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Abstract

We recently proposed a new approach to the Casimir effect based on classical ray optics (the “optical
approximation”). In this paper we show how to use it to calculate the local observables of the field theory.
In particular, we study the energy—momentum tensor and the Casimir pressure. We work three examples
in detail: parallel plates, the Casimir pendulum and a sphere opposite a plate. We also show how to calcu-
late thermal corrections, proving that the high temperature ‘classical limit’ is indeed valid for any smooth
geometry.
© 2006 Elsevier B.V. All rights reserved.

PACS: 03.65.5q; 03.70.+k; 42.25.Gy

1. Introduction

The Casimir effect [1-5] is a manifestation of the quantum fluctuations of a quantum field at
a macroscopic level. Experiments on Casimir forces are precise tests of one of the less intuitive
predictions of field theory. For a theoretician, predicting the outcome of these experiments is a
worthy challenge. Hence it seems somewhat astonishing that an exact solution exists only for
infinite, parallel plates case [1]. Other formal solutions for geometries not made of distinct rigid
bodies free to move (like the wedge, the interior of a sphere or of a rectangular box [3]) are
irrelevant for an experimental setup. Moreover in many such solutions divergences have been
discarded in a way that leaves the result unrelated to practical materials and configurations [6].
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Interesting theoretical developments include the method developed in [7] where the solution for
infinite periodic geometries is obtained as a series expansion in the corrugation, and the numerical
Monte Carlo analysis in [8].

Amongst the various effects that an experimentalist must take in account to interpret the
data (e.g. finite conductivity, temperature and roughness corrections) probably the most chal-
lenging, interesting and full of connections with other branches of physics and mathematics
is the dependence of the force on the geometry of the bodies. Calculating the Casimir force
for perfectly reflecting bodies in the end reduces to finding the density of states (DOS) of the
Schrodinger Hamiltonian for the equivalent billiard problem including the oscillatory ripple on
the averaged DOS. This is an incredibly difficult problem in spectral theory that still challenges
mathematicians and physicists today [9] and in essence is not solved beyond the semiclassical
approximation.

In this context we have introduced in Refs. [10,11] a method based on classical optics which
has several virtues: accuracy, uniform validity when a symmetry is born, straightforward exten-
sion to higher spin fields, to non-zero temperatures, to include finite reflectivity and, the main
topic of this paper, it can provide an approximation to local observables.

This paper is structured as follows: in Section 2 we show how to cast the energy—momentum
tensor into a sum over optical paths contributions and how to regulate and analyze the diver-
gences, ubiquitous in Casimir energy calculations. Section 3 is dedicated to the analysis of the
three examples already studied in [11] with pedagogical intent. We study parallel plates, the
Casimir torsion pendulum and a sphere opposite a plate. In Section 4 we show how to calculate
the same local observables and the free energy for a thermal state and we prove (within the limits
of our approximation) the ‘classical limit’ theorem [4,13], which states that at high 7', Casimir
forces become independent of # and proportional to 7. As far as we know this is the first time
this assertion can be generalized to geometries other than parallel plates. We also study the ex-
ample of parallel plates (finding the known results) and of a sphere opposite a plate at non-zero
temperature. We find evidence, again within the framework of the optical approximation, that the
low T behavior of the Casimir force is a difficult problem, qualitatively different from the 7 =0
and high temperature cases.

2. Local observables

Local properties of the quantum vacuum induced by the presence of boundaries are of
broad interest in quantum field theory [14]. For example, gravity couples locally to the energy—
momentum tensor. Vacuum polarization induces local charge densities near boundaries, provided
the symmetries of the theory allow it. Also, local densities are free from some of the cutoff de-
pendencies that plague many other Casimir effects. Any local observable that can 9(thatimir893(stat88 .)-Z
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2.1. Energy—momentum tensor

We study the Noether energy—momentum tensor of a free, real scalar field ¢ in a domain D
with Dirichlet boundary conditions (BC) on § = D made of (in general disconnected) surfaces.
Other BC (Neumann, Robin) can be discussed but for simplicity we restrict ourselves to Dirichlet
BC here.

The Lagrangian is (weuse i=c=1)

1 1
L= 5%(}53“4& - §m2¢2, Q2.1

where Greek letters are used for 4-dimensional indices while the vector notation will be used for
spatial vectors.
The Noether energy—momentum tensor for this real scalar field is

_ L 22

“v_8(8“¢) v 8uvk, (2.2)
1

nw=%¢m¢—&w;%¢W¢—m%ﬂ (2.3)

from which we identify the energy density Tpo, the momentum density 7p;, and the stress tensor
T;;. The definition of these quadratic operators involves divergences that we will regulate by point
splitting. We hence replace quadratic operators like ¢ (x)? by limy_, , ¢ (x")¢(x). The energy
density operator, for example, is

1 1o - 1
Too(x, 1) = xl/iglx[iao(b(xl’ 1)do¢p (x, 1) + EV' Vo, g (x, 1) + §m2¢(X’, N (x, t)}
= lim Baomx’,t)aoqs(x, 1 — %¢(x’,t)%2¢(x, 0)

1 1 -, - -
+ §m2¢(x/, Ho(x,t)+ E(V/ +V)- o', )V (x, t)] 2.4)
The field ¢ satisfies the free wave equation in D
¢ +m’p=0 (2.5)

and hence it can be decomposed into normal modes

Ve Bl a + gy (e B, 2.6)

1
px, )= ——(
A /2K
where ¥; and E; are the eigenfunctions and eigenvalues of the problem
(—V2+m?)y; =E3y; forxeD, ¥;(x)=0 forxeS. 2.7)

We also use the definition E (k) = vk> +m?, and E; = /k? + m? so that the eigenvalue equa-
tion reads
—92y; =2y, 2.8)

and because of the positivity of the operator —V2, the spectrum { £} is contained in the half-line
{E > m}.
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We now introduce the propagator G (x’, x, k), defined as in Ref. [11] to be the Green’s function
of the problem (2.7) or (2.8):

(—V?2—I2)GW, x, k) = 8(x" —x),
Gx',x)=0 forx’ or xe8, (2.9)

which can be written using the spectral decomposition as

CRENIEDY % (2.10)

n

In Ref. [10] we have developed an approximation for the propagator G(x’, x, k) in terms of
optical paths (closed, in the limit x’ — x). The derivation can be found in Ref. [11], the general
result valid for N spatial dimensions being

=™ 127 N/2—1 gy (1)
Gopt(x', x, k) = ZW(&A’) PN/ H%fl(kﬁr),

r

. ZGr(x',x,k), .11

where H is a Hankel function, r labels the paths from x to x’, n, is the number of reflections of
the path r, £,(x’, x) is its length and A, (x’, x) is the enlargement factor familiar from classical
optics,

ds2,
dAy’

Ar(x! x) = (2.12)
Ay (x’, x) is the ratio between the angular opening of a pencil of rays at the point x and the area
spanned at the final point x” following the path r. For N = 3 we have

