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Casimir dynamics: Interactions of surfaces with codimension >1 due to quantum fluctuations
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We study the Casimir force between defects (branes) of codimension larger than 1 due to quantum
fluctuations of a scalar field � living in the bulk. We show that the Casimir force is attractive and that it
diverges as the distance between the branes approaches a critical value Lc. Below this critical distance Lc
the vacuum state � � 0 of the theory is unstable, due to the birth of a tachyon, and the field condenses.
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1Codimension is the number of dimensions transverse to a
I. INTRODUCTION

Pointlike interactions have provided a remarkably useful
idealization for many situations in physics. In the context
of scattering theory the concept of a pointlike scatterer was
introduced in 1934 by Bethe and Peierls [1]. Fermi [2] used
and refined their results to describe the motion of neutrons
in hydrogenated substances (such as paraffin) by introduc-
ing what is now known as the ‘‘Fermi pseudopotential.’’
The idea is that when the scattering potential is concen-
trated on a very small scale r0 (in the case studied by Fermi
the range was that of nuclear interactions compared to the
distances between the atoms), but its influence on the
motion cannot be neglected, one can characterize the scat-
tering in a simple and efficient way by means of a few
quantities like the scattering length, finite in the r0 ! 0
limit. The problem of ‘‘how to separate the scales’’ in the
Schrödinger equation triggered by those 1930s papers was
addressed and elegantly solved over the years at different
levels of formalism [3–7]. The key to the solution relies in
a proper definition of a ‘‘delta function interaction’’ in
dimensions greater than 1.

Of course this paper will not be dealing with quantum
mechanical scattering within matter, which is from many
points of view a solved problem. The problem of ‘‘separa-
tion of scales,’’ however, arises urgently in modern quan-
tum field theory if stated as: ‘‘What is the quantum field
theory response on length-scales L to a disturbance con-
centrated on a length scale r0 � L?’’ How does quantum
field theory respond to topological defects and singular-
ities, in particular, of the metric? Once formalized in
proper mathematical terms the two problems look much
closer than one would think.

The Casimir effect falls in this class of problems. The
penetration length (r0) of the electromagnetic field inside
conductors is much smaller than the distance (L) between
the conductors, which sets the scale of the experimentally
measured force. We are interested in studying the dynam-
ics of the conductors on the larger scale L by integrating
out the electromagnetic field. This motivates the nomen-
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clature ‘‘Casimir effect’’ for a much wider set of problems
than Casimir’s original one.

Another example: in any candidate theory of the quan-
tum geometry of space-time the problem of dealing with
pointlike singularities will inevitably arise. Remember, for
example, that the Ricci scalar for a pointlike particle (like
Schwartzschild’s solution) is a delta function centered on
the position of the particle. Quadratic fluctuations of a
nonminimally-coupled scalar (or of the metric) have hence
a delta function term in their Lagrangian. The effect of
such a term must be considered together with the other
known effects of the black hole metric. It is then of
paramount importance to analyze the problem of how
one or more concentrated singularities influence the spec-
trum and low-energy behavior of the fluctuations of the
field.

Analogous problems arise in condensed matter, quantum
field theory, and string theory since localized disturbances
appear in all these theories, essentially only their names are
different (defects, domain walls, concentrated Aharonov-
Bohm fluxes and branes to name some). With this in mind
we will set up the problem in very general terms and, even
though not all the details map one-to-one on specific
examples, the main results will apply to a wide class of
examples.

First, I will show that quantum fluctuations of a scalar
field� generate attractive forces between localized defects
in the very same way Casimir forces act between metallic
bodies. I calculate this force for an arbitrary number of
defects with codimension1 1, 2, and 3 (see Table I). Note
that previously the Casimir effect has been analyzed only
for codimension 1. The main result of this paper is Eq. (22),
which gives the interaction energy as a function of the
scattering lengths of the defects and their relative separa-
tions. For codimension d � 4 the force disappears, as
required by the properties of the self-adjoint extensions
manifold. For example a point in 2 dimensions, a line in 3
dimensions and a surface in 4 dimensions all have codimension
2.
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TABLE I. Flat manifolds divided according to dimension and
codimension. The first line is the well-known Casimir problem,
from the fourth line down the perturbation is ‘‘invisible’’ to
fluctuations. In this paper we will be dealing with manifolds in
lines 2 and 3.

Codim/Dim �1 �2 �3 �4

Casimir:1 point line plane hyperplane
2 point line plane
3 point line
# Trivial: 4 point
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of the Laplace operator on the punctured Rd (see [8],
Chap. X).

