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Abstract

We study the dynamics of a “kicked” quantum system undergoing repeated measure-
ments of momentum. A diffusive behavior is obtained for a large class of Hamiltonians,
even when the dynamics of the classical counterpart is not chaotic. These results can be
interpreted in classical terms by making use of a “randomized” classical map. We compute
the transition probability for the action variable and consider the semiclassical limit.
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1 Introduction

The classical and quantum dynamics of bound Hamiltonian systems under the action
of periodic “kicks” are in general very different. Classical systems can follow very
complicated trajectories in phase space, while the evolution of the wave function
in the quantum case is more regular. In the classical case, in those regions of the
phase space that are stochastic, the evolution of the system can be well described
in terms of the action variable alone and one of the most distinctive features of an
underlying chaotic behavior is just the diffusion of the action variable in phase space.
On the other hand, in the quantum case, such a diffusion is always suppressed after
a sufficiently long time [1, 2]. This phenomenon, known as the quantum mechanical
suppression of classical chaos, can be framed in a proper context in terms of the
semiclassical approximation h̄ → 0 [3, 4].

The “kicked” rotator is a pendulum that evolves under the action of a gravita-
tional field that is “switched on” at periodic time intervals. It is a very useful system,
able to elucidate many different features between the classical and the quantum case.
By studying this model, Kaulakis and Gontis [5] showed that a diffusive behavior
of the action variable takes place even in the quantum case, if a quantum measure-
ment is performed after every kick. This interesting observation was investigated in
some detail in a recent paper [6], where it was proven that quantum mechanical mea-
surements of the action variable provoke diffusion in a very large class of “kicked”
systems, even when the corresponding classical dynamics is regular. In this paper we
shall first briefly review some of our general results and then corroborate our findings
by concentrating our attention on the particular case of the kicked rotator.

2 Kicks interspersed with quantum measurements

We consider the Hamiltonian

H = H0(p) + λV (x)δT (t), (2.1)

where p and x ∈ [−π, π] are the action and angle variable, respectively, and

δT (t) =
∞
∑

k=−∞

δ(t − kT ), (2.2)

T being the period of the perturbation. We impose periodic boundary conditions
on the interaction V (x). This Hamiltonian gives rise to the so-called radial twisting
map, that describes the local behavior of a perturbed integrable map near resonance
[7]. The free Hamiltonian H0 has a discrete spectrum and a countable complete set
of eigenstates {|m〉}:

〈x|m〉 =
1√
2π

exp (imx) , m = 0,±1,±2, . . . . (2.3)
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We shall consider the evolution engendered by the Hamiltonian (2.1) interspersed
with quantum measurements, in the following sense: the system evolves under the
action of the free Hamiltonian for (N − 1)T + τ < t < NT (0 < τ < T ), undergoes
a “kick” at t = NT , evolves again freely and then undergoes a “measurement” of p
at t = NT + τ . The evolution of the system is best described in terms of the density
matrix: between successive measurements one has

ρNT+τ = Ufree(τ)UkickUfree(T − τ)ρ(N−1)T+τU
†
free(T − τ)U †

kickU
†
free(τ), (2.4)

Ukick = exp (−iλV/h̄) , Ufree(t) = exp (−iH0t/h̄) . (2.5)

At each measurement, the wave function is “projected” onto the nth eigenstate of
p with probability Pn(NT + τ) = Tr(|n〉〈n|ρNT+τ) and the off-diagonal terms of the
density matrix disappear. The occupation probabilities Pn(t) change discontinuously
at times NT and their evolution is governed by the master equation

Pn(N) =
∑

m

WnmPm(N − 1), (2.6)

where
Wnm ≡ |〈n|Ufree(τ)UkickUfree(T − τ)|m〉|2 = |〈n|Ukick|m〉|2 (2.7)

are the transition probabilities and we defined, with a little abuse of notation,

Pn(N) ≡ Pn(NT + τ). (2.8)

