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It is now believed that the scaling exponents of moments of velocity increments
are anomalous, or that the departures from Kolmogorov’s (1941) self-similar scaling
increase nonlinearly with the increasing order of the moment. This appears to be
true whether one considers velocity increments themselves or their absolute values.
However, moments of order lower than 2 of the absolute values of velocity increments
have not been investigated thoroughly for anomaly. Here, we discuss the importance
of the scaling of non-integer moments of order between +2 and −1, and obtain
them from direct numerical simulations at moderate Taylor microscale Reynolds
numbers Rλ � 450, and experimental data at high Reynolds numbers (Rλ ≈ 10 000).
The relative difference between the measured exponents and Kolmogorov’s prediction
increases as the moment order decreases towards −1, thus showing that the anomaly
is manifested in low-order moments as well.

1. Introduction
The moments of velocity differences over spatial scales of size r , the so-called

structure functions, provide useful measures of the statistical description of fluid
turbulence (Kolmogorov 1941a, b). In particular, the longitudinal structure functions
defined as

Sn(r) = 〈[(u(x + r) − u(x)) · r̂]n〉 (1.1)

have been studied extensively. Here, u(x) is the velocity vector at position x, and
r̂ is the unit vector along the separation vector r . The special interest in structure
functions comes in part from an exact result, known as the 4/5 law,

S3(r) = − 4
5
εr, (1.2)

valid in the inertial range of scales (η � r � L where η is the Kolmogorov scale char-
acterizing the dissipative scale of motion and L is a suitable large scale of turbulence);
ε is the mean rate of energy dissipation. In part, the interest is spurred by the
operational ease with which longitudinal structure functions can be obtained from
experimental data if one makes the so-called Taylor’s hypothesis (Taylor 1935). The
major impetus for measurements, however, is the scaling result of Kolmogorov – K41
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for brevity – that, for high Reynolds numbers, the structure functions follow the
relation Sn(r) ∼ rζn where the scaling exponent ζn = n/3. As a result of considerable
work over forty years (see, for example, Anselmet et al. 1984; Maurer Tabeling &
Zocchi 1994; Arneodo et al. 1996; Sreenivasan & Antonia 1997), it now appears nearly
certain that the scaling exponents deviate from n/3 increasingly and nonlinearly as n

increases. This is the anomalous scaling. While some issues remain to be explained sat-
isfactorily (see, for example, Sreenivasan & Dhruva 1998), it appears that anomalous
scaling is a genuine result worthy of a serious theoretical effort. Consequently, there
has been considerable research directed to this problem (e.g. L’vov & Procaccia 1996).

One obvious property of high-order moments is that they sample the tails of the
probability distribution function (PDF) of velocity increments. Since some of the
associated rare events may be related to well-defined flow structures in real space,
which in turn may be affected by shear and other non-universal effects, it is not
entirely certain that the results for high-order moments are universal. In contrast,
low-order moments are determined nearly entirely by the core of the PDF, and
the relative effects of rare events, among which may be non-universal shear effects,
are thus diminished. Thus, it is reasonable to regard anomalous scaling – and its
universality – as more conclusively established if low-order moments also display
anomaly. This is the subject of this paper.

The lowest non-trivial structure function that has been studied extensively is the
second order, whose scaling exponent has been shown to be ≈ 0.7. Though this is
measurably different from the predicted value of 2/3, the difference is too small to
be conclusive on its own. It would thus be useful to examine scaling exponents for
moments of still lower orders. Assuming that the probability p for zero-valued velocity
increments is finite, that is, p((u(x+ r)−u(x)) · r̂ =0) > 0 for each r , moments of order
−1 and below do not exist (see also Castaing, Gagne & Hopfinger 1990). Therefore, the
range of our current interest is limited to −1 < n � 2, where n is necessarily fractional.
With decreasing n in this range, if the deviation from n/3 decreases, we shall at least
know that K41 will be exact in the limit of low-order moments, and regard it as a
possible reference point for a theory. If, on the other hand, these deviations remain
non-trivial, it may well be that the understanding of the anomaly can be sought
more fruitfully in terms of low-order moments, for the simple reason that such a
theory can justifiably ignore rare events (which, as previously mentioned, may also
be non-universal). Some preliminary measurements were published in Sreenivasan
et al. (1996), Cao, Chen & Sreenivasan (1996) and Kurien & Sreenivasan (2001b),
but the present paper is a more complete account of the data and the analysis. More
importantly, the preliminary numbers did not take account of the possible effects of
residual anisotropy in both experiments and simulations, an issue whose importance
has been highlighted recently (e.g. Biferale & Procaccia 2004). We take account of
this feature using a recently developed angle-averaging technique (Taylor, Kurien &
Eyink 2003) and consider their new simulations data at Taylor microscale Reynolds
number, Rλ, of 450.

