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Abstract

We present the foundations of a new approach to the Casimir effect based on classical ray
We show that a very useful approximation to the Casimir force between arbitrarily shaped smoo
conductors can be obtained from knowledge of the paths of light rays that originate at points b
these bodies and close on themselves. Although an approximation, the optical method is exac
bodies, and is surprisingly accurate and versatile. In this paper we present a self-contained derivation
of our approximation, discuss its range of validity and possible improvements, and work ou
examples in detail. The results are in excellent agreement with recent precise numerical analysis
the experimentally interesting configuration of a sphere opposite an infinite plane.
 2004 Elsevier B.V. All rights reserved.

PACS:03.65.Sq; 03.70.+k; 42.25.Gy

1. Introduction

Revolutionary new experimental techniques have made possible precise measu
of Casimir forces[1]. Casimir’s original prediction for the force between grounded c
ducting plates due to modifications of the zero point energy of the electromagneti
has already been verified to an accuracy of a few percent. Variations with the con
geometry and the effects of finite conductivity and finite temperature will soon be
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sured as well. Progress has been slower on the theoretical side. Despite years of effo
Casimir forces can only be calculated for the simplest geometries. Beyond Casimir’s
inal study of parallel plates[2], we are only aware of useful calculations for a corruga
plate[3] and for a sphere and a plate[4]. The former was obtained with functional integ
techniques quite special to that geometry and the latter was obtained by computat
intensive numerical methods. Simple and experimentally interesting geometries lik
spheres, a finite inclined plane opposite an infinite plane, and a pencil point and a
remain elusive. The proximity force approximation[5] (PFA), which has been used for ha
a century to estimate the dependence of Casimir forces on geometry, was shown i
examples[3,4] to deviate significantly from precise numerical results. Thus at present n
ther exact results nor reliable approximations are available for generic geometries. It
this context that we recently proposed a new approach to Casimir effects based on c
optics[6]. The basic idea is extremely simple: first the Casimir energy is recast as a tr
the Green’s function; then the Green’s function is replaced by the sum over contributio
from optical paths labelled by the number of (specular) reflections from the condu
surfaces. The integral over the wave numbers of zero point fluctuations can be per
analytically, leaving

(1.1)Eopt = − h̄c

2π2

∑
r

(−1)r
∫
Dr

d3x
∆

1/2
r (x)

�3
r (x)

.

Here�r(x) is the length of the closed geometric optics ray beginning and ending at the
x and reflectingr times from the surfaces.∆r(x) is the enlargement factor of classic
optics [7,8], also associated with ther-reflection path beginning and ending atx. Dr is
the subset of the domain,D, between the plates in whichr reflections can occur. Th
factor(−1)r implements a Dirichlet boundary condition on the plates; different bounda
conditions require different factors. Both�r(x) and∆r(x) are very easy to compute eith
analytically in simple cases, or numerically in general.∆r(x), although well known in
optics, may not be familiar in the context of Casimir effects. We will describe its prope
in some detail.

Eq.(1.1)turns out to be a powerful tool to compute Casimir effects for generic ge
tries, and to identify, interpret and dispose of, divergences. Eq.(1.1) is not exact. Instead
is an approximation which is valid when the natural scales of diffraction are large compar
to the scales that measure the strength of the Casimir force. In practice this will typ
be measured by the ratio of the separation between the conductors,a, to their curvature,R.
Although approximate, the optical approach is surprisingly accurate, as well as physic
transparent and versatile. It generalizes naturally to the study of Casimir thermodynamic
to the study of energy, pressure, and momentum densities, to various boundary conditions
to fermions, and to compact and/or curved manifolds. This is the first in a series of p
intended to provide an introduction to the optical approach to Casimir physics. He
will focus on fundamentals: how to derive the optical approximation and how to ap
to practical calculations of Casimir forces. In later papers in this series we study Casi
effects at finite temperature,the calculation of local observables like the energy density an

pressure, and the generalization to conducting and other boundary conditions. Our first aim
is to familiarize the reader with the use of the optical approximation, since this method of
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calculation is unfamiliar. In Section2 we present some examples of the use of the o
cal approximation. First we review in more detail the treatment of parallel plates al
presented in Ref.[6]. Although it is no great triumph to rederive this classic result, the
tical derivation illustrates several characteristic features of the method: rapid convergen
simple disposal of divergences and ease of computation, in particular. Next we pres
case of a sphere and a plate. This too was summarized in Ref.[6]. Here we concentrat
especially on the enlargement factor, both its interpretation and how to compute it
we illustrate the generic way that divergences can be eliminated. The numerical res
present here are more accurate than those of Ref.[6]. Finally we apply the optical metho
to the case of a finite plate suspended above an infinite conducting plane—the “C
pendulum”. We show how all reflections can be computed and how the optical resu
fers from the proximity force approximation. In collaboration with O. Schroeder we
preparing a thorough study of the hyperboloid (“pencil point”) near an infinite plane[9].
In Section3 we discuss the derivation of the optical approximation from exact expres
for the Casimir energy. We show how a uniform approximation to the propagator turn
a uniform approximation for the Casimir energy. The derivation illustrates the natu
the approximation and shows the way toward improvements, which, in essence, a
to including the effects of diffraction. We present results for a massive scalar field inN

dimensions in Section3. Higher spin fields will be considered in a later paper of this
ries. We discuss the general problem of divergences. The Casimir energy is generica
divergent—or more properly, it depends in detail on the cutoffs that limit the conduc
of real materials at high frequency. However it is known that the Casimirforce between
rigid conductors is cutoff independent[10]. In the optical approximation the cutoff depe
dent terms in the Casimir energy can easily be isolated and shown to be indepen
the separation between conductors. They therefore do not contribute to forces and
dropped. Corrections to the optical approximation will bring in new surface diverge
In Section3.3 we discuss the relation of the optical approximation to previous work
“semiclassical” approximations to the Casimir energy[11]. In the last section we sum
marize our results, discuss their implications, and mention extensions to other inte
geometries.

2. Three examples

In this section we present three examples of the use of the optical approxim
Eq. (1.1). Our aim is expressly pedagogical: we want to demonstrate that this metho
yield interesting and accurate results without onerous calculations.

2.1. Parallel plates

Casimir’s original result for parallel plates can be derived in many ways. We pr
a derivation from the optical approximation in order to illustrate several generic fea
of the approach in the simplest possible context. The points we wish to stress ar

of calculation; the rapid convergence inr, the number of reflections; and the simple and
accurate treatment of divergences. The “semiclassical” method[11] and the method of
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Fig. 1. Optical paths for parallel plates. The initial and final points on the paths, which coincide, have b
separated so the paths can be seen. (a) Even reflections 2, 4, and 6. Path 2′ is distinct from 2 and illustrates th
origin of M2n = 2. (b) Odd reflection paths. The paths shown form a family of continuously increasing lengt
Another family begins with the first reflection from the top.

images[12] generate exactly the same calculation as ours for parallel plates. Ho
they do not generalize to less trivial geometries (although one might say that our m
is the correct generalization of the method of images). We study a massless scal
for simplicity, and quote the generalization to a massive scalar in a later section. Fo
surface the enlargement factor∆r reduces to 1/�2

r (x), so the contribution of ther reflection
path is

(2.1)Er = − h̄c

2π2 (−1)rMr

∫
Dr

d3x
1

�r (x)4 ,

whereMr is the multiplicity of the path. It is convenient to separate the paths into “od
(r = 2n + 1) and “even” (r = 2n) according to the number of reflections. Some of th
paths are shown inFig. 1. Odd and even paths differ dramatically in their contribution to the
Casimir effect: they differ in sign and in multiplicity:Mr = 1 for odd paths andMr = 2 for
even paths, as shown in the figure. The length of an even path depends only onn, whereas
the length of an odd path varies with position. Finally, odd paths contribute a diver
to E , but do not contribute to the Casimir force. The even paths are finite and giv
entire Casimir force. First consider the even paths. The length of the 2n reflection path is
�2n = 2na independent ofx, as can easily be seen inFig. 1. The volume of each domain
D2n, is the volume between the plates,Sa. Hence the contribution from even paths is

(2.2)Eeven= − h̄c

2π22Sa

∞∑
n=1

1

(2na)4 = − h̄cπ2

1440a3S

which is the famous result due to Casimir1 [2]. Next consider the odd paths. There a
two families. One is illustrated inFig. 1. The other family begins with the first reflectio
from the top plate. Their contributions are identical, giving an overall factor of two.
r = 2n + 1 reflection paths range in length from 2na to 2(n + 1)a as can be seen from
1 In the case of the electromagnetic field treated by Casimir there is an extra factor of two due to the two
independent polarizations.
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Fig. 1, and contribute

(2.3)E2n+1 = h̄c

2π2
2S

(n+1)a∫
na

dz
1

(2z)4
, for n = 0,1,2, . . . .

