning the
spectrum of light (u, d, s) baryons and mesons, and other authors have chosen to study different data [4,5]. We chose
the PDG listings because they provide a critical summary of many experiments over many decades, and also because
they treat baryon states uniformly, assigning masses, widths, and “reliabilities” using their famous “star” system. Data
on the meson spectrum accepted by the PDG is less complete, more controversial and lacks the reliability assignments.
This point requires some discussion. The PDG has assigned reliabilities to 44 non-strange baryon resonances [30]. For
each angular momentum there are two isospin channels, I = 1/2 (nucleon) and I = 3/2 (�). The PDG non-strange
meson listings are harder to interpret. The “Meson Summary Table” lists (coincidently) 44 well-established non-strange
mesons. However those states are distributed over four channels, I = 0 and 1 with C =±1. Many more states appear in
the full meson listings: 70 states can be found in the non-strange meson listings and another 96(!) can be found under
the heading “Other light unflavored mesons”. The latter list includes some that have been seen in only one experiment
and some that other groups have claimed to exclude. Recently, Bugg [31] has made an independent analysis of the
meson spectrum including an attempt at assigning reliabilities, with results quite different from the PDG analysis. It
would be very interesting to repeat our statistical analysis on a well-defined set of meson resonances.

We find that there is reasonably strong evidence for parity doubling among the non-strange baryons (I = 1/2
nucleons and I = 3/2 �s), and weaker, inconclusive evidence among the S = −1 baryons (I = 0 �s and I = 1 �s).
There is not enough data on cascades (S = −2) or �s (S = −3) to perform our analysis. The results are summarized in
Figs. 1–5, which should be consulted after an explanation of our method. It will be clear that the study of parity doubling
is hampered by our incomplete knowledge of baryon resonances, especially those with strangeness. Certainly a new
experimental attack on hadron spectroscopy could greatly improve matters.
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Fig. 1. The value of � for Nucleons (I = 1/2, S = 0) with J = 1/2 for varying 
. The value of � with the Nature’s parity assignments is the heavy
black line.
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Fig. 2. The value of � at 
 = 125 MeV for nucleons (left) and �’s (right) of different spins J. The value of � with Nature’s parity assignments is
marked with an open square.
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Fig. 3. The value of � at 
 = 125 MeV for �’s (left) and �’s (right) of different spins J. The value of � with Nature’s parity assignments is marked
with an open square.

Despite many papers on the subject over many years, we know of no attempt to make a (semi-) quantitative evaluation
of the evidence for parity doubling. Typically authors simply show the spectrum of states with the same flavor and spin
quantum numbers and opposite parity, and rely on the eye of the reader to recognize a propensity for states of opposite
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Fig. 5. Histograms of frequency of the value of � in all the possible realizations of parity assignments in the � (left) and � (right). All spins
J =1/2, . . . , 7/2 are included. The value of � with the parities as observed in Nature is indicated with a star. The area on the left of the bar represents
the ‘confidence level’ (C.L.) attached to the given �. For � we have 60% C.L. and for the � 65% C.L.

parity to cluster nearby in mass. Such an “eyeball” approach has several shortcomings:

• baryon resonances have large widths that are hard to display graphically,
• different resonances have different statistical significance. Overlap of two well established resonances should be

given more weight than overlap of two doubtful states,
• there is no reason to expect parity doubling to be an exact symmetry, so spectra must be compared with an allowance

for symmetry breaking, and
• because of symmetry breaking and resonance widths, in channels with many states it is often not clear which states

are to be compared.

Recently Glozman and Klempt [27,28] have made more quantitative analyses, which however still suffer from some
of the shortcomings listed above. In our analysis we will address all of these difficulties.

We know of no way to obtain a rigorous measure of the significance of parity doubling in the physical spectrum,
which perhaps explains the absence of work in this direction. However we do believe it is possible to improve on
the eyeball. To do this one needs two ingredients: (1) A measure of how much correlation there is between negative
and positive parity states; and (2) A control set of “alternative worlds” on which the correlation can be measured and
compared with our own.

A realistic approach to generating control spectra has to respect several features of the baryon resonance spectrum:
(a) states are sparse at low mass, where there is no evidence for parity doubling; (b) the data in each channel show
roughly equal numbers of positive and negative parity states; (c) reliabilities decrease and widths increase in general
with resonance mass. Reference spectra that ignore these features would not give fair comparisons with the real world.
We do not know an algorithm that would generate a priori satisfactory comparison spectra free of these problems.
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Instead we have chosen to use the physical spectrum itself to generate comparisons. Specifically, in each channel of
definite J, I, and S, we keep the masses, widths, and reliabilities fixed, and reshuffle the parities, keeping the number of
positive and negative parity states fixed. This method generates comparison spectra which respect the characteristics
listed in the previous paragraph, but which, as an ensemble, is free from any additional parity correlation beyond the
desirable feature that the number of states of opposite parities is roughly equal in each channel. Comparing the real
world with these alternative realities tests whether the correlation between states of opposite parity in the real world
beats a random ensemble with otherwise similar spectroscopic features.

We consider “channels” of specific total angular momentum, J, isospin, I, and strangeness, S. In each channel we de-
fine positive and negative parity spectral functions, �±

J IS(m), which we take to be a sum over normalized Breit–Wigner
resonances with masses and widths taken from the PDG.2 Specifically, we include only the states listed in the
“Note on Nucleon and � Resonances” [30]. We weigh the resonances by a confidence factor, Wj , proportional to
the number of stars designated by the PDG, because we believe more weight should be given to correlations between
well established states,

�+
IJS(m, {C}) =

∑
j

Wj

2�


j

(m − mj)
2 + 
2

j /4
Cj ,

�−
IJS(m, {C}) =

∑
j

Wj

2�


j

(m − mj)
2 + 
2

j /4
(1 − Cj ). (1)

The sum ranges over all states with a definite J, I , and S, and Wj = 1.0, 0.75, 0.50, 0.25 for 4∗, 3∗, 2∗, and 1∗ reso-
nances, respectively. We have also performed the analysis with an exponential weighting, Wj = 1.0, 0.50, 0.25, 0.125,
respectively. The effect on our results is negligible except for the �s (I =1, S =−1), where the shape of the distribution
shifts significantly enough to warrant comment (see discussion below). The factor Cj assigns a parity to the j th state:
Cj = +1 for positive parity, and Cj = 0 for negative parity. Of course, Nature prescribes a parity for each state as a set
of Cj ’s. Notice that the �±

IJS are normalized,

∫ ∞

−∞
dm�±

IJS(m, {C}) ≡ N±
IJS({C}) =

∑
j

Wj

{
Cj for �+,

(1 − Cj ) for �−,
(2)

so the norm measures the number of states weighted by our confidence that they are real.
We do not expect parity doubling to be an exact symmetry of QCD. Instead we expect it to be approximately valid,

parameterized by some symmetry breaking scale 
, which is expected to be of order (say) 50–200 MeV. Our aim, then,
is to test the hypothesis that the masses of positive and negative parity states are compatible within fluctuations with a
variance 
. A simple indicator we can use to test the above hypothesis is

�IJS({C}) =
∫

dm1 dm2�
+
IJS(m1, {C}) erfc

( |m1 − m2|



)
�−

IJS(m2, {C}), (3)

where erfc(z) = 2√
�

∫ ∞
z

dt e−t2
is the complementary error function. erfc(0) = 1 and erfc(z) → 0 when z → ∞. Eq.

(3) then can be interpreted as follows. For a given m1 and m2, erfc(|m1 − m2|/
) is the probability that a gaussian
random number � with average m1 and variance 
 gives a |� − m1|� |m2 − m1|, i.e. the probability that m2 is
closer to m1 than a randomly generated number (with variance 
). We can interpret 
 as the order of magnitude
of the breaking of the symmetry (the argument is symmetric in m2 ↔ m1). The possible values of m1 and m2
are then distributed according to �±

IJS(m1,2, {C}), normalized not to unity, but to N±
IJS({C}). �IJS({C}) measures

the correlation of the spectral functions with a “forgiveness factor” 
. � is going to be larger in channels with more
states, greater reliability, and, of course, better correlation between states of opposite parity. Since erfc(x)�1 the
maximum possible value of �IJS occurs if the typical separations |mi − mj | and widths 
i are much smaller than

2 We do not include the quoted uncertainties in masses and widths since they are generally smaller than the widths of the states, and including
them would complicate our analysis without adding much value.
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the chosen 
. In that case we can set erfc(|m1 − m2|/
) ≈ 1 for all m1 and m2 and the two integrals decouple giving
and �∗

IJS ≡ Max[�IJS({C})] = N+
IJS({C})N−

IJS({C}). Some other features of �IJS are worth noting: There is no
penalty for the absence of parity doubling low in the spectrum. A state like the nucleon with no parity partner simply
does not contribute. Any overlapping states of opposite parity (and the same IJS) contribute to �IJS . No choice of
multiplet assignments is needed. The contribution of broad states is insensitive to shifts and/or correlations on scales
small compared to their widths.

