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The irregular reversals of wind direction in convective turbulence are found to have fluctuating intervals that
can be related, under certain circumstances, to critical behavior. In particular, by focusing on its temporal
evolution, the net magnetization of a two-dimensional Ising lattice of finite size is observed to fluctuate in the
same way. Detrended fluctuation analysis of the wind reversal time series results in a scaling behavior that
agrees remarkably well with that of the Ising problem. The specific properties found here, as well as the lack
of an external tuning parameter, also suggest that the wind reversal phenomenon exhibits signs of self-
organized criticality.
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I. INTRODUCTION

In fully developed turbulent convection in confined con-
tainers, the most important dynamical parameter characteriz-
ing the motion is the Rayleigh number, Ra. For present pur-
poses, it is enough to regard Ra as the nondimensional
measure of the temperature difference between the bottom
and the top plates of the container. At high Rayleigh num-
bers, two dynamical features can be detected prominently.
One is the emission of plumes from the top and bottom
boundary layers �1�; they occur at random locations and at
random times in varying sizes. The other is the existence of
large scale circulation called the mean wind, whose size is
roughly that of the container itself �2–5�. For low Ra �say,
below 109�, the wind is not sufficiently impeded by the ran-
dom emission of plumes and continues unimpeded in one
direction. At high Ra, the cumulative effect of the many
plumes is strong enough to reverse the wind direction
abruptly at seemingly random intervals �4,6�, and proceed as
before until another reversal occurs. The reversals have been
observed in other contexts as well �7�. A comprehensive
view of the dynamics and statistics of the reversal problem is
described in Ref. �8� and further consideration of the specific
manner in which reversals may be manifested in experiments
will be discussed below. Other relevant theoretical work is
described in Ref. �9�.

Despite considerable effort �8,9�, it is reasonable to say
that the physical origin of wind reversals is still not fully
understood. We investigate in this paper the statistical prop-
erties of the reversal and draw analogies to critical phenom-
ena. Specifically, by performing the analysis of detrended
fluctuations of the wind velocity, we demonstrate that aspects
of wind reversal correspond to those of a system undergoing
second-order phase transition. If the system is at a critical
state, whether self-organized or not, the competition between
the ordered and disordered motions leads to the wind switch-
ing directions at irregular intervals of all scales. The prob-
ability of occurrence of the wind duration � between rever-
sals should satisfy a power law

p��� � �−� �1�

as a manifestation of criticality. Such a power law has been
found in Ref. �8�.

The possible connection between self-organized criticality
�SOC� and turbulence was considered in Ref. �11�, and the
correspondence of wind reversal with SOC was pointed out
in Ref. �12�. The interesting element here is the provocative
possibility of comparisons between an equilibrium system
and one that is far from equilibrium. We do not claim that
there is any firm reason to expect a close relationship be-
tween the wind reversal problem and critical behavior but
simply wish to show that a quantitative similarity exists be-
tween wind reversal with the Ising model.

II. EXPERIMENTAL FEATURES

The experimental data that we analyze are the same as
those reported in Ref. �4� and studied in Ref. �8�. By varying
the pressure and temperature of an enclosed low temperature
helium gas sample, the Rayleigh number could be varied
between 106 and 1016. Further details of the apparatus can be
found in Ref. �4�. We focus on the data that give the wind
speed and direction for a continuous period of up to one
week at Ra=1.5�1011. Figure 1 shows a small segment of
the wind velocity data for 6.5 h, starting at an arbitrary time.
Note how the wind changes direction suddenly in the time
scale of that figure. We are interested in the abrupt change in
magnitude of V�t�.

Wind reversals in cylindrical containers have been in-
ferred generally from measurements using a small number of
probes. It is possible to interpret the measurements as a slow
azimuthal rotation of the entire flow circulation, but recent
observations with larger number of probes �10� show that
both reversals and rotations occur. Certainly, while the cylin-
drical symmetry of the cell geometry might suggest the ro-
tation in the azimuthal plane as more likely, the abruptness of
the wind switching and its relatively unvarying magnitude
�4,6,8� are more indicative of a flow cessation and reversal
�see Fig. 1�. It is important to point out, however, that this
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discussion has no bearing on the analysis considered here,
and so we shall simply refer to flow reversals with no preju-
dice toward their precise dynamics.

III. CRITICAL BEHAVIOR

In the Ising system of near-neighbor interactions without
external magnetic field the lattice spins tend to align in the
same direction except for the random disorientation due to
thermal fluctuation. For a finite lattice the net magnetization
M is nonvanishing. For T�Tc, the critical temperature, M is
likely to persist in the same direction for longer time in
lattice-spin updating than at higher T. At T�Tc the thermal
interaction dominates, and M is more likely to flip sign more
frequently upon updating. The fluctuation of the signs of M
is therefore a property that reflects the tension between the
ordered and disordered interactions of the whole system.