The map (2.6) depends on λ, V, H0 in a complicated way. However, interestingly,
very general conclusions can be drawn about the average value of a generic regular
function of momentum g(p) [6]. Let

〈g(p)〉t ≡ Tr(g(p)ρ(t)) =
∑

n

g(pn)Pn(t), (2.9)

where p|n〉 = pn|n〉 (pn = nh̄), and consider the average value of g after N kicks

〈g(p)〉N ≡ 〈g(p)〉NT+τ =
∑

n

g(pn)Pn(N) =
∑

n,m

g(pn)WnmPm(N − 1). (2.10)

Substituting Wnm from (2.7) one obtains

〈g(p)〉N =
∑

n,m

g(pn)〈m|U †
kick|n〉〈n|Ukick|m〉Pm(N − 1)

=
∑

m

〈m|U †
kickg(p)Ukick|m〉Pm(N − 1), (2.11)

where we used g(p)|n〉 = g(pn)|n〉. We are mostly interested in the evolution of the
quantities p and p2 (momentum and kinetic energy). By the Baker-Hausdorff lemma

U †
kickg(p)Ukick = g(p) + i

λ

h̄
[V, g(p)] +

1

2!

(

iλ

h̄

)2

[V, [V, g(p)]] + ..., (2.12)
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we obtain the exact expressions

U †
kickpUkick = p + i

λ

h̄
[V, p], (2.13)

U †
kickp

2Ukick = p2 + i
λ

h̄
[V, p2] + λ2 (V ′)

2
, (2.14)

where prime denotes derivative. We observe, incidentally, that in general, for polyno-
mial g(p), the highest order of λ appearing in (2.12) is the degree of the polynomium.

Substituting (2.13) and (2.14) in (2.11) and then iterating on the number of kicks
we obtain

〈p〉N = 〈p〉N−1 = 〈p〉0, (2.15)

〈p2〉N = 〈p2〉N−1 + λ2〈f 2〉 = 〈p2〉0 + λ2〈f 2〉N, (2.16)

where f = −V ′(x) is the force and

〈f 2〉 = Tr
(

f 2ρNT+τ

)

=
∑

n

〈n|f 2|n〉Pn(N) =
1

2π

∫ π

−π
dx f 2(x) (2.17)

is a constant that does not depend on N : Indeed 〈n|f 2|n〉 is independent of the state
|n〉 [see (2.3)] and

∑

Pn = 1. In particular, the kynetic energy K = p2/2m grows at
a constant rate: 〈K〉N = 〈K〉0 + λ2〈f 2〉N/2m. By using (2.15)-(2.16) we obtain the
friction (F ) and the diffusion (D) coefficients

F =
〈p〉N − 〈p〉0

NT
= 0, (2.18)

D =
〈∆p2〉N − 〈∆p2〉0

NT
=

λ2〈f 2〉
T

, (2.19)

where 〈∆p2〉N = 〈p2〉N − 〈p〉2N . We stress that the above results are exact: their
derivation involves no approximation. This shows that Hamiltonian systems of the
type (2.1) (radial twisting maps), in the quantum case, if “measured” after every kick,
have a constant diffusion rate in momentum with no friction, for any perturbation
V = V (x). In particular, the seminal kicked-rotator model H0 = p2/2I, V = cos x
has the diffusion coefficient

D =
λ2

2T
, (2.20)

which is nothing but the result obtained in the classical case [1, 5].
The above results are somewhat puzzling, essentially because one finds that in

the quantum case, when repeated measurements of momentum (action variable) are
performed on the system, a chaotic behavior is obtained for every value of λ and for
any potential V (x). On the other hand, in the classical case, diffusion occurs only
for some V (x), when λ exceeds some critical value λcrit. (For instance, the kicked
rotator displays diffusion for λ ≥ λcrit ≃ 0.972 [1, 7].) It appears, therefore, that
quantum measurements not only yield a chaotic behavior in a quantum context, they
even produce chaos when the classical motion is regular. In order to bring to light the
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causes of this peculiar situation, one has to look at the classical case. The classical
map for the Hamiltonian (2.1) reads

xN = xN−1 + H ′
0(pN−1)T,

pN = pN−1 − λV ′(xN ). (2.21)