We do not know how to judge the a priori significance of the experimental value of �IJS because the underlying dis-
tributions �±

IJS are not normalized to unity, but instead weighted by the number and reliability in that channel—features
that we regard to be important in the analysis. So we are led to check the value of � realized in Nature against an
ensemble of control spectra generated by scrambling the parities among the otherwise fixed states for each J, I, and
S. The crucial feature of these control spectra is that the parities are reassigned randomly. So the comparison between
Nature and the control set frames the question whether the parities of the states with a given I, J, S are more correlated
than a random assignment of parities.

Fig. 1 shows the results in a typical channel, nucleons withJ=1/2.�1/2,1/2,0 is plotted for Nature’s parity assignments
(in red) and the control sample (in gray), for a range of 
. The ordering of instances turns out not to depend significantly
on 
, so we lose little by choosing a fixed value of 
 for the rest of the analysis. We have chosen 
 = 125 MeV, though
we cannot attribute any physical significance to this choice. Fig. 2 presents the data for nucleons and �s (for J �7/2)
and Fig. 3 shows the data for �s and �s.

Data are most abundant for nucleons and �s, and for these two channels Nature shows typically more correlation
than the alternative realities. To give a quantitative answer, in terms of confidence level, we construct a histogram of the
frequency of a given value of �. Because the �IJS is normalized in a way that reflects the significance of each channel,
it makes sense to combine data for sets of channels, thereby obtaining a larger control ensemble. This has been done
in Fig. 4 for nucleons and for �s. From these figures it is clear that although a small number of parity reassignments
would do better, Nature’s correlation between states of opposite parity is quite striking. In numbers the ‘confidence
level’ (the area on the left of the starred bin in Fig. 4) for the value of � in the Nature is 95% for the nucleons and 86%
for the �s.

The evidence for parity doubling among �s and �s, channel by channel, is shown in Fig. 3, and the statistic is
summed over all S = −1 channels in Fig. 5. For the strange baryons we find much smaller values of the confidence
level for �: 58% for the �s and 72% for the �s. We conclude that it is not possible to make a definitive statement in
this sector. There may be some correlation, but more data are needed. Fig. 6 shows histogram using the “exponential”
weighting factor for the �s. Here, the change in weighting makes a difference: the signal for parity doubling is stronger
when well established resonances are more strongly weighted.
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Fig. 6. Frequency histogram of the value of � for the �’s using the “exponential” weighting of the significance of states. Compare with Fig. 5,
left box.
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3. Possible origins of parity doubling

In this section we examine some possible explanations for the phenomenon of parity doubling among light quark
baryons. In the classical limit, the Lagrangian of QCD with nf light quark flavors has the symmetry

SU(nf )L × SU(nf )R × U(1)A × U(1)V . (4)

This consists of the product of chiral symmetry, SU(nf )L × SU(nf )R , with the singlet axial symmetry, U(1)A, and
the baryon number invariance U(1)V . Our understanding of QCD is profoundly shaped by these symmetries, so in the
following, we review their possible role in connection with the phenomenon of parity doubling. Since we are studying
light quark spectroscopy but wish to keep track of strange quark mass effects, we take nf = 2.

We start by reviewing the implications of chiral symmetry for the masses and couplings of hadrons. This part also
introduces the notation to be used in the remainder of the paper. We also briefly review the arguments we presented
in Ref. [11] that parity doubling does not follow from the underlying SU(2)L × SU(2)R symmetry of QCD. That
symmetry can only be restored in the spectrum if classes of SU(2)L × SU(2)R invariant operators are suppressed for
some dynamical reason.

Next, we consider the possibility that parity doubling is a consequence of dynamical suppression of flavor singlet
axial symmetry violation. As is usually the case with explicitly broken symmetries, the symmetry can be approximately
realized in the spectrum if the matrix elements of operators that violate the symmetry are suppressed.

We then discuss two other possibilities: first Shifman’s attempt to relate parity doubling to chiral symmetry restoration
at short distances in QCD, and second the possibility that parity doubling is associated with an intrinsic deformed baryon
state, a mechanism familiar from nuclear and molecular physics.

4. Effective restoration of SU(2)L × SU(2)R

The Lagrangian of QCD with nf massless quarks has an exact chiral SU(nf )L×SU(nf )R symmetry, with generators
given by the vector T a and axial Xa charges. The generators satisfy the commutation relations

[T a, T b] = if abcT
c, [T a, Xb] = if abcX

c, [Xa, Xb] = if abcT
c, (5)

where a, b, c = 1, . . . , n2
f − 1. For the case of nf = 2 of most interest here, fabc = εabc. The vector and axial isospin

currents are exactly conserved, ��ja
� =��ja

5 � =0. The generators have different transformation properties under parity:
the vector generators, T a , commute with parity, but the axial charges anticommute {Xa, P } = 0. This suggests that
parity is embedded nontrivially in representations of the chiral group, in a way which could reproduce the observed
parity doubling in the hadron spectrum.

It is instructive at the outset to review the consequences of current conservation for the spectrum. Conservation of
the vector current requires hadrons to lie in degenerate multiplets of definite isospin. The consequences of axial current
conservation are embodied in generalized Goldberger–Treiman relations. Consider two hadrons of identical flavor and
spin but opposite parity—without loss of generality we can consider baryons of spin and isospin 1/2—and expand the
matrix elements ja

5 � in terms of form factors,

〈B+|ja
5 �|B−〉 = ū(p, s)(��gA(q2) + q�gP (q2) + i
��q

�gM(q2))tau(p′, s′), (6)

where q� = p� − p′�. Conservation of the axial current demands that q�〈B+|ja
5 �|B−〉 = 0, which gives

�mgA(q2) + q2gP (q2) = 0, (7)

gP (q2) has a pion pole at q2 = 0 with residue f�g�B+B− , where g�B+B− is the s-wave B+B−� coupling constant. The
prefactor of q2 cancels the pole, leaving a smooth limit as q2 → 0. For states at rest (�q =0), where q0 =�m=m+ −m−
and small �m,

�mgA + f�g�B+B− + O(�m2) = 0, (8)

where gA = gA(0).
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Suppose for some reason that B+ and B− were degenerate. Then �m= 0 and Eq. (8) requires g�B+B− = 0—the pion
must decouple at zero momentum. The argument goes through for states of different isospin with �I = 1, as well as
for mesons and strange and heavy hadrons. Thus any states of the same spin, isospin, etc., but opposite parity that have
the same mass must decouple from pions at zero momentum. This is a consequence of axial current conservation. So
chiral symmetry does not guarantee the states to be degenerate, but if they are, it forces them to decouple from pions
at zero momentum, i.e. in the s-wave.

The thesis of Refs. [9,10,4–6] is that hadrons show parity doubling because at masses of order 1.5–3 GeV (where the
data show evidence of parity doubling) chiral symmetry is approximately restored in the hadron spectrum. By this they
mean that the symmetry is realized (approximately) in Wigner–Weyl mode with the appearance of (approximately)
degenerate multiplets that transform into one another linearly under chiral rotations.

The irreducible representations of SU(2)L × SU(2)R are labelled by the Casimirs of the left/right-handed group
factors (IL, IR) which are related to the usual isospin and its axial partner by I a

L,R = T a ∓ Xa . The represen-
tation (IL, IR) contains (2IL + 1)(2IR + 1) states, with total isospin taking all possible values compatible with
|IL − IR|�I �IL + IR . Parity exchanges the left and right-handed isospins IL ↔ IR , such that these irreducible rep-
resentations are in general not parity invariant, unless IL = IR . We are interested in the baryon states such as N, � with
isospins 1/2 and 3/2. These states can be contained only in chiral multiplets, (1/2, 0), (1/2, 1), (3/2, 0), (3/2, 1), . . . ,

which are not parity invariant. It is easy to form parity eigenstates by taking sums and differences of mirror chiral
representations

H+ ∼ (IL, IR)�(IR, IL), H− ∼ (IL, IR)�(IR, IL). (9)

In this example, H± represents parity-even(odd) hadrons. Therefore aWigner–Weyl representation of SU(2)L×SU(2)R
generically includes degenerate multiplets of both positive and negative parity and a range of isospins.

In addition to degeneracy, the linear realization of the SU(2)L × SU(2)R predicts relations between axial and
vector charges typical of a non-Abelian symmetry. In Ref. [11] we showed that decoupling of pions implied by Eq.
(7) in the parity doubling limit is not a curiosity. Instead hadrons can only form Wigner–Weyl representations of
SU(2)L × SU(2)R if they completely decouple from pions. Indeed this is just the mechanism proposed in Refs.
[4–6], where it is argued that states high in the spectrum are generically insensitive to the effects of spontaneous
symmetry breaking. Whether or not one accepts these arguments, this dynamical picture makes many predictions
that can be tested. First and foremost is the prediction that the parity doubled states should decouple from pions, not
only in the s-wave at zero momentum as required by the Goldberger–Treiman relation, Eq. (7), but in higher par-
tial waves as well. Also, the arguments of Refs. [4–6] in the parity doubled domain of the spectrum apply whether
or not the particular states are degenerate. All the pion transition matrix elements should be small to the extent
that chiral symmetry is “restored”. Second, larger multiplets including states of different isospin should be found in
the spectrum. Glozman and Klempt [27,28] have made some initial attempts to classify states into such multiplets,
with varying amounts of success. Third, strange and heavy hadrons should show the same phenomenon—the emer-
gence of explicit SU(2)L × SU(2)R symmetry high in the spectrum—since the heavy quarks are merely spectators
to this dynamical mechanism. Finally, the phenomenon should be generic. If some well established states high in
the spectrum cannot be classified into representations of SU(2)L × SU(2)R , it is evidence that other dynamics is
at work.