The first reflection contribution diverges at the lower limit. As discussed in the Intro
tion (and further in Section3) the divergence indicates dependence on the properties o
material composing the plates and is cutoff at a distance scaleε determined by the micro
physics. For example we can takeε to be the skin depth or regardε as∼ c/Λ, whereΛ is
a frequency cutoff, for example the plasma frequency of the metal. Insertingε as the lower
limit for n = 0 and summing overn, we obtain the contribution of odd paths,

(2.4)Eodd= h̄c

2π22S

∞∫
ε

dz
1

(2z)4 = h̄c

48π2ε3S.

This contribution displays the cubic surface divergence expected for a scalar field o
a Dirichlet boundary condition[13]. However, the divergent term—and indeed the s
of all odd reflections—is independent ofa and therefore does not contribute to theforce
between the plates. Until now we have not considered the contributions from one-refl
paths that lie below the bottom plate or above of the top plate. It is easy to see that th
of these contributions is identical to Eq.(2.4) and does not contribute to the force. Th
simple calculation illustrates some general features of the optical approach:

• The even reflections dominate, give rise to attraction, and their sum converges r
in n. They are also attractive for Neumann boundary conditions, where the factor(−1)r

is absent. They would be repulsive if one surface were Neumann and the other Diri2

In the case of parallel plates 92% of the Casimir effect comes from the second refle
98% from the second and fourth, and 99.3% from the second, fourth and sixth refle
Similar results will be found to hold in more complicated geometries.

• The only divergent contribution comes from the first reflection. It does not de
on the separation and therefore does not contribute to the Casimir force. This re
quite general. To see the general argument, reconsider the first reflection from the
plate,S1

(2.5)E1,S1 = h̄c

2π2
S

a∫
ε

dz
1

(2z)4
= h̄c

2π2
S

∞∫
ε

dz
1

(2z)4
− h̄c

2π2
S

∞∫
a

dz
1

(2z)4
.

The first term in Eq.(2.5)combined with the contribution of the 1-reflection path outs
of the plates (from the lower face of the bottom plate) is the cutoff dependent e

2 The expression for parallel plates contains series−1 + 1/24 − 1/34 + · · · = − 7
8

π4

90 so for a Dirichlet–
Neumann configuration we have arepulsive force 7/8 of the attractive force for Dirichlet–Dirichlet an

Neumann–Neumann. This result was found by Boyer[14] in his analysis of a perfectly conducting plate fac-
ing a perfectly permeable plate.
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of an isolated plate. It is manifestly independent of the presence of any other conduc
and gives no contribution to Casimir forces. The second term is a finite effect of the fir
reflection. For parallel plates the finite contribution of the first reflection is cancelle
higher odd reflections. This occurs whenever the enlargement factor is 1/�2

n, that is, when
all the conductors are planar. For non-planar surfaces the first reflection gives a (rel
small) cutoff independent contribution to the force.

• The optical approach gives the exact answerfor infinite plates. However it will fail
when S1/2 ≈ a for the same reason that the capacitance of two finite, parallel me
plates contains corrections of ordera2/S [15]: it is a poor approximation to consider th
electric field inside twofar separated plates (a � S1/2) as constant inside and zero outsi
Likewise, in the same limit it is a poor approximation to expect the Green’s functio
the fieldφ to have contributions only from optical paths. The corrections, or edge ef
can be regarded as due to diffractive rays coming from the edges of the plates[16]. We
discuss corrections to the optical approximation in further detail in Section3.

• The difference between even and odd paths has a fundamental origin, as a
noticed in work on the “semiclassical” approximation to the Casimir energy[11]. The
even paths are truly periodic, in the sense that the momentum of the particle, after
around the path, returns to its initial value. These are therefore the paths that accord
to Gutzwiller[17] contribute most to the oscillations of the density of states. The con
tion between these paths, the oscillation of the density of states, and the finite part
Casimir energy has been noted many times[18] and is exact for parallel plates and relat
geometries (e.g., flat manifolds with various topologies). However, the exactness
result is an accident due to the particularly simple geometry. For example, there are v
simple geometries in which periodic paths do not exist at all (e.g., the Casimir pend
a finite plane inclined at an angle above an infinite surface). The relation between the op
cal approach and the “semiclassical” approach is discussed further in Section3.

2.2. The sphere and the plane

Next we analyze a problem with non-planar conductors—typical of real experim
configurations[1]—a sphere of radiusR separated by a distancea from an infinite plane
In Ref. [6] we tested the optical approximation by computing the Casimir force betw
a sphere and a plane up through the fourth reflection. We showed that the optical a
imation is in very good agreement with the numerical results of Ref.[4] for a/R � 1. In
fact the numerical results presented in Ref.[6] suffered from an insufficiently accurate n
merical integration algorithm. The results presented here supercede Ref.[6] and show tha
the optical approximation is even more accuratethan we originally claimed. For exampl
the optical approximation and the numerical data differ by only 30% ata/R ≈ 5. Here we
explain in detail how to compute the first and second reflection contributions. The
vant paths are shown along with some other aspects of the geometry inFig. 2. For each
reflection we must compute (a) the optical path length,�r (x), (b) the enlargement facto

∆r(x), and (c) the domain of integrationDr for which r-reflections are possible. TheDr

are subsets of the domainD above the plane and outside the sphere.
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Fig. 2. Geometry and reflections for a sphere and a plane.The regions and geometrical constructions are defi
in the text.

2.2.1. Optical path lengths,�r(x)

Finding ther-reflection optical path fromx back tox, �r (x), is elementary in principle
One just draws straight lines fromx to a given surface, from the arrival point on this surfa
to another surface, and so on, returning afterr reflections to the original pointx. One then
moves the points of reflection on the surfacesuntil one reaches the minimum total leng
(an elastic string would do the job). The minimum length path suffers specular refle
upon each encounter with a surface. In all but the simplest geometries this problem mu
be solved numerically. However it is a problem amenable to extremely quick numeri
solution: it is easily defined and the minimum is unique (at least for convex surfaces)
procedure also defines the points of reflection,xr,1(x), xr,2(x), etc. The first reflection path
from the sphere (1s) and the plane (1p) and the two reflection path are shown inFig. 2.

2.2.2. Enlargement factor,∆r(x)

The enlargement factor for the closed path beginning and ending atx is a special cas
of the general enlargement factor,∆r(x, x ′) for propagation fromx to x ′, well known
in optics[7,8]. In another guise, it is also well known to field theorists:∆r(x, x ′) is just
the van Vleck determinant arising from the Gaussian fluctuations of the action abo
classicalr-reflection path fromx to x ′. In Section3, where we discuss the origins of th
optical approximation, we show that the evaluation of the determinant gives the sta
optics definition

(2.6)∆r(x, x ′) = dΩx

dAx ′
.

From this definition it is clear that in order to obtain∆r(x, x ′) one must follow the sprea
of an infinitesimal pencil of rays of openingdΩx from their origin atx, along this path
and measure the spread in areadAx ′ when they arrive atx ′. Having already identified th
points of reflection in Section2.2.1it is relatively easy to compute∆(x,x ′)|x ′=x numeri-
cally by tracing the paths of a few nearby rays[9]. It is also possible to solve this proble

analytically. Here we present the analytic solution for the first and second reflections from
a sphere and plane. Beyond this level, it is probably more efficient to proceed numerically.
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(a) (b)

Fig. 3. Geometry for reflection in a sphere. (a) The ray fromx to x′ reflecting atQ. Nearby rays originating
at x and lying in the plane vary in longitude. Nearby raysout of the plane vary in latitude. (b) Variables f
the calculations of the enlargement factor associated with latitude. Thexx′ plane has been projected along t
vertical. A nearby ray originating atx heading out of thexx′Q plane by an angleφ1 is shown. This ray reflect
from the sphere atQ(φ1). The angle subtended byx andQ(φ1) from the center of the sphere isβ. The angle
formed by the vector from the center of the sphere tox and the ray fromQ(φ) to x′

1(φ1) is α. In the diagram the
distanceσ1 and the anglesα andφ1 are modified by factors of cosθ due to the projection.