1/2

AV x)
G, (' x. k) = (=12 Y 4(x X) ikt (). 2.13)
T

With this explicit form for the propagator G, we now have to rewrite the elements of the
quadratic operator 7}, as functions of G and its derivatives. It is useful to pass from the point-
splitting to a frequency cutoff by inserting the latter in the normal modes decomposition (2.6)
as

o0
ekilt = / dk e M A2k8 (k> — k7). (2.14)
0

The limit x” — x can then be exchanged with the dk integral and we get for the energy density,

o0 1 o k _ _
_ —k/A " —k/A 3
(0|Too(x,t)|0)_fdke 2E(k)p(x,k)+/dke —ZE(k)V jx, k). (2.15)
0 0

The density p and the vector ] are defined as

2k
px,k)=—ImG(x, x,k), (2.16)
T
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- | B 1 =
jx, k)= lim —ImVG', x,k) = —ImVG(x, x, k). 2.17)
X' —>x T 2
£ is obtained by integrating Tpo over the whole volume between the bodies:
r 1 i k

E= [ d&x | dke™™AZE®)p(x, k /dk —k/A—fd§. j(x, k). 2.18
/ X/ e "3 (K)p(x, k) + U E® J(x k) (2.18)
D 0 0 S

We have turned the integral over the divergence of ] into a surface integral using Gauss’s the-
orem. In the case of Dirichlet or Neumann boundary conditions, since dS o 77 we have (here
0; . n-Vand j;=1-j)

1
ji(, k)= —Imd;G(x,x,k) =0, xe& (2.19)
g

and the surface integral term disappears. It should be noted that the vanishing of the f con-
tribution to the total energy relies on the continuity of the propagator for x’, x € D. In some
approximations, including the optical one, this continuity is lost. Hence spurious surface terms
arise on the boundary of certain domains D’  D. This region is what in wave optics is called
the ‘penumbra’ region. Diffractive contributions are also not negligible in this region and they
cancel the discontinuities in G, hence eliminating the surface terms.! The surface terms in the
energy are hence of the same order of the diffractive contributions which define the error in our
approximation.

The divergence V - j could also be eliminated from Ty by changing the energy—momentum
tensor according to

T/w = pr + aad/ap,vy (220)

with

1
Yapv = E(p(gpwaa — a0y ). (2.21)

The total energy £ and momentum are not affected by this redefinition however the new tensor
T,y is not symmetric.

It can be seen that the stress tensor 7;; is normal on the surface S (for both Dirichlet and
Neumann BC) so locally the force on the surface is given by the pressure alone

dF
ds
The operator Tj;; regulated by point splitting is

=7iP = (0|T;;|0). (2.22)

. ! S
Tii(x,1) = xl,lgx[a,;qb/am — 58 (%9'00p — V'¢’ - Vop - m2¢z)}
x'—=x

. Y 1 v o2 2,2 1 o~ N\ A
= lim [aw 0+ 5 (05000 +¢'V29 —m*9?) — 2 (V' + V) V¢} (2.23)

where ¢’ is shorthand for ¢ (x’, ). The second term in brackets is zero when averaged over an
eigenstate of the number operator |{n ;}), by virtue of the equations of motion. For Dirichlet BC

1 Asan example see Kirchoff’s treatment of the diffraction from a hole in Ref. [19].
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the term q&%zzb = 0 on the boundaries, so we have (% =noj; + %,)

x'—>x

1 -
(0|T; 710) = lim E(a,ga,; -V, V; +k§)1/fj(x’)wj(x). (2.24)
J

Since also V; ¥ (x) = 0 on the boundaries this expression simplifies to

P(x) = lim Z a v (XY (x). (2.25)

x'—x

This expression can be rewritten, in terms of the propagator G, regulated by a frequency cutoff
as we did for Ty,

o
k
. —k/A
P(x):xlllinxa’%a,;/dke / TED — ImG(,x,k). (2.26)
0

In this regulated expression we can exchange the derivatives, limit and integral safely. Below we
discuss what the divergences are when A — oo and how to interpret and dispose them.

All the above expressions are exact. Once the propagator G is known, we can calculate the
energy—momentum tensor components from them. However as discussed above in the interesting
cases it is difficult to find an exact expression for G and some approximations must be used.

For smooth impenetrable bodies we use the optical approximation to the propagator developed
in Refs. [10,11] and recalled in Eq. (2.11). This gives G as a series of optical paths and hence the
pressure P as a sum of contributions due to optical paths which reflect over the smooth, metallic

surfaces?
P:ZP,, (2.27)
r
co 1/2
. _ k x',x) .
P, = (=1 lim 8.9; [ dke */4 ke, 2.28
r= (D Jim 5 "/ S ER am Sl x). (2.28)
0

An important feature of the optical approximation is that all divergences are isolated in the
low reflection terms whose classical path length can vanish as x’, x — S. In practice only the
zeroth and first reflection are potentially divergent. Before performing the integral in k and taking
A — oo then we have to put aside the divergent zero and one reflection terms Py and P for a
moment (in the next section we will show how their contributions are to be interpreted).

For the remaining families of paths (that we will denote as r € R) the integral over k can be
done and the limit A — oo taken safely. The result is finite and reads

1 /2 (x x)

W (2.29)

P(x) = Z lim 9%8; (—1)"
reRX —X

2 If the conducting surfaces are rough and the average height / of the roughness is much smaller than the important
wavelengths & a, then the surfaces can be considered, for what we are concerned, smooth [12]. The corrections to the
Casimir energy in the optical approximation are still not known but they must be very small, O((h?)) since (k) =0 the
average being on regions of size & a.
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We can further simplify this expression. For simplicity let us call z the normal direction. Notice
that for any sufficiently smooth function f(z’, z) vanishing for either z’ or z on the surface z =0

1
82/ azf(Z/a Z) 7/=7=0 = Eazzf(Za Z) |Z:0' (230)

The proof is trivial: consider that the lowest order term in the expansion of f(z’, z) nearz’,z =0
is o 7’z. The propagator G (x', x, k) satisfies all these properties and hence we can use this result
to get rid of the limit x" — x and assume x’ = x from the beginning. We can therefore rewrite
Eq. (2.29) as,

1/2
2 AP (x, x)

—_—. 2.31
*16m28,(x, x) @31)

P(x) = Z(—l)”’a
reR

Eq. (2.31) is one of the main results of this paper. In Ref. [11] we reduced the computation
of Casimir energy to a volume integral. The force is then found by taking the derivative with
respect to the distance between the bodies. Calculating the pressure instead gives the force by
means of just a double integral of a local function. The problem is then computationally lighter
and sometimes (as we will see in the examples) can even lead to analytic results.

Essentially the problem has been reduced to finding the lengths and enlargement factors as-
sociated with the optical paths for points close to the boundary. In the case of the pressure
(Eq. (2.29) or (2.31)) it is necessary to know their derivatives in the direction transverse to the
surfaces. We will see that this problem can be easily tackled numerically when it cannot be solved
analytically.

2.2. Regulate and eliminate divergences

As in the energy calculations [11], the only divergences occurring in the pressure come from
by paths whose lengths £  1/A, where A is the plasma frequency of the material.> There are
only two such families of paths: the zero and one reflection paths. In this section we show that
these divergent contributions are independent of the distances between the bodies. This fact is
easily understood: in order for a path to have arbitrarily small length all of its points must be on
the same body. So in order to study these terms we need only consider a single, isolated body
(and a massless field). We are also careful in maintaining the double derivative 812/’Z since we are
calculating the terms Py and P; separately.

