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Let X be a smooth complex projective variety.

Definition (Holomorphic triples over X)
TCOh(X) = {(E]_, Eg,gb) | E]_7 E2 € COh(X), ¢) € Hom(El, EQ)}

To study Tx and Stab(7x), where Tx := D?(TCoh(X)).
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-categorles of Tx

D, = i,(D?(X))

i DP(X) — Tx Joi DP(X) = Tx
E — (E—0) E — (0—E)
Ds; = I,(D*(X)) o D; are admissible.

1 1 _
/*: Db(X) s, 7;( Q D2 —D]_, D2—D3.

E — (E-%E)
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.emiorthogonal decomposition

Definition (Semiorthogonal decomposition (Dy, D;) = T)

Given Dy, D, C T full triangulated admissible subcategories
such that

Q HomT(Eg, E]_) =0, forall E; € Dy, E; € D,.
@ The smallest triangulated subcategory containing Dy, D,
is T.
For every X € T

X2 — X — X]_ — XQ[].],

where X; € D1, X5 € D;.
If A C T is admissible, then
o T =(A"1A),

o T = (At A).
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-miorthogonal decompositions of Tx

b be b by |
0—>E2—>E2—>0 E2—>E2—>0—>-E2[1]

E1—>E1—>'0—>E1[1]

b 4

E, —E— C(¢) - El[]-]
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-cal Grothendieck group of Tx

N(Tx) = N(Coh(X)) @ N(Coh(X)) ]

For a curve C,
N(Te) — 7*
(E1,E2,0) = (n,di,n,db),

where r; = rk(E;), d; = deg(E;).
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I Serre functor in T
Definition (Serre functor in T')

An exact autoequivalence S1: T — T, such that for any
E.FeT.

Hom(E, F) = Homy(F,S(E))",

as C-vector spaces and it is functorial in E and F.
Sx(E) = E ® wx[dim(X)].

Definition (Fractional CY-category)

If St exists and there are p,q € Z,q # 0 s.t

St = [pl- J
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Proposition

The category Tx admits a Serre functor

S1x(Er, B2, ¢) = (B2 © wx[n], C(¢) © wx]n], ¥),

with n = dim(X). If X is a n-CY, then Tx is a fractional
CY-category with p =3 and g = 3n + 1.

Proof: [Bondal-Kapranov'90]

S = [4], where C is an elliptic curve.
82 = [7], where S is a K3 surface.
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-e functor and semiorthogonal decompositions

S(tA) = A+

S’]}(Dz) = D3 and Sﬂ&(D]_) = D2.

For X € Tx,
X2 — X — X1 — )(2[].]7

after applying the Serre functor:
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Let us consider the quiver @ = ¢ — e and Q; = Rep(CQ).
Indecomposable representations:

5 S, 53
C—s0|0—-C|C—C

Exceptional collections:

(51,5) | (52:53) | (53, 51)

If (E1, E>) is a complete Ext-exceptional collection, i.e.
Hom=C(Ey, E,) = 0, then (Ey, E,) is a heart of a bounded
t-structure.
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N(Qy) =272

Serre functor:

SolE % B) = (B % C(¢))

Definition

©; = {0 € Stab(Q,): S;, S; are o—stable}

So
©12 — O3

Theorem (Macri'07)

Stab(Q;) = ©12 U O3 UOs3 is a connected and simply
connected 2-dimensional complex manifold.
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Idea: To use semiorthogonal decompositions instead of
exceptional collections.

(D1, Da) | (Dy, Ds) | (D3, Dy)
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.P—Gluing

Lemma (Collins-Polischuck'10)

If T = (D1, D5) and A; C D; hearts of bounded t-structures
on D;, such that

H0m7§—0(./41, .Az) =0.
Then, there is a t-structure on T with heart
g|(A1,A2) = {T eT | T, € .Al, T, € ./42},

where

T2 — T — T1 — Tg[l]
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->i|ity conditions with heart gl(A;, .A5)

Given 01 = (Z1, A1), 02 = (2, A3) € Stab(X), with
Hom%?(Al,.Az) =0 and A; C D; as above.

Z(T)=2Zi(Th) + Z(T>).

Theorem (R-Martinez-Riiffer)

o= (g|(A1,A2),Z) € Stab(73<).

@ Harder-Narasimhan property.
o Support property.
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Definition

0 =gl; GL (2,R).
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e

If 01 = (Z1,Coh(C)) and o, = (Z,, Coh(C)) in Stab(C),
Zl(l'l, dl) = —d1 —an + I’1i and Z2(r27 d2) = —d2 + r2i

for o € R.
Example (a-stability)

(Z,TCoh(C)) € Stab(7¢),
where
gl(Coh(C), Coh(C)) = TCoh(C)

and

Za(rl, dl, r, d2) = —d1 — d2 —an + (r1 + r2)i
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Lemma (Gorodentsev-Kuleshov-Rudakov '04)

Given
E— X — A— E[]]

in D?(C), X € Coh(C) and Home(C)(E A) =0, then

E,A € Coh(C).
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.KR for holomorphic triples

Given

Ei—> X — A Ei[1]

| l | o

E 0 Ay —— E5[1]
in Tc with X € Coh(C) and

Hom>°(E, A) = 0,

then, E;, A; € Coh(C).
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HNof £ — 0

If we assume that £ — 0 is not o-semistable, then
L—>L—0—L[1]

by

L0 L[]~ L[1]

is its HN-filtration.
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-in Theorem

D, D, Ds
L; L—0 0—L L— L
C(x); | C(x) - 0] 0—C(x) | C(x) = C(x)

©; = {0 € Stab(7¢): L;, L;, C(x); and C(x); o-stable}, for
i,j e {12,23,31}.

Theorem (R-Martinez-Riiffer.)

manifold.

Stab(%) = @12 U @23 U @13

is a connected, simply connected 4-dimensional complex
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Lemma

is a strong, full exceptional collection.

| A\

Lemma

T =2 DP(mod(A)).

A is the path algebra of

LGy

under some the relations.
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.ptlonal collections on Tp1

@gm = U efk,j[p]'

{peZ*|& jlp] is Ext}

©1 = Ui jezO¢, j-

Og,, C Stab(7p:) is an open, connected and simply connected
4-dimensional complex submanifold.
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-ler remarks

o If A; C D; hearts without gluing condition, we use
Recollement + [BBD]

to construct “small” hearts that do not admit a stability
function.

@ We can generalize the construction for a n-Kronecker
quiver over a nice abelian category A.

o Tcis a “good” triangulated category.
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Thank you!
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