For the sake of completeness, we review the argument of Ref. [11] that pions must decouple from states that
exhibit the full structure of SU(2)L × SU(2)R symmetry. Parity invariance of QCD requires that physical states
are parity eigenstates. As explained above, this can be realized only if the physical states transform according to
sums and differences of chiral representations as in Eq. (9). Thus the combined consequence of chiral symme-
try realized in WW mode and parity invariance of QCD, is the appearance of parity doubling in the hadron
spectrum.

However, we know that in Nature chiral symmetry is realized in Nambu–Goldstone mode with the appearance
of Goldstone bosons. Actually two distinct possible NG realizations have been discussed in the literature, distin-
guished by the invariance of the vacuum. In the usual realization SU(2)L × SU(2)R breaks to isospin. Long ago,
Dashen pointed out that SU(nf )L × SU(nf )R could break to SU(nf )V × ZA

nf
, where ZA

nf
is the center of

axial SU(nf ) [32]. We consider the usual scenario first, and return to Dashen’s alternative at the end of this
subsection.
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Consider for definiteness two spin-1/2 baryons of positive (B+) and negative (B−) parity, and unspecified isospin
I.3 Assume that they transform linearly under chiral symmetry

[T a, Bi+] = −taijB
j
+, [T a, Bi−] = −taijB

j
−, (10)

[Xa, Bi+] = taijB
j
−, [Xa, Bi−] = taijB

j
+, (11)

with i, j isospin indices. This corresponds to the SU(2)L × SU(2)R representations B+ ∼ (I, 0) + (0, I ) and
B− ∼ (I, 0) − (0, I ). The most general chirally and parity invariant effective Lagrangian containing only B±, reads

L = B̄+i�/B+ + B̄−i�/B− − m0(B̄+B+ + B̄−B−) + · · · , (12)

where the ellipses denote terms of higher order in the chiral expansion. The two hadrons are degenerate, in agreement
with the arguments of [6]. In addition, the matrix elements of the axial current are also fixed by the symmetry, via the
Noether theorem.

So far we have neglected the possible coupling of B+ and B− to pions. The pion field transforms nontrivially under
the chiral group. This has the consequence that additional operators, constructed from the baryon fields B± and �a , can
be added to the effective Lagrangian, Eq. (12). For example, using Weinberg’s choice [13,14] for the pion non-linear
transformation under axial rotations,

[Xa, �b] = −if ab(�) = −i(�ab 1
2 (1 − ��2) + �a�b), (13)

(where we expressed the pion field in units of f� = 131 MeV) another dimension three, chirally invariant operator can
be added to Eq. (12),

�L = m1

(
B̄+

1 − �2

1 + �2 B+ − B̄−
4i�ata

1 + �2 B+ − (B+ ↔ B−)

)
.

Rediagonalizing the terms quadratic in B± we see that the new term has the effect of splitting the degeneracy: the new
mass eigenvalues are m0 ±m1. m1 is the coupling constant set to zero by the generalized Goldberger–Treiman relation
if the hadrons B+ and B− are to be degenerate.

The effects of pion couplings are most conveniently displayed by redefining the baryon fields,

B̃+ = B+ − 2i�ataB−√
1 + �2

, B̃− = B− − 2i�ataB+√
1 + �2

. (14)

The new fields have also positive (B̃+) and negative (B̃−) parity, but transform nonlinearly under chiral rotations.
Specifically,

[Xa, B̃±i] = v0(�
2)εabc�

ctbij B̃±j , (15)

with v0(�2) a function which depends on the particular definition of the pion field. We use here and in the following the
definition adopted in Ref. [14], which corresponds to v0(x) = 1. Most importantly, the new states B̃± do not transform
into one another under chiral transformations. Instead of taking B+ ↔ B− as in Eqs. (10), the axial chiral rotation of
the fields defined in Eq. (14) transforms each of B̃i into itself, plus a number of pions. This agrees with the intuitive
idea that an axial rotation does not transform hadrons within a chiral multiplet, but just rotates their isospins and creates
pions from vacuum.

It is easy to construct the most general chirally invariant effective Lagrangian describing the dynamics of the baryons
B̃± following the usual rules of chiral effective field theory [12–14]. When rewritten in terms of the original fields,
B±, we discover several other possible chirally invariant terms, allowed when pions transform nonlinearly, but omitted
from Eq. (12). They take the simplest form when expressed in terms of the B̃± fields, and are given by

L = ¯̃
B+(i�/ − εabc�aD/�btc)B̃+ − ¯̃

B+(D/�a)taB̃−
+ (B̃+ ↔ B̃−) − (m0 − m1)

¯̃
B+B̃+ − (m0 + m1)

¯̃
B−B̃− + �L2, (16)

3 The example which follows is equivalent to the “mirror model” presented in Ref. [16] in the context of the linear sigma model.
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where D��a = 2���a/(1 + �2) is the covariant derivative of the pion field. The additional terms �L2 contain three
operators which couple the pions derivatively to the baryons

�L2 = c2[ ¯̃
B+(D/�a)�5t

aB̃+ + ¯̃
B−(D/�a)�5t

aB̃−] + c3[ ¯̃
B+(D/�a)taB̃− + B̄−(D/�a)taB̃+]

+ c4[ ¯̃
B+(D/�a)�5t

aB̃+ − ¯̃
B−(D/�a)�5t

aB̃−]. (17)

Note that the baryons B̃± are not degenerate, but are split by 2m1. Similar results are obtained for the matrix elements
of the axial current, which is obtained from the Noether theorem

Aa
� = (c2 + c4)

¯̃
B+���5t

aB̃+ + (c2 − c4)
¯̃
B−���5t

aB̃−
+ (1 − c3)(

¯̃
B+��taB̃− + h.c.) + (pion terms). (18)

No predictions are obtained from chiral symmetry for these couplings, which can take any values.
The scenario of “effective chiral symmetry restoration” discussed by the authors of Ref. [6] requires that the coeffi-

cients of the chirally invariant operatorsm1, c2−4 in this effective Lagrangian be suppressed. The alternative explanations
for parity doubling described in the following subsections, would, in the language of SU(2)L × SU(2)R symmetry
restoration, amount to a dynamical mechanism for the suppression of m1 and c2−4. For further discussion of parity
doubling and SU(2)L × SU(2)R symmetry restoration, see Ref. [11]. Note that these results are specific to the assign-
ment of B± to the chiral representations (0, 1

2 ), ( 1
2 , 0), and a different chiral assignment will give different predictions

for the pion couplings.
Finally, for completeness, we describe the alternative scenario suggested in 1969 by Dashen [32], and revisited

recently by Kogan et al. [33], wherein the vacuum is left invariant not only by the vector generators {T a}, but also by
a discrete symmetry ZA

nf
(the center symmetry of SU(nf )A). This scenario has no implications for parity doubling

unless nf �3, so we restrict our consideration to the minimal case nf = 3. Although at least three light flavors are
required, this scenario would have nontrivial implications for the nonstrange baryons, which are our main focus here.

The center of axial SU(3) contains the operator Z=exp((2�i/3)X8) along with Z2 and the identity. Since Z does not
commute with parity, the complete discrete symmetry of the vacuum is the dihedral group D3=(1, Z, Z2, P , PZ, PZ2).
According to Coleman’s theorem [18], the same symmetry should also be apparent in the hadron spectrum. Since D3
has both one- and two-dimensional irreducible representations, the Dashen scenario of chiral symmetry realization
could give rise to parity doubling in the hadron spectrum.4 More precisely, there are one-dimensional representations
of either parity, and two-dimensional representations, containing parity doublets.

+

+

⎯

⎯

Fig. 7. Typical baryon mass spectrum in the Dashen scenario for chiral symmetry breaking. Shown are two singlets of positive and negative parity,
and a parity doublet. Pion transitions h1 → h2� between singlets and doublets are forbidden by the symmetry (dashed arrows), while transitions
among singlets and among doublets are allowed (solid arrow).

4 This does not occur in the two flavor case because Z2× parity is Abelian and has only one dimensional irreducible representations.
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Since mesons are singlets under the discrete D3 group, this symmetry gives a selection rule for the pion strong decays
between hadrons: the h∗ → h� decay is allowed only between singlets, or only between doublets, but not between
singlets and doublets as illustrated in Fig. 7. No clear evidence for this selection rule is observed among the baryons—in
fact Dashen points out several problems with it that still pertain today—although symmetry breaking effects through
mass terms could obscure it. We refer to the original work [32] for details.

