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We study the Casimir energy of a massless scalar field that obeys Dirichlet boundary conditions on a
hyperboloid facing a plate. We use the optical approximation including the first six reflections and compare the
results with the predictions of the proximity force approximation and the semiclassical method. We also
consider finite size effects by contrasting the infinite with a finite plate. We find sizable and qualitative
differences between the optical method and the more traditional approaches.
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I. INTRODUCTION

The last 10 years have seen a revolution in experimental
techniques used to measure the Casimir effect �1–3�. These
techniques open the door to measurements at a precision
where interesting geometrical dependence can be expected
�3�. However no exact calculations are available for geom-
etries other than parallel plates. Traditionally the only tool
for estimating Casimir energies for other geometries has
been the proximity force approximation �PFA�, which treats
all geometries as superpositions of infinitesimal parallel
plates �4�, a crude approximation.

It is therefore interesting to develop approximations that
might provide an accurate estimate of the Casimir energy for
other, experimentally relevant geometries. Recently we have
developed an approximate treatment of Casimir effects for
sufficiently smooth but otherwise arbitrary geometries based
on geometric optics �5,6�. We have tested the optical method
by comparing with a precise numerical calculation �7� for the
case of a sphere facing a plate. The optical approximation
agrees much better with the numerical results than does the
PFA. So far, it has not been possible to provide a useful
estimate of the corrections to the optical approximation,
which involve diffractive contributions.

Some years ago Schaden and Spruch proposed a “semi-
classical” approximation based on Gutzwiller’s approxima-
tion for the density of states �8,9�. This approximation treats
high frequency effects correctly and is exact for planar sur-
faces. It also captures important effects of curvature, which
are clearly omitted in the PFA. However, as we will see, it
does not seem to capture other important aspects of the ge-
ometry. For example, it is sensitive only to the curvature of
the boundaries at their points of closest approach, whereas

the general form of the problem suggests much more com-
plex dependence on the geometry.

In this paper we apply the optical approach to the study of
the experimentally relevant example of a hyperboloid facing
a plate. We consider a scalar field and impose Dirichlet
boundary conditions. We are interested in the force between
the hyperboloid and the plate, or equivalently, the interaction
energy, from which divergent self-energies that do not con-
tribute to the force have been subtracted. This problem has
no closed, analytic solution, nor has it been studied with the
numerical methods of Gies et al. �7� but it seems like a good
candidate for future experimental studies. We find that the
optical estimate of the Casimir energy differs significantly
from the other approximations especially when the opening
angle of the hyperboloid is small.

The optical method can be applied also when the bound-
ing surfaces are finite, so in order to assess the effects of
finiteness we study the configuration of a hyperboloid oppo-
site to a finite plate. We find and explain differences between
the optical approach on the one hand and the PFA and the
semiclassical approach of Ref. �8� on the other. This appli-
cation illustrates the shortcomings of the semiclassical ap-
proximation and the more subtle difference between the PFA
and the optical approximation. In particular it helps clarify in
which sense the optical approximation is a uniform semiclas-
sical approximation.

The broad interest in Casimir physics and the application
of experimental methods will certainly allow tests which can
distinguish among these different approaches, and guide
theory toward a correct treatment of the dependence of Ca-
simir effects on geometry.

II. THE OPTICAL APPROACH TO CASIMIR ENERGIES

We want to calculate the Casimir energy of a quantized
scalar field obeying boundary conditions on the border �D of
the domain D limited by impenetrable bodies. This is an
idealization of a physical interaction that prevents the field
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from entering the bodies. In the case of physical interest the
electromagnetic field interacts with the electrons in metallic
bodies. The interactions can be idealized by conducting
boundary conditions for momenta k�� where � is a cutoff.
For the case of the metal and electromagnetic field, the cutoff
is of order of the plasma frequency of the material. The
Casimir energy depends on �, and would diverge if � were
taken to infinity. So the cutoff cannot be removed in the
fashion familiar from renormalizable quantum field theories.
This is not a problem for us, however. First, the would-be
divergences are associated with the self-energies of the bod-
ies and do not contribute to forces �or interaction energies�
between rigid bodies �10�, which are what concerns us here.
Second, finite cutoff dependence can be ignored when the
minimum distance between the two bodies, h, is much larger
than the inverse cutoff, i.e., h�1/� �5,6�.

