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Abstract

We present the foundations of a new approach to the Casimir effect based on classical ray optics.
We show that a very useful approximation to thesi@ar force between arbitrarily shaped smooth
conductors can be obtained from knowledge of the paths of light rays that originate at points between
these bodies and close on themselves. Although an approximation, the optical method is exact for flat
bodies, and is surprisingly accurate and versatilehisgaper we present a ebntained derivation
of our approximation, discuss its range of validity and possible improvements, and work out three
examples in detail. The results are in excellerreagnent with recent precise numerical analysis for
the experimentally interesting configuration of a sphere opposite an infinite plane.

0 2004 Elsevier B.V. All rights reserved.

PACS:03.65.Sq; 03.70.+k; 42.25.Gy

1. Introduction

Revolutionary new experimental techniques have made possible precise measurements
of Casimir forceq1]. Casimir’'s original prediction for the force between grounded con-
ducting plates due to modifications of the zero point energy of the electromagnetic field
has already been verified to an accuracy of a few percent. Variations with the conductor
geometry and the effects of finite conductivity and finite temperature will soon be mea-

E-mail addressesscardicc@mit.ed@A. Scardicchio) jaffe@mit.edu(R.L. Jaffe).

0550-3213/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysb.2004.10.017


http://
elax unhcopy strutbox 
mailto:scardicc@mit.edu
mailto:jaffe@mit.edu

A. Scardicchio, R.L. Jaffe / Nuclear Physics B 704 [FS] (2005) 552-582 553

sured as well. Progress has been slower onlierttical side. Despite years of effort,
Casimir forces can only be calculated for the simplest geometries. Beyond Casimir’s orig-
inal study of parallel plateR], we are only aware of useful calculations for a corrugated
plate[3] and for a sphere and a pld#. The former was obtained with functional integral
techniques quite special to that geometry and the latter was obtained by computationally
intensive numerical methods. Simple and experimentally interesting geometries like two
spheres, a finite inclined plane opposite an infinite plane, and a pencil point and a plane,
remain elusive. The proximity force approximati®h (PFA), which has been used for half

a century to estimate the dependence of Casimir forces on geometry, was shown in many
exampleg3,4] to deviate significantly from precise nemcal results. Thus at present nei-

ther exact results nor reliable approximations are available for generic geometries. It was in
this context that we recently proposed a new approach to Casimir effects based on classical
optics[6]. The basic idea is extremely simple: first the Casimir energy is recast as a trace of
the Green’s function; then the Green'’s ftiona is replaced by the sum over contributions
from optical paths labelled by the number of (specular) reflections from the conducting
surfaces. The integral over the wave numbers of zero point fluctuations can be performed
analytically, leaving

hc . AY2 ()
sopt:_ﬁZ(—l) /de B0 (1.1)
D,

Herel, (x) is the length of the closed geometric optics ray beginning and ending at the point
x and reflectingr times from the surfacesA, (x) is the enlargement factor of classical
optics[7,8], also associated with thereflection path beginning and endingatD, is
the subset of the domaif}, between the plates in which reflections can occur. The
factor (—1)" implements a Dirichlet boundary coitidn on the plates; different boundary
conditions require different factors. Both(x) and A, (x) are very easy to compute either
analytically in simple cases, or numerically in general(x), although well known in
optics, may not be familiar in the context of Casimir effects. We will describe its properties
in some detail.

Eqg.(1.1)turns out to be a powerful tool to compute Casimir effects for generic geome-
tries, and to identify, interpret and dispose of, divergences(E#f))is not exact. Instead it
is an approximation which is valid when the natlscales of diffraction are large compared
to the scales that measure the strength of the Casimir force. In practice this will typically
be measured by the ratio of the separation between the conductarsheir curvatureR.
Although approximate, the otl approach is surprisingly accurate, as well as physically
transparent and versatile. It generalizeturally to the study of Casimir thermodynamics,
to the study of energy, pressure, and matnen densities, to vasus boundary conditions,
to fermions, and to compact and/or curved manifolds. This is the first in a series of papers
intended to provide an introduction to the optical approach to Casimir physics. Here we
will focus on fundamentals: how to derive the optical approximation and how to apply it
to practical calculations of Casimir forces. ktér papers in this series we study Casimir
effects at finite temperaturthe calculation of local obserktes like the energy density and
pressure, and the generalization to condygrsind other boundary coitidhns. Our first aim
is to familiarize the reader with the use of the optical approximation, since this method of
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calculation is unfamiliar. In Sectio we present some examples of the use of the opti-
cal approximation. First we review in more detail the treatment of parallel plates already
presented in Ref6]. Although it is no great triumph to rederive this classic result, the op-
tical derivation illustrates several charaéd#c features of the method: rapid convergence,
simple disposal of divergences and ease of computation, in particular. Next we present the
case of a sphere and a plate. This too was summarized if@eflere we concentrate
especially on the enlargement factor, both its interpretation and how to compute it. Also
we illustrate the generic way that divergences can be eliminated. The numerical results we
present here are more accurate than those of[Befinally we apply the optical method

to the case of a finite plate suspended above an infinite conducting plane—the “Casimir
pendulum”. We show how all reflections can be computed and how the optical result dif-
fers from the proximity force approximation. In collaboration with O. Schroeder we are
preparing a thorough study of the hyperboloid (“pencil point”) near an infinite gne

In Section3 we discuss the derivation of the optical approximation from exact expressions
for the Casimir energy. We show how a uniform approximation to the propagator turns into
a uniform approximation for the Casimir energy. The derivation illustrates the nature of
the approximation and shows the way toward improvements, which, in essence, amount
to including the effects of diffraction. We @sent results for a massive scalar fieldNin
dimensions in SectioB. Higher spin fields will be considered in a later paper of this se-
ries. We discuss the general problem of dgences. The Casimir energy is generically
divergent—or more properly, it depends in detail on the cutoffs that limit the conductivity
of real materials at high frequency. However it is known that the Cadonie between

rigid conductors is cutoff independdi0]. In the optical approximation the cutoff depen-
dent terms in the Casimir energy can easily be isolated and shown to be independent of
the separation between conductors. They therefore do not contribute to forces and can be
dropped. Corrections to the optical approximation will bring in new surface divergences.
In Section3.3we discuss the relation of the optical approximation to previous works on
“semiclassical” approximations to the Casimir enef@¥]. In the last section we sum-
marize our results, discuss their implications, and mention extensions to other interesting
geometries.

2. Three examples

In this section we present three examples of the use of the optical approximation,
Eqg.(1.1). Our aim is expressly pedagogical: we want to demonstrate that this method can
yield interesting and accurate rétsuvithout onerous calculations.

2.1. Parallel plates

Casimir’s original result for parallel plates can be derived in many ways. We present
a derivation from the optical approximation in order to illustrate several generic features
of the approach in the simplest possible context. The points we wish to stress are: ease
of calculation; the rapid convergencerinthe number of reflections; and the simple and
accurate treatment of divergences. The “semiclassical’” methbidand the method of
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Fig. 1. Optical paths for parallel plates. The initialdafinal points on the paths, which coincide, have been
separated so the paths can be seen. (a) Even reflections 2, 4, and 6.iRalistihct from 2 and illustrates the
origin of My, = 2. (b) Odd reflection paths. The paths showmfa family of continuously increasing length.
Another family begins with the first reflection from the top.

images[12] generate exactly the same calculation as ours for parallel plates. However
they do not generalize to less trivial geometries (although one might say that our method
is the correct generalization of the method of images). We study a massless scalar field
for simplicity, and quote the generalization to a massive scalar in a later section. For a flat
surface the enlargement factdy reduces to ,163(x), so the contribution of thereflection

path is

1
Ly (x)4 ’

he r 3
D,

where M, is the multiplicity of the pédt. It is convenient to separate the paths into “odd”

(r =2n+ 1) and “even” ¢ = 2n) according to the number of reflections. Some of these
paths are shown iRig. 1. Odd and even paths differ dratizally in their contribution to the
Casimir effect: they differ in sign and in multiplicity, = 1 for odd paths and?, = 2 for

even paths, as shown in the figure. The length of an even path depends anhyloereas

the length of an odd path varies with position. Finally, odd paths contribute a divergence
to &, but do not contribute to the Casimir force. The even paths are finite and give the
entire Casimir force. First consider the even paths. The length ofitlieflection path is