A quantum measurement of p yields an exact determination of momentum p and,
as a consequence, makes position x completely undetermined (uncertainty principle).
This situation has no classical analog: it is inherently quantal. However, the classical
“map” that best mymics this physical picture is obtained by assuming that posi-
tion xN at time τ after each kick (i.e. when the quantum counterpart undergoes a
measurement) behaves like a random variable ξN uniformly distributed over [−π, π]:

xN = ξN ,

pN = pN−1 − λV ′(xN ). (2.22)

Introducing the ensemble average 〈〈· · ·〉〉 over the stochastic process (i.e. over the set
of independent random variables {ξk}k≤N), we obtain

〈〈pN〉〉 = 〈〈pN−1〉〉 − λ〈V ′(ξN)〉, (2.23)

where

〈g(ξ)〉 ≡ 1

2π

∫ π

−π
g(ξ)dξ (2.24)

is the average over the single random variable ξ [this coincides with the quantum
average: see for instance the last term of (2.17)]. The average of V ′(ξN) in (2.23)
vanishes due to the periodic boundary conditions on V , so that

〈〈pN〉〉 = 〈〈pN−1〉〉, (2.25)

which is the same as Eq. (2.15). Moreover, using (2.22) and (2.25) we get

〈〈∆p2
N〉〉 = 〈〈p2

N〉〉−〈〈pN 〉〉2 = 〈〈∆p2
N−1〉〉+λ2〈V ′(ξN)2〉−2λ〈〈pN−1〉〉〈V ′(ξN)〉. (2.26)

In writing (2.26), the average of V ′(ξN)pN−1 has been factorized because pN−1 depends
only on {ξk}k≤N−1, as can be evinced from (2.22). Using again the periodic boundary
condition on V , one finally gets

〈〈∆p2
N〉〉 = 〈〈∆p2

N−1〉〉 + λ2〈f 2〉 (2.27)

and the momentum diffuses at the rate (2.19), as in the quantum case with mea-
surements. We obtain in this case a diffusion taking place in the whole phase space,
without effects due to the presence of adiabatic islands.

It is interesting to compare the different cases analyzed: (A) a classical system,
under the action of a suitable kicked perturbation, displays a diffusive behavior if the
coupling constant exceeds a certain threshold (KAM theorem); (B) on the other hand,
in its quantum counterpart, this diffusion is always suppressed. (C) The introduction
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of measurements between kicks encompasses this limitation, yielding diffusion in the
quantum case. More so, diffusion takes place for any potential and all values of the
coupling constant (namely, even when the classical motion is regular). (D) The same
behavior is displayed by a “randomized classical map,” in the sense explained above.
These conclusions are sketched in Table 1.

Table 1: Classical vs quantum diffusion

A classical diffusion for λ > λcrit

B quantum no diffusion
C quantum + measurements diffusion ∀λ
D classical + random diffusion ∀λ

3 Semiclassical limit

As we have seen, the effect of quantum measurements is basically equivalent to a
complete randomization of the classical angle variable x, at least if one’s attention is
limited to the calculation of the diffusion coefficient in the chaotic regime. One might
therefore naively think that the randomized classical map (2.22) and the quantum
map with measurements (2.6), (2.15)-(2.19) are identical. This expectation would
be wrong: there are in fact corrections in h̄. It is indeed straightforward, using
Eqs. (2.11)-(2.12), to obtain in the quantum case

〈p3〉N = 〈p3〉N−1 + 3λ2〈f 2〉〈p〉N−1 + λ3〈f 3〉,
〈p4〉N = 〈p4〉N−1 + 6λ2〈f 2〉〈p2〉N−1 + 4λ3〈f 3〉〈p〉N−1 + λ4〈f 4〉 + λ2h̄2〈(f ′)2〉.