Second, in the presence of two or more of these defects
(of codimension >1) the vacuum � � 0 is hopelessly
unstable and a localized tachyon mode is formed when
the defects approach closer than a critical distance. At this
critical distance the attractive force diverges. I calculate the
wave function of the tachyon and show that it leads to
condensation of the bulk field � to a vacuum expectation
value (vev) ��x� � 0—but only in a limited region of
space. The consequences of these observations for some
models will be discussed in Sec. VI.
3The scale of variation of m2 should be of the order of the
II. THE INTERACTION ENERGY

In this section we will calculate the effective action [9]
of a scalar field coupled quadratically to a static configu-
ration of defects. The effective action Seff and Casimir
energy E are proportional to each other

Seff � �TE; (1)

where T is the interaction time. In the following we will be
interested in the Casimir energy of the problem. We will
see that the part of the Casimir energy responsible for the
interaction between the defects is a cutoff-independent
quantity, meaning that the separation of scales can be
performed effectively in this quantum field theory.

We will consider the following action for the scalar field
in d� 1 dimensions (@ � c � 1):

S� �
Z
ddxdt

1

2
�@��2 �

1

2

�
m2 �

XN
i

�i��x� ai�
�
�2:

(2)

Here � is the d-dimensional Dirac’s delta function, mim-
icking the concentrated disturbance on the field, �i are
constants, meaning that they do not depend on the field �,
but in general they can depend functionally on other fields
living on the defect.2 The methods of [4] will be used in
order to define these �’s correctly. In this section, in order
to keep things simple we restrict our attention to points in
2The �i’s are also called ‘‘brane tensions.’’

065004
1, 2, and 3 dimensions. We will add an arbitrary number of
flat directions in Sec. V, hence fulfilling our promise of
studying codimensions 1, 2, and 3.

Actions like Eq. (2) arise in different contexts. For
example consider the case of a scalar bulk field � coupled
with N branes in curved or flat space [curvature can be
easily included in Eq. (2)]; or the case of a cosmic string
(again the curvature outside the string must be considered);
or the case of electrons coupled with Aharonov-Bohm
fluxes (in this case one has fermions rather than bosons
but, after squaring the Dirac equation, the analysis is
analogous [7]). All these examples can be studied with
the formalism introduced in this paper, so in full generality
we will study the quantum fluctuations of the action
Eq. (2).

Some features of Eq. (2) with only one delta function
and constant m have been studied before, for example, in
connection with cosmic strings scenarios [3,10,11]. The
action (2) in one dimension with a single delta and a space-
dependent mass term m2 � m2�x� has been studied in
[12].3 In this paper we will consider the situation where a
generic number of defects are present in d � 1 and m2 is a
constant. We will see that the situation will be different
from that depicted in Refs. [3,10,12] and unexpected phys-
ics is found. Moreover, the generalization to x-dependent
m2 can be easily achieved by means of the techniques of
Ref. [12] and we will not comment on it in this paper. The
inclusion of any other term in the action (2) describing the
dynamics of the surface itself would not affect our calcu-
lations. We consider the positions of the defects ai fixed
and obtain an effective action. In the usual way this action
can be used to describe adiabatically moving ai�t� (i.e. if
the velocities j _aijj � c).

The forces between the defects can be calculated by
taking the derivatives of the Casimir energy E with respect
to its arguments faig. It will turn out that in general the
forces are not additive, i.e. E is not a superposition of terms
depending only on the relative distances aij � jai � ajj.

We use the following integral representation of the zero-
point energy of the scalar field �,

E �
1

2

Z �

0
dE��E�

����
E
p

; (3)

where � is a cutoff and � is the spectral density of the
Hamiltonian operator H

H � �r2 �m2 �
XN
i�1

�i��x� ai�: (4)

We define also the unperturbed Hamiltonian H0 as
‘‘long scale’’ L. The purpose of this paper is to integrate out the
physics at momenta * 1=r0, which is symbolized by the delta
functions in Eq. (2).
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H0 � �r
2 �m2: (5)

Equation (3) will look more familiar if the replacement
E! !2 is done, and @’s are restored. One can obtain the
spectral density ��E� as a functional of the propagator
G�E� � 1=�H � E� as

��E� �
1

�
lim
�!0�

Im TrG�E� i��: (6)

In the following we will often write E� i0� for E� i�
when �! 0�.