{2, = 2na independent of, as can easily be seenhig. 1. The volume of each domain,
D2y, is the volume between the platess;,. Hence the contribution from even paths is

hic > 1 hem?
Eoven= — —<_28 - s
even= "5 2% ; 2na)® ~  1440:°

(2.2)

which is the famous result due to CasifjR]. Next consider the odd paths. There are
two families. One is illustrated ifig. 1. The other family begins with the first reflection
from the top plate. Their contributions are identical, giving an overall factor of two. The
r = 2n + 1 reflection paths range in length from@to 2(n + 1)a as can be seen from

1 In the case of the electromagnetic field treated by Casimir there is an extra factor of two due to the two
independent polarizations.
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Fig. 1, and contribute

(n+1)a

hic
Eonig = —< 08 dz ——.
2H1= 502 / ‘208

na

forn=0,1,2,.... (2.3)

The first reflection contribution diverges at the lower limit. As discussed in the Introduc-
tion (and further in SectioB) the divergence indicates dependence on the properties of the
material composing the platesdis cutoff at a distance scatedetermined by the micro-
physics. For example we can takéo be the skin depth or regaedas~ c¢/A, whereA is
a frequency cutoff, for example the plasma frequency of the metal. Inseréinghe lower
limit for n = 0 and summing ovet, we obtain the contribution of odd paths,
he [ 1 h
C C
Eodd= WZS/dZ (27)4 = ms (24)
€

This contribution displays the cubic surface divergence expected for a scalar field obeying
a Dirichlet boundary conditiofil 3]. However, the divergent term—and indeed the sum
of all odd reflections—is independent @fand therefore does not contribute to foece
between the plates. Until now we have not considered the contributions from one-reflection
paths that lie below the bottom plate or above of the top plate. It is easy to see that the sum
of these contributions is identical to E(.4) and does not contribute to the force. This
simple calculation illustrates some general features of the optical approach:

e The even reflections dominate, give rise to attraction, and their sum converges rapidly
in n. They are also attractive for Neunmraboundary conditions, where the facterl)”
is absent. They would be repulsive if one surface were Neumann and the other Dfrichlet.
In the case of parallel plates 92% of the Casimir effect comes from the second reflection,
98% from the second and fourth, and 99.3% from the second, fourth and sixth reflections.
Similar results will be found to hold in more complicated geometries.

e The only divergent contribution comes from the first reflection. It does not depend
on the separation and therefore does not contribute to the Casimir force. This result is
quite general. To see the general argument, reconsider the first reflection from the bottom
plate,S1

he [ 1 e 1 ke [ 1

C C C

o= sldz— =" s [a—= 5| g~ 25
L8 =53 / 208 T 272 / ‘208 T 272 / ‘208 (2:5)

€ € a

The first term in Eq(2.5) combined with the contribution of the 1-reflection path outside
of the plates (from the lower face of the bottom plate) is the cutoff dependent energy

. . . 4 -
2 The expression for parallel plates contains serids+ 1/2% — 1/3% + ... = —% %—0 so for a Dirichlet—

Neumann configuration we have rapulsive force 7/8 of the attractive force for Dirichlet-Dirichlet and
Neumann—Neumann. This result was found by Bdytd] in his analysis of a perfectly conducting plate fac-
ing a perfectly permeable plate.
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of an isolated plate. It is manifestly ingendent of the presence of any other conductor,
and gives no contribution to Casimir forceiél'second term is a finite effect of the first
reflection. For parallel plates the finite contribution of the first reflection is cancelled by
higher odd reflections. This occurs whenever the enlargement factmﬁsth]at is, when
all the conductors are planar. For non-planar surfaces the first reflection gives a (relatively
small) cutoff independent contribution to the force.

e The optical approach gives the exact ansfeerinfinite plates. However it will fail
when %2 ~ 4 for the same reason that the capacitance of two finite, parallel metallic
plates contains corrections of ordet/S [15]: it is a poor approximation to consider the
electric field inside twdar separated plates { $%/2) as constant inside and zero outside.
Likewise, in the same limit it is a poor approximation to expect the Green’s function for
the field¢ to have contributions only from optical paths. The corrections, or edge effects,
can be regarded as due to diffractive rays coming from the edges of the [ll6}e%Ve
discuss corrections to the optical approximation in further detail in Se8tion

e The difference between even and odd paths has a fundamental origin, as already
noticed in work on the “semiclassical” approximation to the Casimir engtdy. The
even paths are truly periodic, in the sense that the momentum of the particle, after going
around the path, returns to its initial valuehélse are therefore the paths that according
to Gutzwiller[17] contribute most to the oscillations of the density of states. The connec-
tion between these paths, the oscillation of the density of states, and the finite part of the
Casimir energy has been noted many tirfie3 and is exact for parallel plates and related
geometries (e.g., flat manifolds with various topologies). However, the exactness of this
result is an accident due to the particularlpnple geometry. For example, there are very
simple geometries in which periodic paths do not exist at all (e.g., the Casimir pendulum:
a finite plane inclined at an angle above afinite surface). The relation between the opti-
cal approach and the “semiclassical” apgeh is discussed further in Sectidn

2.2. The sphere and the plane

Next we analyze a problem with non-planar conductors—typical of real experimental
configurationgl]—a sphere of radiug separated by a distaneefrom an infinite plane.
In Ref. [6] we tested the optical approximation by computing the Casimir force between
a sphere and a plane up through the fourth reflection. We showed that the optical approx-
imation is in very good agreement with the numerical results of Rgffor /R < 1. In
fact the numerical results presented in R&f.suffered from an insufficiently accurate nu-
merical integration algorithm. The n@lés presented here supercede Rgffand show that
the optical approximation is even more accutthgmn we originally claimed. For example,
the optical approximation and the numerical data differ by only 3084 &t~ 5. Here we
explain in detail how to compute the first and second reflection contributions. The rele-
vant paths are shown along with some other aspects of the geométity. i For each
reflection we must compute (a) the optical path lengtky), (b) the enlargement factor,
A, (x), and (c) the domain of integratidd, for which r-reflections are possible. TH2.
are subsets of the domainabove the plane and outside the sphere.
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Fig. 2. Geometry and reflections for a sphere and a pl&ine regions and geometrical constructions are defined
in the text.

2.2.1. Optical path lengthd, (x)

Finding ther-reflection optical path from back tox, ¢, (x), is elementary in principle.
One just draws straight lines fromto a given surface, from the arrival point on this surface
to another surface, and so on, returning aftegflections to the original point. One then
moves the points of reflection on the surfacesil one reaches the minimum total length
(an elastic string would do the job). The minimum length path suffers specular reflection
upon each encounter with a surface. In all b $implest geometries this problem must
be solved numerically. However it is a prebh amenable to extremely quick numerical
solution: it is easily defined and the minimum is unique (at least for convex surfaces). This
procedure also defines the points of reflection,(x), x, 2(x), etc. The first reflection paths
from the sphere () and the plane (%) and the two reflection path are showrFiy. 2

2.2.2. Enlargement facton, (x)

The enlargement factor for the closed path beginning and endingsad special case
of the general enlargement factaf, (x, x") for propagation fromx to x’, well known
in optics[7,8]. In another guise, it is also well known to field theorists:(x, x) is just
the van Vleck determinant arising from the Gaussian fluctuations of the action about the
classicalr-reflection path fromx to x’. In Section3, where we discuss the origins of the
optical approximation, we show that the evaluation of the determinant gives the standard
optics definition

A2,
dA,

From this definition it is clear that in order to obtain (x, x) one must follow the spread

of an infinitesimal pencil of rays of openiny2, from their origin atx, along this path,

and measure the spread in arkf,, when they arrive at’. Having already identified the
points of reflection in Sectio@.2.1it is relatively easy to computa (x, x")|,/—, numeri-

cally by tracing the paths of a few nearby rd9% It is also possible to solve this problem
analytically. Here we present the analytic solution for the first and second reflections from
a sphere and plane. Beyond this level, it islpaibly more efficient to proceed numerically.

