Local dissipation scales in turbulence
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1 Motivation

The Kolmogorov theory of turbulence assumes the existence of a single mean
dissipation length at the small-scale end of the turbulent cascade where the
viscous dissipation term of the underlying Navier-Stokes equations becomes
comparable to the nonlinear advection term. This scale is known as the Kol-
mogorov length 7y and is defined as nx = v3/4/(€)1/4 where v is the kinematic
viscosity and (¢) the mean energy dissipation rate of the flow. The classical
definition of the dissipation scale does not, however, capture the strongly in-
termittent nature of the energy dissipation field which is now a well-accepted
fundamental building block of our understanding on turbulence. It therefore
seems natural to include these fluctuations and to extend the notion of a sin-
gle mean dissipation scale to that of a whole continuum of local dissipation
scales, i.e. to a fluctuating random fleld n. The finest local dissipation scales
will then be associated with the steepest velocity gradients, or alternatively,
with the most intensive energy dissipation events in turbulence. These ideas
were put forward within the multifractal formalism (see [1] for references).

In a recent theoretical approach which stayed close to the underlying
Navier-Stokes equations, the distribution of local dissipation scales was di-
rectly calculated by one of the authors [2]. Here, we want to present high-
resolution direct numerical simulations (DNS) of homogeneous isotropic tur-
bulence, that confirm the theoretically predicted shape of the local dissipation
scale distribution. A standard pseudospectral method is used to simulate ho-
mogeneous isotropic turbulence in a fully periodic box. However, grid resolu-
tions used were significantly finer than the ones applied in standard cases. We
enforce the spectral resolution criterion to values of knq:nx > 10. Four differ-
ent runs are conducted at Taylor microscale Reynolds numbers R = 10, 24, 42
and 64 with grid resolutions of N3 = 5123 10243, 10243 and 2048 points, re-
“spectively (for more details, see [1]).
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Fig. 1. Comparison of numerical and theoretical results for Q(n, Re) for Runs 1
(Rx» =10) and 4 (R = 64). The data for Run 1 are shifted upwards in the diagram
for a better visibility.

2 Results

Figure 1 shows the distribution Q(n) of the local dissipation scales as deter-
mined from DNS for two Reynolds numbers. The distribution agrees qualita-
tively with the theoretical predictions [2]. First, one can observe that the range
of excited sub-Kolomogorov scales increases with growing Reynolds number,
which underlines that intermittent fluctuations from the inertial range sweep
deeper into the viscous scale range. While the tail of the distribution for scales
1 > nx agrees well with the theory, deviations for the tail n < nx are detected.

An interesting connection of these results to the decay of the energy spec-
trum E(k) for wavenumbers k > 7! should follow. The yet unanswered
question is how the intermittency, which is detected in physical space, mani-
fests itself in the decay of the energy spectrum in the viscous range. In order
quantify the exponential decay of the energy spectra in the dissipation range
we fit in Figure 2 the following dimensionless local slope to the data:

dlog(Egk))

=a—pk for k>1, 1
dlog(ey & Pk k2 (1)

which transforms the exponential decay law of the spectrum into a linear
function. Here, E(k) = E(k)/(+*(e))}/* and k = kng. Our findings extend
former results for the spectral tails [3, 4] to larger spectral resolutions and
support the validity of (1). The lower panels of Figure 2 show both coefficients
as functions of the Reynolds number. They are in the same range as in (3, 4].
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Unfortunately, their asymptotic values for high Reynolds numbers cannot be
deduced from data in this limited range.

This behavior at the crossover between inertial and viscous ranges of tur-
bulence might may have consequences for the turbulent mixing of scalar con-
centration fields at large Schmidt numbers, i.e. when the scalar diffusivity is
significantly smaller than the kinematic viscosity of the fluid. They will be
discussed elsewhere.
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Fig. 2. Decay of the energy spectra E(k} in the viscous scale range for different
Reynolds numbers. Upper picture: Local slope of the spectrum as a function of the
wavenumber. Least square fits for all data were performed between 1 < knx <10
(dashed lines). The fit results are indicated as gray lines for each data set. Lower
pictures: Constants « (left) and 8 (right) as a function of the Reynolds number.
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