For r = 0, the zero reflection term, introducing an exponential cutoff A on the material reflec-
tion coefficient we obtain

o0

k ink|z' — A4
Py = / A g— K i g (SRR ZE) A (2.32)
27 E (k) x'—xeS 4r|7’ —z| 472

3 It is well known that the forces between rigid bodies remain finite and do not depend on the characteristics of the
material in the perfect metal limit. On the contrary, stresses on the isolated bodies are strongly dependent on the dielectric
constants and in general diverge in the perfect metal limit [17]. However, in the case of finite dielectric constants the
calculation of the Casimir force is possible only in the parallel plates case [18]: a description of the interplay of finite
conductivity effects and geometry dependence, even within the optical approximation, is still lacking. So in this paper
we limit ourselves to the case of infinite conductivity (which is however a very good approximation for the experiments)
and we neglect the infinite self-stresses induced by this idealization.
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The same calculation for the r = 1 or one reflection term gives:

o0
k ink|2/ A4
P = f e K14 ai lim 9,0 (- S0k ) A (2.33)
TE (k) v/ ones dnle +2) ) 4n?
0

Notice that these two terms are equal, so we could have substituted 9,/ ; — %822 for their sum,
after having properly regulated the divergence.

This positive, cutoff dependent pressure, P4 . Py—+ P1, must be dynamically balanced locally
by a pressure generated by the material, lest it collapse. Moreover the total force obtained by
integrating this quantity over the (closed) surface S of the whole body gives zero. However, if
the space around the body were inhomogeneous, as in the presence of a gravitational field, a finite
term survives the surface integration, giving rise to a ‘“vacuum Archimedes effect” in which the
pressure on one side is, due to gravitational effects, larger than on the other side, so the body feels
a net force. We have analyzed this effect in detail in Ref. [20] and called it “Casimir buoyancy”.

Finally note that another important element of this class of quadratic operators is the Feyn-
man propagator. In studying a field theory in a cavity or in between impenetrable bodies (for
example, hadrons as bags, photons in cavities or Bose-Einstein condensates in traps), we can
consider expanding the Feynman propagator in a series of classical optical paths reflecting off
the boundaries. The first term, related to the direct path is the familiar free propagator, the others
give the finite volume corrections.

3. Examples

In this section we calculate the Casimir force from the pressure, using the formalism devel-
oped in the previous section, for three examples that were already addressed in Ref. [11] using
the energy method.

3.1. Parallel plates

The parallel plates calculation is a classic example, whose result is well known and consti-
tutes the basis the widely used proximity force approximation (PFA) [16]. We use this standard
example to establish the rank among contributions to the total pressure and show the similarity
and differences with the energy method [11].

We calculate the force acting on the lower plate, denoted by d or down, by calculating the
pressure on its surface. We discard the zero and 1d (one reflection on the lower plate itself)
reflection terms. The first term to be considered is the path that bounces once on the upper plate
(u or up) lu. For parallel plates A = 1/£% and we have

P(x) = Z (—1)”ra2; (3.1)

z 2¢2 :
ST 16m=€2(x, x)

The length ¢, (x, x) for the paths that bounce an even number of times is a constant in z and
hence the derivatives vanish: they do not contribute to the pressure. This seemingly innocuous
observation simplifies the calculations considerably and it is a test for any other geometry which
reduces to parallel plates in some limit: in this limit the even reflections contributions must van-
ish. Generically their contributions are small. This parallels the role of the odd reflection paths
in the energy method [11].
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IA 3u 3d 5d
’ x b4
x’ X * X X % X
Fig. 1. Odd reflection paths that contribute to the Casimir force between the two plates in the pressure calculations with
the optical approximation. The points x” and x will eventually be taken coincident and lying on the lower plate.

Fig. 1 shows the odd reflection paths labelled with our conventions. For the path 1u we have

) 1 B 3
16m2Qa —22)2  32n2a*

P, (x) = lim —o 3.2)
z—0

The next path to be considered is the path that bounces 3 times, first on d, then on u and again
on d, dud = 3u (3 stands for 3 reflections and u for the plate where the middle reflection occurs)
which gives a contribution

) 1 B 3
S1672Qa +22)2 32n24d*

P3,(x) = lim —9 (3.3)
z—0

The two contributions Eqgs. (3.2) and (3.3) are equal. The reason is easily uncovered. One can

recover Eq. (3.3) from Eq. (3.2) sending z — —z but for the purpose of taking the second deriv-

ative at z = 0O this is irrelevant. In the same fashion P3; = P54, Ps, = Py, etc., and hence we

find

3 3 3 3
-2 -2 4=
3272a*  T3272Qa)*  T3272(3a)t 162a* 90

P(x)=-2 (34
which is the well-known result. Notice also that the rate of convergence is the same as in the
calculation making use of the Casimir energy in Ref. [11] (nth term contributes 1/n* of the first
term, in this case 1u + 3u). These observations that allow us to determine the rank of the contri-
butions are fundamental, and they apply as well to the other examples in this section.

3.2. The Casimir torsion pendulum

In this section we study a geometry already considered in Ref. [11]: a plate inclined at an angle
6 above another infinite plate. We have called this configuration a ‘Casimir torsion pendulum’
because the Casimir force will generate a torque which can be experimentally measured. The
configuration is analogous to the parallel plates case but the upper plate must be considered
tilted at an angle 6 from the horizontal. The length of the upper plate must be taken finite, we
denote it by w, while the length of the lower plate can be infinite which we choose for simplicity.
There is only one substantial difference with the parallel plates case: the even reflection paths do
contribute in the pendulum, since their length varies as we move the final points x’, x.

We calculate the force exerted on the lower, infinite plate for simplicity. We then obtain the
energy &, by integrating over the distance along the normal to the lower plate and from this we
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can calculate the torque as

T= TR (3.5)
The lower plate is taken infinite, the upper plate width is w, and the distance between the
height at the midpoint of the upper plate is a. We will choose as the origin of the coordinates one
point on the intersection line between the lower plate and the line obtained by prolonging the
upper plate. This defines a fictitious wedge of opening angle 6. We call x the horizontal and z
the vertical coordinate, the third direction, along which one has translational symmetry, being y.
Since the surfaces are locally flat we have A = 1/¢ as in the case of the parallel plates, and
again the odd reflections are exactly as in the case of the parallel plates. However now the even
reflections contribute (the notation is the same as in the parallel plates case, in the even reflections
2u means the first reflection is on the upper plate, etc.):

P = Puyy3u + Paut2d + Paatsa + -, (3.6)

where we have grouped the terms with the symbolic notation P,y = P, + P, when P, = Pp.
It is useful to recapitulate what we have learned about the rank of these contributions: Py,43,
dominates, P34454 is smaller by & 1/16, Ps, 7, is smaller by & 1/81, etc. The even reflections
are generically much smaller than the odd reflections, and vanish as 6 — 0.