2. Experimental and numerical data
2.1. High-Reynolds-number atmospheric boundary layer measurements

Hot-wire measurements were made in the atmospheric surface layer at a height of
35 m above the ground using a standard meteorological tower at Brookhaven National
Laboratory. The tower itself presented very little obstacle to the wind because of its
low solidity. The dataset analysed here is part of a more comprehensive batch obtained
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U u′ ε η λ Rλ

7.6 m s−1 1.36 m s−1 0.032 m2 s−3 0.57mm 11.4 mm 10 340

Table 1. Some relevant parameters for the atmospheric data. Here, U is the mean speed,
u′ is the root-mean-square velocity, ε is the mean rate of energy dissipation, η and λ are
the Kolmogorov and Taylor microscales, respectively, and Rλ ≡ u′λ/ν, ν being the kinematic
viscosity of air at the measurement temperature.

at the tower. The hot wire, 0.7 mm in length and 0.5 µm in diameter, was placed facing
the wind, about 2 m from the tower. (For monitoring the wind direction, the tower was
equipped with a vane anemometer placed 2 m from the measurement station.) The
calibration was performed in situ using a TSI calibrator and checked later in a wind
tunnel. The signals were low-pass filtered at 5 kHz and sampled at 10 kHz. The anem-
ometer and signal conditioners were placed nearby at the height of measurement, and
the conditioned signal was transmitted to the ground and digitized using a 12-bit A/D
converter. Typical data records contained between 10 and 40 million samples, during
which time the wind direction and its mean speed were deemed acceptably constant.
More details are given in Dhruva (2000), but the essential features for this particular
set of data are listed in table 1. The wind conditions were somewhat unstable.

2.2. Direct numerical simulations (DNS) of Navier–Stokes equations with forcing

The Navier–Stokes equations were solved numerically for periodic boundary condi-
tions. A pseudospectral code was used using a second-order time-integration scheme
(Cao et al. 1996). Simulations were carried out with a resolution of 5123 grid points
on the CM-5 at Los Alamos National Laboratory and SP machines at IBM Watson
Research Center. To obtain a statistically steady state, a forcing is applied to the first
wavenumber shells 0.5 <k < 1.5 so that at each time step the total energy of that shell
is constant. This procedure does not fix the energy of the individual modes or their
phases. Comparisons between these simulations and data from other simulations with
different forcing schemes are satisfactory (see, for example, Wang et al. 1996). The
maximum Rλ was about 250. Time integration up to 60 large-eddy turnover times
was performed.

Even though the 5123 data show a well-developed scaling range in an ESS (extended
self-similarity) plot, the Reynolds number is not large enough to produce unambiguous
scaling in direct log-log plots of moments versus the scale r . It was also found
that, even though the turbulence is nominally isotropic, there are some measurable
(though small) differences between the scaling of longitudinal and transverse structure
functions, suggesting a possible presence of residual anisotropy in the inertial range,
arising from possible anisotropy in forcing. For these two reasons, it seemed worth
considering new data from a higher Reynolds number simulation, for which the
anisotropy effects, to the extent that they were present at all, were accounted for in a
rational manner. We therefore used the velocity data from a simulation of the Navier–
Stokes equation in a periodic domain of size 10243. The forcing scheme, described in
Taylor et al. (2003), is similar in some respects to that for the 5123 simulation but
the primary difference is that the forced modes are free to oscillate in amplitude as
well. The steady state was achieved in about 1.5 large-eddy turnover times and the
simulation ran for a total of 2.5 large-eddy turnover times. The statistical analysis
was performed over 10 frames in the final eddy turnover time. The steady state value
of Rλ was 450. Other parameters of this simulation are given in table 2.
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N ν ε δx/η Rλ

1024 3.5 × 10−5 1.75 0.75 450

Table 2. Some relevant parameters for the 10243 DNS. The fourth column provides the
resolution of the simulation in terms of the Kolmogorov scale.

