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Understanding turbulent thermal convection is crucial for industrial, geophys-
ical, and astrophysical problems but experiments at high Rayleigh numbers
(Ra) sometimes show contradictory results. This is due to unavoidable techni-
cal limitations of the experimental set—ups that produce flows slightly different
from the ideal Rayleigh-Bénard problem. Numerical simulations intended as
ideal experiments can help understanding these issues since all the extraneous
factors can be cleanly sorted out. In this paper Direct Numerical Simulations
(DNS) of a turbulent Boussinesq convection in a cylindrical cell of aspect-ratio
I' =1/2 up to Ra = 2-10' are presented and discussed.

1 The problem

Consider a Boussinesq fluid with o, v, k and A, respectively indicating the
thermal expansion coefficient, kinematic viscosity, thermal diffusivity and
thermal conductivity, contained in a cylindrical cell of diameter d and height
h. The fluid is heated from below and cooled from above while the lateral wall
is adiabatic. There is no slip at any of the walls. Main flow parameters are:

Ra=gadh®/(vk) Pr=v/k TI'=d/h Nu=Hh/AA, (1)

where the Rayleigh number (Ra) is the forcing parameter, the Prandtl num-
ber (Pr) characterizes the fluid, the aspect ratio (I") accounts for the cell
geometry and the response of the flow, the Nusselt number (Nu), is the total
heat flux normalized by the purely convective value. In the above expres-
sions g is the acceleration of gravity, A the temperature difference between
the horizontal plates and H the specific heat flux transferred within the cell.
An important issue is to verify how much the turbulence enhances the heat
transfer, namely how Nu increases with Ra. Some experiments give contra-

dictory results, presumably owing to finite-conductivity effects (i.e. on the
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lateral wall and on the upper/lower plates), various degrees of deviation from
the Boussinesq approximation, Prandtl number variation and control of the
temperature boundary conditions on the heated and cooled plates [1, 2, 3].
For these reasons numerical simulations could be seen as ideal experiments,
where all flow parameters are under strict control.

Table 1. Variation of the Kolmogorov scale (1) and thermal boundary layer thick-
ness (6y) with Ra; these values are computed from present simulations.

Ra n/h dg/h Ng X N x N

2 x 10'2 8.2 x 107* 3.76 x 107* 257 x 193 x 769
2% 10™ 4.3 x 107 1.73 x 10~ 385 x 301 x 1381
2% 10™ 2.4 x 107 7.00 x 10~° 513 x 401 x 1801

2 Governing equations and set—up

Under the Boussinseq approximation, thermal convection is governed by the
three dimensional unsteady Navier-Stokes equations as follows:

Du . Pr\? 5 B
—E——vp+9$+(ﬁz> Vu, V~u—0, (2)
Do 1 \?_,
Dt (RaPT) Ve 3)

Here & is the vector pointing in the opposite direction with respect the grav-
ity and ¢ is the non-dimensional temperature (0 < # < 1). A second-order
accurate finite-difference scheme in cylindrical coordinates discretized on a
staggered mesh as in [4] has been used for the integration of the equations.
In a direct numerical simulation it is mandatory to adequately resolve both
velocity and thermal boundary layers near the walls and the smallest between
the Kolmogorov and Corrsin scales () in the bulk, hence ask for a very fine
spatial resolution. For this reason an over-resolved simulation at Ra = 210!
was performed to check the effect of grid resclution. With the mesh in the bulk
equal to 1.217 and 10 points in the thermal boundary layer, a Nusselt number
of Nu = 440.3 =+ 10 was obtained, to be compared with the previous result
of Nu = 447.2 £ 11.7 obtained with a grid in the bulk 4 times larger than 7
and only 5 points in the thermal boundary layer [4]. A posteriori checks of the
thickness of both boundary layers and additional integral quantities confirmed
the adequacy of the discretization used. Three simulations at Pr = 0.7 and
Ra =2-10'2,2-10%,2-10" have been performed. In table 1 the discretization
for the three simulations performed are presented. They were performed using
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a IBM p690 Power4 32-CPU node (for Ra = 2 x 10*? and Ra = 2 x 10%9)
and using a NEC SX-6+ 8-CPU node (for Re = 2 x 10**) asking for about
150°000 CPU hours and producing about 1 TB of raw data. To our knowledge
these are the biggest simulations of fully confined turbulence ever performed.

3 Results, comments and conclusion

In Fig. 1 we report Nu as function of Ra for the present results and those
by [4] in comparison with some experiments performed in the same geometry
and under apparently identical conditions [1, 2, 3]. Although the agreement
might seem satisfactory for a first look, a different representation of the same
data (Fig. 2a), clearly shows that differences up to 20% are present. Some
of the differences between the results can be explained in terms of different
Pr numbers. In the experiments, in fact, Pr is constant only for Ra < 102
while for higher Ra it attains higher values. In Fig. 2b the Prandtl numbers
for experiments and simulation are reported in a Ra — Pr plane divided into
different regions, according to the model by Stringano & Verzicco [5], which
indicate the most likely mean flow structure. The Pr — Ra plane is divided in
a region where only a single roll can be found (1R region), where the mean
flow is characterized by two rolls (2R region) and region where no mean flow
is found (NMF region); in the latter the upper and lower thermal boundary
layers do not ‘communicate’, and, following Malkus [6], we have Nu ~ Ral/3.
These findings are confirmed by the flow visualizations of Fig. 3) where snap-
shots of the temperature field for points of the Pr — Ra plane belonging to
regions 1R, 2R and NMF confirm the predictions of Fig. 2b. Further details
on the flow dynamics can be found in [7]. The main result of this paper is
to show how numerical simulations can help the understanding of laboratory
experiments thus allowing for a deeper comprehension of the problem. In this
particular case the possibility of keeping Pr strictly constant for every value
of Ra allowed us to find a no-mean-flow (NMF) region where, according to
[6], we might expect Nu ~ Ra'/3. In the experiments, probably owing to
difficulties in keeping Pr constant, the above power-law was not observed.
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Fig. 1. Nu vs. Ra for numerical simulation (big circles) and experiments by [1] (+),
[2] (¢) and [3] (little circles).
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Fig. 2. Figure a): Compensated Nu - Ra™/? for numerical simulation (circle) and
experiments by [1] (x) and [2] (o). Figure b): Pr vs. Ra for numerical simulation
(circles) and experiments by [1] (x) and [2] (o).
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Fig. 3. Snapshots of temperature showing the possible mean flow configurations:
a) Ra =2 x10'° b) Ra =2 x 102, ¢) Ra =2 x 10™, Only the temperature range
0.475 < 8 < 0.525 is represented with A8 = 0.005.