(3.1)

On the other hand, using (2.22) and the periodic boundary conditions, one gets for
the randomized classical map

〈〈p3
N〉〉 = 〈〈p3

N−1〉〉 + 3λ2〈f 2〉〈〈pN−1〉〉 + λ3〈f 3〉,
〈〈p4

N〉〉 = 〈〈p4
N−1〉〉 + 6λ2〈f 2〉〈〈p2

N−1〉〉 + 4λ3〈f 3〉〈〈pN−1〉〉 + λ4〈f 4〉. (3.2)

Hence the two maps have equal moments up to third order, while the fourth moment
displays a difference of order O(h̄2):

〈p4〉N − 〈p4〉N−1 = 〈〈p4
N〉〉 − 〈〈p4

N−1〉〉 + λ2h̄2〈(f ′)2〉. (3.3)

In order to understand better the similarities and differences between the two
maps, as well as the quantum mechanical corrections, we focus our attention on the
particular case of the kicked rotator H0 = p2/2, V (x) = cos x, which gives rise to the
so-called standard map

xN = xN−1 + pN−1T,

pN = pN−1 + λ sin xN . (3.4)
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The conditional probability density Wcl that an initial state (p′, x′) evolves after one
step into the final state (p, x) is, from (3.4),

Wcl(p, x|p′, x′) = δ(p − p′ − λ sin x) δ(x − x′ − p′T )

= δ(p − p′ − λ sin[x′ + p′T ]) δ(x − x′ − p′T ). (3.5)

This is a completely deterministic evolution. On the other hand, if one randomizes
the standard map, as in (2.22),

xN = ξN ,

pN = pN−1 + λ sin xN , (3.6)

the conditional probability density becomes

Wcl(p, x|p′, x′) = Wcl(p, x|p′) = P (x) δ(p − p′ − λ sin x) =
1

2π
δ(p − p′ − λ sin x) (3.7)

and is independent of the initial position x′. It is therefore possible to describe the
dynamics by considering only the momentum distribution

Wcl(p|p′) =
1

2π

∫ π

−π
dx δ(p − p′ − λ sin x) =

1

λπ

∫ +1

−1

dy√
1 − y2

δ

(

y − p − p′

λ

)

=
1

π

1
√

λ2 − (p − p′)2
θ(λ − |p − p′|). (3.8)

Notice that Wcl(p|p′) is a function of the momentum transfer |∆p| = |p − p′| and
vanishes for |∆p| > λ.

Consider now the kicked quantum rotator with measurements. From Eq. (2.7),
the transition probability reads

Wq(p = h̄n|p′ = h̄n′) =
1

h̄
Wnn′ =

1

h̄

∣

∣

∣〈n|e−iλ cos x/h̄|n′〉
∣

∣

∣

2
(3.9)

and by using the definition (2.3) one obtains

〈n|e−iλ cos x/h̄|n′〉 =
∫ π

−π
dx〈n|x〉e−iλ cos x/h̄〈x|n′〉

=
1

2π

∫ π

−π
dx e−i(n−n′)xe−iλ cos x/h̄ = in−n′

Jn−n′

(

λ

h̄

)

, (3.10)

where Jm(z) is the Bessel function of order m. Therefore, in the quantum case, from
(3.9) and (3.10), we can write

Wq(p = h̄n|p′ = h̄n′) =
1

h̄
Jν

(

λ

h̄

)2

(∆p = p − p′ = h̄ν; ν ≡ n − n′). (3.11)

There are two important differences between the classical case (3.8) and its quantum
counterpart (3.11): i) the quantum mechanical transition probability Wq admits only
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Figure 1: Momentum transition probabilities for the kicked rotator (λ = 100h̄ and
the momentum transfer p − p′ is expressed in units h̄). The thick line is the classical
expression (3.8): it diverges for p− p′ = λ and vanishes for p− p′ > λ. The quantum
mechanical transition probability (3.11) is defined only for integer values of p − p′

