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1. Introduction

Eulerian and Lagrangian points of view on the motion of fluids, and on the mixing
of scalars, are equivalent (Prandtl & Tietjens 1934) but cannot be related to each
other in analytically tractable ways except in a few special instances. The bridge
between the two descriptions is formally obvious, at least for a conserved scalar. A
batch of a massless tracer particle which is advected in an incompressible turbulent
flow u, subject to the diffusion κ, follows the Langevin equation (Gardiner 2004)
given by

ẋ = u(x(t), t) +
√

2κχ(t) , (1.1)

where χ(t) is vectorial white noise that is statistically independent in each of its
three components. This equation is complementary to a Fokker-Planck equation for
θ(x, t), the probability density function (PDF) of the tracer at time t at position
x. The equation

∂θ

∂t
+ (u · ∇)θ = κ∇2θ (1.2)

is exactly the advection-diffusion equation for a scalar field in the Eulerian frame.
The scalar diffusivity is denoted by κ. Its ratio to the kinematic viscosity ν of the
fluid is the Schmidt number

Sc =
ν

κ
, (1.3)

or, for an advected temperature field, the Prandtl number, Pr.
The scalar mixing process at a given Reynolds number is significantly different

in the Kolmogorov-Obukhov-Corrsin regime given by Sc ≤ 1 (Kolmogorov 1941,
Obukhov 1949, Corrsin 1951) from that in the Batchelor regime given by Sc � 1
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(Batchelor 1959). While the scalar is advected by the turbulent inertial range in
the former, it is mainly advected in the latter by smooth velocity structures of the
viscous range of turbulence.

In turbulent mixing of passive scalars, and in turbulence in general, Eulerian
and Lagrangian views have their specialized places. For example, the former appears
better suited for studying problems such as nonpremixed combustion in reacting
flows (Linãn & Williams 1993, Peters 2000). Indeed, the comparative ease of making
Eulerian measurements renders them more appealing in a number of instances. If, on
the other hand, one has to calculate the dispersion of θ arising from a few localized
sources, the Lagrangian view is more appropriate (Sawford 2001). Examples of such
applications include fumigation (Sawford et al. 1998), the spread of buoyant plumes
(Heinz & van Dop 1999), and the surface motion of buoys over the sea (Maurizi
et al. 2004). Lagrangian studies are being recognized as increasingly important in
geophysics, e.g. for the mixing of plankton and other biomatter in the upper ocean
(Seuront & Schmitt 2004) and for droplet dynamics in cumulus clouds (Vaillancourt
et al. 2002).

In spite of their wide-spread utility, Lagrangian data are harder to obtain exper-
imentally and are more expensive to compute. For example, it is unclear if we can
ever measure with satisfactory accuracy high-order moments of the particle accel-
eration along a trajectory in a turbulent flow of moderately high Reynolds number
(Yakhot & Sreenivasan 2005); see also discussion of Fig. 1 in Sec. 3. The relevant
point here is that measuring (as an example) the fourth moment of the Lagrangian
acceleration is equivalent to measuring the twelfth moment of Eulerian velocity
differences (which has not been obtained so far with impeccable accuracy). The
basis for this connection is the relation for the Lagrangian acceleration expressed
in terms of Eulerian velocity increments,

a ≈ (δηu)2

η
≈ (δηu)3

ν
, (1.4)

where η is the fluctuating small scale around the Kolmogorov length ηK and the
combination η × δηu/ν = 1, relating the velocity increment δηu on the length
scale η to η. The difficulties are compounded by the tendency of most conventional
Lagrangian tracers to cluster near solid walls, which produces a large mismatch of
information between fluid particles and tracers. Large shear will have similar effects.
Thus, one should ask if the additional complexities associated with Lagrangian
calculations and measurements justify the investment and effort, leaving aside their
relative novelty for the present: When is the Lagrangian perspective the method of
choice? What makes it advantageous? What have we learnt in the big picture?