Ar(x,x)= (2.6)
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Fig. 3. Geometry for reflection in a sphere. (a) The ray froro x’ reflecting atQ. Nearby rays originating
at x and lying in the plane vary in longitude. Nearby rayst of the plane vary in latitude. (b) Variables for
the calculations of the enlargement factor associated with latitudex¥hglane has been projected along the
vertical. A nearby ray originating at heading out of the:x’ Q plane by an angle is shown. This ray reflects
from the sphere aP(¢1). The angle subtended byand Q(¢1) from the center of the sphere f5 The angle
formed by the vector from the center of the sphere tnd the ray fromQ(¢) to x/l(gbl) is «. In the diagram the
distanceoq and the anglea and¢, are modified by factors of cesdue to the projection.

One reflection from the plane is trivialt (x, x) = 1/Z§(x). One reflection from the sphere

is simplified by (a) normal incidence, and (b)= x". The second reflection can be simpli-

fied by regarding it as a single reflection from the sphere starting framd ending at the
imagex of the original pointx in the plane. In that case we nead(x, x). Consider the

path fromx to the sphere at the poi@, and then toc’. To obtainA one must follow the
wavefront radii of curvature along the ray. We consider a ray that impacts the sphere at an
angled to the normal. It travels a distaneg before and, after, with¢ = o1 + o2. These
variables are defined iRig. 3(a@). Consider a pencil of rays originatinggtspanning two
infinitesimal arcs of angular width#p, » along perpendicular directions. Lét] anddx)

be the associated arc lengths observed.athen

_d¢1dee
dx} dx),

dS2

Ar(x) = dA
x/

(2.7)

x'=x x'=x

Since both the initial ray and the sphere have equal radii of curvature we have the freedom
to choose the directions defininfgp; andd¢,. We choose “latitude” and “longitude” as
follows: latitude is the direction perpendicular to the plane formed by and the center

of the sphere (sefig. 3(a)). Longitude is the direction in the plane. Consider the pencil of
rays of varying latitude as shown Fig. 3(b). The variables are defined in the figure. It is
easy to see that

dxy=o01d¢1+ o2da, (2.8)
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and considering thata = 2dB cosd + d¢p1 andR dp = o1 dp1, we find

da 201 COSH

— =14 2.9

o1 +—> (2.9)
and hence

dr 1

=, 2.10)

/ 20177009 (

d‘xl Z + Ul(féco

The same calculation applies for the longinali displacement except that the relation
betweend¢1 anddp is replaced byR dB = o1 d¢,/ cosh andda = 2dpB + d¢p1, with the
result

dgo 1
v, i+ 2 @11)
2 Rcosh

Putting these formulas together we find for a single reflection on the sphere (the subscript
s indicates reflection from thepbere) with angle of reflectiof

1

(z_l_ R?(z:]_oose)(g_‘_ 20]_0'122(:059).

A (x,x") = (2.12)

Note thatA(x, x") is symmetric with respect to the interchangexoénd x’ as it must,
because the propagator possesses this symrietrthe first reflection from the sphere we
have co® =1 andoy =02 =1¢/2, SO

1
(£ +02/2R)?

and, as mentioned above, the enlargement factor for the second reflection (on the sphere
and then on the plane or vice versa), is given by the first reflection froonits imagex

in the planeAz(x) = Ax(x, X). A similar approach to higher reflections would require
further analysis. The original wavefront leavings spherical. The first reflection from the
sphere produces a new wavefront with, in general, two unequal radii of curvature. When
next incident upon the sphere, the asymmetric wavefront will be transformed in a manner
yet to be described. The ease with whigh(x) can be computed numerically makes this
unnecessary.

Ags(x) = (2.13)

2.2.3. Domain of theth reflection D,

The next step is the integration over the domains appropriate to each reflection. The
first reflections give rise to cutoff dependent huindependent contributions which must
be analyzed at this point. Consider the first reflection from the plane. The appropriate
domain is all of space except the interior of the sphBreand the region shadowed by
the spher@pl (seeFig. 2. The integral can then be written as the difference between the
integral over all space and the integral o#&rU D,;. The integral over the whole space
is the divergent constant discussed in Secfldhwhich does not contribute to the force.
It is to be ignored in the following. So the correct domain for the first reflection from the
plane is the regiorD; U Z_)pl, in the shadow of the spherand the sign is to be reversed.
Similarly, the integral of the first reflection on the sphere must be performed on the domain
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consisting of the whole space minus the interior of the sphBgg 4nd the region below
the plate @,,). The irrelevant divergence is given by the integral over all the space minus
the interior of the sphere and the finitedependent part, which contributes to the Casimir
force, is given by the negative of the integral over the regl_bp,, below the plane. So the
correct domain for the first reflection from the spher®jsand the sign of the contribution
is reversedHence we can write

1/2

hc 1 hic AT 7(x)
Ei+&1p = 53 / d3x 2 ~ 53 d3x E%’:(x) . (2.14)

DyUD,1 D,
The second reflection gives a finite contributionttoThe path lengthéz(x), never van-
ishes so there are no divergences at short distances, and the intag}@md)/ﬁ(x), falls
rapidly at large distances. The result is typically approximately 90% of the total result.
Higher reflections can be analyzed in a similar fashion. The integration domains become
progressively more restricted. For examplege reflection paths that reflect twice from
the plane and once from the sphere do not exist in the shadow of the s@g,@ben@r in
the darkly shaded regions Fig. 2 determined by the geometrical construction indicated
by the dashed lines. It is not hard to carry out the constructions and calculations necessary
to construct the optical approximation for the sphere and plane to any required order.

2.2.4. Discussion of numerical results

In Ref.[6] we presented initial results on the optical approximation for the sphere and
plane. Here we present final results (§&g 4), discuss them in more detail, and compare
them with the results of Ref4] and with the proximity force approximation (PFA). In
presenting our results we display the sum of all the reflections (even and odd) up to (and
including) the fourth. Since the energy must approach the parallel plate limit-a8 we
can estimate the error in neglecting higher reflections in this limit. The error in neglect-
ing the fifth and higher odd reflections is4e3.8% excess (because the sign of the odd
reflections contribution is opposite to that of the total energy} as 0. Neglecting the
even reflections (6th, 8th, etc.) as— 0 gives an error of-1.8%, negative because these
contributions have the same sign of the total energy. Altogether the sum of the first four
reflections overestimates the energy b§% — 1.8% = 2% asa — 0. To illustrate this
estimate of accuracy we have plotted our results as a band 2% in wiglig).id Since the
fractional contribution of hgher reflections decreases withwe believe this is a conser-
vative estimate for largar. Obviously, calculating the higher reflections will reduce this
uncertainty interval, leaving eventually only the error due to diffraction which we are not
able to estimate. The proximity force approximation has been the standard tool for estimat-
ing the effects of departure from planar geetry for Casimir effects for many yeais9].
In this approach one views the sphere and plate as a superposition of infinitesimal parallel
plates

2
wchc 1
Epra= — s : 2.15
PFA 1440/ d(x)3 (2.15)

S
whered (x) is the distance from the plate to the sphere at a poimt the surface. This

formulation is ambiguous since the surfa€eould be taken to be either the sphere or the
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Fig. 4. Casimir enengfor a sphere of radiug a distance: above an infinite plane. 1448¢ /= 3R#c is plotted
versusa/R. The stars with error bars are the data of R&J. The thick solid curve is the optical approximation
through the fourth reflection. The width of the curve ates our estimate of the error in the optical approxima-
tion from neglect of the odd and even reflections with 5. The dashed curve is the plate-based proximity force
approximation. The triangles athe results we published in R§8], which are superceded by this work.

plate. Whichever surface is chosen, the distance is measured normal to that surface. The
ambiguity is useful since it gives a measure of the uncertainty in the PFA. In either case
the relevant integrals are easily performed. For the plate we obtain

p|a[e_ 77:3th 1
PFA™ 144021+ a/R

while for the sphere we obtain

3 2
hicR a a a a
gepere_ TR (1 3% 6% (14 (1+Z ) . 2.17
PFA 1442 R U U R) "R1a .17
In the limit a/R — 0 both estimates agree to lowest order. The> 0 limit is usually
called the proximity forcéheoremand has been much discussed over the years. It is usu-
ally stated as a result for the Casinfiarce in the limit a/R — 0: Fppa ~ 27 RE/A =

—3hcR/720® (where€/ A is the Casimir energy per unit area for parallel plates). This
limit provides a convenient paramiziation of the Casimir force whedis not so small,

a\ w3hcR
Fe- f<§>_72003 . (2.18)