Order Measured Relative DNS exponents Relative DNS exponents Relative
of moments exponents difference (5123) difference (10243) difference

−0.80 −0.317 0.189 −0.313 0.174 - -
−0.60 – – – – −0.238 ± 0.002 0.188
−0.40 – – – – −0.158 ± 0.001 0.181
−0.20 −0.078 0.170 −0.077 0.155 −0.078 ± 0.001 0.171

0.10 0.039 0.170 0.036 0.080 0.039 ± 0.001 0.155
0.20 0.076 0.140 0.073 0.095 0.077 ± 0.001 0.152
0.30 0.113 0.130 0.112 0.120 0.115 ± 0.001 0.147
0.40 0.150 0.125 0.150 0.125 0.152 ± 0.001 0.143
0.50 0.187±0.003 0.140 0.187 0.122 0.190 ± 0.001 0.138
0.60 0.221 0.105 0.223 0.115 0.226 ± 0.001 0.133
0.70 0.265 0.136 0.260 0.114 0.263 ± 0.001 0.128
0.80 0.292 0.095 0.296 0.110 0.300 ± 0.001 0.123
0.90 0.333 0.110 0.332 0.107 0.340 ± 0.001 0.119
1 0.372 0.116 0.366 0.098 0.370 ± 0.006 0.111
1.25 0.458 0.099 0.452 0.085 0.459 ± 0.006 0.101
1.50 0.542 0.084 0.536 0.072 0.545 ± 0.006 0.091
1.75 0.628 0.077 0.619 0.061 0.630 ± 0.006 0.079
2.00 0.704 ± 0.003 0.061 0.699 0.049 0.712 ± 0.006 0.064

Table 3. Scaling exponents from ESS compared with those for isotropic turbulence from two
sets of DNS data. Error bars are given for the experimental data for two exponents. Those
for the 5123 data are given in Cao et al. 1996. Columns 3, 5 and 7 list the relative differences
from the K41 prediction, (ζn − n/3)/(n/3), of the exponents calculated using different schemes.

3. Results
Since we are interested in real-valued structure functions, we can consider, when the

moment order is either fractional or negative, only the moments of absolute values
of velocity differences defined as

S|n|(r) = 〈|(u(x + r) − u(x)) · r̂ |n〉. (3.1)

In experimental measurements, because the Reynolds number is quite high (see
table 1), and the scaling ranges reasonably clear, we have the luxury of estimating the
scaling exponent directly from log-log plots of S|n|(r) versus r (see Dhruva 2000).

We also performed the calculation using ESS (Benzi et al. 1993). In ESS, a structure
function Sn(r) of interest is plotted against another structure function Sm(r) and the
relative scaling exponent ζn/ζm is obtained. In particular, if the exponent of Sm(r) is
known a priori, as from theory for the third-order structure function (see (1.2)), then
the exponent of Sn(r) may be inferred. It is known that ESS improves the scaling
range significantly. In the present case we use Sm(r) = S|3|(r), the absolute third-order
structure function and assume its scaling exponent is 1. It is unclear if this assumption
is valid since the K41 theory does not apply to moments of absolute differences;
indeed, it appears that the scaling exponents of S3 and S|3| are slightly different
(Sreenivasan et al. 1996). However, we found that the ESS exponents (see table 3) were
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Figure 1. ESS calculation of scaling exponent of order 0.5 from experimental data.

within the uncertainty of those obtained directly by Dhruva (2000). An example of ESS
plot for moment-order of 0.5 is shown in figure 1, along with the local slope (see inset).

For the numerical simulation data with resolution of 5123, the exponents were
obtained only by ESS because the scaling region was small in direct log-log plots
against the scale r . These exponents are listed in table 3. The table also lists (ζ|n| −
n/3)/(n/3), the relative departures from the K41 prediction, for each scheme used to
calculate the exponents.

3.1. Effects of finite Reynolds number and anisotropy

The finite Reynolds number of turbulence in numerical work shortens the inertial
range over which scaling exponents may be discerned with clarity. This remains a
constraint because the applicable theory concerns the limit of Re → ∞. A constraint
in experimental data is that some large-scale anisotropy might be present in the range
that appears to scale. The effect could be present even in high-Reynolds-number
flows because the effects of anisotropic forcing penetrate the scaling range in a subtle
but systematic way; see, for example, Arad, L’vov & Procaccia (1999b), Kurien &
Sreenivasan (2000, 2001a). In numerical simulations, the statistics are usually calcu-
lated with the separation direction r̂ oriented parallel to a box-side. If there is
residual anisotropy (angular-dependence) in the small-scales, this procedure will bias
the results. Since we are concerned here with delicate results, this uncertainty has to
be eliminated satisfactorily.