New insights into these questions, especially on the scalar mixing problem, have
become possible for the so-called Kraichnan model (Kraichnan 1968, 1994). For a
review with an extensive list of references, see Falkovich et al. (2001). The Kraich-
nan model has been applied to diverse physical circumstances such as the mixing
of passive scalars and their dynamics in compressible turbulence (Gawȩdzki & Ver-
gassola 2000, Bec et al. 2004). In a further development, the claim has been made
(with certain careful caveats) that the anomalous scaling of active scalars can be
understood in terms of passive scalar fields (Ching et al. 2003).

All these developments deserve some comment. This is one of our purposes
here. Secondly, we will comment on these theoretical achievements in the context
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of numerical and experimental work on the mixing of the passive scalar in Navier-
Stokes turbulence. In the process, we draw attention to a few open questions that
should be addressed in the future. We pay particular attention to the Kraichnan
model and its relation to homogeneous turbulence. Clearly, there are many other
aspects related to the turbulent mixing which cannot be covered here. For studies
of turbulent mixing in inhomogeneous shear layers, jets or the mixing by Rayleigh-
Taylor instabilities, see, for example, the review by Dimotakis (2005) or a recent
work by Cabot & Cook (2006).

The outline of the paper is as follows. We will briefly review the scalar advection
in a white-in-time Kraichnan flow in the next section and consider basic ideas
which are closely tied with the Lagrangian view. We then discuss numerical and
experimental efforts connected to the Lagrangian picture of mixing in Navier-Stokes
turbulence. In the last section, we relate these findings to passive scalar mixing in
Navier-Stokes turbulence, particularly for high Schmidt numbers.

2. Scalar mixing in white-in-time turbulence

It is useful to begin with the anomalous scaling for the passive scalar obeying
the Kraichnan model, in large part because some exact results are available. The
crucial element of the model is that it uses for the velocity in the advection-diffusion
equation a stochastic Gaussian field with a time correlation that decays infinitely
rapidly (or is “white in time”) and a spatial correlation that has a power law
structure with a prescribed scaling exponent, 0 < ζ < 2. That is,

〈ui(x, t)uj(y, t′)〉 = Dij(x− y)δ(t− t′) , (2.1)

with
Dij(r) = D0δij − dij(r) = D0δij −D1

(
(2 + ζ)δij − ζ

rirj
r2

)
rζ , (2.2)

where r = x − y, r = |r| and i, j = 1, 2, 3, and 〈.〉 denotes a suitable average; Dij

is a diffusivity with the dimension of L2T−1, and D0 and D1 are constants. The
case ζ = 0 stands for advection in a very rough flow and ζ = 2 for transport in a
smooth flow (see Bernard (2000) for a compact introduction to the subject). This
power-law scaling is similar to the Navier-Stokes case (though the scaling exponent
ζ here assumes an arbitrary value between 0 and 2), but the temporal scaling is
qualitatively different. For statistical stationarity, a random forcing fθ(x, t) has to
be added to the right hand side of (1.2), with the property that

〈fθ(x, t)fθ(y, t′)〉 = C(r/L)δ(t− t′) . (2.3)

The function C(r/L) varies only on the large scale L and decays rapidly to zero
for smaller scales. Kraichnan’s insight was that this model possesses the essen-
tial elements of the scalar mixing while retaining analytical tractability. Indeed,
it has been possible to establish anomalous scaling (Falkovich et al. 2001) for
this model even though the idealized advecting flow itself does not exhibit such
anomaly. In other words, the scaling exponents for the Eulerian structure functions
Sn(r) = 〈(θ(x+ r)− θ(x))n〉 ∼ rξn of the scalar increments differ from the classical
Kolmogorov-Obukhov form (which is ξn = (2 − ζ)n/2 for this model) and vary
nonlinearly with the order of the moment.
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Let us write down the evolution equation for the n-point correlator of a statisti-
cally stationary passive scalar field in the frame of Kraichnan’s model. The equation
is

Mn〈θ(x1) · · · θ(xj) · · · θ(xk) · · · θ(xn)〉 =
1
2

n∑
j,k=1

C(rjk/L)×

〈θ(x1) · · · θ(xj−1)θ(xj+1) · · · θ(xk−1)θ(xk+1) · · · θ(xn)〉 . (2.4)