The Casimir energy for a massless scalar field � living
inside the domain D�R3 with Dirichlet boundary conditions
on the surface �D can be written as �11�

ED��� =
1

2
��

0

�

dk�
D

d3x��k�	�x,k� , �1�

where in the case of massless fields ��k�=ck, and the �local�
density of states 	�x ,k� is related to the propagator
G�x� ,x ,k� of the Helmholtz equation by

	�x,k� =
2k



Im G�x,x,k� , �2�

and the standard density of states is 	�k�=�d3x	�x ,k�. The
equation satisfied by G is

�− �� − k2�G�x�,x,k� = �3�x� − x� if x,x� � D ,

G�x�,x,k� = 0 if x� or x � �D . �3�

The essence of the optical approximation is to replace the
Helmholtz propagator, Eq. �3�, with an approximation taken
from wave optics �5,6� which assumes that the path integral
representation for G�x ,x� ,k� is saturated by its stationary
points, i.e., straight line paths making specular reflections
�accompanied by a phase change� at the boundaries. In this
way the intractable sum over modes is replaced by a trac-
table, but approximate sum over paths,

Eoptical = −
�c

2
2�
n

�− 1�nMn�
Dn

d3x
��n�x�
�n

3�x�
. �4�

Here the sum runs over the optical paths indexed by n
�which is an index taking care of both the number of reflec-
tions n and the sequence of bodies on which the reflections
occur�, �n�x� is the length of the closed path starting and
ending at x and Dn is its domain of existence �which can be
smaller than D�, Mn is the multiplicity of the path n �Mn
=1 for paths with an odd number of reflections, Mn=2 for
paths with an even number of reflections� and �n�x� is short-
hand for the enlargement factor �n�x ,x�,

�n�x�,x� =
dx

dAx�
�5�

is the ratio between the angular opening of an arbitrarily
narrow pencil of rays following the optical path n starting at
the initial point x and the area spanned at the final point x�
�12�.

The origins of the optical approximation and further dis-
cussion of the derivation and significance of quantities like
the enlargement factor can be found in Ref. 5. All the quan-
tities that appear in Eq. �4� can be calculated numerically for
any number of reflections. The details of the algorithm are
sketched in the Appendix.

III. HYPERBOLOID FACING A PLATE

A. Parametrization

A general parametrization of a cylindrically symmetric
hyperboloid centered on the z axis a distance h above the z
=0 plate is given by

z�	� = h − b + b�1 + 	2/a2, �6�

where the parameters b and a measure the opening angle �
and the radius of curvature R according to

R = a2/b ,

cot � = b/a . �7�

The configuration is shown in Fig. 1. We choose units such
that �=c=1, and study the Casimir effects as functions of the
variables h, R, and �. The limit �→0 at fixed h and R gives
a paraboloid, z=h+	2 /2R, while �→
 /2 with finite a is the
planar limit.

B. Proximity force and semiclassical approximations

The proximity force approximation is a first approxima-
tion to the problem for arbitrary surfaces and is believed to
give the most divergent term correctly in the limit of small
distances, even though no rigorous proof for this exists. The

FIG. 1. Configuration of hyperboloid and plate, illustrating the
meaning of variables.
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PFA estimate is obtained by integrating the parallel plate
result,

dE
dS

= −

2

1440z3 �8�

over one of the surfaces with z replaced by the distance to
the second surface measured normal to the first. In general,
the PFA is ambiguous, since there are two choices for the
integration surface and they yield, generically, different re-
sults. We choose to integrate over the planar surface, and
obtain for the hyperboloid,

EPFA = −� dS

2

1440z�	�3 = −

3R

1440h2	1 +
h

R
tan2 �


� −

3R

1440h2 fPFA�h/R,�� , �9�

and we use the function f�h /R ,�� to present our results in
general, so

fPFA�h/R,�� = 1 +
h

R
tan2 � . �10�

The conjecture that the PFA captures correctly the most di-
vergent contribution in the limit h→0 translates to the con-
jecture that f�0,��=1 is exact. We will see that both the
optical and semiclassical approximations reproduce this rela-
tion.