The first term in (3.6) is

a1t !
1672 7 £2(z,x)

Plu+3u = (37)

with £; = 2(x sinf — z/cos#), and an overall factor of 2 takes into account the identity P, =
P3,,. Taking the derivative and then setting z = 0 we find

3 1
1672 x4sin* 0 cos? 6’
and integrating from x,, = (a/sinf — w/2)/cosO to xp = (a/sinf + w/2)/cosd we find the
force per unit length in the y direction

Plu+3u = (38)

F _ cosf 1 1 (3.9)
b s 2 sin? 0 \ (a/sinf — w/2)2  (a/sinf +w/2)2 ) :
Since term by term F' = —d&/da we find the first term in optical expansion of the Casimir energy

& (the arbitrary constant is chosen so that £ — 0 when a — o0) as

4
awcos™ 6
Elutzu=— 5 (3.10)
272 (4a2 — w? sin® 9)
and from this one obtains the torque
2aw(w? — 4a?) cos3 6 sin O
7—1u+3u = (311)

72(4a? — w?sin? 0)3
Analogously we can calculate the contribution to the pressure P of the two reflections paths 2u
and 2d. Again the contributions of the two paths are identical and the result simplifies to
21, 1

i 3.12
8722 © 5(z, x) (3.12)

Py i0q =
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and using £» =2+/x2 + z2sin6 we find
1

16772 sin% 6 x4

which integrated from x,, = (a/sinf — w/2)/cos6 and xp; = (a/sin6 + w/2)/cosO gives the

force along the z axis due to these paths:

3
cos” 6 1 1
Foyyoa = ( ) (3.14)

Poyyoa=— (3.13)

 4872sin26 \(a/sinf — w/2)3  (a/sinf + w/2)3
This expression can now be expanded for & 1 (quasi-parallel plates)
1 w 5 5w’ — 1lwa? 4
2u+2d 16722 <a4 + 66 + (3.15)

Notice that this expression vanishes when 6 — 0, as it should since for parallel plates all the
contributions of even reflections paths vanish.

The next term in the series is F34454, Whose calculation is performed in the same fashion.
The result is:

P 3 cos’20 1 1 3.16)
354 = 607 int 20 \(a/sind — w/2)3  (a/sinf + w/2)3 )’ '
N 1 3w n 5w — 48a2w92 N (3.17)
= 1672\ 16a* 32a° ' ’
We can also present the term given by the 4 reflections paths,
> _ cos3 26 1 1
At = e sin? 20 \(a/sinf —w/2)}  (a/sinf + w/2)?
1 w
~_ — 92 4...). 3.18
1672 <4a4 + ) (3.18)
The terms independent of 6 can be seen to reconstruct the parallel limit case F = —(1 4+ 1/16 +

1/81 +--)3/167%a*.

Term by term, this series for the force reproduces the series in Ref. [11]. The series for the
energy and the torque agree as well. The results of the pressure method then coincide with those
of the energy method (as for all the examples analyzed in this paper). In Ref. [11] we discussed
at some length the predictions of the optical method for the Casimir torsion pendulum. We will
not repeat them here, referring the reader to that paper for further details.

3.3. Sphere and plane

The sphere facing a plane is an important example for several reasons: it has been analyzed
theoretically with various exact or approximate numerical techniques [8,21]; it is an experimen-
tally relevant configuration; the exact solution is unknown and probably will escape analytical
methods for a long time to come. We have already calculated the optical approximation to the
Casimir energy in Ref. [11] up to 5 reflections. In this paper we study this problem for mainly
pedagogical purposes, leaving a more accurate and complete numerical analysis for the future.
We believe it is worth studying this example because, contrary to the previous two examples,
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the enlargement factor plays an important role and moreover we will reanalyze this example
with finite temperature in Section 4.2.1.

We calculate the pressure (and by integrating, the force) exerted on the plate by the sphere
which, of course, equals the force exerted by the plate on the sphere. We start from the qualita-
tive observation that the rank of the contributions is the same as in the parallel plates case in the
limita/R — 0. In all the examples we have analyzed this rank is preserved for any value of a/R.
Moreover the ratios of the contributions to the force F345(a, R)/F1+3(a, R), Fa(a, R)/F>(a, R),
etc., decrease quickly as a/R increases, we believe due to the growing importance of the enlarge-
ment factor.

In this paper we calculate analytically the 1s term (here s stands for ‘sphere’ and p for ‘plate’)
and by using the relation Pis435 . Pis + P3s = 2Py proved in Section 2 (the notation is the same
as in that section) we are able to include the 3s term as well.

Using the expressions for the length and enlargement factor for the 1s path obtained in
Ref. [11] we get
R 9* A7
1672 822 £y,

R 9

2
:_Wa_zz(R_\/(‘H_R_Z)Z—HOz) ((@+R—2*+0?)

P1s+35 =-2

My
7=

(3.19)

The final expression for the pressure Pj;3; obtained after the derivatives are taken is rather long,
however the contribution to the force on the plate, Fis13; (obtained by integration of Pjs435 over
the infinite plate) is quite simple:

oo

Fisq3s = Zﬁ/dp pPis13s=—
0

AicR
8wad’

(3.20)

This is the largest of the contributions and increasing /R improves the convergence of the series
due to the presence of the enlargement factor, so the asymptotic behavior at large a/R predicted
by the optical approximation is that given by this formula, i.e. F &< R/a> or E o R/a?. This
asymptotic law is in accordance with the numerics of Ref. [10] and the predictions of other
semiclassical methods [21]. However, Eq. (3.20) is in disagreement with the Casimir—Polder law
[24] which predicts E o< R?/a* for a  R. This is no great surprise, since our method is not
valid fora/R 1, the semiclassical reflections being corrected and eventually overshadowed by
diffractive contributions [22,23].

We have calculated the contribution of the two reflections paths analytically as well. The
calculation is more involved than the one reflection term but a big simplification occurs if one
notices that, for the purpose of taking the second derivative with respect to z at z = 0, one can
leave the reflection point on the sphere fixed. We could not prove a similar result for any other
reflection. It is certainly not true for odd reflections but one can conjecture it to be true for even
reflections. In this paper we have not calculated the 4 reflection terms and hence we could not
check this conjecture for more than 2 reflections.

And finally, we have calculated the 3p (or sps) and hence obtained the 5p, or pspsp, paths
contribution P3,y5p,; P3py5p in the parallel plates limit should account for & 1/16 of the total
force. This contribution, unlike the previous ones, must be calculated partly numerically, mainly
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because finding the reflection point on the sphere requires the (unique) solution of a transcenden-
tal equation. This task is achieved much more quickly by a numerical algorithm than by patching
together the several branches of the analytic solution.

The total pressure is plotted in Fig. 2 while the various contributions (keeping in mind that
Pis435 and P35, are negative and P, is mainly positive) are shown in Fig. 3. Fig. 2 reveals
some interesting features of the pressure in this geometry: the total pressure decays very quickly
with the distance as P & p~%: the exponent @ seems to depend upon the distance a/R, but for
a/R < 0.1 a good fit is obtained with o = 6, in accordance with the asymptotic expansion of the
1 4+ 3 reflection term Eq. (3.19); by decreasing the distance between the sphere and the plate,
the pressure becomes more and more concentrated near the tip, giving us reasons to trust our
approximation and supporting the use of the PFA as a first approximation in the limit a/R — 0.
Fig. 3 shows the relative importance of the contributions due to the different paths. As expected
the contribution to the total pressure decreases quite fast by increasing the number of reflections.
In Fig. 4 one can also see that the sign of the pressure is not determined simply by the number of
reflections of the underlying optical path—as for the contribution to the energy density.