The white-in-time character of the advecting flow yields no dependence of the n-
th order scalar moment on mixed velocity-scalar moments of order n + 1, which
would be a manifestation of the well-known closure problem characteristic of mix-
ing in Navier-Stokes turbulence. The operator Mn contains, besides the Laplacian
diffusion, an additional turbulent diffusion part, dij , and can be written as

Mn = −κ
n∑
l=1

∇2
xl

+
1
2

n∑
l,m=1

dij(xl − xm)∇ixl
∇jxm

. (2.5)

The so-called zero modes in the Kraichnan model are solutions of the homogeneous
subproblem in Eq. (2.4), i.e. when the right hand side is set to zero. The universality
of the scaling of Sn(r) with respect to r is caused by the scaling dominance of the
zero modes in comparison to particular solutions of the inhomogeneous problem
(2.4). An important new insight obtained from Kraichnan’s model is indeed that
zero modes are the reason for the deviations from the classical scaling of passive
scalar structure functions in the inertial range. We wish to stress, however, that no
explicit expression for the zero modes has been calculated, and that only expansions
in limiting cases for ζ and for κ→ 0 have been found (e.g., Bernard 2000, Shraiman
& Siggia 2000, Arad et al. 2001). However, accurate numerical solutions have been
obtained for the general case (Frisch et al. 1998, Gat et al. 1998, Chen & Kraichnan
1998).

The basic physical picture is this: To understand the scaling exponent ξ3 of a
third-order quantity, say, it is obvious that one needs to study the properties of
objects generated from the scalar variable at three different positions in space. At
any point in time, the three tracer particles at the three positions form a triangle.
The triangle is described by the lengthscale R—which, for specificity, can be taken
as the geometric mean of the lengths of the sides of the triangle—and two of the
three angles of the triangle, say ψ and φ (Pumir et al. 2000, Celani & Vergassola
2001). As the three particles advect, the triangles change in shape and size. If we
rescale the triangles to the same size at each time step, the dynamics reduces to
the evolution of shapes of triangles, or to a suitable function f(ψ, φ) of the two
angles ψ and φ. The important result obtained for the Kraichnan model is that
the three-point statistics are governed by those trajectories for which the change
in the length scale R is compensated by the change in shape of the triangles such
that the product Rξ3f(ψ, φ) is a constant. As particles move in the Kraichnan flow,
an n-particle cloud grows in size but fluctuations in the cloud shape decrease in
magnitude. The latter happens because the correlation between particles—which
arises because they are contained within the integral scale of the velocity field—
weakens with the separation distance. Therefore, as mentioned above, one looks for
suitable functions of size and shape that have the property of being conserved via
the balance between the growth in size and the decrease of shape fluctuations.
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The important qualitative lesson from this work is that certain types of La-
grangian characteristics, conserved only on the average, determine the statistical
scaling of Eulerian structure functions (Falkovich & Sreenivasan 2006). This is a
clear instance where the Lagrangian point of view has been essential to understand-
ing better the Eulerian quantities in turbulence—a conclusion that may have broad
validity in systems with strong fluctuations. There is therefore enough justification
for the enthusiasm about the progress made.

However, there are several differences between the predictions of the Kraichnan
model and the behavior of a passive scalar in Navier-Stokes turbulence. A partial
list now follows:

(i) Before we compare experiments and simulations in Navier-Stokes turbulence
with the Kraichnan model, we should consider the meaning of the Schmidt number
Sc in the model. This is not obvious because the advecting flow has no timescale
for comparison with the diffusion time.