The propagator, G�x0; x;E� � hx0jG�E�jxi satisfies the
Schrödinger equation�
�r02 �m2 �

XN
i�1

�i��x
0 � ai� � E

�
G�x0; x;E�

� ��x0 � x�; (7)

and G0 � hx0jG0�E�jxi satisfies the analogous equation
without �’s on the left-hand side. For m constant (which
we will assume unless explicitly stated) and ImE> 0 we
have4

G 0�x0; x;E� �

8>>>><
>>>>:

i
2
����������
E�m2
p ei

����������
E�m2
p

jx0�xj if d � 1
i
4H
�1�
0 �

����������������
E�m2
p

jx0 � xj� if d � 2

ei
��������
E�m2
p

jx0�xj

4�jx0�xj if d � 3;

(8)

where H�1�0 is Hankel’s function of first kind of order 0.
For d � 1 the problem is that of a scalar field on the line

R in the background of a stack of �-functions centered on
x � faig [13]. If we assume �i > 0 they will attract each
other, like metallic plates do via the Casimir effect. These
forces are not confining and no new physics is obtained
with the generalization obtained by adding n transverse
directions. This is the usual Casimir problem. We will see
how the situation changes dramatically when d > 1.

To see how the solution for G is obtained, consider first
the case with a single delta function with strength�1 � �,
placed at x � a. By solving the Lippman-Schwinger equa-
tion [4,5,12] one finds

G �x0; x;E� � G0�x0; x;E�

�
1

�� G0�a; a;E�
G0�x0; a;E�G0�a; x;E�;

(9)

where � � �1=�. This solution is perfectly good in d � 1
and was the basis of the analysis in [12] for nonconstant
m2. For d > 1 it, however, suffers from a serious problem
since G�a; a� r;E� ! 1 when the point splitting regula-
4In the following we will not use any special notation for
vectors and we will indicate with jxj the norm of a vector in 1, 2,
and 3 dimensions.
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tor r � jrj ! 0. One can reabsorb this divergence [5] in a
redefinition of � to obtain a finite result

G �x0; x;E� � G0�x0; x;E�

�
1

�r � B�d��E�
G0�x0; a;E�G0�a; x;E�;

(10)

where

B�d� �

8>>>><>>>>:

i
2
����������
E�m2
p if d � 1

� 1
2� ln

� ����������
E�m2
p

iM

�
if d � 2

i
����������
E�m2
p

4� if d � 3;

(11)

where for d � 2 it has been necessary to introduce an
arbitrary mass scale M which stays finite when the point
splitting regulator r! 0. So � must be redefined such that
when r! 0

�r �

8><>:
� if d � 1
�� 1

2� lnMr if d � 2
�� 1

4�r if d � 3;
(12)

so the ‘‘renormalized’’ �r stays finite. It is clear from this
equation that one needs a positive divergent � to reabsorb
the negative divergences when r! 0. Large positive �
means negative very small � (since � � �1=�). A small
negative � corresponds to a weakly attractive potential.
Hence the pointlike scatterer limit can be thought of as the
limit of a concentrated attractive potential, zero outside a
sphere of radius r0, with at most one bound state whose
energy stays finite when r0 ! 0 [5,6]. For d � 2 any
attractive potential has at least a bound state and so we
always find a bound state also for r0 ! 0 (for d � 2 the
dependence of � on M is reminiscent of a renormalization
group flow [7,10,14]); for d � 3 the bound state can be real
or ‘‘virtual’’ (i.e. a pole of the propagator G�E� located on
the second Riemann sheet) its energy being finite in the
limit r0 ! 0. The scattering length is (both for d � 2 and
3) a function of � and is hence finite in the r0 ! 0 limit.

Another interpretation of these results comes from the
theory of self-adjoint extensions of symmetric operators
[4,6]. Here the renormalized �r corresponds to a choice of
self-adjoint extension for the Laplacian operator �� on
the punctured Rd [6]. In R2 the self-adjoint extensions are
not positive definite, meaning that they all have at least one
(but it turns out there is only one) negative eigenvalue. This
corresponds to the bound state described in the paragraph
above. In the punctured R3 the self-adjoint extensions of
�� can be either positive semidefinite (with a virtual state
on the second Riemann sheet) or not (due to the existence
of a single real and negative eigenvalue).

The propagator with N deltas at positions faig, i �
1; :::; N, and 1 	 d 	 3 can be found [4]:
-3



6In this paper we are adopting a cutoff regularization of the
quantum field theory. Different regularization schemes (like the
widely used zeta-function, for example) give different results for
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G �x0; x;E� � G0�x
0; x;E�

�
XN
i;j�1

���1�ijG0�x0; ai;E�G0�aj; x;E�:

(13)

The matrix � is defined as (from now on we drop the
subscript r on the �r’s)

�ij � ��i � B�d��E���ij � eG0�ai; aj;E�; (14)

where

eG 0�ai; aj;E� �
�

0 if i � j
G0�ai; aj;E� if i � j (15)

It is now possible to explain why we limited our dis-
cussion to d 	 3. The reason is that looking at the
Laplacian � on the punctured R4 one realizes that this
operator is essentially self-adjoint [4,8], meaning that it has
a unique self-adjoint extension: the trivial one. The 4-
dimensional delta function is ‘‘too small’’ a perturbation
to be seen by the Laplacian. What does go wrong in the
renormalization procedure? The propagator in d � 4 is
(jx0 � xj � r)

G 0�x
0; x;E� �

i
����������������
E�m2
p

8�r
H�1�1 �

����������������
E�m2

p
r� (16)



i

8�

�
1

r2 �
����������������
E�m2

p
lnr�O�1�

�
if r
 0 (17)

so we cannot choose � in an E-independent way (because
of the

����������������
E�m2
p

lnr term) to remove completely the diver-
gences as we did before. The low-energy limit of a 4-
dimensional concentrated potential is hence trivial and
we will not discuss this problem anymore.

