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The dynamics of a “kicked” quantum system undergoing repeated measurements of moment
investigated. A diffusive behavior is obtained even when the dynamics of the classical counte
is not chaotic. The diffusion coefficient is explicitly computed for a large class of Hamiltonians
compared to the classical case.
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The classical and quantum dynamics of bound Ham
tonian systems under the action of periodic “kicks” are
general very different. Classical systems can follow ve
complicated trajectories in phase space, while the evo
tion of the wave function in the quantum case is mo
regular. This phenomenon, discovered two decades
[1,2], as well as the features of the quantum mechani
suppression of classical chaos and the semiclassical
proximation (̄h ! 0) are now well understood [3,4].

The “kicked” rotator (standard map) has played a
important role in the study of the different features of th
classical and quantum case. This model is very useful
only because it elucidates several conceptual differen
between these two cases, but also for illustrative purpos
One of the most distinctive features of an underlyin
chaotic behavior is the diffusive character of the dynam
of the classical action variable in phase space. In
quantum case, this diffusion is always suppressed a
a sufficiently long time. On the other hand, it has be
shown [5] that, in the case of the kicked rotator,
diffusive behavior is obtained even in the quantum ca
if a measurement is performed after every kick. Th
purpose of this Letter is to investigate this situation
more detail, focusing our attention on the role played
the measurement process in the quantum dynamics.
will see that quantum measurements provoke diffusi
in a very large class of kicked systems, even when
corresponding classical dynamics is regular.

We consider the following Hamiltonian (in action-angl
variables):

H � H0�p� 1 lV �x�dT �t� , (1)

where

dT�t� �
X̀

k�2`

d�t 2 kT � , (2)

with T being the period of the perturbation. The inte
action V �x� is defined forx [ �2p , p�, with periodic
boundary conditions. This Hamiltonian gives rise to th
radial twisting map. This is a wide class of maps, inclu
ing as a particular case the standard map [6], which
scribes the local behavior of a perturbed integrable m
near resonance. The free HamiltonianH0 has a dis-
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crete spectrum and a countable complete set of eige
states�jm��,

�xjm� �
1

p
2p

exp�imx�, m � 0, 61, 62, . . . . (3)

We shall consider the evolution engendered by (1) in
terspersed with quantum measurements, in the follow
ing sense: the system evolves under the action of th
free Hamiltonian for �N 2 1�T 1 t , t , NT (0 ,

t , T ), undergoes a kick att � NT , evolves again
freely, and then undergoes a “measurement” ofp at
t � NT 1 t. The evolution of the density matrix be-
tween measurements is

rNT1t � Ufree�t�UkickUfree�T 2 t�r�N21�T1t

3 U
y
free�T 2 t�Uy

kickU
y
free�t� , (4)

Ukick � exp�2ilV	h̄�, Ufree�t� � exp�2iH0t	h̄� .

(5)

At each measurement, the wave function is “projected
onto thenth eigenstate ofp with probability

Pn�NT 1 t� � Tr�jn� �njrNT1t� (6)

and the off-diagonal terms of the density matrix disap
pear. The occupation probabilitiesPn�t� change discon-
tinuously at timesNT and their evolution is governed by
the master equation

Pn�N� �
X
m

WnmPm�N 2 1� , (7)

where we defined, with a little abuse of notation,

Pn�N� 
 Pn�NT 1 t� (8)

and where

Wnm 
 j�njUfree�t�UkickUfree�T 2 t� jm�j2

� j�njUkickjm�j2 (9)

are the transition probabilities. Although the map (7
depends onl, V , H0 in a complicated way, very general
conclusions can be drawn about the average value of
generic regular function of momentumg�p�. Let

�g�p��t 
 Tr�g�p�r�t�� �
X
n

g�pn�Pn�t� , (10)
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where pjn� � pnjn� �pn � nh̄�, and consider

�g�p��N �
X
n

g�pn�Pn�N� �
X
n,m

g�pn�WnmPm�N 2 1� ,

(11)

where �g�p��N 
 �g�p��NT1t is the average value of g
after N kicks. Substitute Wnm from (9) to obtain

�g�p��N �
X
n,m

g�pn� �mjU
y
kickjn� �njUkickjm�Pm�N 2 1�

�
X
m

�mjU
y
kickg�p�Ukickjm�Pm�N 2 1�, (12)

where we used g�p� jn� � g�pn� jn�. We are mostly
interested in the evolution of the quantities p and p2. By
the Baker-Hausdorff lemma

U
y
kickg�p�Ukick � g�p� 1 i

l

h̄
�V , g�p��

1
1
2!

