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Abstract – We study the breaking of ergodicity measured in terms of return probability in the
evolution of a quantum state of a spin chain. In the non-ergodic phase a quantum state evolves
in a much smaller fraction of the Hilbert space than would be allowed by the conservation of
extensive observables. By the anomalous scaling of the participation ratios with system size we
are led to consider the distribution of the wave function coefficients, a standard observable in
modern studies of Anderson localization. We finally present a criterion for the identification of
the ergodicity-breaking (many-body localization) transition based on these distributions which is
quite robust and well suited for numerical investigations of a broad class of problems.

Copyright c© EPLA, 2013

The question of whether an Anderson localization (AL)
transition [1] can occur in a system of interacting particles
has been recently suggested to have a positive answer [2,3].
The mechanism which underpins this effect (dubbed
many-body localization or MBL transition) requires the
interaction to act in a substantially non-perturbative
way, therefore providing an example of how disorder and
strong interactions interplay in a quantum theory.
The natural setup to study the MBL transition is the

dynamics (these were also the terms of the question posed
in [1]) and in this perspective it is a question about
the foundations of statistical mechanics, namely, on the
validity of the ergodic hypothesis. MBL also presents the
terms in which a quantum glass can be defined and from
there it is only a small leap to conjecturing that MBL
is a natural ingredient for hard computational quantum
problems [4,5] (as Ising spin glasses are a natural scenario
to discuss the physics of hard combinatorial optimization
problems [6,7]). Even by neglecting the implications for
experiments (and there are many [8,9]) the topic should
be considered worth of serious investigation.
One-dimensional systems are particularly suited for

studying MBL because the single-particle spectrum is
completely localized for arbitrarily small disorder, and
therefore any observation of delocalization must be
attributed to the interaction. In this paper, we analyze
in detail the ergodicity properties of an XXZ chain

with random fields. This particular example has already
provided different indications of the MBL transition for
sufficiently large disorder: in [10] correlation functions
and spectral properties were studied, while in [11,12]
time-dependent density matrix renormalization group
(tDMRG) was used to investigate the different saturation
properties of the entanglement entropy in the two phases.
While the existence of a transition in the dynamics of
this model is now almost certain, its precise location, the
possible existence of a critical phase and the nature of
the phases that it separates are subject of debate. This
should not be regarded as a debate about a particular
spin chain but rather as an attempt at characterizing as
much as possible the differences between MBL and AL.
Consider the real time evolution of a state |ψ0〉 as it is

encoded into the Green’s function (�= 1 in the rest of the
paper)

G(t)≡ 〈ψ0| e−itH |ψ0〉 . (1)

We introduce the inverse participation ratios (IPRs) as the
moments

IPRq =
∑
E

| 〈E|ψ0〉 |2q, (2)

where the sum runs over the full set of eigenstates |E〉. The
long-time average of the survival probability (the average
removes some finite-size effects like quasi-periodicity etc.)
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can be expressed as

P ≡ lim
τ→∞

1

τ

∫ τ
0

dt |G(t)|2 = IPR2. (3)

Here (IPR2)
−1 is therefore a measure of the portion of

explored Hilbert space during the quantum dynamics and
it is usually dubbed participation ratio (PR). Analogously,
higher-order IPRq’s describe finer details of the dynamics.
Let us now comment on the choice of a suitable initial

state for a Gedankenexperiment aimed at testing the
breaking of ergodicity. First of all, consider what happens
if we take a random state in the Hilbert space (therefore
not an eigenstate) conditioned just to have an expecta-
tion value of the energy E (with high probability, for a
random state and a local Hamiltonian the standard devi-
ation δ=O

(
N1/2

)�E =O (N)). The average values of
local operators in this state will not show signs of ergodic-
ity breaking. In fact, even at very large disorder there are
states very close in energy (∆E =O

(
e−S

)
, where S is the

microcanonical entropy at energy E) which are macro-
scopically different and the expectation value of a local
operator will be the average of its values in these localized
eigenstates, concealing the effect of disorder (as expected
from the ergodic theorem [13]). If we want to observe the
effect of disorder on the dynamics, a reasonable prescrip-
tion consists in choosing an eigenstate of the part of the
Hamiltonian which dominates in the strong disorder limit.
Starting the dynamics coincides then with turning on the
rest of the Hamiltonian. In the delocalized phase, during
the quantum dynamics, the motion covers a finite frac-
tion of the full Hilbert space (each eigenstate being indi-
vidually thermal, the so-called “eigenstate thermalization
hypothesis” (ETH) [14–16]). Instead, in presence of strong
disorder, ergodicity breaks down and the many-body wave
function motion is constrained on a small section of the
full Hilbert space.
We also believe that this point of view on MBL is