A semiclassical approximation for the Casimir energy has
been developed by Schaden and Spruch �8� following
Gutzwiller’s methods �9�. Like the optical approach this
method identifies closed classical paths in the propagator G
and expands the functional integral about them. Unlike the
optical approach, the trace of G is calculated then by station-
ary phase leaving only periodic paths. In contrast, the optical
approximation uses all closed and not necessarily periodic
paths. This should be almost equivalent when only almost
periodic paths contribute; however there are situations in
which this is not true �see Sec. III D� and situations in which
periodic paths do not exist, while closed paths do �inside a
wedge, for example�. The approaches are compared further
in Ref. �5�. The resulting semiclassical expression for the
Casimir energy depends only on the local properties of the
surface in the neighborhood of the points of reflection. For
the hyperboloid, there is only one periodic path, the one that
originates at the tip of the hyperboloid. In this case the ap-
proach of Schaden and Spruch gives

fSS�h/R,�� =
90


4

h

R
�
n=1

�
1

n2 sinh2�n log	�1 +
h

R
+�h

R



= 1 −
30


4 �
n=1

	 1

n2 −
1

n4
 h

R
+ O„�h/R�3/2

…

= 1 −
15 − 
2

3
2

h

R
+ O„�h/R�3/2

… . �11�

Notice that this result depends on R but not on the angle �. In

the semiclassical approximation the hyperboloid gives the
same result as a sphere of radius of curvature R, irrespec-
tively of the opening angle �. The next term in the power
series is actually O(�h /R�1+�) with 0���1. Numerically,
we found �=1/2. Notice that the term proportional to h /R
has the opposite sign from our computations and from the
PFA prediction.

A priori we have no reason to dismiss either the PFA or
the semiclassical approximation. Neither the h /R nor the �
dependence of f�h /R ,�� is constrained by any general re-
quirement. The only test we can foresee is either comparison
with experiment or with a numerical computation after the
manner of Ref. �7�. We believe that the optical approxima-
tion captures more of the relevant physics than either the
PFA or semiclassical approximation. The PFA ignores the
curvature of the surfaces entirely and the semiclassical ap-
proximation ignores the geometry except in the neighbor-
hood of the periodic paths. We have already seen �5� in the
case of the sphere and the plate that the optical approxima-
tion gives a prediction for the coefficient of the linear term
h /R �where R is the radius of the sphere� different from
either the PFA or semiclassical approximations. The optical
approximation differs significantly from the other approaches
also in the case of a hyperboloid �the difference being more
evident the smaller is the angular opening � of the hyperbo-
loid�, so experiments or numerical computation will again
provide discrimination among the approximations.

C. Optical approach data

We have computed the energy in the optical approxima-
tion up to six reflections with a numerical algorithm �see the
Appendix for details� for seven different values of � �from
20 to 80 degrees� and approximately 50 values of h /R for
each �. The data are presented in Fig. 2. For small h /R we
can expand f ,

f�h/R,�� = 1 + A���h/R + ¯ . �12�

This defines the function A���, which, for dimensional rea-
sons, can only depend on �. The PFA gives only a term linear

FIG. 2. �Color online� Optical approximation for the function
f�h /R ,�� versus h /R for various openings of the hyperboloid �.
From bottom up, azure to red, �=20 to 80 degrees in steps of 10
degrees. The function A��� is given by the slope at the origin.
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in h /R, APFA���=tan2 �. From Fig. 2 it is apparent that the
optical approximation also is nearly linear in h /R over the
range of h /R and � shown. We have extracted this function
from our data and plot it in Fig. 3.