µ
il
h̄

∂2

���V , �V , g�p����� 1 . . . , (13)

we obtain the exact expressions [7]

U
y
kickpUkick � p 1 i

l

h̄
�V , p� , (14)

U
y
kickp2Ukick � p2 1 i

l

h̄
�V , p2� 1 l2�V 0�2, (15)

where prime denotes derivative. Substituting into (12),
we get

�p�N �
X
m

�mj

µ
p 1 i

l

h̄
�V , p�

∂
jm�Pm�N 2 1�

� �p�N21 , (16)

�p2�N �
X
m

�mj

µ
p2 1 i

l

h̄
�V , p2�

1 l2�V 0�2

∂
jm�Pm�N 2 1�

� �p2�N21 1 l2��V 0�2� . (17)

Iterating, we obtain

�p�N � �p�0 , (18)

�p2�N � �p2�0 1 l2� f2�N , (19)

where f � 2V 0�x� is the force and

� f2 � � Tr
°
f2rNT1t

¢
�

X
n

�njf2jn�Pn�N�

�
1

2p

Z p

2p
dx f2�x� (20)

is a constant that does not depend on N because �njf2jn�
is independent of the state jn� [see (3)] and

P
Pn � 1.

In particular, the kinetic energy K � p2	2m grows at a
constant rate: �K�N � �K�0 1 l2� f2�N	2m. By using
(18) and (19) we obtain the friction coefficient

F �
�p�N 2 �p�0

NT
� 0 (21)

and the diffusion coefficient
62
D �
�Dp2�N 2 �Dp2�0

NT
�

l2� f2�
T

, (22)

where �Dp2�N � �p2�N 2 �p�2
N . The above results are

exact: their derivation involves no approximation. This
shows that this class of Hamiltonian systems, if measured
after every kick, has a constant diffusion rate in momen-
tum with no friction, for any perturbation V � V �x�.

In particular, in the seminal kicked-rotator model, one
gets (H0 � p2	2I and V � cosx)

D �
l2

2T
: (23)

this is nothing but the diffusion constant obtained in the
classical case [1,5]. Notice that one obtains the quasilin-
ear diffusion constant without higher-order correction [6].

The above results may seem somewhat puzzling, essen-
tially because one finds that in the quantum case, when
repeated measurements of momentum (action variable)
are performed on the system, a chaotic behavior is ob-
tained for every value of l and for any potential V �x�.
On the other hand, in the classical case, diffusion occurs
only for some V �x�, when l exceeds some critical value
lcrit. (For instance, the kicked rotator displays diffusion
for l $ lcrit � 0.972 [1,6].) It appears, therefore, that
quantum measurements not only yield a chaotic behavior
in a quantum context, they even produce chaos when the
classical motion is regular. In order to bring to light the
causes of this peculiar situation, it is necessary to look at
the classical case. The classical map for the Hamiltonian
(1) reads

xN � xN21 1 H 0
0�pN21�T ,

pN � pN21 2 lV 0�xN � . (24)

A quantum measurement of p yields an exact deter-
mination of momentum p and, as a consequence, makes
position x completely undetermined (uncertainty princi-
ple). This situation has no classical analog: it is inherently
quantal. However, the classical “map” that best mimics
this physical picture is obtained by assuming that position
xN at time t after each kick (i.e., when the quantum coun-
terpart undergoes a measurement) behaves like a random
variable jN uniformly distributed over �2p , p�,

xN � jN ,

pN � pN21 2 lV 0�xN � . (25)

Introducing the ensemble average ��· · ·�� over the stochas-
tic process (i.e., over the set of independent random vari-
ables �jk�k#N ), it is straightforward to obtain

��pN �� � ��pN21�� 2 l�V 0�jN ��,

��Dp2
N �� � ��Dp2

N21�� 1 l2��V 0�jN �2� 2 �V 0�jN ��2� ,

(26)

where Dp2
N � p2

N 2 ��pN ��2 and
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�g�j�� 

1

2p

Z p

2p
g�j� dj (27)

is the average over the single random variable j [this
coincides with the quantum average: see, for instance,
the last term of (20)]. In deriving (26), the average of
V 0�jN �pN21 was factorized because pN21 depends only
on �jk�k#N21. The average of V 0�jN � in (26) vanishes
due to the periodic boundary conditions on V , so that

��Dp2
N �� � ��Dp2

N21�� 1 l2� f2� (28)

and the momentum diffuses at the rate (22), as in the
quantum case with measurements. What we obtain in this
case is a diffusion taking place in the whole phase space,
without effects due to the presence of adiabatic islands.