1.x10"

10000

100

0.01

Fig. 2. (Colour online.) The magnitude of the total pressure up to reflection 5p in units of ic/ R* as a function of the
radial coordinate on the plate, p/R. Upward, or red to blue a/R =1,a/R =0.1 and a/R = 0.01.
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Fig. 3. (Colour online.) Contributions to the pressure in units of hc/R4 as a function of p/R, for fixed a/R = 0.1.
Downward or red to blue, we have — Py 135, —P3p45p and Ppp. Although unnoticeable in this figure, the curve P
changes sign at around p/R =~ 0.4 (see Fig. 4 for a similar situation).
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By integrating the pressure over the whole plate we obtain the force F'. It is useful to factor out
the most divergent term of the force, as predicted by the PFA, so we define the quantity f(a/R)
as

73R

Fa) =25 f(a/R). (3.21)

Since we include only a finite number of reflections it is convenient to factor out the constant
£(@4)/(1 + 1/16) such that f is normalized with f(0) = 1. The function f(a/R), calculated
including paths 1s, 3s, 2, 3p and 5p, is plotted in Fig. 5. When a/R — 0 f is fitted by

fa/R)=1-0.10a/R + O((a/R)?). (3.22)
By comparing to the results of [10]
fenerey(@/R) = 1+0.05a/R + O((a/R)?) (3.23)

there is the difference in the subleading term.

150
100
50
0

B

-50

0.15 02 025 03 035 04 045 05
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Fig. 4. Contribution of the two reflection path(s) to the pressure in units of hc/R4 as a function of p/R, for fixed
a/R = 0.01. The pressure becomes negative, showing that the sign of the pressure is not determined by the number of
reflection only.
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Fig. 5. The ratio between the optical force up to the 5p reflection and the most divergent term in the PFA, as defined by
Eq. (3.21).
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By neglecting the 5s + 7 p reflection paths (which in the parallel plates case contribute & 2%
of the total force) we can only assert that the functions f in (3.22) and (3.23) represent the optical
approximation with an error of 2%. When plotted on the whole range of a/R where the optical
approximation is to be trusted the pressure and energy method curves never differ more than
2%. However there is no such a bound on the subleading term which, on the contrary, depends
on the higher reflections contributions which have not been included in this calculations.* With
the terms calculated at this point, we cannot make a precise statement about the subleading
term. We can however safely say that the subleading term a/R coefficient is quite small and
our method disagrees with the PFA prediction —0.5a/R. The sphere opposite plate is such an
experimentally relevant geometry that further, more accurate studies need to be performed to
compare with experimental data.

In conclusion, the lessons to be learned from this example are two: (1) The calculations with
the pressure method are even quicker and simpler than the energy method and sometimes can
give analytic results for non-trivial geometries and (2) the subleading terms must be compared
only between calculations performed with the same accuracy.’

4. Casimir thermodynamics

As measurements of Casimir forces increase in accuracy they become sensitive to thermal
effects. The natural scale for Casimir thermodynamics is a distance, 8 = iic/n T, which at room
temperature is about 2.5 microns. (To avoid confusion with the wave number k, we set Boltz-
mann’s constant equal to unity and measure temperature in units of energy. We continue to keep
ki and c explicit.) So, assuming the corrections are of O((a/ /§)°‘), depending on the value of o
thermal effects might be expected between the 10% (for « = 1) and 0.3% (for o = 4, the standard
parallel plates result) level for Casimir force measurements on the micron scale. In open geome-
tries, like the sphere and plane, even longer distance scales are probed by Casimir effects, and
this gives rise to interesting changes in the temperature dependence of the Casimir free energy
in comparison with the case of parallel plates [3]. The optical approximation is well suited for
discussion of thermodynamics since the thermodynamic observables, like the Casimir energy,
can be expressed in terms of the propagator. Here we consider again a non-interacting, scalar
field outside rigid bodies on which it obeys Dirichlet boundary conditions.

Before entering into a technical discussion of temperature effects, it is useful to anticipate one
of our central results which follows from qualitative observations alone. As T — 0 the tempera-
ture effects probe ever longer distances. Even at room temperature the natural thermal scale is an
order of magnitude larger than the separation between the surfaces in present experiments (see
Ref. [5]). Since long paths contribute little to the Casimir force, we can be confident that thermal
effects vanish quickly at low temperature. However, the leading 7' -dependence at small 7 comes
from regions beyond the range of validity of the optical (or any other) approximation, so we are

4 For example, consider that including only ls,3p, and 2 and reflections would have given a subleading term
—0.16a/R instead of —0.10a/R in Eq. (3.22). The subleading term then changes of 50% by adding the 3s 4 5p re-
flection terms which contributes only up to 8% of the total.

5 A.S. would like to thank M. Schaden and S. Fulling for conversations on this point during the workshop ‘Semiclassical
approximations to vacuum energy’ held at Texas A & M, College Station, TX, January 2005. The concerns about the
errors to be associated with the optical, semiclassical or proximity force approximation is still open to debate and is
strictly connected to one of the most challenging open problems in spectral theory i.e. how to go beyond the semiclassical
approximation to the density of states of a positive Hermitian operator.
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unable to say definitively how they vanish for geometries where no exact solution is possible (i.e.
other than infinite parallel plates).

This section is organized as follows: First we discuss the free energy and check our methods
on the parallel plates geometry; then we discuss the temperature dependence of the pressure,
which we apply to the sphere and plate case. Finally we discuss the difficulties associated with
the 7 — 0 limit.

4.1. Free energy

The free energy is all one needs to calculate both thermodynamic corrections to the Casimir
force and Casimir contributions to thermodynamic properties like the specific heat and pressure.
However like the Casimir energy, Casimir contributions to the specific heat, pressure, etc., are
cutoff dependent and cannot be defined (or measured) independent of the materials which make
up the full system. So we confine ourselves here to the thermal corrections to the Casimir force.
The problem of parallel plates has been addressed before and our results agree with those [3].

