
Intermittency exponent of the turbulent energy cascade

Jochen Cleve,1,2,* Martin Greiner,3,† Bruce R. Pearson,4,‡ and Katepalli R. Sreenivasan1,§

1International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
2Institut für Theoretische Physik, Technische Universität, D-01062 Dresden, Germany

3Corporate Technology, Information & Communications, Siemens AG, D-81730 München, Germany
4School of Mechanical, Materials, Manufacturing Engineering and Management, University of Nottingham,

Nottingham NG7 2RD, United Kingdom
(Received 3 February 2004; published 23 June 2004)

We consider the turbulent energy dissipation from one-dimensional records in experiments using air and
gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation
function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the
atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the
centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with
each other and with a trend that increases with the Taylor microscale Reynolds number,Rl, of up to about 1000
and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly allRl, this
being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly.
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I. INTRODUCTION

That turbulent energy dissipation is intermittent in space
has been known since the seminal work of Batchelor and
Townsend[1]. The characteristics of intermittency are best
expressed, at present, in terms of multifractals and the mul-
tiplicity of scaling exponents; see e.g. Ref.[2]. In the hierar-
chy of the scaling exponents, the so-called intermittency ex-
ponent characterizing the second-order behavior of the
energy dissipation is the most basic. In this paper, we address
the Reynolds number variation of the intermittency exponent
and its asymptotic value(if one exists).

The intermittency exponent has been determined by a
number of authors in the past using several different meth-
ods; for a summary as of some years ago, see Refs.[3,4].
Recently, Cleve, Greiner and Sreenivasan[5] evaluated these
methods and showed that the best procedure is to examine
the scaling of the two-point correlation functionk«sx
+dd«sxdl of the energy dissipation«. Other procedures based
on momentsk«l

2l and kln2 «ll−kln «ll2 of the coarse-grained
dissipation«l =s1/ldel «sxddx, or the power-spectrumPskd
= u«skdu2, are corrupted by the unavoidable surrogacy of the
observed energy dissipation. The angular brackets here and
elsewhere indicate time averages.

The follow-up effort[6] was able to characterize and un-
derstand the functional form of the two-point correlation
function beyond the power-law scaling range. Within the
theory of (binary) random multiplicative cascade processes,
the finite-size parametrization

k«sx + dd«sxdl
k«sxdl2 = cSLcasc

d
Dm

+ s1 − cd
d

Lcasc
s1d

was derived, introducing the cascade lengthLcascas a mean-
ingful physical upper length scale, this being similar to the
integral scale(as discussed later) but typically larger. Here,m
is the intermittency exponent, and the first term is the pure
power-law part and the second term is the finite-size correc-
tion. Comments on the constantc will be given further be-
low. The one atmospheric and the three wind tunnel records
employed in Ref.[6] were found to be in accordance with
this close-to-universal finite-size parametrization. Even for
flows at moderate Taylor-microscale Reynolds numbersRl,
Eq. (1) allowed an unambiguous extraction ofm. For the four
data records, a weak dependence ofm on Rl was observed in
Ref. [6] but was not commented upon in any detail. The
present analysis examines many more records and attempts
to put that Reynolds number dependence on firmer footing.

II. THE DATA

Two of the data records examined here come from the
atmospheric boundary layer(records a1 and a2) [7], eight
records from a wind tunnel shear flow(records w1 to w8) [8]
and eleven records from a gaseous helium jet flow(records
h1 to h11) [9]. We find that all air experiments show an
increasing trend of the exponent toward 0.2 as the Reynolds
number increases. The helium data, on the other hand, show
the exceptional behavior of a Reynolds-number-independent
“constant” of around 0.1. Some comments on this behavior
are made.

It is useful to summarize the standard analysis in order to
emphasize the quality of the data. As is the standard practice,
energy dissipation is constructed via its one-dimensional
surrogate

«sxd = 15nSdu

dx
D2

, s2d

where the coordinate system is defined such thatu is the
component of the turbulent velocity pointing in the longitu-
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dinal x direction(the direction of mean motion). The coeffi-
cient n is the kinematic viscosity. Characteristic quantities
such as the Reynolds numberRl;Îku2ll /n, based on the
Taylor microscalel=Îku2l / ks]u/]xd2l, the integral lengthL,
the record lengthLrecord, the resolution lengthDx and the
hot-wire length lw in units of the Kolmogorov dissipation
scaleh=sn3/ k«ld1/4 are listed in Table I.

To calculate the numerical value ofl the method de-
scribed in Ref.[10] has been used. The integral length is
defined as the integral over the velocity autocorrelation func-
tion (using Taylor’s hypothesis). In the atmosphere, where
the data do not converge for very large values of the time lag,
the autocorrelation function is smoothly extrapolated to zero
and the integral is evaluated. This smoothing operation to-
ward the tail does not introduce measurable uncertainty inL.
The energy spectrum, which is illustrated in Fig. 1 for the
records a2, w1 and h7 as representatives of the three differ-
ent flow geometries with Reynolds numbers ranging from
the small to the very large side, follows an approximate −5/3
power over the inertial range.