As can be seen from the figure, the results of the optical
approximation are well described by the function

A��� =
1

cos2 �
. �13�

So far we have no explanation for this functional form. How-
ever, it is so simple and fits the data so accurately that it has
probably a more profound meaning. To gain some further
insight into this subject consider the limit �→0 at fixed finite
R, in which the hyperboloid turns into a paraboloid with the
radius of curvature equal to R. In this limit we obtain from
Eq. �13�, AOPT�0�=1, whereas the PFA gives APFA�0�=0, so
the predictions for the paraboloid �hence the superscript
para� differ dramatically,

fOPT
para �h/R,0� = 1 + h/R + O�h2/R2� , �14�

fPFA
para�h/R,0� = 1 + O�h2/R2� . �15�

Experimenters measure forces, not energies. The predic-
tions for the Casimir force can be read off the figures for
each of the approximations. The correspondence is particu-
larly simple when f�h /R ,�� is approximated to linear order
in h /R, as in Eq. �12�,

F = −
dE
dh

= −

3R

720h3	1 +
h

2R
A��� + ¯ 
 . �16�

Another limit that is interesting in principle but cannot be
analyzed within our approximation is the cusp limit in which
R→0 while � is held fixed. Here, however, we face a major
difficulty, since h measured in units of R is going to infinity,
corresponding to the far right in Fig. 2. Since h is the mea-
sure of the wavelengths that dominate the mode sum in Eq.

�1�, the cusp limit is dominated by long wavelengths and
diffraction �which is ignored in the optical approximation to
the propagator� becomes more and more important.

D. Finite plate studies

The optical approximation allows one to study the effect
of finite bounding surfaces. In the case of a hyperboloid it is
not hard to extend our algorithm to the case when the plate is
replaced by a finite disk of radius L. Since this is a configu-
ration that may well be possible to examine experimentally,
we work out the predictions of the optical approach and
compare them with the PFA and the semiclassical approxi-
mation. In order to simplify the analysis we fixed �=30°,
though, of course, any other value of � can be analyzed as
well.

It is necessary to restrict ourselves to situations where
h�L ,R, in order to being able to neglect edge diffraction
effects. However no restriction is posed on the relative mag-
nitude of R and L. In particular, the transition between
L�R and R�L can be studied. One can think of the optical
approximation as a semiclassical approximation to the Ca-
simir energy for h�L ,R uniformly valid as a function of the
parameter R /L while the semiclassical approximation breaks
down when R /L�1. This issue has been discussed in more
general terms in Sec. III C of Ref. �5�.

If we factor out the most divergent term we can write

E = −

3R

1440h2g�h/R,L/R,�� ,

which is related to the function f , previously defined, by

f�h/R,�� = lim
L/R→�

g�h/R,L/R,�� . �17�

It is clear on physical grounds that if the radius of the finite
plate, L, is small compared to the radius of curvature of the
hyperboloid then the curvature of the hyperboloid can be
neglected. In this case the result must reduce to that obtained
for two parallel plates, one infinite and one of radius L,

E = −

3L2

1440h3 . �18�

This implies that for L /R�1 asymptotically one must find

g�h/R,L/R,�� �
L2

hR
. �19�

To gain a more complete understanding of the different
regimes for varying L /R and h /R a good starting point is
again the PFA, which has, as it will turn out, the same quali-
tative behavior as the optical approximation though it differs
quantitatively. According to the PFA, for finite plate we have
�here ��h /R, ��L /R�

gPFA��,�,��

=
��2 + cot2 ���2 + 2 cot ��cot � − ��2 + cot2 ���

�� + cot2 ��− 1 + �1 + �2 tan2 ���2
.