In the Dashen scenario the 〈q̄q〉 condensate vanishes in the massless quark limit, and f� ∼ mq as well. Phenomeno-
logical analysis of the pattern of chiral symmetry breaking [33,34] does not rule out this behavior. However Kogan et
al. have shown that it is in conflict with rigorous QCD inequalities [35]. So we do not consider the Dashen scenario
further as a possible origin for parity doubling.

5. Dynamical suppression of U(1)A symmetry violation

In this section we adopt the standard picture of U(1)A symmetry violation in QCD as summarized, for example, by ’t
Hooft [17]. The U(1)A symmetry is broken in the quantum Hamiltonian by quark masses and by the triangle anomaly.
Since we are interested in baryons made of u, d, and s quarks, we consider QCD with three flavors. On account of the
explicit symmetry breaking, the flavor singlet axial current, j�

5 , has a divergence, and its charge, Q5(t)=
∫

d3xj0
5(t, �x),

does not commute with the Hamiltonian,

[H, Q5] = i
d

dt
Q5 = i

∫
d3x��j

�
5 , ��j

�
5 =

∑
q=u,d,s

2mq iq̄�5q − i
3g2

16�2 Tr F̃ ��F��. (19)

Because there are no massless particles coupled to j
�
5 , the singlet axial charge is a well defined operator. This contrasts

with the isospin axial charges, Qa
5, a = 1, 2, 3, which become ill-defined in the chiral limit.

Some of the consequences of U(1)A invariance, including parity doubling, can be obtained if the matrix elements of
[H, Q5] are suppressed in a subspace of the space of states where the spectrum is sparse. The operator Q5 can create
	′ mesons from the vacuum, so it clearly contains frequency components of order 1 GeV. We believe this obstructs
restoration of U(1)A symmetry in a strong, operator, sense. However a weak form, applied only to matrix elements
within the subspace, seems possible and could lead to parity doubling.

Suppose first, for simplicity, that there were a subspace, h, of the Hilbert space of QCD, in which the matrix elements
of ��j

�
5 were exactly zero. One possibility is that Q5 also has no non-zero matrix elements in this subspace. In that

case the symmetry has no implications for the spectrum in h. Alternatively, suppose Q5 has a non-zero matrix element
between two mass eigenstates |B+〉 and |B−〉 in h. B+ and B− must have the same flavor and angular momentum
quantum numbers but opposite parity, denoted by the ± sign. According to Eq. (19) they must also have the same mass
if ��j

�
5 can be neglected as we have assumed,

〈B+|[Q5, H ]|B−〉 = (m(B−) − m(B+))〈B+|Q5|B−〉 = 0. (20)

If 〈B+|Q5|B−〉 �= 0, as we have assumed, then m(B+) = m(B−). So the spectrum of states with a given J, I, and S,
consists either of isolated states which have no non-zero matrix elements of Q5 within h, or of degenerate families of
both positive and negative parity connected by Q5. Excluding accidental degeneracies, the result is parity doubling.

We do not believe that stronger conditions can be imposed:

a. [H, Q5] = 0 and Q5|0〉 = 0.
This condition is not consistent with the QCD lagrangian. Phenomenologically, it leads to parity doubling throughout
the baryon spectrum. Since parity doubling is at best an approximate symmetry in a subspace, and clearly does not
hold for the lightest states, this condition is not tenable.

b. [H, Q5]|B〉 = 0 if B ∈ h.
It is easy to show that this condition leads to parity doubling of the state |B〉, however we believe it is too strong. In
particular, it implies that the state Q5|B〉 must be an eigenstate of H with the same mass as |B〉. We expect that the
operator Q5 generically creates 	′ mesons, so the amplitude 〈B ′	′|Q5|B〉, where |B ′〉 might be the original state |B〉
or some other baryon, should not be small. The weak condition we have adopted does not preclude the possibility
that the axial charge acting on one member of a parity doublet has a significant amplitude to produce an 	′.
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Table 1
Comparison of the physical manifestations of the scenario discussed here of “suppression of U(1)A symmetry breaking (SB)”, with those of “U(1)A
restoration”, which would be obtained by attempting to realize U(1)A in Wigner–Weyl mode

Prediction U(1)A restoration Suppression of U(1)A SB

Q5|0〉 = 0 Yes No
Parity doubling Yes Yes
Mass states are Q5 eigenstates Yes No

If the matrix elements of ��j
�
5 are small, but not zero, in h, then the degeneracies are no longer exact. It is interesting

to consider this case from the point of view of the U(1)A Goldberger–Treiman relation and to contrast it with the
SU(2)L × SU(2)R case.5 Again taking B± to be spin-1/2 baryons, the matrix element of the flavor singlet axial
current and its divergence can be parameterized in terms of invariant form factors,

〈B+|j5 �(0)|B−〉 = ū(p+)(��gA(q2) + q�gP (q2) + i
��q
�gM(q2))u(p−),

〈B+|��j5 �|B−〉 = ū(p+)dA(q2)u(p−). (21)

Taking the states to be at rest, q2 = (q0)2 = �m2. Then contracting q� with the first of Eqs. (21) we obtain

�m(gA(�m2) + �mgP (�m2)) = dA(�m2). (22)

Note that the quantity in parentheses is the matrix element of the axial charge: 〈B+|Q5|B−〉 ∝ gA(�m2) +
�mgP (�m2). The flavor singlet case differs from the flavor non-singlet case in that there is no zero mass pole in
the induced pseudoscalar form factor, gP . Indeed, the nearest significant singularity in the pseudoscalar channel is
the 	′ at nearly 1 GeV. Therefore, if the matrix elements of ��j

�
5 are small, the induced pseudoscalar contribution is

negligible (second order in �m2), leaving,

�mgA(0) ≈ dA(0). (23)

Eq. (23) allows us to formulate the problem of “suppression of U(1)A symmetry violation”: Are there states for
which dA(0) is small and gA(0) is not? While we cannot answer the question decisively, it is well posed. At least in
principle, this question can be answered using lattice QCD computations of the form factor dA(q2). In the chiral limit,
this coincides with the form factor of the gluonic term in the anomaly.

We emphasize that the scenario of “suppression of U(1)A symmetry violation” is very different from that of U(1)A
restoration, or U(1)A realized in Wigner–Weyl mode. For convenience we summarize in Table 1 the similarities and
differences between these two scenarios. In particular, we do not require the invariance of the vacuum under U(1)A
transformations.

Quark models suggest that the matrix elements of the singlet axial current between states with similar quark config-
urations but opposite parity are of order unity. For example the singlet axial current in the bag model changes a quark
with angular momentum j and positive parity into a quark with angular momentum j and negative parity with amplitude
of order unity. For such states �m ∼ dA(0), and suppression of the matrix elements of the divergence of the singlet
axial current would result in approximate parity doubling. Other states, for which gA(0) is smaller, need not be nearly
degenerate, even though dA(0) may be small.

The divergence of the flavor singlet axial current gets contributions from the anomaly and from quark masses. Is it
possible that the matrix elements of F̃F and mss̄�5s are unusually small at moderate excitations in the baryon spectrum?
Perhaps instanton fluctuations are suppressed at high excitation in the baryon spectrum as they are at short distances.

5 The U(1)A Goldberger–Treiman relation was considered for nucleons in [36].



R.L. Jaffe et al. / Physics Reports 435 (2006) 157 –182 171

We are not aware of any work along this direction.6 We do not know how to estimate the matrix elements of FF̃

between excited hadrons, and leave it for further study.
The generalization of suppression of U(1)A symmetry violation to strange hadrons is not straight forward. In the

limit ms = 0 SU(3)V becomes exact and therefore suppression of 〈FF̃ 〉 would lead to parity doubling among strange
as well as non-strange baryons in octets and decuplets. When the strange quark mass is increased, the flavor singlet
current has an increasing divergence proportional to mss̄�5s. However there is a linear combination of flavor singlet
and non-singlet currents that includes only u and d quarks, J̄

�
5 ≡ ū���5u + d̄���5d, whose divergence comes only

from the axial anomaly,

��J̄
�
5 = −i

2g2

16�2 TrF̃ ��F��.

The discussion of parity doubling among non-strange hadrons can be repeated without modification using J̄ � instead of
the flavor singlet current, j�

5 . However 〈N±, �±|FF̃ |N∓, �∓〉 ≈ 0 does not imply that FF̃ ≈ 0 for their strange SU(3)

partners. For example, one might model the effects of the anomaly by the ’t Hooft determinant, det q̄RqL + det q̄LqR ,
which is a six-quark operator of the form ūd̄ s̄u ds [41]. This operator has tree level matrix elements in �’s and �’s, but
only contracted loop contributions in non-strange baryons. Without a better model of hadron matrix elements of FF̃ ,
it is not possible to conclude that parity doubling among non-strange baryons implies doubling among the analogous
strange states.

Finally, it is worth emphasizing that this sort of symmetry restoration occurs frequently in quantum systems. Since the
phenomenon involves explicit rather than spontaneous symmetry violation, we can find examples in ordinary quantum
mechanics. Consider, for example, an atom in an external electric quadrupole field, �HSB ∝ e(rirj − 1

3�ij )Q
ij .Although

rotational invariance is broken in general, it is unbroken among j =1/2 states where 〈� 1
2 ,m|[�HSB, �J ]|�′

1
2 ,m′ 〉=0 even

though [�HSB, �J ]|� 1
2 ,m〉 �= 0 in general.