4.1.1. Derivation
We start from the expression of the free energy for the scalar field as a sum over modes

—BLhw,
-1 e "2
Frou=—P Zln(—l - e_ﬁ(wn_m)
n
1
_p—1 _ _,B(hwn_ﬂ) _
= En:ln(l e )+§n 5 f1on,

- F4E, “4.1)

where u is the chemical potential, and the last term is the Casimir energy, or the free energy
at zero temperature, since J = 0 for 7 = 0. The Casimir energy &, being independent of the
temperature, does not contribute to the thermodynamic properties of the system. It however does
contribute to the pressures and forces between two bodies. The force between two bodies, say a
and b, is obtained by taking the gradient of the free energy with respect to the relative distance
F ab

fab =—VupF. 4.2)

At T = 0 we recover the familiar result f =_VE.
Next we turn the sum over modes into a sum over optical paths. Following the same steps that
led from Eq. (2.4) to Eq. (2.15) we obtain

(0.¢]
f:ﬁ*l/de/dkp(x,k) In(1 — e Po®=m) (4.3)
0

where p(x, k) is given by Eq. (2.16). By specializing to a massless field in 3 dimensions with
zero chemical potential (to mimic the photon field), and substituting the optical approximation
for the propagator Eq. (2.13), we obtain the sum over paths

e¢]

1 : _phe
FoY R :(—1)’ﬁ/d3x A}/Q/dkksm(kz,)ln(l — e Pheky, (4.4)
r=0 r D,

0
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Here the term Fy, the direct path, gives the usual free energy for scalar black body radiation.
Using the values for the direct path, we have Ay = I/Z% and £y = |x’ — x| — 0 when taking
x" — x. We get the familiar textbook expression

k2 4
7> VT
Fo= dk— Mn(1 — ¢ Phek 4.5
b=V [k 5 (1 - e ) =Tl @5)
0
where V is the (possibly infinite) volume outside the bodies.
The general term F, associated with the path r is calculated by performing the k integral in
Eq. (4.4):

n ! Ay,
= /d3 AP [2+ G (ot + § esch? )] (4.6)
7'[

D, '
where £, = £, T /ic = ¢, /B measures the path length relative to the thermal length scale.

Eq. (4.6) is the fundamental result of this section and gives a simple, approximate description
of thermal Casimir effects for geometries where diffraction is not too important. There are no
divergences in any of the F,, ultraviolet or otherwise, even for the direct path (as we saw in
Eq. (4.5)) and the first reflection path. All the ultraviolet divergences are contained in the Casimir
energy €. Indeed, by expanding the integrand of Eq. (4.6) at short distances, i.e. £, 1, we
obtain

12 1
Ar 203

[~24 &, (cothd, + Eesch?l,)] ~ A2 [ L2 o4 } 4.7)
B3 458 945 B3

Only the 1-reflection path length can go to zero to generate a divergence. For this contribution

A, diverges like 1 /Ef as £, — 0, however this is compensated by the ¢, term in (4.7) so the

expression is finite and then integrable.

To check for infrared divergences notice that at large distances, £, 1, the integrand of (4.6)
goes to & Ai/ 2 /Z%. For an infinite flat plate the A, & 1/z2, where z is the normal coordinate to
the plate, and the integral is hence & dz/z> at large z. For finite plates the domain of integration
is finite and for curved plates the enlargement factor falls even faster than 1/£2, and the integral
remains convergent.

Since the integral converges in both the infrared and ultraviolet, it is safe to estimate the
important regions of integration by naive dimensional analysis. This leads to the conclusion
that ‘The paths that dominate the temperature dependence of the Casimir force have lengths of
order the thermal length B°. High temperature implies short paths. Very low temperatures are
sensitive to very long paths. Long paths involve both paths experiencing many reflections, which
are sensitive to the actual dynamics at and inside the metallic surface, or paths making long
excursions in an open geometry, which are sensitive to diffraction. Either way, low temperatures
will present a challenge.

4.1.2. Parallel plates

We know that in the limit of infinite, parallel plates the optical approximation to the propa-
gator becomes exact. Hence our method gives another way to calculate the free energy of this
configuration of conductors. It is convenient to study this example to check against known results
and to prepare the way for a study of the 7 — 0 limit.
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We recall that for this configuration the expression for the enlargement factor is A = 1/¢2
and the lengths are given by £2, = 2na (where a is the distance between the plates) and £2,,11,, =
2(a —z) +2na, €op4+1,4 = 22 + 2na, the notation being the same as in Section 3.1, should at this
point be familiar to the reader.

As in the zero temperature case it is useful consider even and odd reflection contributions
separately and as for the zero temperature case, the sum over odd reflections turns into an integral
over z from 0 to oo

oo
Fodd=Y_ Fontid + Fantiu

n=0
o
= LS/de[ 2+x(cothx +xcsch2x)] 4.8)
272 B3 2x4 ’ .

where x = 2z/B and S is the area of the plate. The definite integral can be easily performed
numerically and its value is v = 0.06089... .,

fic 7T3
— Sy = Sv
423" 2ne)?

which is independent of the separation, a, and therefore does not contribute to the force.

Let us turn now to the even reflection paths. They have constant length 2na, so the vol-
ume integral simply yields the volume between the surfaces v = Sa. We already calculated the
zero-reflection term Fp in Eq. (4.5). The remaining even reflection contributions (2, 4, 6, ...
reflections) Feyen,r>2 can be written as an infinite sum

Fodd =2 4.9

o0

Fevenr>2 = — Z 4 —2 + xy (coth x,, + x, csch? x,,) | (4.10)

=1 l’l

where x, = 2na/f . nt (this defines the dimensionless temperature t) and we have introduced
an overall factor of two to take into account the multiplicity of the paths. Thus the total free
energy for parallel plates is the sum of Fy (Eq. (4.5) and the results of Egs. (4.9) and (4.10)),

at vrt N xT3
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hic > 1 2
_ nz—B“SanZ::l M[—Z + xn (coth x,, + x, csch® x,) | 4.1

It is not possible to rewrite F in a closed form, but the sum is easy to compute numerically
and the high and low temperature expansions are easy to obtain analytically. At high temperatures
(and fixed a) T — oo, and the summand g(n) in Eq. (4.11) falls rapidly enough with n

gn) = [—2 + (zn)(coth(Tn) + (rn)cschz(m))]

1
2(tn)
1

= W[—z +tn]+0(e™™"), (4.12)
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that the limit may be taken under the summation, with the result,

he I 1 1 c(3) n2he
F ~——01= —— — =— ST S. 4.13
even,r 22 2B a;[2n3‘[3 t4n4] 16ma? + 1440a3 *-13)
Notice that the second term cancels the even paths contribution to the Casimir energy. Hence the
final expression for the high 7" expansion of the free energy is particularly simple,

2
T 4 T 3 £(3)
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Foo=F+E=— ST + O(e ™ Ta/he), (4.14)
The first term is usual black body contribution to the bulk free energy. It does not contribute to
the force. The second term is also independent of a and does not give rise to any force. The
third term instead gives the thermal Casimir force. Notice that fic has disappeared from this
expression. Called the “classical limit”, this high temperature behavior has been noted before
and some early results are even due to Einstein (in [26, p. 2]; see also [13]). In the next section,
after the thermal corrections to the pressure are calculated, we show how to extend this result to
other geometries.

Note some interesting features of the 7 — oo limit: First, the sum over paths converges
like the sum of (1/n)3 as indicated by the appearance of ¢(3). While slower than the T = 0
convergence, it is still rapid enough to obtain a good approximation from low reflections. Sec-
ond, note that the 7 — oo problem in 3-dimensions corresponds exactly to a 7 = (0 problem in
2-dimensions. This is an example of the familiar dimensional reduction expected as 7 — co. We
can give a short proof of this result. Let us first write:

1
F:—Elogz (4.15)

where Z is the partition function. We need to evaluate Z to the lowest order in 8 when g — 0.
The thermal scalar field theory can be written as a free theory on the cylinder R® - [0, 8). For
B — 0 the dynamics along the thermal coordinate is frozen in the ground state, with energy
Ey =0, where ¢ does not depend on the thermal coordinate. The partition function Z is now
Z = Z3+O(e PEr) where E| is the first excited state E1 o 1 / ,32 and Zj3 is the partition function
of the remaining three-dimensional problem in R3. If the conductors geometry is symmetric
along one spatial coordinate, say x (in the parallel plates problem we have two of these directions,

x and y) this can now be interpreted as an Euclideanized time variable extending from O to L, /c.