In Navier-Stokes turbulence the smallest length is commonly thought to be
the Kolmogorov scale ηK and the corresponding timescale to be τη = η2

K/ν. For
Sc � 1, the passive scalar contains scales smaller than ηK , which are acted upon
by the strain-field in the sub-Kolmogorov range, which is the same as that imposed
at ηK . Thus, the diffusive time scale τD = η2

B/κ, defined by means of the Batchelor
diffusion length ηB , is the same as τη, leading to the formula Sc = η2

K/η
2
B . Formally,

one can define a “Kolmogorov scale”, η̃K = (ν/D1)1/ζ , and a “Batchelor scale”,
η̃B = (κ/D1)1/ζ , such that

S̃c =
(
η̃K
η̃B

)ζ
, (2.6)

can be regarded as the generalized Schmidt number (E & vanden-Eijnden 2001).
Here, D1 is the constant in (2.2). This definition coincides with the classical defini-
tion for ζ = 2. We recall, however, that the Kraichnan model discusses the advec-
tion of a scalar of fixed diffusivity in a prescribed synthetic flow. For the latter, no
knowledge of viscosity is necessary. Therefore, despite the ingenuity of the above
argument, a proper Schmidt number does not arise as a physical dimensionless
parameter in this setting, in contrast to the Navier-Stokes case.

(ii) For the case of decaying turbulence behind heated grids (for which the
velocity and scalar fields are both nearly homogeneous and isotropic, and Sc =
O(1)), it is almost certainly true that the decaying scalar assumes a self-similar
form (i.e., the PDF reaches a self-similar state). It is almost certainly Gaussian (e.g.,
Sreenivasan et al. 1980), whereas all indications are that they attain exponential
tails for the Kraichnan model (Balkovsky & Fouxon 1999).

(iii) The PDF of the scalar field in a statistically stationary Navier-Stokes flow
field with stochastic scalar driving is almost certainly Gaussian or sub-Gaussian
(Mydlarski & Warhaft 1998, Watanabe & Gotoh 2004). A mean scalar gradient
driving yields nearly Gaussian PDFs (Overholt & Pope 1996, Ferchichi & Tavoularis
2002, Schumacher & Sreenivasan 2005) and, in some experiments, to exponential
tails (Jayesh & Warhaft 1991, Warhaft 2000). If the Gaussian result is correct, it
would be in disagreement with the Kraichnan model, for which the tails of the PDF
are always super-Gaussian or exponential (Shraiman & Siggia 1994, Balkovsky &
Fouxon 1999).
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At present, we do not fully understand the circumstances under which the pas-
sive scalar mixed by Navier-Stokes turbulence assumes a Gaussian or exponential
PDF. The shape of the PDF in inhomogeneous shear flows is understood even less
well. For example, if one measures it on the centreline of the wake of a heated cylin-
der, the PDF in the far-field has an exponential shape for the cold part (coming
from the entrainment of the ambient cold fluid) but is Gaussian for the hot part
(coming from upstream all the way from the heated cylinder). See Kailasnath et al.
(1993).

(iv) Consider scalar gradient statistics for the Kraichnan model. An analytical
result for the tails of the PDF of scalar dissipation εθ = κ(∇θ)2 exists for a smooth
white-in-time flow. Using the Lagrangian approach, Chertkov et al. (1998) and
Gamba & Kolokolov (1999) deduced the behavior to be

p(εθ)∼
1
√
εθ

exp
(
−ε1/3θ

)
for εθ � 〈εθ〉 . (2.7)

The numerical data of Schumacher et al. (2005) from very finely resolved simulations
of high-Sc mixing converge to this formula from below.

(v) It is still unclear in the Kraichnan model as to which qualitative and quan-
titative difference arise from the finite-time correlation of the advecting flow. This
question has been addressed at least partially in Boffetta et al. (2004). It is shown
there that finite-time correlations of the velocity field in a free-slip surface are im-
portant for the clustering tendency of Lagrangian tracers, and the resemblance to
the case of infinitesimally small correlation times is only qualitative. It needs to be
shown that an instantaneously reshuffled flow can cause the same ramp-cliff struc-
tures which are observed for advection in Navier-Stokes turbulence. The simulations
by Chen and Kraichnan (1998) suggest that ramp-cliff features are possible even in
the Kraichnan model, even if it may appear counter-intuitive a priori.

(vi) The relation between active and passive scalars remains unclear as a general
principle. Celani et al. (2004) review the work on a number of passive and active
scalar fields, and conclude that the scaling of these various fields are, in fact, non-
universal. The differences are attributed to the correlation between the input to the
scalar field and the particle trajectories, again invoking Lagrangian interpretation.