Having solved for the propagator we can find the density
of states � simply by taking the trace and the imaginary
part. The result5 is [12]

��E� � �0�E� �
1

�
Im

@
@E

ln det��E� i0�; fag�; (19)

where �0 � ��1Im TrG0 and the determinant of � is sim-
ply the determinant over the matrix indices ij.

The term �0 in (19) is independent of the presence,
strengths �i and relative positions of the delta functions
and we will neglect it in the following. The second term on
the right-hand side of Eq. (19), can be used to calculate the
Casimir energy as a function of the positions and strengths
5The only algebraic identity worthy of notice is the fact that

X
ij

����1
ij

@
@E

G0�ai; aj;E� � �
@
@E

Tr ln�: (18)
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� of the scatterers:

E � �
1

2�
Im

Z �

0
dE

����
E
p @

@E
ln det��E� i0�; fag�: (20)

The interaction part of this energy is obtained by sub-
tracting from Eq. (20) the same quantity calculated with all
the Lij � jai � ajj ! 1. In this limit � becomes diagonal
(considering that ImE> 0) and the energy (20) becomes a
sum of self-energies of isolated objects. The self-energy of
an isolated brane contains all the usual ultraviolet diver-
gences of the Casimir energy and must be treated with care
[15]. The sharp �-function limit r! 0 and the strong
potential limit (sometimes called the Dirichlet limit) V0 !
1 are problematic for the Casimir energy already in d � 1
and the results depend on the order in which the r! 0,
V0 ! 1, and �! 1 limits are performed.6 To avoid this
problem we will consider the situation in which the poten-
tial V�x� is finite, sufficiently smooth and localized over a
finite distance 0< r� L, where L is the separation be-
tween the branes. Physically, this means that we assumed
the cutoff � of the field theory to be much larger than any
other momentum (square) scale, like V0 or 1=r2. The
divergences that then arise in the Casimir energy are
entirely local: they will not affect the interaction energy.
The procedure of subtracting the self-energies as described
above then leaves a well-defined, finite interaction energy
between the branes. After this subtraction is performed,
one can take the appropriate limits for the potential r! 0
and V0 ! 1 and, provided the interaction energy remains
finite as we prove below, the resulting interaction energy is
unique.

After performing the subtraction of the self-energies, the
interaction energy can be written as

E � �
1

2�
Im

Z �

0
dE

����
E
p @

@E
ln

det��E� i0�; fag�
det��E� i0�;1�

: (21)

We keep using E to indicate the interaction energy, con-
fident that this will not generate any confusion, since we
will no longer be interested in the total energy. The inte-
grand in Eq. (21) falls exponentially fast on the semicircle
jEj ! 1 of the complex E plane7 which allows us to
integrate by parts, Wick-rotate to the negative E axis8

and send the cutoff �! 1. We can moreover remove
the Im because all the quantities are real and positive on
the negative real E axis (since the propagator G0 is real and
the divergences. The finite part of the energy is, however, the
same.

7In particular it goes to zero like e�2 sin��2�
�����
jEj
p

L on the ray E �
jEjei�, �> �> 0, where L � minjai � ajj for any d.

8During the Wick rotation we do not pick any pole contribu-
tion on the positive imaginary semiplane of the first Riemann
sheet because the total Hamiltonian Eq. (4) is self-adjoint.
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positive for E real and below the spectrum) except for����������������������
�E� i0�
p

� i
����
E
p

.
This leads us to a final, compact expression for E

E �
1

4�

Z 1
0

dE����
E
p ln

det���E; fag�
det���E;1�

: (22)

This is the main result of this paper and together with the
definition of �, Eq. (14), can be used to calculate the
interaction energy of pointlike scatterers due to fluctua-
tions of the field �. In the rest of this paper we present
several examples of the applications of this formula.
III. EXAMPLES

As a first example and a check for our result, Eq. (22), let
us calculate the well-known interaction energy between
two delta functions at distance L, in 1 dimension (we
assume �1 � �2 � �< 0).

E �
1

4�

Z 1
0

dE����
E
p ln

�
1�

e�2L
����������
E�m2
p

�1� 2�
����������������
E�m2
p

�2

�
: (23)

This formula reproduces the usual results for the Casimir
energy of two penetrable plates in 1 dimension [16].