Since the mean wind is a global phenomenon in a vessel
of finite volume, it is sensible for us to associate the wind
direction with the sign of M of the Ising lattice of finite size.
We can then map wind reversal to the reversal of M upon
updating the lattice spins in a simulation. The plumes are the
disordered fluctuations that correspond to the spin fluctua-
tions due to thermal agitation, and the wind is the ordered
motion that can change direction just as the magnetization
can change sign when enough lattice spins change directions.
The key connection between the two problems is the map-
ping of the real time in turbulence to the time of updating the
Ising configurations. It is therefore crucial that each configu-
ration has some memory of the previous configuration before
updating; hence we employ the Metropolis algorithm that
accomplishes precisely this task. It should be noted that we
are entering a rather unexplored territory where the process
of computer simulation itself is endowed with some physical
significance, quite unrelated to the large body of analytical
work that has been devoted to the Ising model of infinite

lattice. This step enables us to compare a nonequilibrium
problem in turbulence to a standard problem in critical phe-
nomenon whose time dependence of fluctuations is not usu-
ally studied. Our task is to show that the fluctuations in the
wind reversal problem correspond to those of the Ising prob-
lem of finite lattice at the critical temperature.

To be more specific, we consider a square lattice of size
L2, where L is taken to be 255, an odd number. We start with
the L2 site spins having a random distribution of ±1 values.
We then visit each site and determine from the usual near-
neighbor interaction whether its spin should be reversed: yes,
if the energy is lowered by the flip; if not lowered, the flip
can still take place according to a thermal distribution speci-
fied by temperature T. One time step is taken by the whole
system when all sites are updated. We take 3�105 time steps
in total, and divide the whole series into 30 segments. The
values of M at each of the 104 time points in each segment
are discretized to ±1, according to M�

�0. A continuous string
of M of one sign, either +1 or −1, forms a duration that is
analogous to the mean wind rotating in one direction. The
reversals of M correspond to the reversals of wind. Near the
critical point, durations of all lengths can occur.

Before considering the issue of criticality for a finite lat-
tice, let us discuss the measure that we shall use for quanti-
fying the duration fluctuations appropriate for both the wind
and Ising problems. The experimental data on wind consist
of eight segments, each having T=10 282 time points. For
the Ising case we have 30 segments, each having T=104,
roughly the same as wind data. Let N denote the number of
reversals in a segment. With the locations of the reversals
denoted by ti, i=1, . . . ,N, define �i= ti+1− ti to be the ith du-
ration �or gap�, where t0 and tN+1 are assigned to be the left
and right ends of the segment, respectively. Now, define the
moment �13�

Gq =
1

N + 1�
i=0

N � �i

T �q

, �2�

where q is any positive integer. Gq is a measure that quanti-
fies the pattern of reversals in each segment. For large q, Gq
is a small number, since �i /T is small. Its value can be domi-
nated by a few large gaps, as when T�Tc, or may become
cumulatively significant from the sum over many small con-
tributions due to many small gaps, as when T�Tc. For a
measure of the fluctuations of Gq from segment to segment,
we define an entropylike quantity �13,14�

Sq = − 	Gqln Gq
 , �3�

where 	¯
 implies an average over all segments. For brevity
we shall refer to the study of the time series in terms of Sq as
the gap analysis. In Fig. 2 we show by filled circles the result
of the gap analysis on the wind data at Ra=1.5�1011. It is
evident that for q�2 the points can be well fitted by a
straight line, shown by the solid line, exhibiting an exponen-
tial behavior for Sq,

ln Sq = − �q + �0, � = 0.264. �4�

For the Ising simulation we must first decide on the
proper value of the critical temperature Tc for a finite lattice.