Finally, one may speculate that the research on the Kraichnan model has some
implications for Navier-Stokes turbulence as well. It is worth recalling that Kol-
mogorov formulated his original 1941 theory in what is now called “quasi-Lagrangian
frame” (Belinicher & L’vov 1987); it may thus be said that the importance of the
Lagrangian nature of turbulent energy cascade was thus implicit in Kolmogorov’s
work. This issue was recognized also by Kraichnan (1964), who then reformulated
the DIA accordingly (Kraichnan 1965). There is still a chasm that needs to be
bridged between the work on the Kraichnan model for the scalar and the calcu-
lation of anomalous exponents for the hydrodynamic field (see, e.g., Chen et al.
2005), but some progress is being made (e.g., Angheluta et al. 2006). The nonlin-
earity of the Navier-Stokes equations leads to a strong coupling of the equations of
the correlations of different order, which makes it more difficult to calculate scaling
exponents from the infinite set of equations (L’vov & Procaccia 1998).
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Table 1. Calculated and estimated values of the length and time scale ratios in the DNS
data. N is the number of grid points on a linear side of the computational box. Some of the
numbers have been taken from the simulations by Yeung (2002) and Yeung et al. (2005).

N Rλ L/η T/tη
128 89 56 8

256 140 100 13

512 230 190 20

1024 390 300 40

2048 700 600 65

4096 1200 1000 120

132,072 8900 11,000 900

3. Lagrangian simulations and experiments in Navier-Stokes
turbulence

As explained earlier, following a cloud of Lagrangian particles has given new in-
sights, and it is no surprise that numerical schemes based on Lagrangian particles
have been done for computing the scaling exponents accurately (Frisch et al. 1998,
Gat et al. 1998). These calculations are not meant to be efficient for computing
all aspects of Lagrangian hydrodynamics. Indeed, for such purposes, the preferred
method is still the Direct Numerical Simulation (DNS) of the Eulerian equations
followed by smooth interpolations of velocities at the positions of the advected
tracers (Yeung 2002, Toschi & Bodenschatz 2009). The Lagrangian data are thus
more expensive. From Table I, one can infer the computational work (which is the
product of the grid points and the number of integration time steps) needed for
computing homogeneous and isotropic turbulence in a periodic box of N grid points
on the side. It is typically of the order of N3; see (3.1). Here, Rλ is the Taylor mi-
croscale Reynolds number, L/ηK is the ratio of the large scale of the velocity to
the Kolmogorov dissipation scale, and T/tη is the ratio of the characteristic time
of the large scale L to that of the dissipation scale ηK .

In Table I, except for the last row,† the data have been deduced from existing
DNS data, but those for the Lagrangian timescale ratio have been obtained by
extrapolating existing experience at substantially lower Reynolds numbers.

In Eulerian turbulence, the inertial scaling range is roughly about 1/100th of
L/ηK , as was discussed for example by Sreenivasan & Dhruva (1998) for the atmo-
spheric boundary layer data at Rλ = 10,000-20,000. (Actually, this fraction appears
to depend weakly on the Reynolds number, but we shall not discuss this detail here.)
If the same factor holds for time scales as well, we may find a decade of scaling
only for Rλ of the order of 10,000. Even this is not certain because the Lagrangian
events are distributed with stronger tails than Eulerian events (La Porta et al.
2001, Mordant et al. 2001) and hence the incursion of the nonuniversal features of
the large scale may be stronger for Lagrangian properties; in any case, it is clear

† The last row is an estimate of the upper bound of what is computable in principle. The
physical size of a computer cluster has been assumed to be that of the present Earth Simulator,
the size of the computing element has been replaced by atomic dimensions (since it cannot get any
smaller!), and different parts of the computer are assumed to communicate at the speed of light
(since it cannot get any faster!). While these upper bound estimates can be improved in detail,
they provide a reasonable order of magnitude.
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that far higher Reynolds numbers are needed to observe universality in Lagrangian
data. It is thus no surprise that even Richardson’s law of dispersion (Richardson
1926) is yet to be observed directly over a decent range of scales in simulations
and experiments (Ott & Mann 2000, Boffetta & Sokolov 2002, Biferale et al. 2005,
Bougoin et al. 2006, Schumacher 2008). Recall also that Richardson’s own compila-
tion consisted of data from several disparate sources and, on hindsight, leaves room
for improvement. Further difficulties in observing a Richardson scaling are related
to the sensitive dependence on the initial conditions as discussed by Bourgoin et
al. (2006) and Sawford et al. (2008).‡