(2.16)

Modern experiments are approaaiiaccuracies where the deviations 6fa/R) from
unity may be important. The accuracy of the PFA beyondith® — 0O limit is unknown,
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Fig. 5. Contributions o$pecific reflections to the optical approximation.

and the two different versions give differef@{a/R) corrections:

la a?
fFEJIIZ?Ate(a/R)zl—EE‘FO(ﬁ)» (2.19)
spher 3a a2

An important application of the optical agpdmation is to obtain a more accurate estimate

of f(a/R). The optical approximation to the Casimir energy and the data of{&eboth

fall like 1/a? at largea. In fact both are roughly proportional tg/d? for all a. In contrast

the PFA estimates of the energy falls lik¢a? already atz/R ~ 1 and departs from the
Gies et al. data at relatively small/ R. For purposes of display we therefore scale the
estimates of the energy by the factoet44Q:2/73Rhc. The results are shown Fig. 4. At
largea/R the optical approximation has the same scaling behavior as the data and differs
from Ref.[4] by no more than 30% at the largestR. At smalla/R, given our estimate

of the accuracy of the optical approximation, we find that

foPUalq/R) = 1+ 0.05¢/R + O((a/R)?), (2.21)

which must be compared with the predictions of PFA Egs19) and (2.20)In Fig. 5we

show the contributions to the optical approximation of the different reflections we have
computed. As expected the dominant contribution, always greater than 90%, comes from
the second reflection. The fourth reflection contributes about 6% f&r« 1 and less
asa/R increases. The contributions of the firstdathird reflections are very small for

all a/R. A relevant result, confirmed by the analytical analysis on the energy—momentum
tensor (within the optical approximation), the subject of the second paper of this series,
is that the asymptotic behavior 6fasa/R > 1 predicted by the optical approximation
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Fig. 6. Geometry fortte Casimir pendulum.

is oc 1/a2. This is in contrast with the Casimir—Polder law which predigts*at largea
[20]. The discrepancy must be attributed to diffraction effects.

2.3. Casimir pendulum

In this section we treat a problem for which the exact answer is unknown. The config-
uration is shown irFig. 6. The base plate is taken to be infinite. The upper plate is held at
its midpoint a distance above the base plate. The width of the upper plate esnd its
depth,d (out of the page), is assumed to be infinite. We define the Casimir energy per unit
depth,e = £/d. 0 is the angle of inclination of the upper plate. It will be convenient to use
z= %w sing as a variable as well. It is also possible to view this configuration as a finite
slice betweerf1 = a/sind —w/2 and¢z = a/ sind + w/2 of a wedge of opening anghe
In this section we will discuss both the Casimir energy and the “Casimir torqu-e’% %,
per unit depth. We are aware of two ad hoc approximate approaches to this problem. The
firstis the PFA which treats each element of $iyetem perpendicular to the lower plate as
an infinitesimal parallel plate Casimir system. It is easy to show that

%he w cosd w2sin? g\ 2 7hea Nw? — 472
SPFAZ — 1— = — (222)
1440 a3 4q? 1440 (a?—7%)?
which gives a torque
25 2_,2_3,2
VPFA(a, w, 2) = _rheaz(w” ~a 2. (2.23)

720 (a?—-z23%
where the minus sign denotes that the torque is destabiliziag0 is a point of unstable
equilibrium. As in the case of the sphere and the plane, the PFA is ambiguous. A more sym-
metric treatment of the two planes in the present geometry would integrate over the surface
that bisects the wedge and take the distanceabto that surface. The resultis the replace-
ment of co® by cog(6/2) in Eq.(2.22)and a similar modification of the torque. A second
“approximate” treatment of the Casimir pendulum can be extracted from the known exact
solution for the Casimir energy density for the “Dirichlet wedd21], which consists of

two semi-infinite plates with opening anglemeeting at the origin. One can obtain an
estimate of the energy for the pendulum by integrating the energy density over the two-
dimensional domain bounded (in polar coordinates¢g)) by 0< ¢ <6 and{y < p < €.

This approach takes no account of the modification of the energy density due to the finite-
ness of the upper plate. Furthermore itikérently ambiguous because the energy density
for a scalar field is only defined up to a tbteerivative. The calculation in Ref21] used
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Fig. 7. Odd reflection paths for the Casimir pendulum.

the conformally invariant stress tensor. One would obtain a different answer if one used,
for example, the Noether stress tensor. In light of these difficulties, we do not pursue this
approach further. To compute the optical approximation we need the enlargement factor,
the lengths of optical paths, and the integration donijn,Since all the conducting sur-
faces are planar, the enlargement factor is trivial in this casey) — 1/£2(x). The path
lengths are also easy to compute. The only non-trivial step is the determination of the inte-
gration domains. As in the case of parallel plates, the odd reflections do not contribute to
forces or torques for the Casimir pendulum. Instead they sum to a cutoff dependent con-
stant associated with each plate. Any odda@tibn path “turns around” with a reflection at
normal incidence from one plate or the other. Consider all the paintghich are the ori-

gins of paths that turn around at a given pafhbn either surface. These paths are shown,
for the case wher@ is on the lower, infinite plane, iRig. 7. They comprise one reflection
paths lying on the interva? Q 1, three reflection paths lying on the intern@{ 0>, etc. The
contributions tos from these intervals integrates to the same result as the integrat over
for odd paths in the case of parallel plates. It is independemt @f and® and can be set
aside. The fact that the enlargement fadsdrivial is crucial for this argument.

2.3.1. Even optical path length,(x)

The analysis of paths that reflect an even number of times makes use of simple geomet-
rical concepts. For any point= (p, ¢), we define an infinite sequence of images in the
upper and lower planes as shownrfig. 8, ignoring for the moment that the upper plane
is finite. The images below the lower plane are denatedo, . .. and those above the up-
per plane are denoted, xo, .... In sequencei; = Rx, x1 = Rx, x» = RX1, X2 = Rxy,
etc., withR denoting reflection in the lower plane aRddenoting reflection in the upper
plane. All of the images lien the circle of radiug about the origin. The length of the:2
reflection path can easily be seen to be given by

U2 (x) = ||xn — || = 4p? sir? n6 (2.24)
independent ofp. Substituting into Eq(1.1) we obtain the expression for the Casimir
energy per unit depth,

he Ymxoo1 T
C

Eopt=—7—"—5 — | d dp — 0O (Day,). 2.25

opt 16012ngsin4n9.0/ ¢0 pp3 (D2n) ( )

The step function® (D5,) vanishes when the point is not in the domain wheren2

reflection paths are possible. As we show in the following sectionz ftarge enough,
D2, — @. Nmax, the upper limit on the:-sum, is the largest value af for which any
2n-reflection paths exist.
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Fig. 8. Images of the point in the Casimir pendulum configuration. The dashed lines have the same length as
ther =2,4,6, ... reflection paths.

2.3.2. Domain of th@nth reflection,D5,

The domain in which thes2reflection path exists is detained by the constraint that
the points of reflection at the upper plate must lie betw&eand{,, the inner and outer
radii that define its boundaries. Note, of course, that ¢1. Although the calculation is
elementary, it is tricky, so we only quote the results. The constraints depend on whether
is even or odd, so we summarize them independently.

e n-0dd Whenn is odd, the integration domaiRy, is defined by the inequalities

£1c08p < pcosnt < £2c08(n — 1)6 + ) (2.26)
where the lower limit ensures that the innermost reflection occups>at, and the up-
per limit ensures that the outermost reflection occurs €t¢. The inequality cannot be
satisfied for any or ¢(< 6) unless

£oco9n —1)0 > £1. (2.27)
When Eq.(2.27)is satisfied the contribution of the:th reflection ¢-odd) is

L tang — 3 (tannd — tan(n — 1)6)
el 22

odd e cognd | for tpcosb > £1c08d,

optn — 3272 W (£2c08n—1)0—£1)?
€202 cogn—1)0 sin(n—1)0

for £2cosnd < £1C0sH.
e n-even Whenn is even, the integration domaipy, is defined by the inequalities

£1c090 — ¢) < pcosnd < L2c0q(n — 1)6 + ¢). (2.29)

where, as before, the lower limit ensarthat the innermost reflection occurs@at 1
and the upper limit ensures that the outermost reflection occyrsiat,. The inequality

(2.28)
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Fig. 9. Casimir energy and torque in se@lunits for a Casimir pendulum of width = 1.5a, 2.5a, 5¢ and 1G..
Positive values of the scaled torque are destabilizing.

cannot be satisfied at all unless

£oco9n — 1)0 > £1C00. (2.30)
When Eq.(2.30)is satisfied the contribution of the:th reflection -even) is

étan@ — é(tann@ —tan(n — 1)0)

even_ _hc cosnd | fortacomb > ¢, (2.31)
oPU ™ 3502 Girf e | (Lacosin—1)6—t; cosh)? :
€202 cosn—1)8 sinnd cosd
for £ocosnd < £1.