One reflection from the plane is trivial:∆(x,x) = 1/�2
1(x). One reflection from the sphe

is simplified by (a) normal incidence, and (b)x = x ′. The second reflection can be simp
fied by regarding it as a single reflection from the sphere starting fromx and ending at the
imagex̃ of the original pointx in the plane. In that case we need∆1(x, x̃). Consider the
path fromx to the sphere at the pointQ, and then tox ′. To obtain∆ one must follow the
wavefront radii of curvature along the ray. We consider a ray that impacts the spher
angleθ to the normal. It travels a distanceσ1 before andσ2 after, with� = σ1 + σ2. These
variables are defined inFig. 3(a). Consider a pencil of rays originating atx, spanning two
infinitesimal arcs of angular widthsdφ1,2 along perpendicular directions. Letdx ′

1 anddx ′
2

be the associated arc lengths observed atx ′. Then

(2.7)∆r(x) = dΩx

dAx ′

∣∣∣∣
x ′=x

= dφ1

dx ′
1

dφ2

dx ′
2

∣∣∣∣
x ′=x

.

Since both the initial ray and the sphere have equal radii of curvature we have the fr
to choose the directions definingdφ1 anddφ2. We choose “latitude” and “longitude” a
follows: latitude is the direction perpendicular to the plane formed byx, x ′ and the cente
of the sphere (seeFig. 3(a)). Longitude is the direction in the plane. Consider the penc
rays of varying latitude as shown inFig. 3(b). The variables are defined in the figure. It
easy to see that
(2.8)dx ′
1 = σ1 dφ1 + σ2 dα,
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and considering thatdα = 2dβ cosθ + dφ1 andR dβ = σ1 dφ1, we find

(2.9)
dα

dφ1
= 1+ 2σ1 cosθ

R
,

and hence

(2.10)
dφ1

dx ′
1

= 1

� + 2σ1σ2 cosθ
R

.

The same calculation applies for the longitudinal displacement except that the relati
betweendφ1 anddβ is replaced byR dβ = σ1 dφ2/cosθ anddα = 2dβ + dφ1, with the
result

(2.11)
dφ2

dx ′
2

= 1

� + 2σ1σ2
R cosθ

.

Putting these formulas together we find for a single reflection on the sphere (the su
s indicates reflection from the sphere) with angle of reflectionθ

(2.12)∆1s(x, x ′) = 1

(� + 2σ1σ2
R cosθ )(� + 2σ1σ2 cosθ

R
)
.

Note that∆(x,x ′) is symmetric with respect to the interchange ofx andx ′ as it must,
because the propagator possesses this symmetry. For the first reflection from the sphere w
have cosθ = 1 andσ1 = σ2 = �/2, so

(2.13)∆1s(x) = 1

(� + �2/2R)2

and, as mentioned above, the enlargement factor for the second reflection (on the
and then on the plane or vice versa), is given by the first reflection fromx to its imagex̃
in the plane,∆2(x) = ∆1s(x, x̃). A similar approach to higher reflections would requ
further analysis. The original wavefront leavingx is spherical. The first reflection from th
sphere produces a new wavefront with, in general, two unequal radii of curvature.
next incident upon the sphere, the asymmetric wavefront will be transformed in a m
yet to be described. The ease with which∆r(x) can be computed numerically makes t
unnecessary.

2.2.3. Domain of therth reflection,Dr

The next step is the integration over the domains appropriate to each reflectio
first reflections give rise to cutoff dependent buta-independent contributions which mu
be analyzed at this point. Consider the first reflection from the plane. The appro
domain is all of space except the interior of the sphereD̄s and the region shadowed b
the sphereD̄p1 (seeFig. 2). The integral can then be written as the difference betwee
integral over all space and the integral overD̄s ∪ D̄p1. The integral over the whole spa
is the divergent constant discussed in Section2.1 which does not contribute to the forc
It is to be ignored in the following. So the correct domain for the first reflection from

plane is the region,̄Ds ∪ D̄p1, in the shadow of the sphere,and the sign is to be reversed.
Similarly, the integral of the first reflection on the sphere must be performed on the domain



inus
mir
e
n

sult.
come
m

ted
essary
r.

and
are
In
o (and

lect-
dd

se
t four

r-
his

not
timat-

arallel
A. Scardicchio, R.L. Jaffe / Nuclear Physics B 704 [FS] (2005) 552–582 561

consisting of the whole space minus the interior of the sphere (D̄s ) and the region below
the plate (̄Dp). The irrelevant divergence is given by the integral over all the space m
the interior of the sphere and the finite,a-dependent part, which contributes to the Casi
force, is given by the negative of the integral over the region,D̄p, below the plane. So th
correct domain for the first reflection from the sphere isD̄p and the sign of the contributio
is reversed.Hence we can write

(2.14)E1s + E1p = − h̄c

2π2

∫

D̄s∪D̄p1

d3x
1

(2z)4
− h̄c

2π2

∫

D̄p

d3x
∆

1/2
1s (x)

�3
1s(x)

.

The second reflection gives a finite contribution toE . The path length,�2(x), never van-
ishes so there are no divergences at short distances, and the integrand,∆

1/2
2 (x)/�3(x), falls

rapidly at large distances. The result is typically approximately 90% of the total re
Higher reflections can be analyzed in a similar fashion. The integration domains be
progressively more restricted. For example,three reflection paths that reflect twice fro
the plane and once from the sphere do not exist in the shadow of the sphere (D̄p1) nor in
the darkly shaded regions inFig. 2 determined by the geometrical construction indica
by the dashed lines. It is not hard to carry out the constructions and calculations nec
to construct the optical approximation for the sphere and plane to any required orde

2.2.4. Discussion of numerical results
In Ref. [6] we presented initial results on the optical approximation for the sphere

plane. Here we present final results (seeFig. 4), discuss them in more detail, and comp
them with the results of Ref.[4] and with the proximity force approximation (PFA).
presenting our results we display the sum of all the reflections (even and odd) up t
including) the fourth. Since the energy must approach the parallel plate limit asa → 0 we
can estimate the error in neglecting higher reflections in this limit. The error in neg
ing the fifth and higher odd reflections is a+3.8% excess (because the sign of the o
reflections contribution is opposite to that of the total energy) asa → 0. Neglecting the
even reflections (6th, 8th, etc.) asa → 0 gives an error of−1.8%, negative because the
contributions have the same sign of the total energy. Altogether the sum of the firs
reflections overestimates the energy by 3.8%− 1.8%= 2% asa → 0. To illustrate this
estimate of accuracy we have plotted our results as a band 2% in width inFig. 4. Since the
fractional contribution of higher reflections decreases witha, we believe this is a conse
vative estimate for largera. Obviously, calculating the higher reflections will reduce t
uncertainty interval, leaving eventually only the error due to diffraction which we are
able to estimate. The proximity force approximation has been the standard tool for es
ing the effects of departure from planar geometry for Casimir effects for many years[19].
In this approach one views the sphere and plate as a superposition of infinitesimal p
plates

(2.15)EPFA = −π2h̄c

1440

∫
S

d2S
1

d(x)3 ,
whered(x) is the distance from the plate to the sphere at a pointx on the surfaceS. This
formulation is ambiguous since the surfaceS could be taken to be either the sphere or the
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Fig. 4. Casimir energy for a sphere of radiusR a distancea above an infinite plane. 1440a2E/π3Rh̄c is plotted
versusa/R. The stars with error bars are the data of Ref.[4]. The thick solid curve is the optical approximatio
through the fourth reflection. The width of the curve indicates our estimate of the error in the optical approxim
tion from neglect of the odd and even reflections withn � 5. The dashed curve is the plate-based proximity fo
approximation. The triangles are the results we published in Ref.[6], which are superceded by this work.

plate. Whichever surface is chosen, the distance is measured normal to that surfa
ambiguity is useful since it gives a measure of the uncertainty in the PFA. In eithe
the relevant integrals are easily performed. For the plate we obtain

(2.16)Eplate
PFA = −π3h̄cR

1440a2

1

1+ a/R

while for the sphere we obtain

(2.17)Esphere
PFA = −π3h̄cR

1440a2

(
1− 3

a

R
− 6

a2

R2

(
1+

(
1+ a

R

)
ln

a

R + a

))
.

In the limit a/R → 0 both estimates agree to lowest order. Thea → 0 limit is usually
called the proximity forcetheoremand has been much discussed over the years. It is
ally stated as a result for the Casimirforce in the limit a/R → 0: FPFA ∼ 2πRE/A =
−π3h̄cR/720a3 (whereE/A is the Casimir energy per unit area for parallel plates). T
limit provides a convenient parametrization of the Casimir force whena is not so small,

(2.18)F = −f

(
a

R

)
π3h̄cR

720a3 .
Modern experiments are approaching accuracies where the deviations off (a/R) from
unity may be important. The accuracy of the PFA beyond thea/R → 0 limit is unknown,
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Fig. 5. Contributions ofspecific reflections to the optical approximation.

and the two different versions give differentO(a/R) corrections:

(2.19)f
plate
PFA (a/R) = 1− 1

2

a

R
+O

(
a2

R2

)
,

(2.20)f
sphere
PFA (a/R) = 1− 3

2

a

R
+O

(
a2

R2

)
.