FIG. 1. A segment of the data on wind velocity fluctuation at
Ra=1.5�1011. The data were obtained from a cylindrical container
of 50 cm diameter and 50 cm height, filled with cryogenic helium
gas. Measurements were taken outside the boundary layer on the
sidewall of the container at mid-height.
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For an infinite lattice its value has been determined analyti-
cally to be 2.269 in units of J /kB, where J is the coupling
strength of near-neighbor interaction and kB the Boltzmann
constant �15�. For a finite lattice Tc is no longer precisely
defined, but we can still consider a transition occurring at a
slightly higher value of temperature defined by a distinct
property of Sq to be described below that separates the two
regions of T above and below Tc. We have performed the
simulation of our Ising system at three values of T, and de-
termined the properties of M reversal. In Fig. 2 we show the
results of our calculated values of Sq at T=2.305, 2.310, and
2.315. Only the one at T=2.310 �lowered by a factor of 2 for
clarity� shows a nearly linear dependence in the plot. The
dashed line is a linear fit of the points in open circle, giving
a slope of �=0.261. At the two neighboring values of T, the
q dependencies of log10 Sq �shown by triangles and squares�
are not linear, the values at high q being higher than at T
=2.310. The linear behavior at T=2.310 is essentially the
same as in the wind reversal problem, since � differs from
that in Eq. �4� by only 1%. We regard T=2.31 as the critical
temperature Tc in our Ising system, since it has the unique
property of being different from those of the neighboring T
on both sides. When T�Tc, the gaps are longer and Gq is
larger at large q �but still 	1� with the consequence that Sq is
larger. When T�Tc, the gaps are shorter, but many gaps can
contribute in the sum in Eq. �2�, resulting in Gq still being
larger at large q with the consequence that Sq is also larger. It
is only at the critical point that gaps of all sizes can occur,
resulting in Gq to be smaller and therefore Sq also smaller at
large q. Thus the exponential decrease of Sq is a signature of
criticality. The behavior of Sq for q�6 is unimportant, since
they probe the tail of the distribution of �i. The value of Tc
obtained here is in accord with the result of another calcula-
tion in a related finite-size lattice problem, for which Tc is
found to be 2.315 �16�.

We have applied the gap analysis to the time series of
random walk, where a forward �backward� step is given a
value of +1 �−1�. The result is an exponential behavior of Sq

with �=7.11, which is grossly different from that in Eq. �4�
and thus totally negligible. Clearly, the large gap behavior
shown in Fig. 2 is a consequence of fluctuations near the
critical point, not random fluctuations. This exercise also
shows that the first six moments of Sq is sufficient to char-
acterize the properties of fluctuations. The higher q values of
Sq probe the details of the tail of a distribution that are un-
important.

The normalizations of Sq for the wind and Ising problems
are not the same, since the average numbers N of reversals
are different. However, the exponential behaviors are re-
markably identical. The q dependence of Sq is a quantitative
measure of the fluctuation behavior of the reversals. The fact
that the slope � is the same for both the wind and magneti-
zation problems suggests strongly that the wind reversal in
convective turbulence at high Ra is a critical phenomenon.
The behavior is insensitive to the value of Ra, so long as
Ra�109. Since we have not tuned any adjustable parameter
in the wind problem to bring the system to the critical point,
as we have done for the Ising system by varying T, we con-
clude that the wind reversal phenomenon is a manifestation
of self-organized criticality �SOC� �17�.

It should be understood that the necessity for using a tun-
able parameter �i.e., T� in the Ising problem to bring the
system to the critical point does not negate the possibility
that the wind reversal problem is a SOC system. It only
affirms the conjecture that the latter exhibits criticality.

IV. POWER-LAW BEHAVIOR

We now search for a power-law behavior that character-
izes changes in the wind direction. �For other such efforts,
see Ref. �8��. Our method is the detrended fluctuation analy-
sis �DFA�, which has been found to reveal the scale-
independent nature of time series in a variety of problems,
ranging from heartbeat irregularity �18� and EEG �19� to
economics �20�. In that analysis we look for scaling behavior
in the RMS deviation of the wind velocity from local linear
trends. Given the time series of the wind velocity V�t� over a
total range of Tmax, we divide it into B equal bins of width k,

discarding the remainder Tmax−Bk. Let V̄b�t� denote the lin-
ear fit of V�t� in the bth bin. The variance of the deviation of

V�t� from the local trend V̄b�t� in bins of size k is defined by

F2�k� =
1

B
�
b=1

B
1

k �
t=t1

t2

�V�t� − V̄b�t��2, �5�

where t1=1+ �b−1�k and t2=bk, measured in units of 
t=5
sec, so that the values of t are dimensionless integers that
count the time points in the data. The goal is to study the
behavior of the RMS fluctuations F�k�, as k is varied. If there
is no characteristic scale in the problem, then F�k� should
have a scaling behavior

F�k� � k�. �6�

This power law cannot be valid for arbitrarily large k be-
cause the series V�t� is bounded, so for very large k the linear
trend is just the V�t�=0 line, and the RMS fluctuation F�k�

FIG. 2. Moments in the gap analysis of wind reversal �filled
circles� and magnetization reversal in Ising lattice �open symbols�
for different temperatures. The open circles are lowered by a factor
of 2 to give space for clarity. The solid line is a linear fit of filled
circles, and the dashed line is a linear fit of open circles.
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must become independent of k. Thus we expect ln F�k� to
saturate and deviate from Eq. �6� at some large k. We note
parenthetically that we have applied DFA to the unintegrated
time series V�t�, which is a departure from the usual practice.