what better brings forward its implications for quantum
computation (or at least for the performance of the
adiabatic algorithm [17]). In the localized phase the
system gets frozen, the dynamics unable to efficiently
explore the Hilbert space, so the algorithm is not efficient
in finding the ground state [4,5,17].
This view on the MBL transition will be the focus of this

paper. We will show how the usual criteria for detecting
AL need to be tweaked to capture the MBL transition;
we will study the IPRs and will show how, although much
information is contained in them, it is actually necessary to
study the distribution of wave function coefficients 〈ψ0|E〉,
which is heavily tailed both in the localized and delocalized
regions.
We consider the Hamiltonian

H =−J
N∑
i=1

(sxi s
x
i+1+ s

y
i s
y
i+1)−∆

N∑
i=1

szi s
z
i+1−

N∑
i=1

his
z
i ,

(4)

with periodic boundary conditions. As the Hamiltonian
commutes with the total z spin Sz =

∑
i s
z
i , we focus on

the subspace with Sz = 0. The random fields are chosen
from a box distribution hi ∈ [−h, h]. The model can be
cast into a theory of fermions (Sz = 0 corresponds to half-
filling), with on-site disorder hi.
The ∆szsz term can be written as a two-body, point-like

interaction for the fermions and for zero temperature it
can be included perturbatively or non-perturbatively [18]
leading to an interesting phase diagram. When ∆= 0 the
fermions are free, an arbitrarily small disorder localizes
the entire spectrum and therefore ergodicity is broken
for any h> hc = 0. As ∆ is increased MBL would appear
as a peculiar phase transition (possibly even at infinite
temperature) at a critical hc increasing away from zero.
On the other hand, for ∆� J the disorder necessary
to break ergodicity should decrease again. In fact, for
large ∆ the relevant degrees of freedom are the domain
walls of the classical Ising chain obtained by setting J = 0
in (4). Longer domain walls have smaller hopping matrix
elements and therefore they are more prone to localization
than the fermions at J�∆. Once a few of these large
domain walls have frozen, ergodicity can be considered
broken and this occurs for smaller h, since both the
effective hopping and interaction are smaller (effective
randomness is always h). Here we present results of exact
diagonalization for ∆= J = 1, where the delocalized phase
is largest.

Return probability. – According to the discussion of
the previous section, we should test ergodicity by taking
an initial state ψ0 as one of the N =

(
N
N/2

)
configuration of

spins |a〉 polarized along the z or −z direction, (e.g., |a〉=
|↑↓ ...〉). We need to stress a major difference in the
behavior of IPR2 in the localized and delocalized phases
between AL and the present situation. While in the former
one can distinguish the two phases by the participation
ratio being O (1) or not in the thermodynamic limit, this
is not a sufficient criterion for us. For a many-body state,
even in absence of interaction, IPR2 will be exponentially
small in N also in presence of strong disorder, simply
because each degree of freedom will have a localization
length small but finite, corresponding to an individual
participation ratio smaller than 1: multiplication of O (N)
of these factors leads to an exponentially small IPR2.
We need to correct the previous criterion by requiring
that the delocalized and localized phase are distinguished
by whether the ratio IPR2/N−1 is O (1) or not. The
other IPRq’s, properly rescaled with powers of the Hilbert
space dimension N , also represent indicators of ergodicity
breaking.
However, as far as averages over the initial states are

involved we have found that PRs have better finite-size
behaviors (more on this later), so we considered

I(N)q (h)≡
〈
IPR−1q
N q−1

〉
{h},a

. (5)
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Fig. 1: (Colour on-line) Average fraction of occupied Hilbert
space as a function of h for different system sizes N = 8 to 16
using exact diagonalization. Notice how the limit for h→ 0 is
different from 1/3 which is the random matrix theory (RMT)
prediction.

where the subscripts in the average correspond to disorder
realizations (indicated with h) and initial spin configura-
tion |a〉 (see footnote 1). In particular the data for I2,
shown in fig. 1, are consistent with the limN→∞I