We believe that the estimates presented in Table I may have to be revised unfa-
vorably because of small-scale intermittency. According to the well-known estimate,
the computational work needed for the DNS of turbulence varies as the third power
(e.g., Orszag 1973) of the large scale Reynolds number, Re:

N3 ×NT ∼
(
L

ηK

)4

= Re3 . (3.1)

Here, NT is the number of time steps for one large-scale eddy turnover time. It
has been argued recently that intermittency renders the smallest spatial scales
smaller than the Kolmogorov scale, ηK (Sreenivasan 2004, Yakhot & Sreenivasan
2005, Schumacher et al. 2007, Schumacher 2007). Thus, in the DNS of turbulence
that computes the smallest scale, the Eulerian computational work would increase
as the fourth power of the large scale Reynolds number (Yakhot & Sreenivasan
2005, Schumacher et al. 2007). Pragmatically, one may be able to work with an
intermediate value between the third and the fourth power of the Reynolds number
by sacrificing a little on the very smallest scales, but the net effect is that one can
only achieve, for a given computational box size, lower Reynolds numbers than the
above estimates suggest.

In Lagrangian simulations, the conventional estimate for the computational
work is of the order of Re3 ln(Re), the logarithmic factor arising from interpo-
lations of the Eulerian data. This multiplying factor is nontrivial if Re is large.
All indications are that the Lagrangian data are more intermittent in character.
If so, what is the corresponding estimate of the computational cost, in analogy to
the fourth power dependence on Reynolds number, compared with the traditional
third power in Eulerian simulations? For a further discussion of these points, see
also Yakhot (2008b).

In connection with Lagrangian intermittency (Novikov 1989), the precise set of
measurements that one should make is somewhat unclear. In principle, the statistics
of pairs of particles that maintain a fixed separation distance will be different from
those of fixed separation along a single particle trajectory. Commonly evaluated
quantities are the moments of velocity differences of a single Lagrangian particle
taken at two times separated by a chosen delay. The frequently used assumption of
translating the intermittency of Eulerian spatial increments to that of Lagrangian
temporal increments has been questioned (Homann et al. 2007, Yakhot 2008b).
Strong Lagrangian accelerations (i.e., strong Lagrangian intermittency events) in-

‡ In the Kraichnan model, a Richardson scaling of the mean-square distance with respect to
time follows for a scaling exponent ζ = 4/3 instead of the classical Kolmogorov-like exponent
ζ = 2/3.
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Figure 1. Convergence of the statistics of the vertical acceleration component az in tur-
bulent Rayleigh-Bénard convection (Schumacher 2008, 2009). The results is gathered for
4.4×108 events in a Cartesian slab of aspect ratio 4 which is resolved by 2048×2048×513
grid points. The Rayleigh number is Ra = 1.2 × 108 and the Prandtl number Pr = 0.7.
The bulk Reynolds number is proportional to the square-root of the Rayleigh number.

deed appear frequently at the edge of a vortex sheet or in the plane perpendicular
to a quasi-one-dimensional vortex tube, these being atypical in the Eulerian case.

In fact, the following interesting, albeit rough, facts can be deduced from mea-
surements and simulations (La Porta et al. 2001, Mordant et al. 2001, Biferale et
al. 2004, Reynolds et al. 2005, Homann et al. 2007) of Lagrangian turbulence. La-
grangian accelerations of the order of 5 times the standard deviation occur with the
frequency of one in a thousand, those with 30 times the standard deviation occur
with a frequency of one in a million, and those of magnitude 100 times the stan-
dard deviation occur with a non-negligible frequency of once every billion times.
It is hard to see how the non-universal effects can be avoided altogether under the
circumstances. In the experimental data of Crawford et al. (2005), one can see that
the conditional accelerations depend quite strongly on the magnitude of velocity
fluctuations. Figure 1 demonstrates that the convergence of the Lagrangian statis-
tics requires significant efforts. The vertical acceleration (which is less intermittent
than the lateral acceleration) in convective turbulence is shown. Even for a record
of more than 4 × 108 data points, the statistical convergence of the fourth-order
moment remains problematic.