The torque is obtained by differentiating with respect tat fixeda andw, remembering
that¢, and¢, depend ord. Of course th&-derivative of Eqs(2.31) and (2.28are com-
plicated and need not be written down explicitly. The resulting expressionggﬁrand
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Fig. 10. The ratio of the optical approximation to theAPFa) for a pendulum of different widths as a function
of z/a. The breaks in the curves far = 1.5¢ and 25« occur when only the second reflection can contribute.
Thew = 1.5a curve ends at the= 0.75: whenz = w/2. (b) The contributions of the 4th and 6th reflections for
w = 2.5a. The 2nd reflection contriltes 0.924. .. independent of This is the only case we found in which the
optical approximation gives an energy smaller than the PFA.

Voptn Must be summed oversubject to the constraints in Eq8.28) and (2.31)This sum
must be performed numerically. The results are discussed in the following subsection.

2.3.3. Discussion

Fig. 9 shows the pendulum Casimir energy as a function &r a = 1 and several
values ofw. The weak dependence arat smallz is to be expected. So is the divergence
asz — 1 which we do not showFrig. 9. When the plates touch afa = 1, the Casimir
energy of perfectly sharp, perfectly conducting plates would in fact diverge, as would the
Casimir torque. The optical approximation for the pendulum turns out to be very close to
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the plate based PFA. It is convenient therefore to scale out a factel&#Q:3/hcrw

(see Eq(2.22) when displaying or results for the energy per unit depgp;, and a fac-

tor —72:°/hcr?w? when displaying results for the torque per unit depth. The energy
and torque are plotted for representative values qiv = 1.5a, 2.54, 5a, and 1@) as a
function of z/a in Fig. 9. The plots are shown only up tg/a = 0.5. Abovez/a ~ 0.5

both grow rapidly and diverge at= a. The PFA gives an excellent approximation for the
pendulum over a wide range of the parameter space. This can be seen by examining the
ratio of eopt/epra as shown irFig. 10 The reason behind this success is that the second
(optical) reflection is proportional to the PFA result (E8.22)) for all z. The constant

of proportionality is the familiar 907% = 0.924. The sum of the higher even reflections
combines with the second to equal the PFA at0 and drops away slowly with increasing
z/a. So the optical estimate coincides with the PF4 at 0 and drops slowly with. The
contributions of the first few reflections are shown#oe= 2.54 in Fig. 10 A careful study

of Fig. 9reveals one peculiar feature, namely the fact that the torque does not vanish for
z/a =0, implying a cusp in the Casimir energy foe= 0. We believe this is an artifact of

our approximation. Since the already tiny effect vanishes quickly for large valuegagf

it is most probably an edge effect.

3. Originsof the optical approximation

Most studies of Casimir energies do not consider approximations. Instead they focus
on ways to regulate and compute the sum over moEe%hw [19]. These methods have
proved very difficult to apply to geometries other than parallel plates. The main reason for
this impassédies in the high degree of divergence of this sum. Even though the Casimir
force between rigid bodies is known to be finite and the divergences can be regulated
and analyzed, for example with the multiple reflection expansion (MRE) of Balian and
Bloch[22], they make the calculation intractable e@sé the spectrum is known analytically.
Finding the spectrum of the Laplace operator for non-separable problems is not merely a
technical difficulty, it is more one of principle. In fact there are strict relations between this
problem and those of chaotic billiards theory. The existence of an exact solution for the
Casimir problem with a non-trivial geometry would imply the existence of an exact solu-
tion for the same family of quantum billiards and hence of classical billiards. Thirty years
of work on the ergodicity of classical billiardsid the implications for the density of states
in the corresponding quantum billiards suggest this task is hopeledd @§ee&Consider an
attempt to proceed numerically: oneuld easily compute the spectrym} to some high,
but finite, accuracy, and attempt to compute the sum. However the sum diverges—the lead-
ing non-trivial divergence iV dimensions is of orden” . One could hope to compute it
by introducing a cutoff, computing the energy at nearby separatioasda + da, tak-
ing the differencef(a + da, A) — E(a, A), and finally takingA — oco. However such
numerical problems are hopelessly unstable: tiny errors in the asymptotic spectrum lead
to significant ambiguities in the finite parts. The force, indeed, is given by the small os-
cillatory ripple in the density of state numerically shadowed by the “bulk” contributions
which give rise to distance-independent divergencies. So we focused our attention on ways
to get approximate solutions of the Laplace—Ehiet problem which are apt to capture the
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oscillatory contributions in the density ofagés, providing physal insights and accurate
numerical estimates. We have not found any previous use of ideas from classical optics.
In this section we give a derivation of the optical approximation based on a path integral
representation of the Helmholtz Greens function. Schaden and Spruch have developed an
approximation for Casimir energi¢$1] using Gutzwiller's semiclassical treatmdaf]

of the density of states. It is misleading to call the approach of [R&}.“semiclassical”
because, as can be seen for example from(&Ed), the only# in the Casimir problem for

a massless field is the multiplicative factor%hw. However, since the authors of REF1]

use the term following Gutzwiller, we will continue to refer to their approach as “semi-
classical”. This work differs in important wa from ours and in general is not as accurate,
however the relationship between the two approaches is interesting, and is explored later
in this section.

3.1. Derivation

We begin with the well-known definition of the Casimir energy in terms of a space and
wavenumber dependent density of st483, o (x, k),

Ep[lﬂ]zfdk/de %hw(k)ﬁ(x,k), (3.1)
0 D

wherew (k) = c/k% + 2, and the density of state(x, k) is related to the propagator
G(x',x,k) by

,b“(x,k):%lm G(x,x, k). (3.2)

Since we are considering a scalar fied#ljs the Greens function for the Helmholtz equa-
tion. We choos& to be analytic in the upper-half-plane (or equivalently take? to have

a small positive imaginary part). The tildes ptx, k) andG (x, x', k) denote the subtrac-

tion of the contribution of the free propagat6y(x’, x, k). The Casimir energy depends

on the boundary conditions obeyed by the figicand on the arrangement of the bound-
aries,S = 9D (not necessarily finite), of the domalh From the outset we recognize that

£ must be regulated, and will in general be cutoff dependent, as discussed in the Introduc-
tion. We will not denote the cutoff dependence explicitly except when necegsaryhe
familiar density of states associated with the problem

(A+K*)y(x)=0 forxeD,

Y(x)=0 forxesS, (3.3)
so thatG satisfies the equation

(A" +K)G( x, k) =8V (' —x) forx’,xeD,

G(x',x,k)=0 forx'orxesS, (3.4)
and

G, x, k) =G/, x, k) — Go(x', x, k), (3.5)
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whereGy is the free scalar propagator in the absence of boundaries. The spectral repre-
sentation expressé&s as a sum over a complete set of eigenfunctigpsvith eigenvalues
kn

G\ x, k) = ZW"()C]?;” i(fe) (3.6)

Notice that since the proble(8.3)is real we have chosen a complete saeal eigenfunc-

tions and removed the usual complex conjugation f(8r6). We can regard this problem

as the study of a quantum mechanical free particle with 1, massn = 1/2, and en-
ergy E = k2, living in the domainD with Dirichlet boundary conditions o#iD. Dirichlet
boundary conditions are an idealization of istetions which prevent the quantum particle
from penetrating beyond the surfacgsThis idealization is adequate for low energies but
fails for the divergent, i.e., cutoff dependent, contributions to the Casimir efi24diyAs

we have already seen in Secti®rthe divergences can be simply disposed of in the optical
approach, and the physically measurable contributions to Casimir effects are dominated
by k ~ 1/a, wherea, a typical plate separation, will satisfyd <« A whereA is the mo-
mentum cutoff characterizing the materi&b the boundary condition idealization is quite
adequate for our purposes. Following this quantum mechanics analogy we introduce a fic-
titious time, ¢, and consider the functional integjrepresentation of the propagaf{@s].