It is interesting to frame our conclusion in a proper
context, by comparing the different cases analyzed:
(A) a classical system, under the action of a suitable
kicked perturbation, displays a diffusive behavior if the
coupling constant exceeds a certain threshold (KAM
theorem); (B) on the other hand, in its quantum coun-
terpart, this diffusion is always suppressed. (C) The
introduction of measurements between kicks encompasses
this limitation, yielding diffusion in the quantum case.
More so, diffusion takes place for any potential and all
values of the coupling constant (namely, even when the
classical motion is regular). (D) The same behavior is
displayed by a “ randomized classical map,” in the sense
explained above. These conclusions are sketched in
Table I. As we have seen, the effect of measurements
is basically equivalent to a complete randomization of
the classical angle variable x, at least for the calculation
of the diffusion coefficient in the chaotic regime. There
are two points which deserve clarification. Indeed, one
might think the following: (i) The randomized classical
map (25) and the quantum map with measurements (7),
(18)–(22) are identical; (ii) the diffusive features in a
quantum context are to be ascribed to the projection
process (6) (hence to a nonunitary dynamics). Both
expectations would be incorrect. As for (i), there are
corrections in h̄: it is indeed straightforward to show that
the two maps have equal moments up to third order, while
the fourth moment displays a difference of order O�h̄2�,

�p4�N 2 �p4�N21 � ��p4
N �� 2 ��p4

N21�� 1 l2h̄2�� f 0�2� .

(29)

As for (ii), it suffices to observe that the very same results
can be obtained by making use only of a purely unitary
evolution (albeit, as we will see, of a larger system). To
this end, we must give a model for measurement, by
looking more closely at the physics of such a process.
When a quantum measurement is performed, the relevant
information is recorded in an apparatus. For example, the
measured system scatters one or more photons (phonons)
and each p eigenstate gets entangled with the photon
(phonon) wave function. A process of this sort can
be schematized by associating an additional degree of
freedom (a “spin” is the simplest possible case) with
every momentum eigenstate, at time t after every kick.
This is easily accomplished by adding the following
“decomposition” [8] Hamiltonian to (1):

Hdec �
p

2

X
n,k

jn� �nj ≠ s�n,k�d�t 2 kT 2 t� , (30)

where jn� is an eigenstate of p and s�n,k� ;�n, k� is the
first Pauli matrix, whose action is given by

s�n,k�j6��n,k� � j7��n,k� , (31)

where j1��n,k�, j2��n,k� denote spin up, spin down, respec-
tively, in “channel” �n, k�. Let us prepare the total (rotator
1 spins) system in the initial (t � 01) state

jCin� �
X
m

cmjm�
O
k,n

j2��n,k� (32)

(all spins down). For the sake of simplicity, we shall
concentrate our attention on the first two kicks. In
the same notation as in (8), the evolution of the state
jC�N�� 
 jC�NT 1 t1�� reads
jC�0�� � 2i
X
m

c0
mjm� ≠ j1��m,0�

O
k$1,n

j2��n,k� , (33)

jC�1�� � �2i�2
X
�,m

j�� ≠ j1���,1� ≠ A�mc0
mj1��m,0�

O
k$2,n

j2��n,k� , (34)

jC�2�� � �2i�3
X

j,�,m

jj� ≠ j1�� j,2� ≠ Aj�j1���,1� ≠ A�mc0
mj1��m,0�

O
k$3,n

j2��n,k� , (35)
where c0
m � cm exp�2iH0�pm�t� and

A�m 
 ��jUfree�t�UkickUfree�T 2 t�jm� (36)

is the transition amplitude (W�m � jA�mj
2). We see that

at time t after the kth kick, the nth eigenstate of the sys-
tem becomes associated with spin up in channel �n, k�.
By using (34) and (35) one readily shows that the occupa-
tion probabilities evolve according to

Pn�2� 
 �C�2�j �jn� �nj ≠ 1spins� jC�2��

�
X
m

WnmPm�1� . (37)
63
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TABLE I. Classical vs quantum diffusion.

A classical diffusion for l . lcrit

B quantum no diffusion
C quantum 1measurements diffusion ;l

D classical 1 random diffusion ;l

The generalization to N kicks is straightforward and it is
very easy to obtain the same master equation (7). The
observables of the quantum particle evolve therefore as
in (11): in particular, the average value of the quantum
observable p̃ � p ≠ 1spins displays diffusion with coeffi-
cients (21) and (22). This shows that the unitary dynam-
ics engendered by (1) and (30) yields the same quantal
diffusive behavior that is obtained by making use of “pro-
jections” (6). We notice indeed that, although the com-
bined system (rotator 1 spins) evolves unitarily, if one
chooses to “ look” only at the rotator, by tracing away the
spin degrees of freedom, the resulting dynamics (37) is
nonunitary. This is in line with the projection postulate
[9], used in the first part of this Letter [up to Eq. (29)].

Our analysis can be easily generalized to radial twisting
maps in higher dimensions. It would be interesting to
extend it to a slightly different class of Hamiltonians, such
as those used in [10] to analyze the effect of an oscillating
perturbation on an atomic system.

We thank Hiromichi Nakazato and Mikio Namiki for
early discussions.
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