Two consequences of these observations are worth noting. First, it becomes
more difficult to obtain converged statistics of high-order Lagrangian moments.
Second, because the tails are highly extended, rare events contribute more strongly
to high-order moments. Since the tails are also affected by the (non-universal) large
scale features, it is not clear that one can seek universal characteristics of high-
order moments with the same level of confidence as for Eulerian quantities. Only
recently, first successful attempts to this problem in case of Lagrangian structure
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Figure 2. Mixing of an initially Gaussian (and decaying) scalar blob in a homogeneous
isotropic statistically stationary turbulent Navier-Stokes flow at a Taylor microscale
Reynolds number of Rλ = 64 and a Schmidt number Sc = 8. The turbulence is resolved in
a periodic box of side length 2π with 10243 grid points. The top row shows the evolution
of concentration contours in x-z plane cuts at y = π for progressing time. The bottom
panel shows the corresponding evolution of the scalar variance spectrum. The classical
Batchelor scaling, Eθ(k) ∼ k−1, the Kolmogorov dissipation length ηK and the Batchelor
diffusion length, ηB are indicated as well.

functions were reported. Theoretical predictions for the scaling exponents in the
limit Re→∞ (Zybin et al. 2008) were found to be in remarkable agreement with
experiments (Xu et al. 2006). Certainly, more experiments are necessary in this
area. As a measure of the sensitivity of Lagrangian statistical quantities to the tails
of the distribution, one may cite the work of Sawford et al. (2005) which shows that
backward relative diffusion is much faster than forward diffusion even for stationary
and isotropic turbulence.

4. Implications for scalar mixing at high Schmidt numbers

Let us wrap up the issues of the last two sections by discussing the implications of
the Kraichnan model for the particularly important case of scalar mixing at high
Schmidt numbers. We will consider three aspects.

The argument can be made that the Kraichnan model for the smooth limit of
the velocity field, ζ → 2, comes close to the high-Sc mixing regime in a Navier-
Stokes flow with very large Reynolds numbers. The latter would yield a very short
Kolmogorov timescale τη and an extended viscous-convective range. However, one
fundamental difference remains. The finite time over which a local flow pattern with
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compressional strain persists is a necessity to steepen the frequently observed sheet-
like scalar gradient patterns against the action of molecular diffusion (Sreenivasan
& Prasad 1989, Dahm et al. 1991, Buch & Dahm 1996, Villermaux & Meunier
2003, Schumacher et al. 2005). Therefore, the permanent re-shuffling of the local
flow patterns in the Kraichnan case will destroy the well-known stretch-twist-fold
scenario, and sheet-like structure of the scalar gradient fields may well be absent.
However, statistically, the Kraichnan model does produce very strong gradients (as
given by (2.7) for the tails), which seem to form a limit to the mixing in Navier-
Stokes turbulence. All current numerical studies on high-Schmidt-number mixing
in Navier-Stokes turbulence suffer from the small Reynolds numbers that can be
obtained when the largest gradient fluctuations are resolved (Schumacher et al.
2005). Therefore, the existence of the so-called mixing transition, which postulates
a weaker Reynolds number dependence of scalar mixing at large Reynolds numbers
(Dimotakis 2005, Yakhot 2008a), is still an open issue. Progress on the structural
differences and their relation to the statistics for both mixing schemes will be quite
useful.