�20�

The expansion of this function in powers of �,

FIG. 3. Optical approximation and PFA for A���. The continu-
ous line is the function 1/cos2 �, the dashed line is the PFA predic-
tion tan2 �. �=90° is the parallel plates limit and the optical ap-
proximation agrees in its functional form with the PFA for large
opening angles. The semiclassical prediction is A=−0.17 which
cannot be displayed on a logarithmic scale.
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gPFA��,�,�� = 1 + � tan2 � − �2 �6cot2� − 6cot��cot2� + �2 + �2 �5 − 2�1 + �2 tan2 ���

cot6�1 − �1 + �2 tan2 ��4
+ O���3, �21�

sheds considerable light on its nonuniform behavior. For any
� �and �� it is possible to choose � so small that the situation
reverts to the hyperboloid opposite an infinite plate �i.e., the
term of O��2� is negligible� and Eq. �21� reduces to Eq. �10�.
The fact that the coefficient of �2 is proportional to �−4 when
�→0 signals nonuniform behavior in � and �. For small �
the domain of linear growth with � continues only up to �
��2 where g has a maximum. For larger � the expansion of
Eq. �20� in powers of � breaks down and the small �, finite
parallel plate limit of Eq. �19� applies, so expanding g in
powers of �2 /� we find

gPFA �
�2

�
−

3�4

4�2 + O	�6

�3
 , �22�

whose first term, once h, R, and L have been restored, coin-
cides with Eq. �19�. For ��1 the achievement of the maxi-
mum in � represents the set-in of the parallel plate limit, i.e.,
R is large with respect to L and h is large enough that the
contribution to the energy is not too much concentrated near
the tip. When ��1 even though we cannot neglect the cur-
vature over distances of order L the contribution to the en-
ergy is spread enough so that the parallel plates approxima-
tion works again. However in this region we expect
curvature effects �not captured by PFA� to be non-negligible.
Here hence we expect—and we find—the biggest differences
between the optical data and PFA.

The semiclassical approximation does not predict any
change in the energy with the plate radius L and hence can-
not predict the parallel plates limit. This is due to the fact
that the only semiclassical contribution comes from the pe-
riodic orbit bouncing back and forth from the tip of the hy-
perboloid to the plate and this ignores completely the trans-
verse radial direction. This becomes pathological in the case
when the geometry reduces to that of two parallel plates,
where it gives completely wrong results. Explicitly, it pre-
dicts an energy E��cR /h2 while the correct result is inde-
pendent of R. �One can see this as the result of inverting two
limits. The parallel plates case is obtained by taking R→�
before h→0 while the semiclassical approximation takes
h→0 before R→�.�

With these considerations in mind we now turn to the
results of the optical approximation. The optical approxima-
tion to g is shown for various values of L /R as a function of
h /R in Fig. 4. The linear term in an expansion in h /R at fixed
L /R �previously called A� does not depend on L. This result
is shared with the PFA �see Eq. �21�� and the semiclassical
approximation, which is completely independent of L. How-
ever, the general dependence on h /R is completely different.
This can be seen graphically in Fig. 5.

Returning to Fig. 4, we see that the optical approximation
predicts variation of g with L /R for h /R�1. The L depen-
dence of the PFA agrees quantitatively with the optical ap-
proach for h /R�1 and in the parallel plate limit, where they
both predict g→L2 /hR. However they differ in the interme-
diate range of h /R and L /R. In Fig. 6 we compare the L /R
dependence predicted by the optical approximation with the
PFA. For the smallest value of L /R �L=�3R /4�, the two
agree within the error bars on the optical data both at very
small h /R and larger h /R where they both approach the “par-
allel plate” regime. This is the more evident manifestation of
the uniform validity of the optical approximation as the ge-
ometry is changed. Notice that the agreement becomes worse
as L is increased. This makes it clear that PFA only captures

FIG. 4. �Color online� The function g�h /R ,L /R ,�� given by the
optical approximation. �=30° for all of the curves. From down to
up �red to green� the first five set of points have L /R
=1.5�3,2.0�3, . . . ,3.5�3, the blue triangles �uppermost curve� are
the infinite plate case. The wiggles for large h /R and small L /R are
related to the accuracy of our computation, and are smoothed out to
a large extent when we increase the accuracy.

FIG. 5. Comparison of g�h /R ,L /R ,�� given by the optical ap-
proximation �triangles�, the PFA �continuous� and semiclassical re-
sult �dashed curve�. �=30° and L=2�3R for all the curves.
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correctly a small region around the tip of the hyperboloid,
where the paths are almost periodic. Even here it ignores the
enlargement factor. Continuing to increase L at fixed h, we
enter the region h�L2 /R, where g reduces to the infinite
plate prediction and the slopes of optical and PFA curves will
differ according to the preceding discussion.