(N)
2 (h) =

i2(h) where i2(h) = 0, for h> hc = 2.7± 0.3, although the
finite-size corrections are strong already at h� 1.5. The
prediction of 1/3 for i2 at small h coming from the GOE
ensemble, although qualitatively correct, is quantitative
inaccurate. This could be however a consequence of the
many-body structure in the finite-size scaling that we did
not take into account up to now.
A similar information is obtained by the diagonal

entropy

S(N) = lim
q→1

〈IPRq−1〉
(q− 1) lnN , (6)

which is plotted for varying h in fig. 2 and also this
quantity is clearly far from its thermodynamic limit of
S = 1 in the delocalized phase. If we identify the critical
point (see the arrows in fig. 1 and fig. 2) as the place
where the N -dependence sets in (for I2) or drops out (for
S) then both quantities identify a critical point consistent
with hc = 2.7± 0.3 consistently with the findings of [10].
The diagonal entropy and the IPRs show that the wave

function covers a number of sites that grows exponentially
with the system size, although the exponent is smaller
than in the ergodic phase. This suggests that in a many-
body system, the localized phase is necessarily character-
ized by the breaking of ergodicity, but not necessarily by a
concrete localization (IPR2 	O(1)). However, to pinpoint
the transition and understand the reasons of this anom-
alous scalings we should analyze the full probability distri-
bution of | 〈a|E〉 |2.
Distribution of wave function amplitudes. – If

one considers the various IPRq averaged over |a〉, one
1The number of realizations goes from 10000 for small sizes till

about 100 for the maximum size N = 16.

Fig. 2: (Colour on-line) Average diagonal entropy as a function
of disorder strength for different sizes N = 8, 10, 12, 14, 16.
From the N -dependence the transition is identified at hc �
2.7± 0.3.

observes a peculiar scaling with N of each of them, which
can be considered as due to large fractal dimensions.
In this scenario, the safest observable to consider is
the distribution of the properly rescaled wave function
coefficients. As we are interested in typical states (infinite
temperature) we will not follow the usual route of fixing
the energy of the state but we will rather integrate over
the whole spectrum. In the thermodynamic limit this
corresponds to energy density E/N = 0. We will consider
therefore the average over eigenstates, initial states and
disorder realizations:

φ(x,N) =
〈
δ(x−N| 〈a|E〉 |2)〉

a,E,{h} . (7)

In the following we will drop the subscripts in the averages.
This function depends both on x and N in general but in
the ergodic delocalized phase, as N plays the role of the
space volume, we see that the dependence on N drops out
[19–21].
We can then write the various IPRs as

〈IPRq〉=N 1−q
∫ ∞
0

dx xqφ(x). (8)

Illustrative plots are shown for different regimes in fig. 3.
As we said, even though in the ergodic phase, with this
scaling the curves for different sizes collapse (similarly to
AL), the distribution has an elbow at x∼ 1 and we find

φ(x)∝
{
x−α, if x� 1,

x−β , if x� 10,
(9)

where α, β depend on h. We have α< 1<β ensuring the
normalization of the distribution function in the delocal-
ized phase and their values are almost independent of N
for the largest sizes explored2. This is an uncommon distri-
bution for the quantity x: in the Anderson model usually

2A residual N -dependence is found in the left tails, at x� 10−3,
that part of the distribution reaching its asymptotic form for larger
N (N � 14).
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Fig. 3: (Colour on-line) The distribution φ of scaled wave
function amplitudes x=N| 〈a|E〉 |2 for different values of h.
Upper panel: h= 1.2 in the middle of the ergodic phase where
the scaling is perfectly verified; lower panel: h= 4.2 in the
many-body localized phase. In each panel the different curves
correspond to different values of N , from 8 to 16. Each curve is
obtained by binning of not less than 3 106 squared amplitudes.

α= 1/2 and the large-x behavior is exponential [22] remi-
niscent of the Porter-Thomas distribution of RMT [23].
Comparing the power-law tail with the exponential one
of the delocalized phase in the Anderson problem, we
conclude that already deep in the delocalized region, there
are sign of pre-localization. The almost perfect collapse of
the curves in the upper panel of fig. 3 allows a much better
finite-size scaling analysis than any of its moments.
As h approaches hc 	 2.6 the elbow smoothens and α→1

so that we can identify hc as the point at which α= 1,
the distribution stops being summable and necessarily the
independence on N ceases3. This occurs at hc = 2.55±
0.05 as it can be seen in fig. 4. An explicit N -dependence
of φ means that the scaling of all the IPRs and of the
diagonal entropy with N change abruptly and ergodicity
is broken.
The exponent β governs the scaling of the various

IPRq’s. For 0< q < β− 1 the integral in (8) is finite and
IPRq ∼N 1−q. If instead β− 1< q, since the integral in (8)
is divergent the average of IPRq over the initial states |a〉
does not exist, but the typical value for a state should

3As 〈x〉= 1 is fixed by normalization the divergence of 〈1〉 implies
a divergence of the first moment as well. In fact, β = 2 occurs at the
same value of hc.
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Fig. 4: (Colour on-line) The value of the exponent α (blue
squares) and β (pink circles) in eq. (9) for N = 16 (these
exponents are independent of N within the symbol size). The
exponent α crosses the value 1 required by summability, which
occurs at h� 2.55± 0.05, precisely where (within errors) β
crosses the value 2, required for the existence of the first
moment (normalization of the wave function).