The space—time propagator is

o0
dE —
G(x/a-xat): / TG(x/a-xa E)eilEtv (37)
Tl

—00

whereE = k2. SinceG is analytic in the upper half?-plane, it is evident that (x', x, 1) =
0 whenr < 0. The inverse Fourier transform reads

o0
G(x’,x,k)=i/dteik2’G(x’,x,t). (3.8)
0

G(x’, x, 1) obeys the free Schrodinger equatiorfirbounded byS. It can be written as a
functional integral over paths fronf to x with actionS(x’, x, 1) = %fdt)'cz. The optical
approximation is obtained by taking thetst@ary phase approximation of the propagator
G in the fictitious time domainHence we assume that the functional integral is domi-
nated by the contribution of classical paths betweegndx. These are straight line paths,
reflectingr times from the boundaries, and traversed at constant speed, (x’, x)/1,
wheret, (x', x) is the length of the path. Then thetmal approximation to the propagator
is given by

Gopt(x', x, 1) = Z D,(x', x, t)eiS"(x/x’t). (3.9)
r
The action is
E /’ 2
S, x, 1) = & (3.10)

4t
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andD is the van Vleck determinant

252 1/2
D, (x',x,t) ocde — ) (3.11)
3)61-3)(/'

This approximation is exact to the extent one can assume the classical action of the path
to be quadratic i/, x. This is the case for flat and infinite plates. Thus the non-quadratic
part of the classical action comes from the curvature or the finite extent of the boundaries,
which we parameterize generically 8 335/9x2 ~ 1/Rt. Hence, in a stationary phase
approximatiorsx ~ /7 and the corrections are of ord&¥S ~ O(y/7/R). Back ink-space

the corrections hence will b&(1/kR), and the important values d@f for the Casimir
energy are of order/L, wherea is a measure of the separation between the surfaces. Thus
the figure of merit for the optical approximationdg R. At the moment there is no good
way to estimate the order iy R of the corrections to the optical approximation (possibly
fractional, plus exponentially small terms). Certainly some of the curvature effects are
captured by the van Vleck determinant, and as we saw in SezZi&ior the sphere—plate
problem, the optical approximation works in practice out:f@® ~ 1. This is topic for
further investigation. Eq(3.9) is, in fact, the usual approximation of ray optics, the van
Vleck determinant being precisely the egiament factor of classical optics, as we now
show. Sinced’, (x’, x)/0x’ =n’ and 3¢, (x’, x)/dx = —n, wheren andn’ are the unit
tangent vectors to the path in the pointandx’, we have

In 1/2
D, (x',x,1) O(dG[(nin/j + 4, j/> . (3.12)
aX;

1

We perform the analysis in three dimensions. Other value¥ affe analogous, and we
guote the general result at the end. The ma%%i}b(is

d d

d%itl@tﬁ £t2®t§, (3.13)
wheret 2 andt/l,2 are orthonormal tangent vectors perpendicular &mdn’ respectively
and with them form two orthonormal bases centered @amdx’, andd¢; /dx] is the deriv-
ative of the angle subtended at the poinivhen we shift the point’ along the direction
t’. Taking the determinant is now easy: it is the product of the three eigenvalues of the ma-
trix, but given the fact thafn, t1, t2} (and their primed correspondents) are an orthonormal
triple these are judftl, £,d¢1/dx], €,d¢2/dx5}, SO

a9 1/2
Dr(x”x,t)o(<£EdAZ) ) (3.14)

The coefficient of proportioniy is independent of the path- and must depend onin
such a way that for the direct path we obtain the free propagator. Therefore,

(D" [, y_1d2:\Y?
D, (x' x, 1) = 3.15
PO XD = N (z, A, ) (3.15)

3 We are not discussing the Maslov indexes other tharn(thB" here. If the ray- would touch a caustic it
would be necessary to introduce the appropriate phase factor.
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where we have returned fg-dimensions. We have introduced the fadterl)” to imple-
ment a Dirichlet boundary condition. In tliase of a Neumann boundary condition, this
factor would not be present. Although we did not lald&t /d A with an indexr, it should

be clear from the derivation that it does depend on the paftutting all together we find
the space—time form of the optical propagator to be

=’ N—1452 vz i 02/4
Gopt(x', x, 1) = [/ /4 3.16
Opt(-x X ) Z (47Ti[)N/2( r dA; € ( )

r

When dealing with infinite, parallel, flat plates this approximation becomes exact. For a
single infinite plate, for example, the length-squared of the only two paths goingtftom
x" are

2 2

Cirect= flx" = x4,

2 ro=2

Creflection= X" — X% (3.17)

wherex is the image ofc. Both are quadratic functions of the pointsx’ and the optical
approximation is indeed exact. In order to cdéte the density of states we must return
to k-space.G(x', x, k) is obtained by Fourier transformation (see E3}8)), and can be
expressed in terms of Hankel functions, giving us the final form for our approximation

(—D)im, 5 e\
Goptx' . x. k) =Y (eN 1A,)1/2<_’) HY (kty)
2

- (4 )N/2 2k
=Y G (' x,k), (3.18)
p
whereA, is the enlargement factor
as2
Ar(x x) = dA; (3.19)

and we have suppressed the argumersdx’ on ¢, andA, in (3.18) This can be thought
of as a particular case of the general results in R&.
For N =1 and N = 3 the Hankel function reduces to an exponential. For example,
whenN = 3 we find
1/2

A ,
Gr(x', x, k) = (—1)" =L —¢'ktr, (3.20)
Vb4

However, had we attempted a stationary phase approximation direétlypace we would
have obtained an exponential any N,

Gsemicx', x.1) = Y Dp(x', x, k)ektrte™®),
paths

which does not reduce to the exact expression in the limit in which we have only infi-
nite, non-intersecting (hencepallel), flat planes, becausefrspace it is not a Gaussian
problem even for quadrati€?. This is an important advantage of applying the stationary
phase approximation in the time domain where it leads to the optical approximation. Also
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we believe the optical approximation to be a more favorable starting point for consider-
ing systematic corrections to the stationary phase approximation unifbimly/ R. The
expression$3.9) and (3.18are the first term of a systematic expansion of the propagator
in 1/kR. For gently curved geometries we expect them to provide a good approxima-
tion, the final test, in absence of exact solutions, coming only from comparison with the
experiments. The corrections comerfrawo different (but related) effec{28]: (a) we
have to expand the functia$) (x’, x) in the exponential to include cubic (and higher or-
der) terms and (b) we have to include other stationary paths of non-classical origin, like
paths running all around the bodies one or more times (these can be considered as a non-
perturbative, exponentially small correction to the propagi@®}). Both phenomena are
due to the curvature of the boundary surfaces and we go back to the previous estimate that
the parameter controlling the accuracy of the our approximation is indgeel (wedges
and discontinuities must be considered as regions in wRiek 0 and the expansion is
somewhat different). Two intertwined branches of wave optics have dealt with finding cor-
rections to the geometric optics predictions for curved boundaries. Th¢gfit€] deals
both with perturbative (a) and non-perturbative (b) corrections to next to leading order in
1/kR of particular importance in the shadow region. The second deals with edges and
holes in locally flat surfaces, originated by Sommerfeld’s w{38] (see alsd31] and
references therein). Both must be considered relevant to future studies of Casimir forces,
since high-curvature and finite-size effects will soon be relevant in the next generation of
precision experiment82,33] Another phenomenon to be taken in account, even in the
case of gently curved surfaces, the optical approximations fails when eithrer” are in
the shadow region or we are in presence of a caustic, the set of points where the Hessian
9258, /dxdx’ has one or more vanishing eigenval{@4]. In these regions of the parameters
(x, x’) the Gaussian approximation fails and one cannot ignore cubic terms in the action.
There are various ways of treating this phenomenon, whose importance in wavd2ptics
35] as well as quantum mechanif@s,28]is today clear. The most interesting prediction
related to the presence of caustics (for what concerns us here) is the fact that a ray cross-
ing a caustic acquires a non-trivial phase shift. This could possibly result in a change of
the sign of the Casimir force for concave geometry. Unfortunately, the existing formalism
does not seem to be easily translated into our language and more work is needed in this
direction.