As another example in d � 1 consider the case of three
repulsive delta functions (�i � �1 for i � 1; 2; 3). The
interaction energy can be calculated with the ease with
which one can take a determinant of a 3 by 3 matrix. The
result is plotted in Fig. 1 as a function of the position x of
one of the three deltas while the other two are held fixed at
x � 0 and x � 5. The interaction energy is not additive:
the interaction energy of N semipenetrable plates does not
split into a sum of N�N � 1�=2 terms due to pairwise
interactions. Rather, by expanding the logarithm a reflec-
tion expansion is obtained in the spirit of Ref. [17].

Before calculating the interaction energy for 2 or more
deltas in d > 1 it is instructive to look at the case of a single
FIG. 1. The interaction energy, in arbitrary units, for three
delta functions on the line as a function of the position x of one
of them and m � 0. � � �1 for all three deltas, one delta is held
fixed at x � 0, another at x � 5.
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delta function centered in x � 0 to introduce some prop-
erties of the bound state of a single delta. Consider the case
d � 3. The propagator is (for ImE> 0)

G �x0; x;E� �
eijx

0�xj
����������
E�m2
p

4�jx0 � xj
�

1

�� i
����������
E�m2
p

4�

ei�jx
0j�jxj�

����������
E�m2
p

16�2jx0jjxj
:

(24)

There is evidently a pole at E � E0 such that
������������������
E0 �m2

p
�

�i4��. For �< 0 this is a real bound state at E0 � m2 �
16�2�2 and the wave function  0 of this bound state is
obtained by noticing that

G 

1

E0 � E
 �0�x

0� 0�x�; (25)

for E near the pole E0. We hence expand (24) about E0 to
find

 0�x� �

��������������
2����

p
jxj

e�4�����jxj: (26)

For �> 0, on the contrary, the pole is on the 2nd Riemann
sheet and hence is a virtual state and does not belong to the
spectrum of H. Whether this pole is real or virtual, physi-
cally it represents the s-wave scattering over a concen-
trated attractive potential. 1=� is indeed proportional to the
scattering length in the s-wave channel [5]. The s-wave is
the only contribution surviving in the limit when the scat-
terer is small compared to the wavelength 1=

����������������
E�m2
p

.
We have to require the spectrum of H to be contained in

the positive real axis for the vacuum � � 0 of our field
theory to be stable. So if �< 0 we have to choose m>
4�����. If �> 0 any choice of m, in particular m � 0, is
enough to ensure the stability of the � � 0 vacuum.9

Considering the case d � 3 further, let us now calculate
the interaction energy between two identical delta func-
tions with�1 � �2 � �> 0 (so, according to the previous
paragraph, no bound state exists for isolated scatterers) at a
distance ja1 � a2j � L. After the Wick rotation and defin-
ing k �

����
E
p

we obtain [see Fig. 2(a)]

E �
1

2�

Z 1
0
dk ln

�
1�

e�2L
�����������
k2�m2
p

L2�4���
�����������������
k2 �m2
p

�2

�
: (27)

It is not difficult to see that there exists a critical distance
Lc, being the positive solution of the equation

LcemLc �
1

4���m
; (28)

such that if L < Lc, the argument of the logarithm in
Eq. (27) becomes negative for sufficiently small k and
we get a negative imaginary part in the Casimir energy.
A negative imaginary part of E means, as usual, an insta-
9It is worth noting that the opposite choice for the sign of � is
needed to avoid a bound state in the d � 1 case.
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(a) (b)

FIG. 2. Interaction energy E (the continuous line is ReE and the dashed line is �ImE) in units of 1=Lc, for two delta functions as a
function of their distance L. (a) The R3 case with m � 0. (b) The R2 case with m=M � 2.
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bility of the � � 0 vacuum in the presence of the two �’s.
In fact, by studying the eigenvalues of the matrix � one can
see that for L < Lc the spectrum of H has a bound state
with negative E, and since E � !2 this is a clear indication
for the existence of a tachyon. We will return to the
implications of this instability for the low-energy physics.

The force F � �@E=@L, always attractive and central,
diverges logarithmically at the critical length Lc. For m �
0 and �L� Lc�=Lc � 1 one finds

F ’ �
1

4�L2 ln
�

Lc
L� Lc

�
: (29)

The long-distance behavior, L� Lc, of the force de-
pends on the mass of the boson �. For m> 0 the potential
between the two �’s decreases exponentially. For m � 0,
instead, a power-law tail is obtained:

E ’ �
L4
c

4�L5
: (30)

This 1=L5 law is stronger than the Casimir-Polder law
(induced polarization interaction [18]) which falls like
1=L7. This means that we should not think of these delta
functions as mimicking polarizable molecules or metallic
particles. Indeed, to correctly describe a metallic sphere of
radius R, surface �, and penetration depth r0 one should
rather assume that r0 � R adding hence to H0 in Eq. (5) a
potential V�x� �

R
� d

2y���3��x� y� � ���r� R� and
send �! 1 before sending R! 0. This is clearly a
different limit than the one we are describing here.