6. Parity doubling and chiral symmetry restoration at short distances

The idea that SU(2)L × SU(2)R chiral symmetry is restored at asymptotically large Euclidean momenta (short
distances) in current correlators in QCD dates back to Weinberg’s 1967 paper on spectral function sum rules. These
sum rules relate moments of the spectral functions of vector and axial currents. However, turning them into relations
among individual meson states is a different problem, and requires additional theoretical input.

Recently, such relations have been discussed by several authors [8,47], who argued that parity doubling might be a
consequence of the chiral invariance of current correlators at short distances in QCD and other dynamical assumptions.
Usually these arguments are framed in terms of “chiral symmetry restoration”, so it is interesting to ask, in the spirit of
Ref. [11], what additional dynamics are responsible for suppressing the chirally invariant operators necessary to obtain
a Wigner–Weyl realization of chiral symmetry in the spectrum.

Refs. [8,47] discuss mesons at high excitation and large Nc. The arguments do not go over to the baryon sector
unchanged [48] since baryons have different large Nc systematics than mesons, and baryon correlators have different
short distance behavior than meson current correlators. Furthermore our phenomenological analysis pertains to hadrons
in the 1.0–2.5 GeV region, and includes many resonances that are the lightest states in a particular isospin and angular
momentum channel, where such an analysis certainly would not apply. Nevertheless it remains interesting to examine
the assumptions required to obtain parity doubling in this simpler limiting case. Ref. [47] discusses relations among
vector and axial mesons, while Ref. [8] presents similar relations for pseudoscalar and scalar mesons. For simplicity,
we phrase our discussion in terms of the latter case.

Shifman compares the correlators of two scalar currents, �(Q2), with the correlator of two pseudoscalar currents,
�̃(Q2), in the Euclidean domain, Q2 = −q2 > 0. Shifman assumes that the difference, ��(Q2) ≡ �(Q2) − �̃(Q2)

6 In Ref. [37] Shifman’s analysis [8] is extended to flavor singlet correlators, where instanton contributions determine the convergence of sum
rules analogous to Weinberg’s [40]. Our analysis suggests that the proper quantity to analyze would be matrix elements of F̃F between baryon states
of identical J, I, and S, but opposite parity, possibly using instanton methods along the lines of Ref. [38].
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obeys an unsubtracted dispersion relation,

��(Q2) ≡ �(Q2) − �̃(Q2) = −
∫

d
2 ��(
2)

Q2 + 
2 , (24)

where the spectral functions �(
2) and �̃(
2) (with �� ≡ � − �̃) receive contributions from physical intermediate
states of mass 
 created by the currents from the vacuum. Well established arguments based on the operator product
expansion and QCD sum rules [49] require that ��(Q2) vanishes like 1/Q4 as Q2 → ∞,

��(Q2) ∼
Q2→∞

〈��〉
Q4

2

, (25)

where 〈��〉 is the chiral symmetry violating condensate. Each of the correlators, � and �̃, individually go like
Q2 log Q2 as Q2 → ∞, so the fact that their difference vanishes as 1/Q4 is evidence of the rapid restoration of chiral
symmetry at short distances in QCD. Combined with the unsubtracted dispersion relation, the condition that there is
no term ∼ 1/Q2 in ��(Q2) requires a superconvergence relation,∫

d
2��(
2) = 0. (26)

Eq. (26) is the only input from chiral symmetry in the argument of Ref. [8]. Convergence of the 
 integration requires
that the spectral functions, each of which grows like 
2 must quickly become equal at large 
. Naively one would think
that this constraint applies at asymptotically large masses where broad, overlapping resonances build up continua in �
and �̃. Strong additional assumptions are needed to make inferences about parity doubling. The principal assumption
is that QCD may be described by a limit in which the number of colors, Nc, is taken to infinity before considering high
radial excitations (labeled by a radial quantum number n).

To explore the implications of this unusual order of limits, we analyze the problem at large but fixed Nc and extract
the leading order predictions at the end. First, let us recap the argument of Ref. [8], taking Nc → ∞ first. Then, the
spectral function � (�̃) receives contributions only from zero width scalar (pseudoscalar) meson resonances, with masses
Mn (M̃n) and coupling to the current fn (f̃n). Continuum contributions are suppressed by powers of Nc. For reference,
the squared masses, squared widths, and couplings of the mesons are assumed to have the following dependence on n
and Nc:

M2
n, M̃2

n ∼ �2n,


2
n, 
̃

2
n ∼ �2n/N2

c ,

fn, f̃n ∼ Nc�
4n, (27)

where � is the dynamical mass scale of QCD. The n dependence is motivated by string analogies, the spectra of linear
potentials and the ’t Hooft model [8,51]. The factors of Nc are in accord with standard large-Nc counting arguments.

Ignoring the widths or equivalently, exchanging the limit Nc → ∞ with the sum over n, the spectral functions are
sums of poles on the real axis, so

��(
2) =
∑
n

(fn�(
2 − M2
n) − f̃n�(
2 − M̃2

n)), (28)

and the superconvergence relation reads,

Nc�
2
∑
n

(�nM
2
n − �̃nM̃

2
n) = 0, (29)

where we have defined fn = Nc�2�n, etc. This sum must converge at large n. Taking �n = �̃n = �, independent of n
(an assumption later relaxed in Ref. [8]) the weakest behavior large n behavior consistent with the convergence of the
sum in Eq. (29) is

M2
n − M̃2

n ∼
n→∞ alt

1

n
,
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where “alt” denotes an alternating sign. Since Mn ∼ M̃n ∼ √
n at large n, Shifman finds �Mn ≡ Mn−M̃n ∼ alt n−3/2,

indicating that the spectrum achieves parity doubling rather rapidly at large n.7

For any fixed Nc the widths of resonances grow at the same rate as their masses (see Eq. (27)), so the spectral
functions approximate a continuum as n → ∞ at fixed Nc. Let us keep track of these 1/Nc corrections. The effect
of a finite width for the nth meson on the spectral functions was analyzed in Ref. [52]. When the widths are finite
the meson poles in the correlation functions move into the lower half complex q2-plane, and the correlation functions
develop cuts with branch points at the thresholds for the decay of the nth meson. We refer to Ref. [52] for details. It is
straightforward to find the modification of Eq. (29)

Nc�
2
∑
n

(
�n(M

2
n − 1

�

nMn) − �̃n

(
M̃2

n − 1

�

̃nM̃n

))
= 0. (30)

Repeating the same arguments that followed Eq. (29), we find

�Mn − 1

�
�
n ∼

n→∞ alt
1

n3/2 ,

where �
n ≡ 
n − 
̃n. Referring back to Eqs. (27) we see that 
, 
̃ ∼ √
n/Nc to leading order in n and Nc. However

we have no independent argument to fix the large n behavior of the difference �
n. It could, in principle go like a
constant at large n, or like some power of n larger than n−3/2. If we parameterize our ignorance by an exponent �,
presumably smaller than 1/2, we can summarize the 1/Nc corrections to the analysis of Ref. [8],

�Mn ∼
n→∞ alt

1

n3/2 + C
n�

Nc

,

where both � and the constant C are unknown. Thus the effect of 1/Nc (remember Nc = 3 in our world) corrections
could completely destroy parity doubling. While further analysis or more assumptions might indicate that these 1/Nc

effects can be neglected, this example serves well to illustrate the fact that parity doubling does not follow from the
chiral invariance of QCD alone, nor from suppression of chiral symmetry violating effects. In the example of Ref. [8]
the assumptions include those necessary to give the asymptotic behavior summarized in Eqs. (27) and to suppress the
effects of hadron widths at large but finite Nc.

7. Parity doubling and intrinsic deformation

Parity doubling in the baryon spectrum might be a consequence of a phenomenon well known in nuclear and
molecular physics. If a system can be described by the collective quantization of an intrinsic state and (a) the intrinsic
state (spontaneously) violates parity, and (b) the deformation is relatively rigid, then the low lying excitations of
the system will display parity doubling. The phenomenon is well known, for example, in the spectrum of ammonia.
Clear examples occur in nuclear physics as well. The existence of parity doubled states in nuclei like 225Ra, with
intrinsic octupole (“pear shaped”) deformation, plays an important role in proposed sensitive searches for T-violating
electric dipole moments [42–44]. Linear superpositions of the intrinsic state, |�〉 and its parity image, P̂ |�〉 form
parity eigenstates, |�±〉 = 1√

2
(|�〉 ± P̂ |�〉). If the deformation is rigid then the Hamiltonian matrix element between

|�〉 and P̂ |�〉 is small and the states of opposite parity, but otherwise identical structure, are nearly degenerate. This
degeneracy survives quantization of the collective coordinates that restores rotational symmetry resulting in a tower of
parity doubled excitations.