The famous multiple reflection expansi¢??] is also intimately related to the op-
tical approximation developed here. It is relatively easy to see that our approximation
arises as the first term in a uniforny AR expansion for the propagator. Most of the
effort in applying the MRE to Casimir energies has focused on the divergent terms
associated with general geometrical properties of the bd@ék or on the Casimir
force at large distances where only the lowest reflections contribute. To our knowl-
edge no one has been able to develop a useful expansion beyond the optical limit from
the MRE.

4 The technique of passing to the Fourier transform taiobtiniform approximations is certainly not new in
wave optic§27].



A. Scardicchio, R.L. Jaffe / Nuclear Physics B 704 [FS] (2005) 552-582 575

3.2. The optical Casimir energy

The substitution of3.18)into (3.2)and then in(3.1) gives rise to a series expansion of
the Casimir energy associated with classaabsed (but not necessarily periodic) paths

Eopt= Z &, (3.22)
paths

where each term of this series will be in the form of

(o0}
1 2k
& = Ehlmfallm(k)—/aﬂ\’x Gr(x,x, k). (3.22)
T
0 D,

Here the integration has been restricted to the dorfaiwhere the given classical path
exists. At this point it is useful to separate potentially divergent contributions from those
which are finite. Becaus€ is analytic in the upper hakf-plane, thet integration can be
taken along a contour with Iln> 0. The Hankel functiorH,fl)(kﬂ) falls exponentially

in the upper half plane, so theintegral converges absolutely and uniformly at fixed-
unless there are-values wherée/, (x) can vanish. One can easily convince oneself that
for smooth surfac@sonly the paths that reflectnceon any surface can give vanishing
path length. So for the moment, we put aside the first reflection and consider the cutoff
independent contributions from> 1. In that case we can interchange thand volume
integrals. The resulting-integral is also uniformly convergent

B Th (=1) Re/ de (Zfﬁ\’flAr)l/Z

T2 (4m)N/2 gﬁwz*l
r 2%
x / dk o (k)= (22 H, (ke (3.23)
T
0

for r > 1. Thek-integral can be performed in general, but is particularly simple for the
massless case,(k) = ck,

2
(_1)r+l N+1 / N Aﬂ-/
E =h r d"x ———%—, 3.24
r=hes N 2 * (N2 (3.24)

'

which is the Casimir energy associated to the optical pathl, and generalizes our fun-
damental result, Eq1.1)to dimensions other than three. The generalization to the massive
case forN = 3 is given by

hep? AM?
& = (- 0L [ S Kot (3.25)
4 Ly

D,

5 It suffices that the vectar normal to the surface is continuous, i.e., no wedges are present.
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which reduces to th&/ = 3 case of Eq(3.24)asu — 0. It is worth noting that fope > 0

the paths with lengtli > 1/ are exponentially damped. Now we return to analyze the
potentially divergent first reflection. For simplicity of notation we specializeVte= 3
although the analysis is completely general. Let the boundaBy/lod the surfaces of a set

of rigid bodiesBi, By, ..., B,. The divergent contributions come from the pati# that
reflect once on any of the bodidés. To regulate possible divergences we insert a simple
exponential cutoff irk. It is easy to see that our results are independent of the form of the
cutoff. Then for a massless field, reflecting from bagly

o0
hic _ .
f15= (-1 f d3x A}gz(x,x)/dke kA2 sin(keqp (x, x)). (3.26)
D1p 0
Thek-integration can be performed,

hic 122015 A*(3 — (L154)?)
E1p=——— d3x A
18 4n2f OB T (115 )2)3
D1p

(3.27)

Notice that for¢15 A > 1 we reobtain the standard result, Et.1) as we should. When
£15 A < 1 however the structure of the function changes completely. In particulaighe
changes at13 A = +/3. There is a non-trivial consequence of this fact: from @ql)one
expects a positive divergence£ 1 here) a¥ — 0, however the small divergence in
Eq. (3.27)is negative. This effect, that the cutoff dependent contribution to the Casimir
energy density changes sign near the bounding surface, is well known and has figured cen-
trally in recent discussions of Casimir energy dens[ti®3. Of course the bulk contribution
to the vacuum fluctuation energy comes from the zero-reflection term, which is positive.
The negative surface correction is well known and has many physical consequences. For
example it contributes to the surface tension of heavy n{@1i

To analyze the divergent first reflection, £8.26)further, we need an expression for
A(x, x) near a generally curved surfadéiis entails a small change ifiy; (see Eq(2.12)
to take in account two different principal radii of curvature, $gyandR;, (herex’ = x so
0 =0ando1 =02 =1¢/2)

1
(1 +02,5/2R.) (L1 + 02,5 /2Ry)

Substituting back into Eq(3.27) and replacingd®x = dS(¢)dt/2, wheredS({) =
(L/2R, +1)(£/2Ry + 1)dS, andd S is the surface area element on the body, we get (up to
finite terms arising from upper bounds on the integratiogé

(3.28)

A1p(x,x) =

A3 = (LA)?)
(14 ()33’

£~ _%/dS/dﬁ V@AFC/2R)(1+€/2Rp) (3.29)
T
0

where we have suppressed the subscript The ¢-integration may be evaluated at large
A to obtain an asymptotic expansion of the cutoff dependent terms in the first reflection
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hc T 1 1 1
E~—— | dS| A3+ A% =+ — ) +00nA
4n2/ (2 T3 (Ra+Rb)+ n ))

= _%hc/ﬁ - Azsznzhc/dS (Ri + R%) +O(n A). (3.30)
Eqg. (3.30) summarizes the cutoff dependent contributions to the Casimir energy in the
optical approximation. As discussed in Secti?dnthese terms do not contribute to the
forces between rigid objects. 0 they are trivial to isolate and discard from the calculation

of forces. The form of Eq(3.30)invites comparison with the work of Balian and Bloch

[22] on the asymptotic expansion of the density of states based on their multiple reflection
expansion. The MRE propagator includes not only specular paths, but also contributions
from diffraction which also yield cutoff dependent contributions to the Casimir energy.
Scaling arguments indicate that terms up to at least the third “reflection” in the MRE are
cutoff dependent. These higher divergences are omitted from the optical approximation,
which is convenient since they do not contribute to Casimir forces in any case. The first
few terms in the MRE expansion of the density of states are given by

. S 1 1/1 1 )
AMRE (k) 2k<—E — mde§<R—a + R—b> O(1/k )), (3.31)

so the leading cutoff dependent terms in the Casimir enerdy are
1 o0
E~ Ehc/azqusMRE(k)e*"//‘
0

~ —%hc/ﬁ* - T::ﬂhcAZ/dS (Ri + R%) +O(4A). (3.32)
Comparing with the optical result, E¢3.30) we see that the first terms agree and the
second terms differ by a factor of 8. Apparently our optical approximation to the prop-
agator, despite its simplicity, captures the leading divergence and the order of magnitude
of the subleading divergendélhe discrepancy between our approximation and the MRE
(exact) result for the quadratically divergent termé€iris not surprising. To get the diver-
gences right, it is necessary to capture pattmeod length that occur in higher reflections.
However only the first reflection is classical. The finite part of the Casimir energy (the one
responsible for Casimir forces) however comes from paths of finite length, whose corre-
sponding terms in the expansion for the propagator we believe are captured quite well by
the optical approximation. This could help explain why the approximation works better
than one would expect from a naive error estimate.