We remark that in DFA the linear detrending is done for
every chosen time scale k because fluctuation is defined with
reference to a meaningful baseline. What appears as a sharp
spike when k is large may seem like a smooth peak when k is
small. Without local detrending, the scaling behavior of fluc-
tuations over a wide range of k is meaningless.

In Fig. 3 we show F�k�in a log-log plot for four equal
segments of the complete wind data in solid symbols. The
segment seg1 is for time running from 0 to 116 435 s, cor-
responding to Tmax=23 287; other segments all have the
same length. We have limited the maximum bin size to 2580,
so that even for the largest bin the fluctuations can be aver-
aged over nine bins. Evidently, there is a good scaling for
each segment. The points for seg3 and seg4 are shifted up-
wards by the quantities indicated in order to give clarity
without overlap. Note that the seg1 data do not have the
same magnitude of F�k� as the other segments; yet the scal-
ing exponents are essentially the same. The deviation from
the straight lines at the upper end is the saturation effect
already discussed. There is another short region of scaling
with a higher slope at low k. It is a consequence of fluctua-
tions of the velocity within one direction of the wind, whose
presence is evident in Fig. 1. Since the critical behavior iden-
tified here refers to wind reversals, and not to fluctuations of
the wind velocity within one direction, we should ignore the
lower short scaling region.

In the scaling region to which we pay attention here, the
slopes are �=1.20, 1.20, 1.21, and 1.22, for seg1 to seg4,
respectively. The deviations among the segments are obvi-
ously small. The average value is �=1.21. This large value
of � implies a smoother landscape compared to the rough
time series of white noise that is characterized by complete
unpredictability �18�. Indeed, the fluctuations of the wind
reversal time series has gaps of all sizes, the signature of

critical behavior that is characterized by 1/ f noise �17�. It is
interesting to compare our result with the properties of the
power spectral density for the velocity found in Ref. �21�,
where a scaling behavior is shown to exist with a slope
roughly −7/5 �not by fitting� in the region −3� log10 f �
−1.8. If we identify the values of k in DFA to the time scale
1 / f , then that range of ln�1/ f� corresponds to the range of
ln k in Fig. 3. The scaling behavior found in DFA uses
shorter segments of the whole data and exhibits the power
law more precisely, from which the value of � can be more
accurately determined.

We now apply DFA to the Ising problem. We consider ten
segments of the M reversal time series of the Ising lattice set
at Tc, each segment having 104 time points. From the F�k�
determined in each segment, we average over all segments
and show the resultant dependence on k in Fig. 3 by the open
circles. Clearly, the points can be well fitted by a straight
line. The slope is �M =1.22, which is essentially the same as
the value �=1.21 for wind reversal. With the equivalence of
these two scaling behaviors established, we have found
stronger evidence that the wind reversal problem is a critical
phenomenon.

V. CONCLUSIONS

To summarize, we have studied the time series of wind
reversal in convective turbulence by two methods �gap
analysis and detrended fluctuation analysis� and applied the
same methods to the time series of the reversal of the net
magnetization of a two-dimensional Ising lattice. We have
shown that there exist similarities between the fluctuation
properties in our nonequilibrium system and those
of the Ising system that is well known to exhibit critical
behavior—when appropriate measures are used to compare
them. Since the Ising problem is generally understood to be
in equilibrium, we investigated it in a novel way in order to
exhibit the time-dependent behavior of its evolution. Indeed,
the way in which the net magnetization changes with time
exhibits relevant properties of critical fluctuation, and pro-
vides an important aspect of the so-called equilibrium system
that is useful for us to relate to the convection problem.
Perhaps at this fledgling stage of analogy, we can only say
that the remarkable agreement of the results, obtained for
both problems, suggests that the wind reversal exhibits all
the essential properties characteristic of a critical behavior
when its temporal evolution is considered. Certainly, this is
not expected, but we feel it is an intriguing result nonethe-
less; one that is hard to ignore and that we hope will generate
some further, systematic inquiry.
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FIG. 3. Scaling behaviors of F�k� in DFA of wind reversal
�filled symbols� and magnetization reversal in Ising lattice at the
critical temperature �open circles�. Lines are linear fits.
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