1
So we will write Z3 = Z>41 = e 7L/ yhere &, is the Casimir energy of the 2-dimensional

problem of two lines of length L, distant a. The free energy F is then:

1 I 1 I 1L, c
F = _E og”Z =~ _E 0gZry1 = TET »=—TLyL,y
Since § = L Ly This is exactly the a-dependent term in Eq. (4.14). If the geometry is not trans-
lational invariant then we can only say from Eq. (4.16) that the free energy is linear in T (since
Z>41 is independent of B). Later, by using the optical approximation we will find an explicit
analytic expression valid also for non-symmetric, smooth geometries.
For low temperatures, T — 0, the terms in the n-sum in Eq. (4.11) differ very little from each
other so we can use the Euler—Maclaurin formula [25],

4€)

—_— . 4.16
1672a? (4.16)
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o0 o
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n=1 0
Substituting into Eq. (4.11) we find that the first term in Eq. (4.17) cancels the sum over odd
reflections (the second term in Eq. (4.11)) and that the second term in Eq. (4.17) combines with
Fo to give a very simple result,

(V = Sa)7?T*

Fo=E—
ot 90(hic)3

(4.18)
at low temperatures. This has a simple physical interpretation: the typical thermal excitations of
the field at low temperature have very long wavelengths, it is hence energetically inconvenient
for them to live between the two plates. As a result the only modification of the T = 0 result is
to exclude from the standard black body free energy the contribution from the volume between
the plates. One could imagine measuring this effect as a diminished heat capacity for a stack of
conducting plates inside a cavity.

The low temperature result, Eq. (4.18), is deceptively simple. Its simplicity obscures an under-
lying problem with the 7 — 0 limit. We postpone further discussion until we have explored the
temperature dependence of the pressure. Suffice it to say for the moment, that Eq. (4.18) prob-
ably does not apply to realistic conductor with finite absorption, surface roughness, and other
non-ideal characteristics.

4.2. Temperature dependence of the pressure

In this section we will obtain the temperature dependence of the pressure within our approx-
imation and apply it to a preliminary study of the sphere and plate case. To begin, we calculate
the thermal average of an operator O quadratic in the real scalar field ¢. The average of a generic
operator O is given by the trace over a complete set of eigenstates |¥,) of the Hamiltonian
weighted by a Boltzmann factor:

(O)r =) e Pou (W |O1Wy). 4.19)

After some algebra we find
1+ e PEj
(O)r = Z Oj2nj+ 1)y = Z 01— (4.20)
J J
where ()7 denotes the thermal average, j labels the normal modes v; (cf. Section 2), n; is
the occupation number of the mode j and E; its energy. The quantities O; are read from the
decomposition of the diagonal part of the operator O written as Ogiag = ) i Oj (a;a jta jaj.')
where a; is the annihilation operator of the mode ;.
The O; for the pressure can be read easily from the analysis in Section 2:

. 1
P :X/Eglesﬁaéaﬁwj(x/)x//j(x). (4.21)

So we can write the pressure on the plate at non-zero temperature as
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where we have used Eq. (2.30).

Next we introduce the optical approximation for the propagator and limit ourselves to mass-
less scalars E (k) = hck. The discussion of the divergences parallels that of Section 2 and needs
not be repeated here. We remove Py and P; and leave all the finite contributions r € R. The
optical approximation for the pressure exerted by a massless scalar field reads

1/2

P(x)=) (=1)"o;

[l coth(¢, /B)}, (4.23)
reR ﬂ
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where it is understood that the zeroth and first reflection terms, which contribute to the pressure
on each surface individually, but not to the force between surfaces, have been dropped.

Before applying this to the sphere and plate problem, let us again look at the limiting behavior
as T — oo and T — 0, and draw some conclusions independent of the detailed geometry. First
consider T — oo. The shortest paths in the sum in Eq. (4.23) are of order a, the intersurface
separation. (Remember that the optical approximation is accurate as long as the important paths
are short compared to R, a typical radius of curvature of the surfaces.) At high T we can take the
B — 0 limit under the sum over reflections since the resulting sum still converges. Therefore low
reflections dominate, and we can see, retrospectively, that the high temperature approximation
applies when 8/a — 0. So as T — oo,

ny AT L /8
P= Z( 1 "162[,3 (’)(Ee )] (4.24)

This limit has been called (it has been previously found for the parallel plates case) the “classical
limit” [3,13,26], since the final expression for high temperatures, reinserting # and c,

1/2

P~Z( 1) 32 o (4.25)

is independent of 7 and ¢ apart from exponentially small terms. This expression amounts in
neglecting the 1 in the expression (2n; + 1)r, corresponding to normal ordering or neglecting
the contribution of the vacuum state.

At low temperatures, 8 — oo, it is not possible to interchange the limit with the sum. The
relevant quantity is é coth(¢, /), which goes like

()<Lt o
’gco (5>_Zr+3l§2_45,§4+ <B4) (4.26)




270 A. Scardicchio, R.L. Jaffe / Nuclear Physics B 743 [FS] (2006) 249-275

as B — oo. The first term yields the familiar 7 = 0 expression. The others would give divergent
contributions because of the factors of ¢, in the numerators (even after the inclusion of the en-
largement factor A,). Of course the sum over reflections of the difference, %coth(ﬂr/ B) — %,

converges to zero as § — 00, so thermal corrections definitely vanish for any geometry as 7 — 0
as expected. Once again we relegate more detailed consideration of the 7 — 0 limit to a later
subsection.

4.2.1. Sphere and plate

In this section we calculate the pressure and total force for the configuration of a sphere fac-
ing a plane at non-zero temperature within 5 p reflections. The optical approximation should be
accurate if the important paths are short compared to R, the radius of the sphere. On the other
hand the thermal corrections to the force are sensitive to paths with lengths of order . So we
must have R B and R a in order to obtain reliable results from the optical approxima-
ti(%p. Fortunatel)g‘this is a region of experimental interest: present experiments use, for example,
a 05um, R 100 pm, and at room temperature, 8 2.5 pum. In this regime the optical
approximation should give a good description of the thermal corrections to the force between
perfectly reflective, perfectly smooth conductors.

The expression for the pressure is given by Eq. (4.23), the enlargement factors and lengths are
the same as in the 7 = 0 case. By applying Eq. (4.23) to the 1s + 3s paths we find the results in
Fig. 6. Notice that at high temperatures increasing the temperature essentially scales the whole
plot proportionally to 7. The force is then linearly dependent on the temperature (this is the
‘classical limit” already discussed in Section 4.2). More details are given in the caption of Fig. 6.