6 The sign of the second term here is opposite that of R8f.because we are dealing with convex rather than
concave geometries

7 One might think to claim more than order of magnitude success here. However it should be noted that for
Neumann boundary conditions both termg3r80) change signs while only the surface term¢3r82)changes
sign. This is due to the fact that 2 “reflections” in the ERxpansion contribute to the curvature divergence as
well and their sign is the same for Dirichlet or Neumann boundary conditions.
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3.3. Connections with other semiclassical approximations

Stationary phase approximations are nowne the study of Casimir energy both at
zero and non-zero temperatiiid,38]. These works certainly share with ours the attempt
to switch the attention toward general properties and approximations to the Helmholtz
equation. On the other hand, relying more or less heavily on Gutzwiller’s trace formula,
they suffer from two significant problems. First, they treat symmetric and nearly symmetric
geometries in radically different ways, and fa provide a natural deformation away from
the symmetric limit (not to mention that they give the exact result for parallel plates only
for odd number of space dimensions). Second, they require a certain amount of strongly
geometry-dependent work (to calculate monodromy matrices for example). We discuss
both these problems further below. In order to study these points we will rewrite a given
contributioné, (specializing tovV = 3 and suppressing the indekas

o0 o

E=Im(=1)" / dk hick?e /4 / de J e, (3.33)
0 0

where
1/2
Ar (-x?-x»k)
— 3
J(Z):/d x8(¢ —E,(x,x))T. (3.34)

D,
Our strategy has been to dominate the functional integral over pathsftmk tox by

the classical paths, then perform thentegral analytically, and to leave the integration
overx for numerical evaluation. Theéandard “semiclassical” approaftl,17]is to per-

form all spatial integrations by stationary phase including the one over the argument of the
Greens function itself. This leaves a function onlykoivhich can be integrated analyti-
cally. The fact that we can do theintegral numerically allows us to capture much more
detailed information about the system. We will show this in detail in the following. To
underline the differences, let us repeat brigfflg line of reasoning leading to Gutzwiller's
trace formula. We start by writing an asymptotic expansionkioys> 1. The asymptotic
contributions to the-integral comg39] both from (a) boundaries dt,, £); (Minimum

and maximum length achieved by the pajtthat isintegration by parterms and (b) in-
tegrable divergences in the functidi(¢) that is stationary phas€SP) points at’;. So

that

[o/0]
/ de J ()™~ (An(k)e™ ™ — By (ke )+ Y Cikye™ . (3.35)
0 n=0 SP pointg

A, B, C are polynomials irk, 1/k and{,,, £y, £ j, respectively. Schaden and Sprith]
approach based on Gutzwiller trace form{d&] consists in taking only the stationary
phase contributions, (b), to the energy, the coeffici€hts)'’s then being related to the
“monodromy matrix”® These terms correspond to closed classical paths, for which the

8 To be precise the stationary phase integral is done erdifections transverse to the periodic orbit. The
integration over the direction parallel to thebit is eventually performed by means of a tr{dk].
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Fig. 11. Comparison between the optical approximatigepér curve) and the “semiclassical” approximation of
Schaden and Spruch (lower curve) for the sphere dadep The scaled Casimir energy is plotted versyg.

For the optical approximation, the sum of the fiistif reflections has been rescaled to go to unity as 0. It is
possible to show that in the limit/ R >> 1 the optical approximation and Schadend Spruch’s formula agree (in
the figure they both tend to 884 = 0.92...). The most notable and relevant discrepancies are in the derivative
at smalla/R.

final momentum is equal to the initial one (the actionSisx ¢). The stationary phase
approximation requires the periodic orbitstie well-separated in units of wavelength.
However as one approaches a situation ficlt one exact symmetry exists, the spage,

in 3 dimensions, perpendicular to the closed orbit at a given point breaks into the product
of two subspaced x B, and{ is constant with respect to the coordinates. In the
symmetric situation the SP points then form lines (or planes if more than one symmetry
is present) parameterized lby The problem can again be solved easily just by writing
d?x o da db and factoring out the integral oveb [11,40]leaving the integral ovefa to

be evaluated by stationary phase approximation ajaiowever, when the symmetry is
slightly broken the lengtli acquires a smalh dependence and the integral ovkr can

no longer be factored out. Moreover a rastationary phase approximation in bathdb

is not reliable because arbitrarily closethe breaking point, the dependence an b is

small and the Hessian matri¢/(x, x)/dx? has one (or more) very small eigenvalues in
the oldb directions. There exisfd1] a theory for Gutzwiller trace formula for approximate
symmetries. However, we found that it is not easy to implement in the study of the Casimir
energy for arbitrary surfaces. In the cases in which these problems can be avoided, like a
sphere of fixed radius in front of a plane, anddgiR < 1 the semiclassical approximation

a la Schaden and Spruch provides quite a good approximatiorrige#l) since in the

9 The simplest example is that of a cylinder facing anplaThen the periodic orbits are lines perpendicular
both to the cylinder and the plankjs parallel to the axis of the cylinder anmdis the direction perpendicular to
this. In the case of parallel plates both the directiordb are symmetry directions so they both factor out and
no stationary phase approximation igfpemed. In this case the former analysis gives an exact result, as is well
known.
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expansior(3.35)the stationary phase approximation gives a much larger contribution than
the integration by parts terms. A much stronger disagreement has to be expected if the
sphere gets substituted by a plate of widtlbent with a curvature of ordet >> w. Indeed

the method of Ref[11] differs dramatically from the optical approximation for the case

of a hyperboloid9]. This is not a diffraction effect but rather a “precocious” breakdown

of the semiclassical approximation which is cured by a uniform approximation of the kind
we have described.

4. Conclusions

We have proposed a new method for calculating approximately Casimir energies be-
tween conductors in generic geometries. Weaistationary phase approximationimported
from studies of wave optics that we have tifere named the “optical approximation”. In
this paper, the first of the series, we have outlined the derivation and applied it to three
examples: the canonical example of parallel plates; the experimentally relevant situation
of a sphere facing a plane; and the “Casimir pendulum?”, i.e., a conducting plate free to os-
cillate above an infinite plate, where the calculations can be performed analytically. In all
of the above examples (except for parallel plates, where our result coincides with Casimir
solution) the agreement with the proximity force approximation is only to the leading order
in the small distances expansion. The first order correction is found to be different. This
is of particular importance in the examplétbe sphere and the plane because the first
order correction inz/R (a is the distance sphere—plate aRds the radius of the sphere)
will soon be measured by new precision experimg$ The optical approximation turns
the Casimir sum over modes into a sum over topologically different paths, and from this
point of view can be compared with the Poisson summation formula, which has proved
useful to derive semiclassical uniform expansions for very diverse prod@e2] In
the case of the Casimir energy, replacing the usual highly divergent sum over modes by a
sum over topologically distinct optical paths has two, very significant advantages: first, we
have been able to show that the divergencekénCasimir energy are contained in contri-
butions of very simple, one-reflection paths and can be easily and unequivocally regulated
and discarded; and second, the convergence of the sum over paths is very rapid. Instead of
requiring an infinite number of eigenvalues with exquisite precision one needs but a few
path contributions, calculated with little nunieal effort, to give a very good approxima-
tion to the Casimir energy for important geometries. “Semiclassical” methods have been
used previously in the study of Casimir effects and the connection betiveerscillat-
ing part of the density of statemd the finite part of the Casimir energy has been pointed
out before(see for exampl§l8]). Our analysis shares with those the idea of shifting at-
tention to approximations and to properties of the Helmholtz propagator. We have shown
however that in order to obtain a correct low curvature approximation one has to use a
uniform approximation of the kind we proposed here. There is plenty of room to improve
the approximation presented here, especially when the connection with Balian and Bloch’s
multiple reflection expansion is made explicit. In particular it is intriguing that the Casimir
energy for the sphere—plane problem is such a well-defined problem in a single variable,
namelyx = a/R whose limiting values fox « 1 andx > 1 are famou$20,36] One can
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hope that an analytic solution or an approximation good for the entire range/alues
should be relatively easy to find. On the contrary it is an incredibly difficult problem and
nobody has succeeded in finding such an exact solution or a valid approximation. In the
next paper we will show how the same approximation for the propagator can give useful
expansions for local operators like the energy—momentum tensor, which allows us to cal-
culate the pressure the energy density and other properties of the constrained field. We will
show how to calculate thermal correctioadiays in the perfect metal approximatjars-

ing our approach. In another paper of the series we will also perform the same analysis
for a field of spin 72 and for the electromagnetic field. In this paper we have discussed
the case of perfectly reflecting bodies (but for the need of a cutoff in regulating divergent
terms). One can think of making a semiclassical analysis for arbitrary background fields or
boundary conditions mimidkg real dielectric§43]. Such an analysis, not so relevant for

the case of a scalar field, follows naturally after the discussion of the electromagnetic field
and hence will be presenteda later paper of the series.
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