One can imagine dynamics that might lead to a similar phenomenon in hadron spectroscopy [2], though a convincing
discussion is beyond our present understanding of hadrons in QCD. If baryons on the leading Regge trajectory were

7 This derivation has been criticized in Ref. [50], where it is pointed out that the Nc → ∞ correlator, ��(Q2), does not satisfy an unsubtracted
dispersion relation, or equivalently that certain interchanges of limits and sums/integrals, required by the derivation, are not allowed by the asymptotic
behavior of ��(
2) when Nc is infinite. By keeping finite Nc corrections (see the following paragraph), which replace the �-functions in �� with
finite width resonances (in the manner proposed in Ref. [52]), we maintain the unsubtracted superconvergence relation and avoid any problems with
interchanges of limits. By this approach we include important physics, namely the fact that the resonant contributions to the spectral functions merge
into a continuum at large n for any finite Nc , and, happily, agree with the conclusions of Ref. [50] that asymptotic chiral symmetry and conventional
large Nc arguments alone do not require parity doubling.



174 R.L. Jaffe et al. / Physics Reports 435 (2006) 157 –182

Table 2
Parity doubled I = 1/2 and 3/2 baryons with angular momentum 5/2 or greater. Data from the PDG [29]

B(JP ) PDG reliability Mass (MeV)

N(5/2−) ∗ ∗ ∗∗ 1675
N(5/2+) ∗ ∗ ∗∗ 1680

N(7/2+) ∗∗ 1990
N(7/2−) ∗ ∗ ∗∗ 2190

N(9/2+) ∗ ∗ ∗∗ 2220
N(9/2−) ∗ ∗ ∗∗ 2250

�(5/2+) ∗ ∗ ∗∗ 1905
�(5/2−) ∗ ∗ ∗ 1930

�(7/2+) ∗ ∗ ∗∗ 1950
�(7/2−) ∗ 2200

�(9/2+) ∗∗ 2300
�(9/2−) ∗∗ 2400

well described as a dumbbell-like structure with a quark on one end and a diquark on the other [45], then the intrinsic
state would violate reflection symmetry. If tunneling of the odd quark from one end to the other were suppressed
enough, then parity doubling would result. If correct, this argument would predict parity doubling for states of high
angular momentum. There is some evidence for this among nucleon (I = 1/2) and � (I = 3/2) states, although the
�s are not very well known (see Table 2). Hyperons (�s and �s) are too poorly known to provide much information.
If this mechanism is responsible for parity doubling, one expects the evidence for parity doubling should improve
with increasing angular momentum, and should be found in the spectrum of �s and �s as well. These predictions
could be tested in an experimental re-examination of baryon spectroscopy. As a first attempt in this direction, we have
repeated the analysis of Section 2 on the non-strange baryons with the states in Table 2 removed. The significance of
the signal for parity doubling remains virtually unchanged when the high angular momentum states are removed. Thus
the phenomenon cannot be entirely explained by collective coordinate quantization of a parity-violating, enlongated
intrinsic state.

8. Implications from mended chiral symmetry

We explore in this section some implications of chiral symmetry using a comparatively less well-known approach.
While not directly relevant to the topic of parity doubling, this approach has potentially interesting implications
for the properties of baryon resonances of opposite parity. As discussed in Section 2, chiral symmetry realized in
Nambu–Goldstone mode does not impose any constraints on the masses and couplings of hadrons, beyond those
required by isospin. However, in a series of interesting papers, Weinberg showed that the full chiral symmetry group
may remain manifest in a very special sense [23,24]. The symmetry is realized on the matrix of the couplings of
the Goldstone bosons, rather than on the mass eigenstates, as typical for a symmetry realized in Wigner–Weyl mode.
Following Ref. [24], we will refer to chiral symmetry realized in this fashion as “mended chiral symmetry”. When
combined with the large energy asymptotics of Goldstone boson scattering amplitudes following from Regge theory,
the approach of Refs. [23,24] gives also nontrivial implications for the mass spectrum.

In this section we give a brief review of the approach of Refs. [23,24], and use it to construct a chirally invariant model
for a system of two nucleons of opposite parity. In this model the two nucleons of opposite parity are not necessarily
degenerate, but their pion couplings are exactly the same as predicted from a linear realization of chiral symmetry. This
approach provides such a natural realization of such predictions of chiral symmetry “restoration” without actual parity
doubling.

The mended chiral symmetry approach is equally applicable to mesons and baryons. In the original work Ref. [23] it
was used to describe the quartet of JP = 0±, 1± mesons (
, �, �, a1), and the (N, �, N1) system of the nucleon, delta
and Roper baryons, respectively. However, in the sector of mesons with zero helicity, this approach is considerably more
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predictive than in the baryon sector with nonzero helicity. This is due to the existence of an endomorphism following
from the parity transformation of the pion couplings. We will restrict our discussion in this section to the predictions
which are common to both baryons and mesons.

We start by introducing some notation. For simplicity, we consider nf = 2 with isospin generators T a . Consider the
amplitude Ma

�� for pion coupling between two states h�(�) → h�(�′)�a with h�, h� baryon states with helicities �, �′,
respectively.

This amplitude is related to the matrix element of the axial vector current between the two baryon states by PCAC as

A(h�(p, �) → h�(p′, �′)�a) ≡ Ma
�� = 1

f�
(p − p′)�〈h�(p′, �′)|Aa�|h�(p, �)〉. (31)

The form of the pion coupling simplifies in the collinear limit, where the baryon momenta are parallel to a common
direction �p‖ �p′‖ê3, which can be chosen for convenience to define the +z direction. In such a frame, the pion coupling
given by the expression Eq. (31) is related to the matrix element of a light-cone component of the axial current, and is
helicity conserving

Ma
�� = 1

f�
|�q|〈h�(p′, �′)|Aa0 − Aa3|h�(p, �)〉 ≡ [Xa(�)]�����′ . (32)

This defines the transition operator Xa(�) for pion couplings to hadrons. For simplicity we will omit the � dependence
of the operators Xa(�), unless explicitly required.

The pion couplings Xa and the isospin operators T a satisfy the commutation relations

[T a, T b] = i�abcT c, [T a, Xb(�)] = i�abcXc(�). (33)

In addition to this, another commutation relation can be obtained by considering the set of all Adler–Weisberger
sum rules [53] on baryon targets. They can be derived from an unsubtracted dispersion relation for the h��a → h��b

scattering amplitude. Saturating the dispersion relation with one-body intermediate states, the sum rule can be expressed
in operator form as

[Xa(�), Xb(�)] = i�abcT c. (34)

The commutation relations Eqs. (33), (34) form the Lie algebra of the SU(2)L×SU(2)R symmetry, which is furthermore
explicitly realized on the hadronic states. This realization may be different for each distinct helicity �. The resonance
saturation approximation of the Adler–Weisberger sum rule, required to derive the commutation relation Eq. (34), can
be justified, for example, by working at leading order in the 1/Nc expansion.

The absence of the �I = 2 Regge trajectories with intersect �(0) > 0 for the pion-nucleon scattering amplitude
h�� → h�� gives another commutation relation. This connects the pion coupling operator Xa with the mass spectrum

[Xa(�), [Xb(�), m2]] ∝ �ab. (35)

This commutation relation implies that the baryon mass operator has very simple transformation properties under
SU(2)L × SU(2)R . It consists of two terms

m̂2(�) = m̂2
0(�) + m̂2

4(�) (36)

with m̂2
0 transforming as a singlet (0L, 0R) under the chiral group SU(2)L × SU(2)R , and m̂2

4 transforming as the
I = 0 component of a chiral four-vector ( 1

2 L
, 1

2 R
). In the absence of the m̂2

4 term, the chiral symmetry would have
been realized explicitly in the mass spectrum, and baryons would be grouped into irreducible representations of
SU(2)L × SU(2)R . The m̂2

4 term prevents such a simple picture, and implies that in general, mass eigenstates are
mixtures of different irreducible representations of SU(2)L × SU(2)R and do not exhibit the pattern of degeneracies
associated with a Wigner–Weyl representation of SU(2)L ×SU(2)R . Note that m̂2

4 is not connected with explicit chiral
symmetry breaking, which has been set to zero from the outset. Thus Weinberg’s mended symmetry scenario provides
a good example of the point emphasized in Ref. [11], that “restoration” of SU(2)L × SU(2)R in the spectrum requires
suppression of chirally invariant operators.

To summarize, Weinberg’s dynamical arguments, based on assumed Regge asymptotics, suffice to prove that hadrons
with given helicity � fall into reducible representations of the chiral group. These representations in general may be
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different for different helicities. The reducible nature of the representations and the absence of degeneracies distinguish
Weinberg’s approach from the “chiral symmetry restoration” picture discussed in Section 3. The crucial feature is the
presence of the chiral nonsinglet m̂2

4 piece in the Hamiltonian, which connects different irreps, according to selection
rules imposed by its quantum numbers. The representation content of a given hadron state is not fixed by these general
arguments.

The mended symmetry approach, in effect, replaces the arbitrariness of the coupling constants and masses in the
effective Lagrangian with the equally unknown representation content of a given state. This framework is predictive
only when supplemented with a prescription for the chiral irreps content. Once the representation content is specified,
many physical parameters (masses and couplings) are predicted in terms of just a few input parameters. This lends such
an approach considerable predictive power. For applications of this formalism to heavy hadron physics and exotics see
Ref. [56–59].