An important application of the optical approximation is to obtain a more accurate estim
of f (a/R). The optical approximation to the Casimir energy and the data of Ref.[4] both
fall like 1/a2 at largea. In fact both are roughly proportional to 1/a2 for all a. In contrast
the PFA estimates of the energy falls like 1/a3 already ata/R � 1 and departs from th
Gies et al. data at relatively smalla/R. For purposes of display we therefore scale
estimates of the energy by the factor−1440a2/π3Rh̄c. The results are shown inFig. 4. At
largea/R the optical approximation has the same scaling behavior as the data and
from Ref.[4] by no more than 30% at the largesta/R. At small a/R, given our estimate
of the accuracy of the optical approximation, we find that

(2.21)f optical(a/R) = 1+ 0.05a/R +O
(
(a/R)2),

which must be compared with the predictions of PFA Eqs.(2.19) and (2.20). In Fig. 5we
show the contributions to the optical approximation of the different reflections we
computed. As expected the dominant contribution, always greater than 90%, come
the second reflection. The fourth reflection contributes about 6% fora/R � 1 and less
as a/R increases. The contributions of the first and third reflections are very small fo
all a/R. A relevant result, confirmed by the analytical analysis on the energy–mome

tensor (within the optical approximation), the subject of the second paper of this series,
is that the asymptotic behavior ofE asa/R 	 1 predicted by the optical approximation
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Fig. 6. Geometry for the Casimir pendulum.

is ∝ 1/a2. This is in contrast with the Casimir–Polder law which predicts 1/a4 at largea
[20]. The discrepancy must be attributed to diffraction effects.

2.3. Casimir pendulum

In this section we treat a problem for which the exact answer is unknown. The c
uration is shown inFig. 6. The base plate is taken to be infinite. The upper plate is he
its midpoint a distancea above the base plate. The width of the upper plate isw and its
depth,d (out of the page), is assumed to be infinite. We define the Casimir energy pe
depth,ε = E/d . θ is the angle of inclination of the upper plate. It will be convenient to
z = 1

2w sinθ as a variable as well. It is also possible to view this configuration as a
slice between�1 = a/sinθ − w/2 and�2 = a/sinθ + w/2 of a wedge of opening angleθ .
In this section we will discuss both the Casimir energy and the “Casimir torque”,ν = 1

d
dE
dθ

,
per unit depth. We are aware of two ad hoc approximate approaches to this proble
first is the PFA which treats each element of thesystem perpendicular to the lower plate
an infinitesimal parallel plate Casimir system. It is easy to show that

(2.22)εPFA = −π2h̄c

1440

w cosθ

a3

(
1− w2 sin2 θ

4a2

)−2

= −π2h̄ca

1440

√
w2 − 4z2

(a2 − z2)2

which gives a torque

(2.23)νPFA(a,w, z) = −π2h̄c

720

az(w2 − a2 − 3z2)

(a2 − z2)3
,

where the minus sign denotes that the torque is destabilizing:z = 0 is a point of unstable
equilibrium. As in the case of the sphere and the plane, the PFA is ambiguous. A mor
metric treatment of the two planes in the present geometry would integrate over the s
that bisects the wedge and take the distance normal to that surface. The result is the repla
ment of cosθ by cos4(θ/2) in Eq.(2.22)and a similar modification of the torque. A seco
“approximate” treatment of the Casimir pendulum can be extracted from the known
solution for the Casimir energy density for the “Dirichlet wedge”[21], which consists o
two semi-infinite plates with opening angleθ meeting at the origin. One can obtain
estimate of the energy for the pendulum by integrating the energy density over th
dimensional domain bounded (in polar coordinates,(ρ,φ)) by 0< φ < θ and�1 < ρ < �2.
This approach takes no account of the modification of the energy density due to the

ness of the upper plate. Furthermore it is inherently ambiguous because the energy density
for a scalar field is only defined up to a total derivative. The calculation in Ref.[21] used
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Fig. 7. Odd reflection paths for the Casimir pendulum.

the conformally invariant stress tensor. One would obtain a different answer if one
for example, the Noether stress tensor. In light of these difficulties, we do not pursu
approach further. To compute the optical approximation we need the enlargement
the lengths of optical paths, and the integration domain,Dr . Since all the conducting su
faces are planar, the enlargement factor is trivial in this case,∆r(x) → 1/�2

r (x). The path
lengths are also easy to compute. The only non-trivial step is the determination of th
gration domains. As in the case of parallel plates, the odd reflections do not contrib
forces or torques for the Casimir pendulum. Instead they sum to a cutoff dependen
stant associated with each plate. Any odd reflection path “turns around” with a reflection
normal incidence from one plate or the other. Consider all the points,x, which are the ori-
gins of paths that turn around at a given pointP on either surface. These paths are sho
for the case whereP is on the lower, infinite plane, inFig. 7. They comprise one reflectio
paths lying on the intervalPQ1, three reflection paths lying on the intervalQ1Q2, etc. The
contributions toε from these intervals integrates to the same result as the integral oz

for odd paths in the case of parallel plates. It is independent ofa, w, andθ and can be se
aside. The fact that the enlargement factoris trivial is crucial for this argument.

2.3.1. Even optical path lengths,�r(x)

The analysis of paths that reflect an even number of times makes use of simple g
rical concepts. For any pointx ≡ (ρ,φ), we define an infinite sequence of images in
upper and lower planes as shown inFig. 8, ignoring for the moment that the upper pla
is finite. The images below the lower plane are denotedx̄1, x̄2, . . . and those above the up
per plane are denotedx1, x2, . . . . In sequence,̄x1 = R̄x, x1 = Rx, x2 = Rx̄1, x̄2 = R̄x1,
etc., withR̄ denoting reflection in the lower plane andR denoting reflection in the uppe
plane. All of the images lieon the circle of radiusρ about the origin. The length of the 2n

reflection path can easily be seen to be given by

(2.24)�2n(x) = ‖xn − x̄n‖ = 4ρ2 sin2 nθ

independent ofφ. Substituting into Eq.(1.1) we obtain the expression for the Casim
energy per unit depth,

(2.25)εopt = − h̄c

16π2

Nmax∑
n=1

1

sin4 nθ

θ∫
0

dφ

∞∫
0

dρ
1

ρ3Θ(D2n).

The step functionΘ(D2n) vanishes when the pointx is not in the domain where 2n-
reflection paths are possible. As we show in the following section, forn large enough

D2n → ∅. Nmax, the upper limit on then-sum, is the largest value ofn for which any
2n-reflection paths exist.
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Fig. 8. Images of the pointx in the Casimir pendulum configuration. The dashed lines have the same len
ther = 2,4,6, . . . reflection paths.

2.3.2. Domain of the2nth reflection,D2n

The domain in which the 2n-reflection path exists is determined by the constraint tha
the points of reflection at the upper plate must lie between�1 and�2, the inner and oute
radii that define its boundaries. Note, of course, that�2 > �1. Although the calculation is
elementary, it is tricky, so we only quote the results. The constraints depend on when

is even or odd, so we summarize them independently.

• n-odd. Whenn is odd, the integration domainD2n is defined by the inequalities

(2.26)�1 cosφ � ρ cosnθ � �2 cos
(
(n − 1)θ + φ

)
where the lower limit ensures that the innermost reflection occurs atρ � �1 and the up-
per limit ensures that the outermost reflection occurs atρ � �2. The inequality cannot b
satisfied for anyρ or φ(� θ ) unless

(2.27)�2 cos(n − 1)θ > �1.

When Eq.(2.27)is satisfied the contribution of the 2nth reflection (n-odd) is

(2.28)εodd
optn = − h̄c

32π2

cos2 nθ

sin4 nθ




1
�2

1
tanθ − 1

�2
2
(tannθ − tan(n − 1)θ)

for �2 cosnθ � �1 cosθ,

(�2 cos(n−1)θ−�1)
2

�2
1�

2
2 cos(n−1)θ sin(n−1)θ

for �2 cosnθ � �1 cosθ.

• n-even. Whenn is even, the integration domainD2n is defined by the inequalities

(2.29)�1 cos(θ − φ) � ρ cosnθ � �2 cos
(
(n − 1)θ + φ

)
.

where, as before, the lower limit ensures that the innermost reflection occurs atρ � �1
and the upper limit ensures that the outermost reflection occurs atρ � �2. The inequality
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Fig. 9. Casimir energy and torque in scaled units for a Casimir pendulum of widthw = 1.5a,2.5a,5a and 10a.
Positive values of the scaled torque are destabilizing.

cannot be satisfied at all unless

(2.30)�2 cos(n − 1)θ > �1 cosθ.