(dots). The interpolating line (obtained by treating the order of the Bessel function
as a continuos variable) oscillates around its classical counterpart and is nonvanishing
(although very small) outside the classical range, i.e. for p − p′ > λ.

quantized values of momentum h̄n, while the classical one Wcl is defined on the real
line; ii) momentum can change by any value in the quantum case (notice however
that this occurs with very small probability for |∆p| = h̄|ν| ≫ λ [1]), while in the
classical case this change is strictly constrained by |∆p| ≤ λ. These features have
an interesting physical meaning: see Figure 1. The transition probability of classical
momentum appears as an “average” of its quantum counterpart, which explains the
strong analogy discussed in Section 2. At the same time, the quantum mechanical
transition probability has a small nonvanishing tail for |∆p| = h̄|ν| > λ: this is at the
origin of the difference (3.3).

Finally, let us show how one recovers the transition probability Wcl starting from
Wq, in the semiclassical limit. We look at the limit h̄ → 0, while keeping ∆p = h̄ν
finite:

h̄ → 0, ν → ∞ with ∆p = h̄ν = const. (3.12)

In this limit, the argument and the order of the Bessel function in (3.11) are infinities
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of the same order. For |∆p| ≤ λ, setting ∆p/λ ≡ cos β, one gets

λ

h̄
=

λ

∆p

∆p

h̄
= ν sec β. (3.13)

Hence, by using the asymptotic limit of the Bessel function [8]

Jν(ν sec β)
ν large∼

√

2

νπ tan β

[

cos
(

ν tan β − νβ − π

4

)

+ O(ν−1)
]

, (3.14)

Eq. (3.11) becomes, in the limit (3.12),

Wq(p|p′) =
1

h̄
J∆p

h̄

(

λ

h̄

)2

=
1

h̄
Jν (ν sec β)2

∼ 1

h̄

2
∆p
h̄

π
√

λ2

∆p2 − 1

[

cos2

(

∆p

h̄

√

λ2

∆p2
− 1 − ∆p

h̄
arccos

∆p

λ
− π

4

)

+ O

(

h̄

∆p

)]

∼ Wcl(p|p′)
[

1 + sin

(

2
√

λ2 − ∆p2

h̄
− 2∆p

h̄
arccos

∆p

λ

)

+ O

(

h̄

∆p

)]

,

(|∆p| ≤ λ) (3.15)

that, due to Riemann-Lebesgue lemma, tends to Wcl in the sense of distributions.
On the other hand, for |∆p| > λ, setting ∆p/λ ≡ cosh α and using the asymptotic

formula [8]

Jν

(

ν

cosh α

)

ν large∼ exp(ν tanhα − να)√
2νπ tan β

[

1 + O(ν−1)
]

, (3.16)

we get

Wq(p|p′)

∼ 1

2π
√

∆p2 − λ2
exp











−2∆p

h̄






arccos

∆p

λ
−

√

√

√

√1 −
(

λ

∆p

)2
















[

1 + O

(

h̄

∆p

)]

,

(|∆p| > λ) (3.17)

which vanishes exponentially (remember that tanh α < α). Equations (3.15) and
(3.17) corroborate the results of Section 2 and enable us to conclude that the “ran-
domized” classical kicked rotator is just the semiclassical limit of the “measured”
quantum kicked rotator.

4 Concluding remarks

The conclusion drawn in the previous section for the kicked rotator can be generalized
to an arbitrary radial twisting map. The calculation and the techniques utilized
are more involved and will be presented elsewhere. There are also a number of
related problems that deserve attention and a careful investigation. Among these,
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we just mention the case of imperfect quantum measurements, yielding a partial
loss of quantum mechanical coherence, the relation to disordered systems, Anderson
localization [9] and quantum Zeno effect [10] and finally the extension to a different
class of Hamiltonians [11].
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