We comment here on the relation of this approach to the large Nc picture of the baryons following from the work of
Dashen, Jenkins and Manohar [25,26]. In the large Nc limit, a new symmetry emerges in the baryon sector of QCD.
This is the contracted spin-flavor symmetry SU(2nf )c, with nf the number of light quark flavors. The generators of the
symmetry are the spin J i , isospin I a , and the operator Gia

0 defined in terms of p-wave pion couplings to the baryons
in the large Nc limit (Gia → Gia

0 )

Ma
�� = 1

f�
qiNc[Gia]��. (37)

The connection to the operators introduced in Eq. (32) is Xa(�) ∼ [G3a]��.
The operators J i, T a, Gia

0 satisfy the commutation relations defining the algebra of the contracted SU(2nf ) sym-
metry

[J i, J j ] = iεijkJ
k, [T a, T b] = iεabcT

c, (38)

[Gia
0 , J j ] = iεijkG

ka
0 , [Gia

0 , T b] = iεabcG
ic
0 , [Gia

0 , G
jb
0 ] = 0. (39)

Furthermore, the mass operator in the large Nc limit m2
0 commutes with all the generators of the contracted symmetry.

The contracted SU(2nf ) symmetry relates states with different spins and isospins, analogous to the Wigner symmetry
in nuclear physics. For example, in the symmetry limit the nucleon N and the � belong to the same irreducible
representation of the SU(4)c, along with infinitely many other states with spin and isospin J = I =1/2, 3/2, 5/2, . . . .

The pion couplings among these states are fixed by the contracted symmetry, such that they are precisely the same as
the predictions of the constituent quark model [25,26].

Both the mended chiral symmetry and the large Nc contracted symmetry approach impose constraints on the form of
the pion couplings to the baryons. In general these constraints are different, although they can agree in special situations.
The reason for the difference is the commutation relation Eq. (35). In the large Nc limit such a commutator would
vanish, since the mass operator commutes with the pion couplings Xa(�). This leads to a nontrivial chiral structure of
the mass operator in the mended symmetry approach, which does not follow from the large Nc contracted symmetry.

In certain particular cases this difference becomes immaterial, and the predictions of the two approaches are identical.
This happens when the hadrons in a sector of given helicity � are assigned to one single irrep (IL, IR) of SU(2)L ×
SU(2)R , which renders the double commutator Eq. (35) zero, in agreement with the large Nc prediction. Such a situation
in illustrated in Scenario I below.

Another important difference between the two approaches lies in their range of applicability: while the mended chiral
symmetry method is restricted to the couplings of the Goldstone bosons to baryons, the contracted large Nc symmetry
is equally applicable to the couplings of any light mesons to baryons.

We proceed to an explicit discussion of the constraints on the mass spectrum and pion couplings from the mended
chiral symmetry approach. The hadronic states with given helicity � can be taken to transform as linear combinations
of irreducible representations (jL, jR) of SU(2)L × SU(2)R

|h(�)〉 ∼
∑
jL,jR

cjLjR
(�)|jL, jR〉, (40)
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where we have suppressed all labels on the states except for their SU(2)R ×SU(2)L representation content. In general,
the mass operator m̂2

4 will mix different representations (barring accidental degeneracies), such that the states |h(�)〉
will be nondegenerate, unless the sum over representations contains only one term.

Parity invariance relates the representation contents of hadronic states with opposite helicity.8 Acting with the parity
operator P̂ on a hadron state h�( �p, �) gives a state of opposite helicity and momentum P̂ |h�( �p, �)〉=�h|h�(− �p, −�)〉,
with �h the intrinsic parity of the state h. It is more convenient to consider the normality operator �= P̂R

y
�, the product

of parity and a 180◦ rotation, which restores the momenta to their original direction. The action of this operator on the
hadron states is �|h�( �p, �)〉 = �h(−)jh |h�( �p, −�)〉.

The generators of the symmetry transform under � as

�Xa(�)� = −Xa(−�), �T a� = T a . (41)

The mass operator commutes with the normality operator. Using this relation, it is easy to see that the states |h(−�)〉
furnish also a reducible representation of the chiral algebra, containing the representations (jR, jL) obtained from those
in Eq. (40) by exchanging jL ↔ jR

|h(−�)〉 ∼
∑
jR,jL

cjRjL
(�)|jL, jR〉. (42)

To illustrate the application of this approach, we consider two particular cases. The first scenario describes a N, �
pair with the same mass, which reproduces the NN�, N��, ��� couplings of the quark model. The second scenario
describes a pair of spin 1/2 nucleons of opposite parity.

Scenario I. A model for a nonstrange nucleon and delta baryons can be constructed by placing the hadrons into
minimal chiral multiplets. This model was first proposed in Ref. [23] and discarded because it has the unphysical
feature that the nucleon and delta are degenerate. It was proposed again in Ref. [55] as a possible justification for the
quark model with SU(4) spin-flavor symmetry. This scenario comes closest to the large Nc picture of the ground state
baryons, where the nucleon-� mass splitting is of order 1/Nc.

We place each helicity sector into irreducible representations of SU(2)L × SU(2)R

� = + 1
2 : (1L, 1

2 R) ⊃ N, �, (43)

� = + 3
2 : ( 3

2 L, 0R) ⊃ �. (44)

The transformation properties of the negative helicity states are obtained from these via the parity relation Eq. (42)
and are

� = − 1
2 : ( 1

2 L, 1R) ⊃ N, �, (45)

� = − 3
2 : (0L, 3

2 R) ⊃ �. (46)

We show in Fig. 8 the weight diagrams of the chiral representations corresponding to � = ± 1
2 , and the associated

hadron states.
The mass matrix (see Eq. (36)) for the helicity �=+1/2 is proportional to the unit matrix in the basis (N+1/2, �+1/2),

since the m̂2
4 term does not have diagonal matrix elements on a irreducible representation (IL, IR). Thus the nucleon

and delta are degenerate in this model.
Collinear pion emission connects only states with the same helicity, and the corresponding axial matrix elements can

be obtained by expressing the axial current in terms of the generators of the chiral group Xa = 1
2 (I a

R − I a
L). Defining

the reduced matrix elements for p-wave pion emission as

〈J ′I ′; �I ′
3|Xa|J I ; �I3〉 = 1

2J ′ + 1
X(J ′, J )〈J ′�|J1; �0〉〈I ′I ′

3|I1; I3a〉, (47)

one finds X(1/2, 1/2) = −5/
√

2, X(1/2, 3/2) = −4, X(3/2, 3/2) = −5
√

2, in agreement with the predictions of
the quark model with SU(4) spin-flavor Wigner symmetry. In particular, the result for X(1/2, 1/2) is equivalent to

8 Of course Lorentz invariance constrains the representation content so that states of the same hadron with different |�| are degenerate.
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Fig. 8. Weight diagrams for the chiral representations (1, 1
2 ) and ( 1

2 , 1) for states with helicity � = + 1
2 (left) and � = − 1

2 (right), respectively. The

states on the same diagonal have the same third component of the isospin I3 = 1
2 (I3

L
+ I3

R
), and correspond to the nucleons and � states shown.

gA/gV = 5/3. The agreement with the experimental result gA/gV = 1.2695 ± 0.0029 can be improved by refining
the model and adding a second chiral representation ( 1

2 L, 0R) in the � = + 1
2 sector. The mixing angle of the two

representations is chosen appropriately such as to reproduce the data on gA/gV [23]. We do not consider this further,
and refer the reader to Weinberg’s paper for details [23].

Scenario II. Consider a different model, containing the two chiral representations (0, 1
2 ) and ( 1

2 , 0). In the helicity
+1/2 sector, there are two spin-1/2 nucleons NA, NB which are linear combinations of the two chiral representations,
with a mixing angle �

� = + 1
2 : NA = cos �(0L, 1

2 R) + sin �( 1
2 L, 0R), (48)

NB = − sin �(0L, 1
2 R) + cos �( 1

2 L, 0R). (49)

We take these states to be mass eigenstates, with eigenvalues mA, mB . They are related to the chiral singlet and chiral
quartet terms as follows. Consider the squared mass matrix in the basis of the irreducible representations ( 1

2 , 0) and
(0, 1

2 )

m2
�=+1/2 =

(
�2

L �
� �2

R

)
, (50)

where �2
L,R are the diagonal matrix elements of the chiral singlet m̂2

0, and � is the off-diagonal matrix element of the
chiral quartet term in the mass-squared operator of Eq. (36). Their relation to the hadronic parameters is

�2
L = m2

Asin2� + m2
Bcos2�, �2

R = m2
Acos2� + m2

Bsin2�, � = 1
2 (m2

A − m2
B) sin 2�. (51)

The helicity −1/2 sector can be constructed from these states by applying the normality transformation, as explained
above. Choosing the two nucleons to have opposite parities �NA