The wind tunnel records are relatively noise-free, while
the helium data are affected by instrumental noise signifi-
cantly, as evidenced by the flattening of the energy spectrum
for high wave numbers. The atmospheric data fall some-
where in-between. The effect of this high-frequency noise,

and of removing it by a suitable filtering scheme, will be
discussed later.

Again for the three representative cases a2, w1 and h7,
Fig. 2 shows the two-point correlation defined in Eq.(1) for
the surrogate quantity(2) and compares it to the best-fits for
the proposed form of finite-size parametrization given by Eq.
(1). As is also the case for all the other records, the agree-
ment is quite substantial and unambiguous. The upturn at
small separation distancesd,L* has been explained in Ref.
[5] as the effect of the surrogacy of the energy dissipation.
Hence, we callL* the surrogacy cutoff length. The two-point
function decorrelates at a length scaleLcasc that is substan-
tially larger than the integral length scale. The cascade length
Lcasc and the surrogacy cutoff lengthL* are also listed in
Table I for all the records inspected.

III. INTERMITTENCY EXPONENT

To determine the intermittency exponentm, the data are
fitted to Eq.(1) using a best-fit algorithm(see Fig. 2). These
values are also listed in Table I. The local slopes from the
best fits, plotted as insets in the figure, show that deviations
from the pure power-law become evident only toward large
values of the separation distanced. The dashed lines in each
figure are pure power-laws(with arbitrary shift) for the val-
ues ofm listed in Table I.

TABLE I. Taylor-microscale based Reynolds numberRl, the integral length scaleL in units of the
Kolmogorov scale h, the record lengthLrecord, the Taylor microscalel, the resolution scaleDx
s=sampling time interval3mean velocityd, the length of the hot wirelw, the intermittency exponentm, the
cascade lengthLcascand the surrogacy cutoff lengthL* for the two atmospheric boundary layer data(a1,a2)
[7], the eight wind tunnel datasw1–w8d [8] and the eleven sets from gaseous helium jetsh1–h11d [9]
measurements.

Data set Rl L /h Lrecord/L l /h Dx/h lw/h m Lcasc/h L* /h

a1 9000 53104 1000 187 1.29 1.755 0.216 322743 3.9

a2 17000 7.53104 970 246 3.64 1.534 0.202 509354 9.1

w1 208 539 28000 27 2.42 1.052 0.143 1164 24

w2 306 484 102500 35 1.98 1.780 0.155 1939 26

w3 410 697 127700 38 2.67 2.533 0.151 2707 27

w4 493 968 193500 44 2.79 3.382 0.145 3228 31

w5 584 1095 88600 44 2.71 0.890 0.172 4062 27

w6 704 1365 117700 48 2.90 1.079 0.173 4343 29

w7 860 1959 89500 53 2.63 1.580 0.176 5513 26

w8 1045 2564 77500 64 2.97 1.927 0.171 7469 27

h1 85 102 197000 22 1.20 0.040 0.12 934 10.8

h2 89 101 175000 22 1.05 0.025 0.128 472 10.5

h3 124 165 100000 26 0.98 0.068 0.102 738 17.7

h4 208 344 85200 33 1.75 0.088 0.154 1258 14.0

h5 209 277 59000 23 0.97 0.072 0.083 1559 10.7

h6 352 606 62400 47 2.25 0.165 0.13 2254 22.5

h7 463 1011 32100 50 1.93 0.310 0.092 10438 25.1

h8 885 1442 40100 47 3.45 0.763 0.089 18954 10.3

h9 929 2064 29800 48 3.67 0.762 0.079 8434 18.3

h10 985 2144 37800 48 4.83 0.837 0.105 23659 14.5

h11 1181 3106 26900 57 4.97 1.097 0.061 14921 19.9
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For the atmospheric boundary layer, the analysis of two
data sets yields a value of about 0.2 for the intermittency
exponentm; see Fig. 3.

Note that, since the data set a1 contains both the longitu-
dinal and transverse velocity components, one can form dif-
ferent forms of the surrogate energy dissipation. It was found
in Ref. [5] that all of them lead to the same value of the
intermittency exponent. The filtering of the data has no mea-
surable effect on the numerical value ofm.