Now that we have discussed the divergences associated
with �, its renormalization, and we know about the exis-
tence of vacuum instabilities related to negative E bound
states of the Hamiltonian H, we are ready to tackle the two
dimensional case where all these complications arise at the
same time.

The free propagator is G0�x0; x;E� �
i
4H
�1�
0 �

����������������
E�m2
p

jx0 � xj� if ImE> 0. Notice that even for
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a single delta no choice of � eliminates the bound state.
There will always be at least one bound state with energy
E0 � m2 �M2e�4��. This is due to the fact that any
attractive potential in 2 dimensions has a bound state. We
must choose our mass such that E0 > 0 and the instability
is not present (it suffices that m>Me�2��). However, we
will see that in d � 2, exactly as in the d � 3 case dis-
cussed above, in the presence of two or more �’s there
exists a critical distance such that for closer approach a
bound state has E< 0, generating a tachyon again.

Take N pointlike scatterers, each with renormalized
strength �i and a renormalization mass M. It is convenient
to define Mi � Me�2��i so � in (13) is

�ij �
�

1

2�
ln

����������������
E�m2
p

iMi

�
�ij � eG0�ai; aj;E�: (31)

The interaction energy for two identical deltas (M1 �
M2 �M, and m>M as required for the stability of
isolated scatterers) separated by a distance L is (k �

����
E
p

)

E �
1

2�

Z 1
0
dk ln

�
1�

K2
0�L

�����������������
k2 �m2
p

�

ln2�
�����������������
k2 �m2
p

=M�

�
; (32)

where K0 is a Bessel function K of order 0, and the critical
length is the solution of the equation K0�mLc� � lnm=M.
The force diverges as L! Lc in d � 2 as well [see
Fig. 2(b)], but the explicit expression is more difficult to
recover. For L� Lc the force is exponentially small, since
we had to assume a mass m> 0 for the field �.
IV. LOCALIZED VACUUM INSTABILITY

Let us calculate the shape of the tachyon in 3 dimension
found in the discussion after Eq. (27) (take m � 0). Let us
first notice that (for any number of scatterers) the Wick-
rotated matrix ���E� is real and symmetric and can hence
be put in diagonal form. In the case at hand we have only
two delta functions with equal strength� and one can show
-6
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that the spectral decomposition of ��1 is

���1�ij��E; fa1; a2g� �
1

	1
v�1�i v

�1�
j �

1

	2
v�2�i v

�2�
j (33)

where

	1 � �
e�L

���
E
p

4�L
�

����
E
p

4�
� �; (34)

	2 �
e�L

���
E
p

4�L
�

����
E
p

4�
� �; (35)

and

v�1� �
�

1���
2
p ;

1���
2
p

�
; (36)

v�2� �
�

1���
2
p ;�

1���
2
p

�
: (37)

The bound state pole is generated by a zero E� in the 	1

eigenvalue. For L< Lc � 1=4�� we have E� as the real
positive solution of the equation 	1�E� � 0 (remember: the
integration variable E appears as �E in � so positive E
here are real, negative eigenvalues of H)

����
E
p
�

1

Lc
�
e�L

���
E
p

L
: (38)

Comparing the behavior of the propagator for E close to a
pole E�

G �x0; x;E� ’
 �0�x

0� 0�x�
E� � E

(39)

with

G �x0; x;E� ’
1

	1

X
i;j

v�1�i v
�1�
j G0�x

0; ai;E�G0�aj; x;E� (40)

we find the wave function of the (not normalized) bound
state as

 0�x� �
e�

����
E�
p
jx�a1j

jx� a1j
�
e�

����
E�
p
jx�a2j

jx� a2j
: (41)

Something can be said also in the case in which we have
many identical defects (and assume all the aij’s are of the
same order of magnitude), without necessarily having to
solve the equations explicitly. Instructed by the previous
analysis, we can state that the ground state will be a highly
symmetric state v
 f1=

����
N
p

; :::; 1=
����
N
p
g which will then

give a symmetric wave function  0�x� /
P
iviG�x; ai;E

��
delocalized over the entire array of defects. The positivity
of the vi’s coincides with the constraint that the ground
state must not have any node.

Hence, for L< Lc, a free field theory coupled to these
defects does not make any sense. Its vacuum state� � 0 is
unstable. The imaginary part of the energy (as an analytic
065004
continuation to L < Lc) is related to the ‘‘decay time’’ of
the vacuum state, due to particle creation.