The optical approximation, like the PFA, predicts a maxi-
mum in g�h /R ,L /R ,�� as a function of h /R at fixed L /R.
The maximum of g for fixed L /R and � is already evident in
Fig. 4 for L=1.5�3R. It occurs for every finite L /R—even
though this cannot be seen in Fig. 4. We will call this value
g*�L /R ,��, and the value of h /R at which this is found will
be �*�L /R ,��. For L /R�1.5�3 the maximum occurs in a
region of h /R that is beyond the applicability of our approxi-
mation �h* /R�1�.

We present the data for g* and �* in Fig. 7. The data on �*

are in good agreement with the PFA prediction. The data on
g*, however, are in worse accord. One could then say that
PFA and the optical approximation disagrees on the predic-
tions for the energy �and hence the force� but they agree in
identifying the basic length scales of the problem.

In conclusion, there are also important differences among
the various approximations when applied to the finite plate
case. These differences are more marked than in the infinite
plate case. In particular the semiclassical approach �8� does
not depend on the size of the plate �nor on that of the hyper-
boloid� at all. For finite L the optical approximation data for
g reach a maximum and then decrease. This is not captured
by the semiclassical approximation and is understood by the
PFA only qualitatively but not quantitatively.

IV. CONCLUSIONS

Studies of the geometrical dependence of Casimir forces
are in their infancy. Experiments are just reaching the level
of accuracy where deviations from the naive proximity force
approximation can be detected. There are few theoretical cal-
culations for geometries other than parallel plates. The opti-

cal approximation offers hope for an accurate estimate of
Casimir forces for a wide range of geometries. However we
do not know how to bound the corrections to this approxi-
mation. The configuration of a hyperboloid and plate offers a
flexible laboratory for studying approximations. It is likely to
be accessible to experiment. One should keep in mind, how-
ever, that actual experiments involve electromagnetic fields
not scalar fields. In the case of parallel plate the only modi-
fication is an increase of the force by a factor of 2. For
curved surfaces the effect is not so well understood, but the
dominant effect is still simply a factor of 2.

The goal of this paper has been to work out the predic-
tions of the optical approach so they can be compared with
experiment and contrasted with other approximations. We
find that the optical approximation differs significantly from
the PFA and the semiclassical approximation. The difference
becomes more important as the opening angle of the hyper-
boloid, �, decreases. All approximations agree on the first
term in an expansion in h /R, but differ thereafter. We cer-
tainly expect the optical approach to be more accurate, but in
the absence of an estimate of errors, only comparison with
experiment or with a numerical computation in the spirit of
Ref. �7� can settle the issue. We have also studied the effects
of replacing the infinite planar plate with a finite disk. We
found notable differences both with PFA and the semiclassi-
cal approximation of Ref. �8�. In some domains of the pa-
rameters h, L, R these differences are so relevant that we
believe they can be easily measured in an actual experiment.

More generally speaking, the high precision experiments
to be performed in the near future will be able to measure the
next-to-leading order terms in a small distance expansion
and will hence be able to tell us whether the recent develop-
ments in the theoretical analysis of Casimir effects for
curved geometries point in the right direction.
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APPENDIX

We have developed a C-program that allows one to cal-
culate the optical contribution to the Casimir energy. In this
Appendix we discuss the algorithm in some detail because
we believe it may be relevant for other problems, such as the
study of density of states oscillations in chaotic billiards.