When Eq.(2.30)is satisfied the contribution of the 2nth reflection (n-even) is

(2.31)εeven
optn = − h̄c

32π2

cos2 nθ

sin4 nθ




1
�2

1
tanθ − 1

�2
2
(tannθ − tan(n − 1)θ)

for �2 cosnθ � �1,

(�2 cos(n−1)θ−�1 cosθ)2

�2
1�

2
2 cos(n−1)θ sinnθ cosθ

for �2 cosnθ � �1.

The torque is obtained by differentiating with respect toθ at fixeda andw, remembering

that�1 and�2 depend onθ . Of course theθ -derivative of Eqs.(2.31) and (2.28)are com-
plicated and need not be written down explicitly. The resulting expressions forνodd

optn and
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(a)

(b)

Fig. 10. The ratio of the optical approximation to the PFA. (a) for a pendulum of different widths as a functio
of z/a. The breaks in the curves forw = 1.5a and 2.5a occur when only the second reflection can contribu
Thew = 1.5a curve ends at thez = 0.75a whenz = w/2. (b) The contributions of the 4th and 6th reflections
w = 2.5a. The 2nd reflection contributes 0.924. . . independent ofz. This is the only case we found in which th
optical approximation gives an energy smaller than the PFA.

νeven
optn must be summed overn subject to the constraints in Eqs.(2.28) and (2.31). This sum

must be performed numerically. The results are discussed in the following subsectio

2.3.3. Discussion
Fig. 9 shows the pendulum Casimir energy as a function ofz for a = 1 and severa

values ofw. The weak dependence onz at smallz is to be expected. So is the divergen
asz → 1 which we do not showFig. 9. When the plates touch atz/a = 1, the Casimir

energy of perfectly sharp, perfectly conducting plates would in fact diverge, as would the
Casimir torque. The optical approximation for the pendulum turns out to be very close to
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the plate based PFA. It is convenient therefore to scale out a factor of−1440a3/h̄cπ2w

(see Eq.(2.22)) when displaying or results for the energy per unit depth,εopt, and a fac-
tor −720a5/h̄cπ2w2 when displaying results for the torque per unit depth. The en
and torque are plotted for representative values ofw (w = 1.5a,2.5a,5a, and 10a) as a
function of z/a in Fig. 9. The plots are shown only up toz/a = 0.5. Abovez/a ∼ 0.5
both grow rapidly and diverge atz = a. The PFA gives an excellent approximation for t
pendulum over a wide range of the parameter space. This can be seen by examin
ratio of εopt/εPFA as shown inFig. 10. The reason behind this success is that the se
(optical) reflection is proportional to the PFA result (Eq.(2.22)) for all z. The constan
of proportionality is the familiar 90/π4 = 0.924. The sum of the higher even reflectio
combines with the second to equal the PFA atz = 0 and drops away slowly with increasin
z/a. So the optical estimate coincides with the PFA atz = 0 and drops slowly withz. The
contributions of the first few reflections are shown forw = 2.5a in Fig. 10. A careful study
of Fig. 9 reveals one peculiar feature, namely the fact that the torque does not van
z/a = 0, implying a cusp in the Casimir energy forz = 0. We believe this is an artifact o
our approximation. Since the already tiny effect vanishes quickly for large values ofw/a,
it is most probably an edge effect.

3. Origins of the optical approximation

Most studies of Casimir energies do not consider approximations. Instead they
on ways to regulate and compute the sum over modes,

∑ 1
2h̄ω [19]. These methods hav

proved very difficult to apply to geometries other than parallel plates. The main reas
this impasselies in the high degree of divergence of this sum. Even though the Ca
force between rigid bodies is known to be finite and the divergences can be reg
and analyzed, for example with the multiple reflection expansion (MRE) of Balian
Bloch[22], they make the calculation intractable unless the spectrum is known analytical
Finding the spectrum of the Laplace operator for non-separable problems is not m
technical difficulty, it is more one of principle. In fact there are strict relations between
problem and those of chaotic billiards theory. The existence of an exact solution f
Casimir problem with a non-trivial geometry would imply the existence of an exact
tion for the same family of quantum billiards and hence of classical billiards. Thirty y
of work on the ergodicity of classical billiards and the implications for the density of stat
in the corresponding quantum billiards suggest this task is hopeless (see[17]). Consider an
attempt to proceed numerically: onecould easily compute the spectrum{ω} to some high,
but finite, accuracy, and attempt to compute the sum. However the sum diverges—th
ing non-trivial divergence inN dimensions is of orderΛN . One could hope to compute
by introducing a cutoff, computing the energy at nearby separations,a anda + da, tak-
ing the difference,E(a + da,Λ) − E(a,Λ), and finally takingΛ → ∞. However such
numerical problems are hopelessly unstable: tiny errors in the asymptotic spectru
to significant ambiguities in the finite parts. The force, indeed, is given by the sma
cillatory ripple in the density of state numerically shadowed by the “bulk” contribut

which give rise to distance-independent divergencies. So we focused our attention on ways
to get approximate solutions of the Laplace–Dirichlet problem which are apt to capture the
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oscillatory contributions in the density of states, providing physical insights and accurat
numerical estimates. We have not found any previous use of ideas from classical
In this section we give a derivation of the optical approximation based on a path in
representation of the Helmholtz Greens function. Schaden and Spruch have develo
approximation for Casimir energies[11] using Gutzwiller’s semiclassical treatment[17]
of the density of states. It is misleading to call the approach of Ref.[11] “semiclassical”
because, as can be seen for example from Eq.(3.1), the onlyh̄ in the Casimir problem fo
a massless field is the multiplicative factor in1

2h̄ω. However, since the authors of Ref.[11]
use the term following Gutzwiller, we will continue to refer to their approach as “s
classical”. This work differs in important ways from ours and in general is not as accura
however the relationship between the two approaches is interesting, and is explore
in this section.

3.1. Derivation

We begin with the well-known definition of the Casimir energy in terms of a space
wavenumber dependent density of states[23], ρ̃(x, k),

(3.1)ED[ψ] =
∞∫

0

dk

∫
D

dNx
1

2
h̄ω(k)ρ̃(x, k),

whereω(k) = c
√

k2 + µ2, and the density of states̃ρ(x, k) is related to the propagato
G(x ′, x, k) by

(3.2)ρ̃(x, k) = 2k

π
Im G̃(x, x, k).

Since we are considering a scalar field,G is the Greens function for the Helmholtz equ
tion. We chooseG to be analytic in the upper-halfk2-plane (or equivalently takek2 to have
a small positive imaginary part). The tildes onρ̃(x, k) andG̃(x, x ′, k) denote the subtrac
tion of the contribution of the free propagator,G0(x

′, x, k). The Casimir energy depend
on the boundary conditions obeyed by the fieldψ and on the arrangement of the boun
aries,S ≡ ∂D (not necessarily finite), of the domainD. From the outset we recognize th
E must be regulated, and will in general be cutoff dependent, as discussed in the In
tion. We will not denote the cutoff dependence explicitly except when necessary.ρ is the
familiar density of states associated with the problem(

∆ + k2)ψ(x) = 0 for x ∈ D,

(3.3)ψ(x) = 0 for x ∈ S,

so thatG satisfies the equation(
∆′ + k2)G(x ′, x, k) = −δN(x ′ − x) for x ′, x ∈D,

(3.4)G(x ′, x, k) = 0 for x ′ or x ∈ S,

and
(3.5)G̃(x ′, x, k) = G(x ′, x, k) − G0(x
′, x, k),
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whereG0 is the free scalar propagator in the absence of boundaries. The spectral
sentation expressesG as a sum over a complete set of eigenfunctionsψn with eigenvalues
kn

(3.6)G(x ′, x, k) =
∑
n

ψn(x
′)ψn(x)

k2
n − k2 − iε

.

Notice that since the problem(3.3)is real we have chosen a complete set ofreal eigenfunc-
tions and removed the usual complex conjugation from(3.6). We can regard this problem
as the study of a quantum mechanical free particle withh̄ = 1, massm = 1/2, and en-
ergyE = k2, living in the domainD with Dirichlet boundary conditions on∂D. Dirichlet
boundary conditions are an idealization of interactions which prevent the quantum parti
from penetrating beyond the surfacesS. This idealization is adequate for low energies
fails for the divergent, i.e., cutoff dependent, contributions to the Casimir energy[24]. As
we have already seen in Section2, the divergences can be simply disposed of in the op
approach, and the physically measurable contributions to Casimir effects are dom
by k ∼ 1/a, wherea, a typical plate separation, will satisfy 1/a � Λ whereΛ is the mo-
mentum cutoff characterizing the material. So the boundary condition idealization is qu
adequate for our purposes. Following this quantum mechanics analogy we introduc
titious time,t , and consider the functional integral representation of the propagator[25].
The space–time propagator is

(3.7)G(x ′, x, t) =
∞∫

−∞

dE

2πi
G(x ′, x,

√
E)e−iEt ,

whereE = k2. SinceG is analytic in the upper halfk2-plane, it is evident thatG(x ′, x, t) =
0 whent < 0. The inverse Fourier transform reads

(3.8)G(x ′, x, k) = i

∞∫
0

dt eik2tG(x ′, x, t).