3.2. Recovering isotropic statistics by angle averaging

We make use of two recent developments to properly eliminate the effect of anisotropy
in the inertial range of the 10243 data. First, we now know that isotropic and
anisotropic contributions can be isolated systematically by projecting structure
function of a given order over a particular basis function in its SO(3) group
decomposition (e.g. Arad et al. 1998, 1999a; Kurien et al. 2000; Biferale & Procaccia
2004). This is a useful step to take even in nominally isotropic turbulence because
the effect of forcing might persist in the nominal scaling range. Second, Taylor et al.
(2003) developed a method by which the third-order longitudinal structure function
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Figure 2. The scaling exponents, equal to the local slopes ζ|n| = d log(S|n|(r))/d log(r), as a
function of r , for various values of −1 <n< 2 for the 10243 DNS data. Each curve is labelled
by the order of the structure function. The scaling exponents deduced in this way are given
on the right for two representative orders, n= 1.25 and − 0.6. For comments on the behaviour
for very small r , see text.

was computed in many directions of the flow for a given r and the results averaged.
The angle-averaged value of the structure function achieved the Kolmogorov 4/5
prediction to a remarkable degree, thus providing a convincing scheme for extracting
the isotropic component of a mildly anisotropic flow. The two procedures achieve the
same goal: the angle-averaging procedure is in effect a projection on to the isotropic
component of the SO(3) rotation group. Since this method is independent of the
order of the structure function, we use it as described below for fractional statistics.

The angle-averaged isotropic structure function in the computational domain D is
given by

S|n|(r) =
1

�t

∫ t0+�t

t0

dt

∫
dΩr

4π

∫
D

dx
L3

|(u(x + r) − u(x)) · r̂ |n, (3.2)

where the usual average for a particular direction of the unit separation vector r̂ is
followed by a spherical average of all possible orientations of r̂ over the solid angle
Ωr . The long-time average is taken in the steady state. In units of the large-eddy
turnover time, t0 is 1.5 from the start of the simulation and �t is unity.

In numerical simulations, since we have the full three-dimensional velocity field, we
can in principle integrate over the sphere and project out the isotropic part of S|n|.
Taylor et al. showed that the full spherical average may be approximated to arbitrary
precision by first computing the structure function over sufficiently many different
directions in the flow, interpolating each of these functions by a simple single-variable
cubic spline, and then averaging the interpolated values over all directions. This angle
averaging of the structure functions is much faster to implement than interpolating
the three-dimensional, three-component velocity data over spherical shells in order to
perform the integration.

However, angle averaging comes at a price: as with all interpolation procedures, it
introduces errors at the very smallest scales. This is evident in figure 2 where the local



Anomalous scaling of low-order structure functions 189

–1.0 –0.5 0 0.5 1.0 1.5 2.0
–0.4

–0.2

0

0.2

0.4

0.6

0.8

Order of moment, n

S
ca

li
ng

 e
xp

on
en

t

data (10243)

K41

Figure 3. The scaling exponents calculated from the 10243 DNS (�); standard deviations
(≈ ±0.001) are smaller than the size of the circles. Full line: K41 exponents, extrapolated via
self-similarity arguments to low-order statistics. Anomalous scaling is evident.

slopes do not asymptote as expected from the Taylor expansion for r → 0. We have
verified that this error does not propagate to values of r in the scaling region. Angle
averaging does not alter the scaling exponents observed in figure 2 but marginally
extends the range for large r .

The angle-averaging procedure was performed for all orders. For very low-order
moments |n| < 1 we observed only marginal anisotropy in the inertial range and the
statistics computed in the different directions nearly coincided with each other except
for large scales r/η > 300. In figure 2 we show the logarithmic derivative (the local
slope) of the structure functions for various fractional orders. If the local slope is
constant over a range of r , it provides the scaling exponent ζ|n|. A rough estimate
of the inertial range from figure 2 is 50 <r/η < 140 and the error estimate on the
scaling exponent is calculated as the variance over this range. As expected, the smaller
the absolute order |n|, the more constant is the local slope, thus indicating that our
confidence level improves as the moment order decreases. The scaling exponents and
their uncertainty over the inertial range are given for a range of fractional orders
in table 3, column 6. The exponents calculated for all three datasets display a good
degree of agreement.