= +1, �NB
= −1, the representation content of the

helicity − 1
2 states is

� = −1

2
: �NA = sin �(0L, 1

2 R) + cos �( 1
2 L, 0R), (52)

�NB = cos �(0L, 1
2 R) − sin �( 1

2 L, 0R). (53)

Next, consider the couplings of these states to pions. The pion coupling operator Xa = 1/2(I a
R − I a

L) is related to the
generators of the symmetry, and thus couples only states in the same chiral representations. The simplest way to derive
the pion couplings is to consider the transitions pi↑ → nj↑�+, which are mediated by the operator X− = X1 − iX2.
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For example, the diagonal pion transition NA → NA� is computed as

A(pA↑ → nA↑�+)

∼ (cos �〈(1, 0)L, ( 1
2 , − 1

2 ) R| + sin �〈( 1
2 , − 1

2 ) L, (1, 0) R|)
× X−(cos �|(1, 0) L, ( 1

2 , + 1
2 ) R〉 + sin �|( 1

2 , + 1
2 ) L, (1, 0) R〉)

= cos2�〈( 1
2 , − 1

2 ) R|I−
R |( 1

2 , + 1
2 ) R〉 − sin2�〈( 1

2 , − 1
2 ) L|I−

L |( 1
2 , + 1

2 ) L〉 = cos 2�, (54)

where in the last line we show only the chiral isospin (and its third component) changed by the I−
L,R operator. According

to the effective Lagrangian of Eq. (16), this amplitude is proportional to the coupling c2 + c4. In a similar way one can
obtain all the other couplings in this effective Lagrangian, with the results

c2 + c4 ∼ cos 2�, (55)

c2 − c4 ∼ − cos 2�, (56)

1 − c3 ∼ − sin 2�. (57)

This illustrates how a special chiral representation content in the framework of the mended chiral symmetry can lead
to specific relations among pion couplings in the effective Lagrangian. In particular, choosing �= 3�/4 reproduces the
predictions of the chiral doubling model with linearly transforming baryons (c2−4 = 0), but without mass degeneracy.
The mass parameters of this model are �2

L =�2
R = (m2

A +m2
B)/2 and �=−(m2

A −m2
B)/2, with nondegenerate baryons

m2
A − m2

B �= 0.
Of course, any such explanation leaves open the dynamical origin of this (or any other) particular value of the mixing

angle, as well as the representation content. More complicated representation contents are also possible, e.g. including
also (IL, IR) = (1, 1/2), (1/2, 1) as in Scenario 1. Such questions could be addressed for example using lattice QCD
methods, as discussed recently in Ref. [60].

9. Conclusion and discussion

Although parity doubling was observed in the baryon spectrum more than 35 years ago, a complete understanding
of its dynamical origin is still lacking. In this paper we both evaluate the empirical evidence for parity doubling and
consider some possible theoretical explanations. We propose a new mechanism, based on the dynamical suppression
of the U(1)A violation, and point out a prediction that distinguishes it from SU(2)L × SU(2)R restoration.9

Most of the evidence previously offered in favor of parity doubling has been obtained by visually grouping states
into multiplets. Given the number of broad, closely spaced states in each channel, this procedure is both ambiguous
and imprecise. It does not take into account the resonance widths, nor the fact that different resonances are established
with varying degrees of certainty. We propose in this paper a quantitative measure of parity doubling, which is free of
these problems. First, we introduce an overlap integral �IJS({C}) of the spectral densities in channels with the same
spin J, isospin I and strangeness S, but opposite parity. This is computed on an ensemble of control samples (each of
them denoted by {C}), obtained from the real world by arbitrarily permuting the parities of the hadronic states. Finally,
the value of the overlap integral �IJS in the real world is compared against the statistical distribution on the ensemble,
which assigns a probability measure (p-value) to the statement of parity doubling.

The results of our study gives strong evidence for parity doubling in the nonstrange baryon sector (both N and �),
with spins from J = 1/2 to 7/2. For larger spins the number of states decreases, and we do not expect the control
samples to be representative statistically. Still, there is good evidence for parity doubling among high spin, non-strange
baryons as can be seen from Table 2. On the other hand, the correlations between positive and negative parity strange
baryons are not significant. However, some of the states with strangeness expected in the quark model have not yet
been seen, which could partly be responsible for the weaker correlations observed in these sectors. A new experimental
attack on baryon spectroscopy could shed significant light on the systematics and origins of parity doubling.

In principle our statistical test could be used to search for more complex correlations, such as those expected in models
of “chiral symmetry restoration”. In such schemes, additional degeneracies involving hadrons of different isospins

9 If parity doubling arises from suppression of U(1)A violation, strange hadrons should not show significant parity doubling.
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(but the same spin) are expected on top of parity doubling. The pattern of the mass spectrum in this case depends
on the representation, (jL, jR), of SU(2)L × SU(2)R assumed to be realized. For example, in the (1/2, 1)�(1, 1/2)

scheme of Ref. [54] one expects the baryons to be grouped into “quartets” of the form (N+
J , N−

J , �+
J , �−

J ) with the
same spin J. We have not used our statistical method to look for more complicated correlations. This would require
higher dimensional integrals analogous to Eq. (3). In any case no general correlations of this form are observed by eye.
However, it is possible that more complicated chiral representations may not appear uniformly in the spectrum, but be
localized in some mass region. This would render our method inapplicable, due to the sparseness of the corresponding
control sample.

We have examined a number of possible explanations of parity doubling. First we have tried to clarify the relationship
between the usual SU(2)L × SU(2)R chiral symmetry of QCD and parity doubling. The terminology used in the
literature discussion has been confusing. In an important sense (for massless u and d quarks) SU(2)L × SU(2)R is not
broken at all, but instead represented in the Nambu–Goldstone form by massless pions and isospin multiplets of hadrons
that transform non-linearly under chiral transformations. There is nothing to “restore”. Instead, we frame the question
as follows: “What is needed in order that baryons fall into Wigner–Weyl representations of SU(2) × SU(2)with the
usual degeneracies and relations among couplings”? The answer, presented in Ref. [11] and reviewed here, is that a
set of SU(2)L × SU(2)R invariant operator matrix elements must be suppressed, basically amounting to decoupling
the pion from the parity doublet states. If this decoupling were complete, it would, in effect, leave two independent
SU(2)L × SU(2)R symmetries: one under which the pion and non-parity-doubled states transform non-linearly, and
the other under which the parity doubled states transform linearly. A toy model of this type has recently been proposed
by Cohen and Glozman [61]. The question is what dynamics are responsible for suppressing these operator matrix
elements and giving rise to this additional symmetry? If the dynamics behind effective chiral symmetry restoration
applies generically to hadrons high in the spectrum, as advocated, for example, in Ref. [27], then parity doubling should
be universal in that domain. It would be puzzling if, for example, some (e.g.) highly excited mesons are parity doubled,
but some are not. A search for such exceptions would be a particularly effective way to test this explanation of parity
doubling.

We emphasize that parity doubling alone is not conclusive evidence for effective chiral symmetry restoration. As
discussed in Section 3A, chiral symmetry realized linearly on a set of baryons requires that pions decouple from the
parity doubled states. In addition, one would have to check the validity of certain relations for axial couplings between
the members of the putative chiral multiplet implied by the symmetry algebra implemented in the Wigner–Weyl mode.

Next, we considered the possibility that parity doubling is a consequence of dynamical suppression of U(1)A
symmetry breaking in a subsector h of the Hilbert space of QCD. Note that this is not equivalent to U(1)A restoration,
as realized for example in large Nc QCD. For example, the effects of the anomaly are still present, and give the 	, 	′
the masses observed in nature. Rather, we require only that the matrix elements of the divergence of the axial singlet
current are very small on a subset of baryon states 〈B1|��j

�
5 |B2〉 ≈ 0, with B1, B2 ∈ h. 10 This condition is satisfied if

the matrix elements of the gluon anomaly term taken between non-strange baryons of opposite parity are very small.11

The hypothesis that the matrix elements of F̃F are suppressed among excited baryons may be amenable to study using
lattice QCD methods.

Although it predicts parity doublets, the mechanism of dynamical suppression of U(1)A symmetry breaking does
not make predictions for the pion couplings to the doublet states (except that the pions must decouple from parity
doubled states at zero momentum, as required by the Goldberger–Treiman relation). Such relations would be obtained,
for example, if we required the doublet to be left invariant under U(1)A and parity transformations.

In addition to suppression of U(1)A symmetry violation, we review two other possible origins for parity doubling.
First we examine arguments recently put forward that parity doubling in the spectrum can be related to chiral sym-
metry restoration at short distances, a phenomenon well grounded in perturbative QCD. The only input from short
distance chiral symmetry is the superconvergence relation, Eq. (26). The rest of the argument requires input from
phenomenological models (e.g. linear excitation spectra) and large Nc implemented in an unusual way—examining the
large n (excitation) limit, but taking Nc → ∞ first. O(1/Nc) corrections seem capable of invalidating the conclusions.
In any event this exercise provides an example of the extent of additional dynamics required to obtain effective chiral

10 In the absence of strange quark contributions.
11 Strange quark contributions would seem to defeat this explanation among strange hadrons, leading to the intriguing prediction that parity

doubling, if due to this mechanism, will not be significant among hyperons and other strange hadrons.
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