Let us for a moment speculate on the consequences of
this instability. Adding higher order terms in � to the
Lagrangian—one can, for example, think of adding a

�4 term—should eventually stabilize the field with a
vacuum expectation value ��x� � 0 in a somewhat large
region around the two scatterers. However, the actual value
of the vev ��x� and the size and shape of the condensation
region cannot be easily constructed and will be the subject
of future work.

This scenario of a local condensation and creation of
localized vacuum instabilities due to defects could be
interesting in inflation cosmology as well (the field� being
the inflaton). It must be also remarked that a similar
scenario occurs in brane cosmology when an open string
has its ends attached to two D-branes [19,20]. When the
branes are pushed closer than a critical length one of the
modes of the string becomes a tachyon.
V. EXTENSION TO n� 1 TRANSVERSE
DIMENSIONS

Now that we know the density of states ��E� for the
‘‘basic’’ problem of points in 1, 2, and 3 dimensions, we
can move along the lines of Table I to generate solutions
for manifolds with codimensions 1, 2, and 3. We shall then
add n� 1 transverse, flat dimensions. The total dimension
of the space is now d� n� 1. The calculations in the
preceding part of this paper can be recovered by putting
n � 1 in all the formulas. We will use the methods of
[12,21] where one solves for the density of states ��E� of
the basic problem on a d-dimensional section and inserts
the result in the equation for the energy per unit n�
1-dimensional ‘‘area’’ S [21].

E �n� �
Z
Rn�1

dn�1p

�2��n�1

Z 1
0
dE

1

2
�
���������������
p2 � E

q
�

������
p2

q
���E�:

(42)

The subtraction �
������
p2

p
removes a divergent but

a-independent term, since the integral
R
dE��E� is

a-independent. We will also remove the a-independent
‘‘self-energy’’ terms by subtracting from ��E� the density
��E;1� with all aij ! 1. We can then perform the (di-
mensionally regularized) integral over p, Wick-rotate, and
perform an integration by parts on E to obtain

E �n� �
1

2�

��1� n
2� sinn�2

�4��n=2

Z 1
0
dEEn=2�1 ln

det���E; fag�
det���E;1�

:

(43)

For example, the interaction energy (per unit length) of two
straight, infinite strings in 3 dimensions (d � 2; n � 2 so
d� n� 1 � 3) put at a distance L is
-7



11We have already remarked on the impossibility of consider-
ing the Casimir-Polder interaction between small metallic
spheres as the interaction of pointlike scatterers the way we
construct them here. Small metallic particles of radius r still
have a penetration depth r0 � r, and so effectively are codi-
mension 1 surfaces.
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E �2� �
1

8�

Z 1
0
dE ln

�
1�

K2
0�L

����������������
E�m2
p

�

ln2�
����������������
E�m2
p

=M�

�
: (44)

One can hence calculate the interaction energy of any two
flat manifolds due to the quantum fluctuations of a bulk
field �. As an example in codimension 1 consider the
Randall-Sundrum scenario [22] with two branes at a dis-
tance rc from each other. The fluctuations of a given
component of the metric G or of a bulk field � (see [23]
and references therein), have a space-dependent mass with
two delta functions singularities on the two branes. The
attractive force due to the quantum fluctuations of this field
has a Casimir-like behavior. The curvature in the 5th
direction does not change the physics.10 If, however, the
branes have codimension 2 or 3 (and are defined as the
limit of an attractive potential) is in the class of problems
that we have studied in this paper and a perturbation would
eventually condense, if rc < Lc. Following the same argu-
ments above we can also say that if the branes have
codimension >4 the fluctuations in the bulk will not see
the brane. The cosmological implications of such a sce-
nario will be subject of future work.

VI. OMISSIONS AND APPLICATIONS

The propagator, Eq. (13), comes directly from scattering
theory. In that context it was natural to assume that the
interaction between the particle and the scatterer (consider
the Fermi [2] and Zel’dovich [5] examples) is attractive.
One considers an attractive center whose attraction grows
when r0 ! 0 such that at most one bound state is present
and its energy remains finite [i.e. of O�1�]. Even though we
assumed that only one bound state is present at energies of
O�1� this is the most generic situation that can occur in
scattering theory. In fact if a second bound state is present,
it will be an energy O�1=r2

0� below our bound state. In the
limit r0 ! 0 its influence on low-energy scattering disap-
pears. It goes out of the spectrum. In scattering theory
however, such a negative energy state is harmless. This is
not the case for a bosonic field, for which it represents a
tachyon.