The scaling exponents computed in this way from the 10243 simulation are plotted
as a function of order n in figure 3. For comparison, the K41 exponents are also
shown. The measured exponents deviate from the K41 values essentially for all orders.
This shows that the intermittency, until now thought to be characteristic of only high-
order moments, sampling ‘fat’ tails of the PDF of velocity increments, persists into
the low-order moments sampling the core of the PDF. Figure 4 shows the difference
(ζ|n| − n/3) from the K41 prediction as a function of n. There is a linear approach to
zero with a slope of 0.056. Equivalently, the behaviour near zero is ζ|n| = 0.38n instead
of ζ|n| = n/3.

Figure 5 shows that the relative departure of the measured scaling exponents from
the self-similarity prediction of K41, (ζ|n| − n/3)/(n/3), is a smooth function of n

in the range −1 <n � 10. We also present for comparison the anomalous exponents
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Figure 5. The relative difference (ζ|n| − n/3)/(n/3) for the various −1 <n � 10 as calculated
from the experiments (�), DNS (5123) (×) and DNS (10243) (�). The exponents for n> 3
for the experiments and the 5123 simulation are taken from the values tabulated in Dhruva
(2000). The solid line represents the outcome of the p-model (Meneveau & Sreenivasan 1987)
for p = 0.72. The dashed and dotted lines are the predictions from the dynamical theory of
Yakhot (2001), with two slightly different values of the parameter β in the theory.

calculated from the multifractal p-model (Meneveau & Sreenivasan 1987) and the
dynamical theory of Yakhot (2001) for two values of the parameter β in the theory.
(Yakhot (2001) inferred β =0.05 and Kurien & Sreenivasan (2001b) inferred 0.058.)
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The dependence on n in the range −1 <n � 3 is more or less linear and becomes
weakly quadratic for n> 3. The exact 4/5 result of K41 with scaling exponent 1 takes
the relative difference to zero at n= 3. A noteworthy point is n= 0. This relative
difference goes smoothly through n= 0 without any special feature, showing that
while the measured exponents also go to zero at n= 0, they do so at a different rate
than the K41 exponents (see figures 3 and 4). That is, there is a finite departure from
K41 of ∼ 15% for n → 0. There is also no special behaviour as n → −1 at which
point the mathematically defined scaling exponent, and hence the relative difference
from K41, diverges.

4. Discussion and conclusions
The principal result of this paper is that the fractional low-order moments have

scaling exponents that are different from n/3. In this sense, it is reasonable to consider
that anomaly exists in low-order and negative moments up to −1. Thus, instead of
focusing entirely on high-order moments in search of an explanation for intermittency,
it may also be reasonable to attempt to understand anomaly in low-order moments.
This has the advantage that rare events, whose universality may be in some doubt,
play far less of a role.

The present analysis may be recast in terms of the probability distribution
function of velocity increments. The prediction according to self-similarity is that
p(�u(r) = 0, r) ∼ r−1/3, that is the probability distribution function for zero-valued
velocity increments should scale as r−1/3. Departures from this scaling would indicate
departures from self-similarity for small values of the velocity increment. Previous
results using the same experimental data (Kurien & Sreenivasan 2001b) have shown
that there is measurable departure from r−1/3 scaling of PDF for zero-valued velocity
increments.

We close with a subtle remark. To keep structure functions real-valued for fractional
orders, we can consider, in the range −1 <n � 2, only absolute valued velocity
increments defined through (3.1). The difference between the classical structure
functions defined in (1.1) and the corresponding ones defined for absolute-valued
velocity increments is not completely clear. Our unpublished work appears to indicate
that the absolute-valued structure functions have a larger scaling exponent than the
classical ones when n is large and odd. It is thus possible, in principle, that the
anomaly for small and fractional n may not be related very precisely to the anomaly
observed for classical structure functions of high order.

We thank Victor Yakhot and Mark Nelkin for their valuable comments. S.K. ack-
nowledges support from the DOE Office of Science Advanced Computing Research
program in Applied Mathematics Research.
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