Outline

The starting point of the numerical computations in this
paper is Eq. �4� which we repeat here for convenience,

Eoptical = −
�c

2
2�
n

�− 1�nMn�
Dn

d3x
��n�x�
�n

3�x�
. �A1�

From this equation, it is obvious which kind of question a
numerical program must address. Performing the sum over n
is a trivial task since we consider only paths with a fixed
upper bound on the number of reflections, in our case six.
The second ingredient is a routine that performs the spatial
integration. Since the surfaces we have are cylindrically
symmetric, we introduce cylindrical coordinates, and carry
out the integration over �. Then we are left with an integral
over z and over 	. Both integrations are done using an adap-
tive step size differential equation solver, in our case a
slightly modified version of ODEINT �13�. The integration
routine will choose a number of points where the path length
�n and the enlargement factor �n are required. In order to
compute these quantities, the optical paths are needed. These
paths are closed paths of minimum length, specified by the
bulk point they start from, the number of reflections and the
sequence of surfaces they reflect from. The requirement that
they be of minimum length is equivalent to saying that they
are—between reflections—straight, and the reflections are
specular. The way we determine these paths will be treated
extensively below. Once an optical path is determined, it is
obviously trivial to determine its length. It is also a simple
matter to determine the enlargement factor, as will also be
described in some detail below. As a last point, it should be
mentioned that the determination of the integration domain is
rather implicit. Formally, we integrate over the volume en-
closed between the two surfaces �except for the one-
reflection term �6��. The reduction of this volume to Dn
comes about because for some points in the volume no
closed path with specular reflections only exists. Hence, if
our routines for finding minimum paths do not find any, the
contribution of this point to the integral is set to zero.

Minimum paths and subtleties

The integration routine chooses points in the bulk where
path length and enlargement factor are required. Since it is

known that a path of minimum length will have—at each
reflection—incoming and outgoing angles identical, the de-
termination of a minimum length path is a one parameter
minimization problem. There are �at least� two different ap-
proaches to determine the path of minimum length, both of
which are used in our numerical procedure. Either, the
n-reflection path under consideration is allowed to be open,
but all reflections are specular �“open path approach”�, or the
path is required to be closed, but then the last reflection is not
required to be specular �“path length minimization ap-
proach”�:

�i� Open path approach (cf. upper panel of Fig. 8): Here
we consider the path generated by a sequence of specular
reflections. Such a path will, in general, not return to the
point at which it originated. Consider the piece of path that is
obtained after n reflections. Then consider the point on this
piece of path that has the minimum distance �labeled final A
and final B in the figure� from the point in the bulk where
this path originated from �labeled bulk in the figure�. Mini-
mize this minimum distance by varying the point of the first
reflection �choices labeled 1A, 1B in the figure�. The mini-
mum of this function is zero, and if a zero is found the path
is indeed a closed path where all reflections are specular.
Numerically, it is easier to find a zero crossing than a mini-
mum, therefore it is useful to define a signed distance, i.e., a

FIG. 8. �Color online� The upper panel shows how the “open
path approach” works, the lower panel shows the procedure in the
“path length minimization.” In the uppper panel, all reflections have
equal incoming and outgoing angles; in the lower panel only the
reflections at points 1A ,1B ,1C have equal incoming and outgoing
angles.
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distance that has a notion of whether the last piece of the
path passes above the bulk point or below; some details on
this will be given below. We use the abbreviation SDZC
�signed distance zero crossing� for this method.

�ii� Path length minimization (cf. lower panel of Fig. 8):
In this case we insist that the paths be closed but give up the
constraint that all reflections must be specular. In general, if
we insist on the path being closed all reflections can be cho-
sen to be specular save the last one. Thus we reflect the path
n−1 times, and note where the nth reflection would have
occurred. Then we minimize the length of the path as a func-
tion of the initial reflection point. We use the abbreviation
PLM �path length minimization� for this method.

Both methods have advantages and disadvantages. The
advantage of the SDZC method is that if it works, then it
works much faster, since the zero crossings of the signed
distance function are much steeper than the minima of the
path length function. However, if one wants to keep the de-
termination of the sign in the SDZC method simple, there are
cases where—as the initial point is varied—the sign changes,
but apparently not continuously, i.e., the signed distance can-
not be made arbitrarily small. This counter-intuitive behavior
is best understood with a specific example �see Fig. 9�. In
order to determine the sign we follow the last part of the path
until it has the same value of 	 as the bulk point where the
path started from. Then we compare the z coordinate of this
point on the path with the z coordinate of the bulk point and
we can say whether the path passes above or below the bulk
point. In order to understand how one gets a sign change
without finding a closed path, consider a two reflection path
with the first reflection off the hyperbola �situation in Fig. 9�.
If this path reflects off the plate perpendicularly, it has found