G(x ′, x, t) obeys the free Schrödinger equation inD bounded byS. It can be written as a
functional integral over paths fromx ′ to x with actionS(x ′, x, t) = 1

4

∫
dt ẋ2. The optical

approximation is obtained by taking the stationary phase approximation of the propaga
G in the fictitious time domain. Hence we assume that the functional integral is do
nated by the contribution of classical paths betweenx ′ andx. These are straight line path
reflectingr times from the boundaries, and traversed at constant speed,v = �r (x

′, x)/t ,
where�r (x

′, x) is the length of the path. Then the optical approximation to the propagat
is given by

(3.9)Gopt(x
′, x, t) =

∑
r

Dr(x
′, x, t)eiSr (x

′x,t).

The action is
′ 2
(3.10)Sr(x
′, x, t) = �r (x , x)

4t



path
ratic
aries,
e

Thus
d
bly
s are
e

an
ow

e

e ma-
mal
572 A. Scardicchio, R.L. Jaffe / Nuclear Physics B 704 [FS] (2005) 552–582

andD is the van Vleck determinant

(3.11)Dr(x
′, x, t) ∝ det

(
∂2�2

r

∂x ′
i∂xj

)1/2

.

This approximation is exact to the extent one can assume the classical action of theSr

to be quadratic inx ′, x. This is the case for flat and infinite plates. Thus the non-quad
part of the classical action comes from the curvature or the finite extent of the bound
which we parameterize generically byR, ∂3S/∂x3 ∼ 1/Rt . Hence, in a stationary phas
approximationδx ∼ √

t and the corrections are of orderδ3S ∼O(
√

t/R). Back ink-space
the corrections hence will beO(1/kR), and the important values ofk for the Casimir
energy are of order 1/a, wherea is a measure of the separation between the surfaces.
the figure of merit for the optical approximation isa/R. At the moment there is no goo
way to estimate the order ina/R of the corrections to the optical approximation (possi
fractional, plus exponentially small terms). Certainly some of the curvature effect
captured by the van Vleck determinant, and as we saw in Section2.2 for the sphere–plat
problem, the optical approximation works in practice out toa/R ∼ 1. This is topic for
further investigation. Eq.(3.9) is, in fact, the usual approximation of ray optics, the v
Vleck determinant being precisely the enlargement factor of classical optics, as we n
show. Since∂�r(x

′, x)/∂x ′ = n′ and ∂�r (x
′, x)/∂x = −n, wheren and n′ are the unit

tangent vectors to the path in the pointsx andx ′, we have

(3.12)Dr(x
′, x, t) ∝ det

(
nin

′
j + �r

∂nj

∂x ′
i

)1/2

.

We perform the analysis in three dimensions. Other values ofN are analogous, and w
quote the general result at the end. The matrix

∂nj

∂x ′
i

is

(3.13)
dφ1

dx ′
1

t1 ⊗ t′1 + dφ2

dx ′
2

t2 ⊗ t′2,

wheret1,2 andt′1,2 are orthonormal tangent vectors perpendicular ton andn′ respectively
and with them form two orthonormal bases centered inx andx ′, anddφi/dx ′

i is the deriv-
ative of the angle subtended at the pointx when we shift the pointx ′ along the direction
t′i . Taking the determinant is now easy: it is the product of the three eigenvalues of th
trix, but given the fact that{n, t1, t2} (and their primed correspondents) are an orthonor
triple these are just{1, �rdφ1/dx ′

1, �rdφ2/dx ′
2}, so

(3.14)Dr(x
′, x, t) ∝

(
�2
r

dΩx

dA′
x

)1/2

.

The coefficient of proportionality is independent of the path3 r and must depend ont in
such a way that for the direct path we obtain the free propagator. Therefore,

(3.15)Dr(x
′, x, t) = (−1)r

(4πit)N/2

(
�N−1
r

dΩx

dA′
x

)1/2

,

3 We are not discussing the Maslov indexes other than the(−1)r here. If the rayr would touch a caustic it
would be necessary to introduce the appropriate phase factor.
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where we have returned toN -dimensions. We have introduced the factor(−1)r to imple-
ment a Dirichlet boundary condition. In thecase of a Neumann boundary condition, t
factor would not be present. Although we did not labeldΩ/dA with an indexr, it should
be clear from the derivation that it does depend on the pathr. Putting all together we find
the space–time form of the optical propagator to be

(3.16)Gopt(x
′, x, t) =

∑
r

(−1)r

(4πit)N/2

(
�N−1
r

dΩx

dA′
x

)1/2

ei�2
r /4t .

When dealing with infinite, parallel, flat plates this approximation becomes exact.
single infinite plate, for example, the length-squared of the only two paths going fromx to
x ′ are

�2
direct= ‖x ′ − x‖2,

(3.17)�2
1reflection= ‖x ′ − x̃‖2,

wherex̃ is the image ofx. Both are quadratic functions of the pointsx, x ′ and the optica
approximation is indeed exact. In order to calculate the density of states we must retu
to k-space.G(x ′, x, k) is obtained by Fourier transformation (see Eq.(3.8)), and can be
expressed in terms of Hankel functions, giving us the final form for our approximatio

Gopt(x
′, x, k) =

∑
r

(−1)r iπ

(4π)N/2

(
�N−1
r ∆r

)1/2
(

�r

2k

)1−N/2

H
(1)
N
2 −1

(k�r)

(3.18)≡
∑

r

Gr(x
′, x, k),

where∆r is the enlargement factor

(3.19)∆r(x
′, x) = dΩx

dAx ′

and we have suppressed the argumentsx andx ′ on�r and∆r in (3.18). This can be though
of as a particular case of the general results in Ref.[26].

For N = 1 andN = 3 the Hankel function reduces to an exponential. For exam
whenN = 3 we find

(3.20)Gr(x
′, x, k) = (−1)nr

∆
1/2
r

4π
eik�r .

However, had we attempted a stationary phase approximation directly ink-space we would
have obtained an exponentialfor anyN ,

Gsemicl(x
′, x, t) =

∑
pathsr

Dr(x
′, x, k)eik�r(x

′x),

which does not reduce to the exact expression in the limit in which we have only
nite, non-intersecting (hence parallel), flat planes, because ink space it is not a Gaussia

problem even for quadratic�2. This is an important advantage of applying the stationary
phase approximation in the time domain where it leads to the optical approximation. Also
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we believe the optical approximation to be a more favorable starting point for con
ing systematic corrections to the stationary phase approximation uniformly4 in 1/R. The
expressions(3.9) and (3.18)are the first term of a systematic expansion of the propag
in 1/kR. For gently curved geometries we expect them to provide a good appro
tion, the final test, in absence of exact solutions, coming only from comparison wit
experiments. The corrections come from two different (but related) effects[28]: (a) we
have to expand the functionSr (x

′, x) in the exponential to include cubic (and higher
der) terms and (b) we have to include other stationary paths of non-classical origi
paths running all around the bodies one or more times (these can be considered a
perturbative, exponentially small correction to the propagator[29]). Both phenomena ar
due to the curvature of the boundary surfaces and we go back to the previous estim
the parameter controlling the accuracy of the our approximation is indeed 1/kR (wedges
and discontinuities must be considered as regions in whichR → 0 and the expansion i
somewhat different). Two intertwined branches of wave optics have dealt with finding
rections to the geometric optics predictions for curved boundaries. The first[8,16] deals
both with perturbative (a) and non-perturbative (b) corrections to next to leading or
1/kR of particular importance in the shadow region. The second deals with edge
holes in locally flat surfaces, originated by Sommerfeld’s work[30] (see also[31] and
references therein). Both must be considered relevant to future studies of Casimir
since high-curvature and finite-size effects will soon be relevant in the next genera
precision experiments[32,33]. Another phenomenon to be taken in account, even in
case of gently curved surfaces, the optical approximations fails when eitherx or x ′ are in
the shadow region or we are in presence of a caustic, the set of points where the H
∂2Sr/∂x∂x ′ has one or more vanishing eigenvalues[34]. In these regions of the paramete
(x, x ′) the Gaussian approximation fails and one cannot ignore cubic terms in the a
There are various ways of treating this phenomenon, whose importance in wave opt[27,
35] as well as quantum mechanics[26,28] is today clear. The most interesting predicti
related to the presence of caustics (for what concerns us here) is the fact that a ra
ing a caustic acquires a non-trivial phase shift. This could possibly result in a chan
the sign of the Casimir force for concave geometry. Unfortunately, the existing form
does not seem to be easily translated into our language and more work is needed
direction.