One may wonder what happens if the potential is repul-
sive and concentrated. The answer is that for d > 1 its
influence on the scattering matrix (and hence on the spec-
trum) disappears when r0 ! 0. Obviously this is not true in
1 dimension because we cannot ‘‘go around’’ the scatterer.
For a repulsive potential in d > 1 the renormalization
procedure leading to (13) cannot be performed since �
has the wrong sign and sending r0 ! 0 just kills the
correction to G0 in (13).

More precisely, if in the Lagrangian we include a term
V0��r0 � jxj��

2�x� with V0 > 0 and then we take the limit
10However, If the brane is inside a horizon for the 5d metric,
this assertion is most probably not true. But this is not the case
for the Randall-Sundrum model.
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V0 ! 1 and r0 ! 0 with V0r
2
0 finite, the spectrum we

obtain is just the free one: the scatterer disappears. In a
sense, the only smile the Cheshire cat can leave behind is
the lightly [i.e. O�1� instead of O�1=r2

0�] bound (or virtual)
state. If this is not present then the scatterer is invisible to
the fluctuations.11 If the purpose of calculating the effec-
tive action was to calculate quantum corrections to a
classical solution (as often occurs), then we deduce that
for a repulsive potential or for d � 4 the classical solutions
are unchanged by quantum fluctuations.

Let us now comment on two possible applications of the
formalism we have developed: cosmic strings and concen-
trated Aharonov-Bohm fluxes. We anticipate that further
work is required in both cases. In the literature on cosmic
strings the difficulty generated by a bound state tied to a
single cosmic string has been recognized a long time ago
[10,11]. In that context the bound state arising from
Eq. (10) is rightly considered fictitious, because the
smoothed potential is always positive (�> 0).
Nonetheless, in [10] after projecting out this bound state
at E0 < 0, the propagator (13) is trusted and shown to be in
good agreement with the numerical solution of the
smoothed problem. It is not clear if projecting out a state
from the propagator by hand has nontrivial (wrong) con-
sequences on the density of states and the Casimir energy
so we preferred not to follow this path even if it gives
correct results for other quantities. We hence required the
field to have a nonzero mass so that this bound state is
stable. In the end it is not clear if the Casimir attraction and
the birth of the tachyon could arise in cosmic strings
coupled with bulk fields.

Another example to which the above techniques and
results should be relevant is the case of a fermion around
a concentrated tube of flux (Aharonov-Bohm case).12 The
spectrum of Dirac’s equation can be inferred from that of a
Klein-Gordon equation after squaring the former. The fact
that we are dealing with fermions rather than bosons is not
a difficulty. However, another difficulty arises: for
Aharonov-Bohm fluxes and the more general case of cos-
mic strings charged under some U(1) symmetry, it has been
shown [25] that the contribution to the scattering cross
section given by the nonzero external vector potential is
asymptotically larger in the low-energy regime than the
contribution of the singularity in the core. Since we believe
that cross sections and Casimir forces are tightly bounded
The one loop energy of QED flux tubes has been calculated in
[24] using a combination of analytical and numerical methods.
Our method could be used to calculate the interaction energy of
two such tubes in the limit where their radius is small compared
to their relative distance.
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quantities, we would not apply any of the above arguments
without treating the propagation in the external space
properly. This will be done elsewhere.

Renormalization of branes coupling for a single brane
(or �-function in our case) with codimension 2 (and di-
mension 5) in a conical space has been studied in [14].
Arising from local divergences, the renormalization flow is
not affected by the presence of other branes and the results
in [14] apply also to our situation. Their renormalization of
the brane coupling � (
2 in their notation) corresponds to
our renormalization �! �r. Their renormalization of the
effective action corresponds to our subtraction of the
a-independent terms in the Casimir energy. These two
are the only subtractions needed (if �4 terms are not
present) and it is heartening to see that our results coincide
with those of [14]. Moreover, one can make an amusing
observation if one compares the two approaches to the
delta function, the one in terms of scattering (that we
used here) and the one in [14] in terms of renormalization
group. Notice that the renormalization group flow for � is
IR free and has a Landau pole: the location of the Landau
pole coincides with the location of the bound state in our
approach.

VII. CONCLUSIONS

We have calculated the force between an arbitrary num-
ber of surfaces (branes) with codimension >1 due to the
065004
quadratic fluctuations of a boson � living in the bulk. The
force turns out to be attractive and it diverges when the
distance between the branes approaches a critical value Lc.
This phenomenon has no analogues in the widely studied
codimension 1 case.

The divergence of the force is accompanied by the birth
of a vacuum instability, a mode with negative mass squared
localized around the scatterer. In 3 dimensions, the long-
range properties of this force (decreasing like 1=L6) are
shown to be different from the Casimir-Polder 1=L8 law,
the explanation relying in the proper mathematical defini-
tion of the pointlike limit.

Some implications of these effects have been pointed
out.
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