be found by looking at the sum of N -independent and
identically distributed variables xqa. One then finds the
probability density for

∑
a≤N x

q
a ≡ Y (by computing and

then inverting its Laplace transform, provided β > 2) as

P (Y )∝ Y − 3−γ
4−2γ exp


−C

(
N 1

γ−1

Y

) γ−1
2−γ

 , (10)

where γ = 1+ (β− 1)/q, (1<γ < 2) and C is a constant
of O (1). This distribution has a power-law tail but the
typical value of the sum is set by the exponential as Y ∼
N 1/(γ−1)�N . This implies typical values of the IPRq of
a state, when q > β− 1:

IPR(N)q ∼N−q+ q
β−1 . (11)

The different IPRq’s define different “critical points” hq
solutions of β(hq) = q+1. The real transition, signaled by
an explicitN -dependence of full distribution φ can then be
identified by the diagonal entropy (6), or the limit as q→ 1
of IPRq, therefore when β = 2. What is the possible origin
of the power-law tail at large x?4. This can be linked with
the existence of a many-body mobility edge at some energy
E∗(h), where eigenstates occupy O (N ) sites above E∗ and
O (N a) (a(h)< 1) below E∗ and to a competition between
the canonical entropy (the logarithm of the number of
states between energy E and E+dE) and the diagonal
entropy multiplied by q. This phenomenon deserves better
investigation in a future work.
Summarizing, the coincident divergence of 〈1〉 (a

non-summability of φ(x) at small x), and of 〈x〉 (non-
summability of xφ(x) at large x) signal the beginning
of the localized region. This implies an accumulation of
wave function amplitudes towards small values typical
of localized states [21]. We expect then that the scaling

4We thank V. Oghanesyan for discussions on this point.
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of the typical coefficients changes abruptly at the onset
of the region in which ergodicity is broken but the wave
functions are still extended.
This suggests a description of the localized phase in

which a typical eigenstate is described by negligible weight
on ample regions of the Hilbert space, which is reminis-
cent of the “small branching number” Bethe lattice picture
of [2,24] and of the eigenstates of a disordered but inte-
grable model [25].

Similarities with AL on the Bethe lattice [21,26].
– Our case shows three differences from this classic
topic: 1) our lattice has connectivity O (N)�O (1) (but
still �O (N ), the volume of the system), 2) the on-site
disorder potentials of neighboring configurations a and
b are strongly correlated (Ea−Eb = hi+1−hi�Ea, Eb)
and 3) our lattice is not random at all. In order to
identify which of these three ingredients are necessary to
preserve this phenomenology of the distribution functions
we have investigated numerically a random graph with N
nodes and fixed connectivityN/2 and independent random
energies εi on each node. We observe the same qualitative
features in the distribution φ(x), even for small h. On
the contrary, for the Anderson model on a Bethe lattice
with connectivity O (1) in the ergodic region we observe
an exponential (or possibly stretched-exponential) tail at
large-x (the data will be presented in a future publication).
Therefore we conjecture that the necessary requirement
for the large-x power-law tail is the growing connectivity,
and that one can get rid of the correlation of the energies
and the specific topology of the hypercube.
This confirms that we have the right to look at

MBL as a localization phenomenon on a Bethe lattice
with asymptotically large connectivity, a problem
amenable of analytic treatment, beyond the locator
expansion [24,26].

Summary and conclusions. – We have investigated
the behavior of the return (or survival) probability as a
possible detector of ergodicity breaking and of the MBL
transition. We have shown how this question leads to
the necessity of a thorough study of the distribution of
the wave function amplitudes of the eigenstates averaged
over all energy spectrum5. We then identified the major
changes which occur to this distribution at the MBL tran-
sition point. The delocalized, ergodic phase looks more
localized than the corresponding single-particle AL and
RMT does not seem to be a good approximation, not even
deep in the delocalized region. The localized region seems
very akin to the case of single-particle AL on the Bethe
lattice with connectivity O (1), in particular the distrib-
ution functions of the amplitudes show a small-x accu-
mulation which points towards wave functions localized

5We emphasize once more that our study has been limited to
the distribution of wave function coefficients averaged over all the
spectrum because of its connection to the question of breaking
of ergodicity. Distributions at a fixed energy will probably have
different behaviors and will be subject of future studies.

in configuration space. We have also identified similarities
and differences with this better studied case and suggested
what are the necessary ingredients for a viable analytical
study of MBL.
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