The famous multiple reflection expansion[22] is also intimately related to the op
tical approximation developed here. It is relatively easy to see that our approxim
arises as the first term in a uniform 1/kR expansion for the propagator. Most of t
effort in applying the MRE to Casimir energies has focused on the divergent
associated with general geometrical properties of the bodies[36] or on the Casimir
force at large distances where only the lowest reflections contribute. To our k
edge no one has been able to develop a useful expansion beyond the optical lim
the MRE.
4 The technique of passing to the Fourier transform to obtain uniform approximations is certainly not new in
wave optics[27].
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3.2. The optical Casimir energy

The substitution of(3.18)into (3.2)and then in(3.1)gives rise to a series expansion
the Casimir energy associated with classicalclosed (but not necessarily periodic) paths

(3.21)Eopt =
∑

pathsr

Er ,

where each term of this series will be in the form of

(3.22)Er = 1

2
h̄ Im

∞∫
0

dk ω(k)
2k

π

∫
Dr

dNx Gr(x, x, k).

Here the integration has been restricted to the domainDr where the given classical pathr
exists. At this point it is useful to separate potentially divergent contributions from t
which are finite. BecauseG is analytic in the upper halfk-plane, thek integration can be
taken along a contour with Imk > 0. The Hankel functionH(1)

n (k�) falls exponentially
in the upper half plane, so thex integral converges absolutely and uniformly at fixedk

unless there arex-values where�r (x) can vanish. One can easily convince oneself
for smooth surfaces5 only the paths that reflectonceon any surface can give vanishin
path length. So for the moment, we put aside the first reflection and consider the
independent contributions fromr > 1. In that case we can interchange thek and volume
integrals. The resultingk-integral is also uniformly convergent

Er = πh̄

2

(−1)r

(4π)N/2 Re
∫
Dr

dNx
(�N−1

r ∆r)
1/2

�
N/2−1
r

(3.23)×
∞∫

0

dk ω(k)
2k

π
(2k)N/2−1H

(1)
N/2−1(k�r ),

for r > 1. Thek-integral can be performed in general, but is particularly simple for
massless case,ω(k) = ck,

(3.24)Er = h̄c
(−1)r+1

2πN/2+1/2
�

(
N + 1

2

)∫
Dr

dNx
∆

1/2
r

�
(N+3)/2
r

,

which is the Casimir energy associated to the optical pathr > 1, and generalizes our fun
damental result, Eq.(1.1)to dimensions other than three. The generalization to the ma
case forN = 3 is given by

(3.25)Er = (−1)r+1 h̄cµ2

4π2

∫
Dr

d3x
∆

1/2
r

�r

K2(µ�r),
5 It suffices that the vectorn normal to the surface is continuous, i.e., no wedges are present.
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which reduces to theN = 3 case of Eq.(3.24)asµ → 0. It is worth noting that forµ > 0
the paths with length� � 1/µ are exponentially damped. Now we return to analyze
potentially divergent first reflection. For simplicity of notation we specialize toN = 3
although the analysis is completely general. Let the boundary ofD be the surfaces of a s
of rigid bodiesB1,B2, . . . ,Bn. The divergent contributions come from the paths 1Bi that
reflect once on any of the bodiesBi . To regulate possible divergences we insert a sim
exponential cutoff ink. It is easy to see that our results are independent of the form o
cutoff. Then for a massless field, reflecting from bodyB,

(3.26)E1B = (−1)
h̄c

4π2

∫
D1B

d3x ∆
1/2
1B (x, x)

∞∫
0

dk e−k/Λk2 sin
(
k�1B(x, x)

)
.

Thek-integration can be performed,

(3.27)E1B = − h̄c

4π2

∫
D1B

d3x ∆
1/2
1B

2�1BΛ4(3− (�1BΛ)2)

(1+ (�1BΛ)2)3 .

Notice that for�1BΛ 	 1 we reobtain the standard result, Eq.(1.1) as we should. Whe
�1BΛ � 1 however the structure of the function changes completely. In particular thesign
changes at�1BΛ = √

3. There is a non-trivial consequence of this fact: from Eq.(1.1)one
expects a positive divergence (r = 1 here) as� → 0, however the small� divergence in
Eq. (3.27) is negative. This effect, that the cutoff dependent contribution to the Ca
energy density changes sign near the bounding surface, is well known and has figur
trally in recent discussions of Casimir energy densities[10]. Of course the bulk contributio
to the vacuum fluctuation energy comes from the zero-reflection term, which is po
The negative surface correction is well known and has many physical consequenc
example it contributes to the surface tension of heavy nuclei[37].

To analyze the divergent first reflection, Eq.(3.26)further, we need an expression f
∆(x,x) near a generally curved surface.This entails a small change in∆1s (see Eq.(2.12))
to take in account two different principal radii of curvature, sayRa andRb (herex ′ = x so
θ = 0 andσ1 = σ2 = �/2)

(3.28)∆1B(x, x) = 1

(�1B + �2
1B/2Ra)(�1B + �2

1B/2Rb)
.

Substituting back into Eq.(3.27) and replacingd3x = dS(�) d�/2, where dS(�) =
(�/2Ra + 1)(�/2Rb + 1) dS, anddS is the surface area element on the body, we get (u
finite terms arising from upper bounds on the integration ind�)

(3.29)E ∼ − h̄c

4π2

∫
dS

∞∫
0

d�
√

(1+ �/2Ra)(1+ �/2Rb)
Λ4(3− (�Λ)2)

(1+ (�Λ)2)3
,

where we have suppressed the subscript 1B. The�-integration may be evaluated at large
Λ to obtain an asymptotic expansion of the cutoff dependent terms in the first reflection
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E ∼ − h̄c

4π2

∫
dS

(
π

2
Λ3 + 1

8
Λ2

(
1

Ra

+ 1

Rb

)
+O(lnΛ)

)

(3.30)= − S

8π
h̄cΛ3 − Λ2 1

32π2 h̄c

∫
dS

(
1

Ra

+ 1

Rb

)
+O(lnΛ).

Eq. (3.30) summarizes the cutoff dependent contributions to the Casimir energy i
optical approximation. As discussed in Section2, these terms do not contribute to t
forces between rigid objects. Also they are trivial to isolate and discard from the calcula
of forces. The form of Eq.(3.30)invites comparison with the work of Balian and Blo
[22] on the asymptotic expansion of the density of states based on their multiple refl
expansion. The MRE propagator includes not only specular paths, but also contrib
from diffraction which also yield cutoff dependent contributions to the Casimir en
Scaling arguments indicate that terms up to at least the third “reflection” in the MR
cutoff dependent. These higher divergences are omitted from the optical approxim
which is convenient since they do not contribute to Casimir forces in any case. Th
few terms in the MRE expansion of the density of states are given by

(3.31)ρ̃MRE(k) ∼ 2k

(
− S

16π
− 1

12π2k

∫
dS

1

2

(
1

Ra

+ 1

Rb

)
+O

(
1/k2)),

so the leading cutoff dependent terms in the Casimir energy are6

E ∼ 1

2
h̄c

∞∫
0

dk kρ̃MRE(k)e−k/Λ

(3.32)∼ − S

8π
h̄cΛ3 − 1

24π2
h̄cΛ2

∫
dS

(
1

Ra

+ 1

Rb

)
+O(Λ).

Comparing with the optical result, Eq.(3.30) we see that the first terms agree and
second terms differ by a factor of 3/4. Apparently our optical approximation to the pro
agator, despite its simplicity, captures the leading divergence and the order of mag
of the subleading divergence.7 The discrepancy between our approximation and the M
(exact) result for the quadratically divergent term inE is not surprising. To get the dive
gences right, it is necessary to capture paths ofzero length that occur in higher reflection
However only the first reflection is classical. The finite part of the Casimir energy (th
responsible for Casimir forces) however comes from paths of finite length, whose
sponding terms in the expansion for the propagator we believe are captured quite w
the optical approximation. This could help explain why the approximation works b
than one would expect from a naive error estimate.