Although the closure problem is removed in the Kraichnan model (see (2.4)),
analytical predictions on the anomalous scaling of scalar structure functions, Sn(r),
are possible only for limiting cases. For example, the Kraichnan model gives a
scaling exponent ξ3 = 3 − 7ζ/5 when the scalar fluctuations are sustained by a
constant mean scalar gradient (Pumir 1996). This scaling could be checked, e.g.,
by advecting the scalar in Navier-Stokes turbulence first and determining ξ3. The
time correlations of the advecting flow could be destroyed as in Boffetta et al.
(2004) in order to obtain a Kraichnan flow and the third-order moment analysis
can be repeated subsequently. Here, a direct link to the Lagrangian viewpoint is
also possible by solving the (stochastic) equation (1.1) for triplets or quadruplets
of tracers and studying shapes in the spirit of Pumir et al. (2000) and Celani &
Vergassola (2001).

Kraichnan’s (1968) original motivation for his model was to demonstrate that
the opposite extreme to Batchelor’s (1959) quasistatic straining motion can result
in the same scalar variance spectrum Eθ(k) ∼ k−1. This can be seen to be so from
(2.5) which becomes, for the second order and ζ = 2,

−[2κ∇2
r + dij(r)∇ir∇jr]〈θ(x)θ(x + r)〉 = C(r/L) . (4.1)

The second term on the left hand side corresponds to the scalar variance transfer
term, Tθ(k), for homogeneous isotropic turbulence and reads

Tθ(k) = 2D1
∂

∂k

[
k4 ∂

∂k

(
Eθ(k)
k2

)]
, (4.2)

after Fourier transformation. Indeed, Eθ(k) ∼ k−1 yields a k-independent transfer
rate

∫∞
k
Tθ(p) dp in the viscous-convective range. The experiments which demon-

strate such spectral roll-off are quite rare; see, e.g., Villermaux et al. (2001), who
note that the k−1 power requires both a large range of scalar scales and a sufficiently
large Reynolds number.† It is furthermore unclear how the large-scale forcing of the
passive scalar will affect the spectrum. Figure 2 illustrates a simulation which seems

† A corresponding logarithmic scaling of the second order structure function was, however,
observed by Borgas et al. (2004).
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to be the simplest and therefore most transparent case for verifying the concepts
of both Batchelor (1959) and Kraichnan (1968). A scalar concentration blob is ad-
vected in a statistically stationary turbulent flow for Sc = 8. The data correspond
only to moderate Schmidt numbers because of the current numerical limitations,
but perhaps display a slow approach to the k−1 spectrum.

5. Concluding remarks

The recent Lagrangian work has ushered in a breath of fresh air in turbulence, but
it has not been sufficiently integrated with prior Lagrangian perspectives. Among
others, most of the recent work has focused exclusively on material particles, but
there are many other Lagrangian aspects to the turbulence problem. For example,
classical works of Taylor & Green (1937) and Taylor (1938) discuss vortex line-
stretching as the basic Lagrangian mechanism of turbulence. The modern work has
little to offer towards understanding that problem. The general problems raised by
Batchelor (1952)—such as the extension of material lines and surfaces and fluxes
across surfaces—have yet to be understood well, even for the Kraichnan model;
even basic issues such as the existence of material lines and surfaces in the infinite
Reynolds number limit have yet to be addressed. The list of unanswered questions
might also include the fractal nature of isosurfaces (e.g., Sreenivasan 1991). It would
be useful to answer questions such as: what are fractal dimensions of isoscalar
surfaces and other material objects in the Kraichnan model? There is extensive
numerical work on the problem (see San Gil 2001), but no theoretical answers. This
particular question is important for the mixing of reactive scalars or turbulence
in clouds. Scalar isolevel sets in Navier-Stokes case do not display monofractal
behaviour for low-Reynolds-number flows (Frederiksen et al. 1997, Schumacher &
Sreenivasan 2005), though it appears that larger Reynolds numbers of the advecting
flow will change this behavior. Other approaches such as the dissipation element
analysis which reduces the mixing to a permanent reshuffling of the separatrix lines
between zeros of the scalar gradient might also provide complementary insight on
the nature of high-Sc mixing (Wang & Peters 2006).

It is our belief that the Lagrangian perspective on turbulence is really essential
and that it has not been pushed far enough. It is also our belief that the intrinsic
mechanisms of turbulence are essentially Lagrangian.
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