the singularity in our sign prescription. Since this last part of
the path can never have the 	 value of the bulk point, it
cannot be decided whether it passes above or below. This is
the underlying cause for the sign change without a zero
crossing of the signed distance function: if instead of this
singular path we consider a path with initial point on the
hyperbola to the left �respectively, right�, the part of the path
reflecting off the plate will be reflected also to the left �right�
and hence passing below �above� the bulk point.

If no closed path can be found using the SDZC method
we use the PLM instead. Both methods also must deal with
difficulties that are not apparent in Fig. 8. There we have
shown two reflection paths only, and the problems appear
significantly first for four reflection paths. First, a problem
for the SDZC method is that given the initial point, an n
reflection path might not exist if anywhere in between a
piece of path does not “hit” the designated next surface but
simply runs off to infinity. Second, a problem for the PLM is
that either the first section of the path or the last section of
the path may intersect one of the surfaces, thus rendering the
path illegal. A useful method of handling these paths is to
ensure that they have a length that is �orders of magnitude�
larger than the largest “correct” length that can appear in the
problem, though still finite. In the first case, this is ensured
by terminating the section of the path that does not hit a
surface at a very large distance, in the second case a large
number is added to the otherwise ordinarily computed path
length. The subtlety is that on the one hand this large number
should be much larger than any path length occurring, so that
an illegal path can be spotted by simply looking at its length.
However, the number should not be so big that—with the

FIG. 9. �Color online� This figure illustrates the subtlety de-
scribed in the text regarding the possibility of a sign change of the
signed distance function without finding a closed path. The black
dot indicates the bulk point. The middle path �red� is the path that
detects the singularity in the sign function used.

FIG. 10. �Color online� Computation of the enlargement factor
for the example of a four reflection path. The dotted line indicates
the closed minimum length path for which the enlargement factor is
computed.
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prescribed numerical accuracy—the finite length information
of the path length is lost. The reason for this requirement is
that for sufficiently many reflections �and this is a serious
problem already at six reflections� almost all paths run off to
infinity. If the finite information is destroyed by the value we
choose for the large number, the PLM has no variation of
path length to work on. However, such a variation of the path
length is needed since the PLM works in the following way:
first, path lengths for a finite number of initial points with 	
values slightly above the 	 value of the bulk point down to
	=0 are computed. Then within these points one searches for
the region where there must be a minimum. In other word
one looks for three points 	1�	2�	3 with length�	2�
� length�	3� and length�	2�� length�	1�. Once this region is
identified, the true minimum is found by golden section
search �13�. For example, in double precision C��, 1030 is
too big, whereas 1010 is just the right size for the large num-
ber.

Enlargement factors

The computation of the enlargement factor is rather
simple once the first reflection point of a closed minimum
path has been found: take a step of unit length from the point

in the bulk towards the first point of reflection. From the
point thus reached construct four new points, by going � into
positive and negative y direction �usually our computations
take place in the x-z plane, therefore a step in y and −y is
guaranteed to be orthogonal�, and a step each into the direc-
tion orthogonal both to the y axis and the direction where we
took our first unit step. These four points define four new
paths: they start at the original bulk point, and pass through
these four new points. Then—in case we are considering an
n reflection path—they are reflected n times off the proper
surfaces. These paths will not be closed since we consider
only convex surfaces. After n reflections we determine the
points of minimum distance to the bulk point. These four
points together with the bulk point determine four triangles.
Their areas are added up to give dA, whereas d=2�2.

This procedure is numerically very convenient, since in
order to find the path of minimum length for each bulk point
a couple of hundred paths must be computed, but once it is
found, only four more paths need to be computed for the
enlargement factor �Fig. 10�.

We have tested that this procedure produces stable results
for generic bulk points for widely varying values of � be-
tween 10−8 and 10−3.
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