6 The sign of the second term here is opposite that of Ref.[22] because we are dealing with convex rather th
concave geometries

7 One might think to claim more than order of magnitude success here. However it should be noted
Neumann boundary conditions both terms in(3.30)change signs while only the surface terms in(3.32)changes

sign. This is due to the fact that 2 “reflections” in the MRE expansion contribute to the curvature divergence as
well and their sign is the same for Dirichlet or Neumann boundary conditions.
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3.3. Connections with other semiclassical approximations

Stationary phase approximations are not new in the study of Casimir energy both
zero and non-zero temperature[11,38]. These works certainly share with ours the attem
to switch the attention toward general properties and approximations to the Helm
equation. On the other hand, relying more or less heavily on Gutzwiller’s trace for
they suffer from two significant problems. First, they treat symmetric and nearly symm
geometries in radically different ways, and fail to provide a natural deformation away fro
the symmetric limit (not to mention that they give the exact result for parallel plates
for odd number of space dimensions). Second, they require a certain amount of s
geometry-dependent work (to calculate monodromy matrices for example). We d
both these problems further below. In order to study these points we will rewrite a
contributionEr (specializing toN = 3 and suppressing the indexr) as

(3.33)E = Im(−1)n

∞∫
0

dk h̄ck2e−k/Λ

∞∫
0

d�J (�)eik�,

where

(3.34)J (�) ≡
∫
Dr

d3x δ
(
� − �r (x, x)

)∆
1/2
r (x, x, k)

4π2
.

Our strategy has been to dominate the functional integral over paths fromx back tox by
the classical paths, then perform thek integral analytically, and to leave the integrati
overx for numerical evaluation. The standard “semiclassical” approach[11,17] is to per-
form all spatial integrations by stationary phase including the one over the argument
Greens function itself. This leaves a function only ofk which can be integrated analyt
cally. The fact that we can do thex integral numerically allows us to capture much mo
detailed information about the system. We will show this in detail in the following
underline the differences, let us repeat brieflythe line of reasoning leading to Gutzwiller
trace formula. We start by writing an asymptotic expansion fork� 	 1. The asymptotic
contributions to the�-integral come[39] both from (a) boundaries at�m, �M (minimum
and maximum length achieved by the pathr) that is integration by partterms and (b) in-
tegrable divergences in the functionJ (�) that isstationary phase(SP) points at�j . So
that

(3.35)

∞∫
0

d�J (�)eik� ∼
∑
n�0

(
An(k)eik�M − Bn(k)eik�m

) +
∑

SP pointsj

Cj (k)eik�j .

A,B,C are polynomials ink, 1/k and�m, �M, �j , respectively. Schaden and Spruch[11]
approach based on Gutzwiller trace formula[17] consists in taking only the stationa
phase contributions, (b), to the energy, the coefficientsCj(k)’s then being related to th
“monodromy matrix”.8 These terms correspond to closed classical paths, for whic
8 To be precise the stationary phase integral is done on the directions transverse to the periodic orbit. The
integration over the direction parallel to theorbit is eventually performed by means of a trick[17].
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Fig. 11. Comparison between the optical approximation (upper curve) and the “semiclassical” approximation
Schaden and Spruch (lower curve) for the sphere and plane. The scaled Casimir energy is plotted versusa/R.
For the optical approximation, the sum of the first four reflections has been rescaled to go to unity asa → 0. It is
possible to show that in the limita/R 	 1 the optical approximation and Schaden and Spruch’s formula agree (
the figure they both tend to 90/π4 = 0.92. . .). The most notable and relevant discrepancies are in the deriv
at smalla/R.

final momentum is equal to the initial one (the action isS ∝ �). The stationary phas
approximation requires the periodic orbits tobe well-separated in units of waveleng
However as one approaches a situation in which one exact symmetry exists, the space,R

2

in 3 dimensions, perpendicular to the closed orbit at a given point breaks into the p
of two subspacesA × B, and� is constant with respect to theB coordinatesb. In the
symmetric situation the SP points then form lines (or planes if more than one sym
is present) parameterized byb. The problem can again be solved easily just by writ
d2x ∝ da db and factoring out the integral overdb [11,40]leaving the integral overda to
be evaluated by stationary phase approximation again.9 However, when the symmetry
slightly broken the length� acquires a smallb dependence and the integral overdb can
no longer be factored out. Moreover a naive stationary phase approximation in bothda db

is not reliable because arbitrarily close to the breaking point, the dependence of� on b is
small and the Hessian matrix∂2�(x, x)/∂x2 has one (or more) very small eigenvalues
the oldb directions. There exists[41] a theory for Gutzwiller trace formula for approxima
symmetries. However, we found that it is not easy to implement in the study of the Ca
energy for arbitrary surfaces. In the cases in which these problems can be avoided
sphere of fixed radius in front of a plane, and fora/R � 1 the semiclassical approximatio
à la Schaden and Spruch provides quite a good approximation (seeFig. 11) since in the

9 The simplest example is that of a cylinder facing a plane. Then the periodic orbits are lines perpendicu
both to the cylinder and the plane,b is parallel to the axis of the cylinder anda is the direction perpendicular t
this. In the case of parallel plates both the directionsa andb are symmetry directions so they both factor out a

no stationary phase approximation is performed. In this case the former analysis gives an exact result, as is well
known.
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expansion(3.35)the stationary phase approximation gives a much larger contribution
the integration by parts terms. A much stronger disagreement has to be expecte
sphere gets substituted by a plate of widthw bent with a curvature of orderR 	 w. Indeed
the method of Ref.[11] differs dramatically from the optical approximation for the ca
of a hyperboloid[9]. This is not a diffraction effect but rather a “precocious” breakdo
of the semiclassical approximation which is cured by a uniform approximation of the
we have described.

4. Conclusions

We have proposed a new method for calculating approximately Casimir energi
tween conductors in generic geometries. We use a stationary phase approximation impor
from studies of wave optics that we have therefore named the “optical approximation”. I
this paper, the first of the series, we have outlined the derivation and applied it to
examples: the canonical example of parallel plates; the experimentally relevant sit
of a sphere facing a plane; and the “Casimir pendulum”, i.e., a conducting plate free
cillate above an infinite plate, where the calculations can be performed analytically.
of the above examples (except for parallel plates, where our result coincides with C
solution) the agreement with the proximity force approximation is only to the leading
in the small distances expansion. The first order correction is found to be different
is of particular importance in the example of the sphere and the plane because the
order correction ina/R (a is the distance sphere–plate andR is the radius of the sphere
will soon be measured by new precision experiments[33]. The optical approximation turn
the Casimir sum over modes into a sum over topologically different paths, and from
point of view can be compared with the Poisson summation formula, which has p
useful to derive semiclassical uniform expansions for very diverse problems[26,42]. In
the case of the Casimir energy, replacing the usual highly divergent sum over mode
sum over topologically distinct optical paths has two, very significant advantages: fir
have been able to show that the divergences inthe Casimir energy are contained in con
butions of very simple, one-reflection paths and can be easily and unequivocally reg
and discarded; and second, the convergence of the sum over paths is very rapid. In
requiring an infinite number of eigenvalues with exquisite precision one needs but
path contributions, calculated with little numerical effort, to give a very good approxima
tion to the Casimir energy for important geometries. “Semiclassical” methods have
used previously in the study of Casimir effects and the connection betweenthe oscillat-
ing part of the density of statesand the finite part of the Casimir energy has been poi
out before(see for example[18]). Our analysis shares with those the idea of shifting
tention to approximations and to properties of the Helmholtz propagator. We have s
however that in order to obtain a correct low curvature approximation one has to
uniform approximation of the kind we proposed here. There is plenty of room to imp
the approximation presented here, especially when the connection with Balian and B
multiple reflection expansion is made explicit. In particular it is intriguing that the Cas

energy for the sphere–plane problem is such a well-defined problem in a single variable,
namelyx = a/R whose limiting values forx � 1 andx 	 1 are famous[20,36]. One can
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hope that an analytic solution or an approximation good for the entire range ofx-values
should be relatively easy to find. On the contrary it is an incredibly difficult problem
nobody has succeeded in finding such an exact solution or a valid approximation.
next paper we will show how the same approximation for the propagator can give
expansions for local operators like the energy–momentum tensor, which allows us
culate the pressure the energy density and other properties of the constrained field.
show how to calculate thermal corrections (always in the perfect metal approximation) us-
ing our approach. In another paper of the series we will also perform the same an
for a field of spin 1/2 and for the electromagnetic field. In this paper we have discu
the case of perfectly reflecting bodies (but for the need of a cutoff in regulating dive
terms). One can think of making a semiclassical analysis for arbitrary background fie
boundary conditions mimicking real dielectrics[43]. Such an analysis, not so relevant
the case of a scalar field, follows naturally after the discussion of the electromagnet
and hence will be presented in a later paper of the series.
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