A dimensionless function f(a/R, B /R) can again be defined by rescaling the total force F to
extract the leading term as a — 0. The limiting behavior a — 0 is not affected by temperature
effects so we stick to the old definition for f:

~ he3 R ~
F(a,ﬁ,R)z—Wf(a/R,,B/R). 4.27)
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Fig. 6. (Colour online.) The p dependence of the 1s 4 3s contribution to the pressure Pj 35 for the sphere and the
plate in units of %c/ R* for various temperatures. Two effects must be noticed. The top 3 curves (in blue) show the
high-temperature region where the pressure is proportional to 7 (notice the logarithmic scale). The two lower curves (in
orange and red) show the low-temperature region when increasing the temperature changes the asymptotic behavior of
P for large p (i.e. p 2 ﬁ ) while for small p the behavior reduces to the zero-temperature limit.
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In Fig. 7 we present f (up to 5 reflections) for 5 different values of 8/R (we choose 1, 1/2, 1/4,
1/8 and 1/16 recognizing that 3 & 1 strains the limits of our approximations) and varying a.
Notice that in a neighborhood of a/R = 0, shrinking as /R increases, the function f is very
well approximated by the T = 0 form, already discussed in Section 3.3, f(a/R) ~ 1 —0.la/R.
It is not useful to study the derivative A(8/R) = df (x, B)/dx as x =a/R — 0 since this will
take the constant value predicted by the zero temperature analysis, or —0.1 in this approximation,
for any value of the temperature we choose.

It is also clear from the previous discussions leading to Eq. (4.24) that in the opposite regime,
fora/B 1, we must have F o R/a*f = RT /a? (the ‘classical limit’). In fact, the first term in
the high temperature expansion (4.24) integrated over p converges and gives a finite force linear
in T'. For this problem, the first term in the reflection expansion for high temperatures can even
be calculated analytically:

R “RIF) ~ _pe X
Y (9( ) hc 522 T. (4.28)
Unfortunately there is no such simple closed expression for higher reflection terms (nor for
this first term at arbitrary 7). However, if one believes that the rank of contributions is similar
to the parallel plates case one should feel safe to say that this truncation captures the optical
approximation within a {(3) — 1 >~ 20%. Hence our statements are at least qualitatively correct.

This expression for the force gives a prediction for the function f, defined in Eq. (4.27). At
this level of accuracy (1s + 3s reflection) and for a/8 > 1, apart for exponentially small terms in
the temperature expansion we have

90 a R
TR B
which grows linearly in a/R and is (interestingly enough) independent of R. This is evident in
Fig. 7 for the curves with 8 = 1/8, 1/16. For higher f the linear growth starts at higher values of
a not shown in Fig. 7. Moreover the exponential accuracy manifests itself in the sudden change
of behavior from f ~1—0.1a/R to f oca/B.

It is quite easy to extract a universal prediction from this data, whatever the definitive numbers
are, after the sum over optical paths is carried to sufficiently high order: for any non-zero tem-

Fis43s = —hc

fls+3s = (429)

0.02 0.04 0.06 0.08 0.1 0.12
a/R

Fig. 7. (Colour online.) The function f(a/R, B/R) as a function of a/R for B/R (from red to violet or down up)
=1,1/2,1/4,1/8,1/16. f(0) >~ 0.98 since we are summing only up to reflection 5p. The two lowermost curves, red
and orange (8 = 1, 1/2) superpose almost exactly.
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perature the function f(a/R) will deviate from his zero-temperature behavior at a 2, S & hc/T.
The deviation will be in the upward direction, increasing the attractive force between the bodies.
Eventually, for sufficiently large distances, the high temperature behavior given by Eq. (4.25) (or
(4.29) for the sphere-plane problem) will be recovered.

4.3. Thermal corrections at low temperatures

The preceding examples have made it clear that in the language of the optical approximation,
thermal corrections at low temperature arise from very long paths, ¢, & A. This can be seen from
the general form of the free energy, Eq. (4.6), or in the attempt to take the 8 — oo limit under the
summation in Eq. (4.23), which fails because of the expansion, Eq. (4.26). Here we examine this
non-uniformity more carefully in general and in particular for the parallel plate case, where all
the expressions are available. We then attempt to draw some conclusions about the magnitude of
corrections at low temperature and the possibility of calculating them reliably in an model that
idealizes the behavior of materials.

We return to Eq. (4.22), which gives the exact expression for the pressure, and separate out
the thermal contribution,

v o Bhek
P(T)—P) . éP= Im/dkgag,ng(x/,x, k)ZW, (4.30)
0
still exact. Expanding the denominator in a geometric series, we find
00 o
§P = %Im > /dk 3% G, x, kyemPhek, (4.31)

m=1 0

Each term in the sum is a Laplace transform of the Greens function. Clearly, as 8 — oo the
frequencies that dominate this integral are occ 1/ & T'.

What are the low frequency contributions to G(x’, x, k)? In the ideal case of infinite, perfectly
conducting, parallel plates, there is a gap in the spectrum at low k: k > Z-. However in realistic
situations the plates are finite and/or curved, the geometry is open, and there is no gap in the
spectrum. The low-k part of the spectrum is sensitive to the global geometry, including edges
and curvature, and to the low frequency properties of the material. If the conditions are close to
the ideal, the contributions to § P from small k£ may be small. However as T — 0, they dominate.
We conclude that the 7 — 0 behavior of § P cannot be calculated for realistic situations.

The optical approximation does not take account of diffraction, and cannot accurately describe
the 7 — O limit. Nevertheless it is interesting to see how it fails, since this sheds light on the
problem in general. Substituting the optical expansion for the Greens function (replacing af,n —

%822 and setting i = ¢ = 1) we find

[e'e) 1 eo

5P ==Y Y o502 [ dkal st e
m=1r>1 T 0
o0
1 172 £,
_ 524 ) 4.32
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plates approximation, extended to curved geometries by means of the PFA, and a derivation (like
ours) in which the curvature is inserted ab initio. The thermal and curvature scales interplay in
a way that the usual derivations [3,4] could not possibly capture, giving rise to different power
law corrections in a/B. It is worth reminding the reader that the usual numerical estimates of
thermal corrections are based on the infinite parallel plates power law (a/8)*. A smaller power
like (a/B)? would give a much bigger upper bound.

To summarize: temperature corrections are small at small 7', but the existing methods of
calculating them, including both our optical approximation and the traditional parallel plates
idealization, cannot be trusted to give a reliable estimate of the 7-dependence at small 7T'.

5. Conclusions

In this paper we have shown how to adapt the optical approximation to the study of local
observables. We have illustrated the method by studying the pressure, but the method applies as
well to other components of the stress tensor, to charge densities, or any quantity that can be writ-
ten in terms of the single particle Greens function. The advantage of the optical approximation is
to extend the study of these local observables to novel geometries. In particular we developed an
expression for the Casimir pressure on the bodies and applied our main result Eq. (2.31) to the
study of three important examples: parallel plates, the Casimir pendulum and a sphere opposite
a plate.

We have also shown how to calculate within this approximation scheme, thermodynamic
quantities and thermal corrections to the pressure in the general case and applied our results
to the example of parallel plates (retrieving the known results) and to the case of a sphere oppo-
site a plate. Along the way we have given a proof of the “classical limit” of Casimir force for any
geometry (within our approximation), i.e. the fact that Casimir forces at high temperatures are
proportional to the temperature and independent of 7, a fact that previously was known only for
parallel plates.

Finally, we argued that all known methods of computing the temperature dependence of the
Casimir effect are suspect as T — 0.
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