The wind-tunnel data w1–w8 seem to suggest a Reynolds
number dependence of the intermittency exponent forRl of
up to about 1000. The valuem=0.2 of the atmospheric
boundary layer is reached only for higherRl. Unfortunately
there is no laboratory data forRl.1000 so that there is a
gap between the wind tunnel data and the atmospheric
boundary layer data. Nevertheless, all the air data taken to-
gether appear to be consistent with a trend that increases with
the Taylor microscale Reynolds number up to anRl of about
1000, and saturates thereafter. This trend is also supported by
results quoted in the literature[3,4,11–16], although the
finite-size form(1) has not been employed for the extraction
of the intermittency exponent. The literature values, shown
in Fig. 3, fill the gap between the present wind tunnel and
atmospheric data.

In contrast to the air data, the gaseous helium records
h1–h11 show a different behavior(Fig. 3). It appears that,
unlike the air data which show a gradual trend withRl, lead-
ing to a saturation forRl.1000, the helium data yield an
intermittency exponent that is flat withRl at a lower value of
0.1. It remains an open question as to why this is so. It would
be important to settle this puzzle and clarify if this special
behavior has other consequences for the helium jet data.

To make some progress, we examined the helium data
more closely. Perhaps the instrumental noise, which is seen
in Fig. 1(c) by the flattening of the energy spectrum for high
frequencies, affects the accuracy of the calculation of the
energy dissipation. To account for such effects, we applied a
Wiener filter to the data, see again Fig. 1(c), and recomputed
the two-point correlation; the result is shown in Fig. 2(d).
The quality of the agreement with the finite-size parametri-
zation remained the same but the numerical value for the
intermittency exponent altered. Filtering produces different
amounts of shift for different sets of data; see again Fig. 3.
The most extreme change of the numerical value was found
for h7, where the intermittency exponent changed fromm
=0.09 in the unfiltered case tom=0.13 in the filtered case.
The difference between the two values can perhaps be taken
as the bounds for the error in the determination of the inter-
mittency exponent. Given this uncertainty, one cannot at-
tribute any trend with respect to the Reynolds number for the
helium data, and an average constant value ofm<0.1 seems
to be a good estimate for all helium data.

Further questions relate to the spatial and temporal reso-
lutions of the hot wire. The temporal resolution in the helium
case is comparable to that in the air data(see Table I); and, if
anything, the ratio of the wire length to the smallest flow
scale, namelylw/h, is better for helium experiments. How-
ever, an important difference between the air data and the
helium data concerns the length to the diameter of the hot
wire. For air measurements, the ratio is usually of the order

FIG. 1. Power spectral densities of the velocity fluctuations for
the records a2, w1 and h7. The straight lines indicate a −5/3 power,
which is expected in the inertial range. The sharp peaks are arti-
facts. For the record h7, the filtered power spectral density is also
shown.

INTERMITTENCY EXPONENT OF THE TURBULENT… PHYSICAL REVIEW E 69, 066316(2004)

066316-3



of a hundred(about 140 for a1 and a2 and about 200 for w1
to w7), while it is about 1/3 for h1–h11. In general, this is
some cause for concern because the conduction losses from
the sensitive element to the sides will be governed partly by
this ratio, but the precise effect depends on the conductivity
of the material with which the hot wires are made. For hot
wires used in air measurements, the material is a platinum-
rhodium alloy, while for those used in helium, the wire is
made of Au-Ge sputtered on a fiber glass. This issue has been
discussed at some length for similarly constructed hot wires
of Emsellemet al. [17]. The conclusion there has not been
definitive, but the helium data discussed in Ref.[17] show
another unusual behavior: unlike the air data collected in
Ref. [18], the flatness of the velocity derivative shows a non-
monotonic behavior withRl. See also figure 4 of Ref.[19].
Whether the two unusual behaviors of the helium data are
related, and whether they are in fact due to end losses, re-
mains unclear and cannot be confirmed without further study.
A further comment is offered toward the end of the paper.

The data on the surrogacy cutoff lengthL* does not show
a clear Reynolds number dependence. Referring again to
Table I it appears thatL* is directly related to neitherl nor

h. However, definitive statements cannot be made because of
the practical difficulty of locatingL* precisely.

Figure 4 illustrates the findings on the cascade length ratio
Lcasc/h.

The ratio increases with the large-scale Reynolds number
R=u8Lcasc/n as a power-law with the exponent of 3/4, ex-
actly as anticipated ifLcascwere proportional to the integral
scale. The ratioLcasc/L is not exactly a constant for all the
data(as can be seen from Table I), but given the uncertainty
in determiningL and the absence of any systematic trend
suggests that our supposition is reasonable. This is further
reinforced by the variation ofLcasc/h with respect toRl (see
the inset), which also follows the expected behavior. We
should note that it is difficult to single out the helium data in
this respect.

There is more to learn from fitting the finite-size param-
etrization(1) to the experimental two-point correlations than
merely extracting the intermittency exponent and the cascade
length. As revealed by a closer inspection of the asymptotic
behavior asd→Lcasc, see again Fig. 2, the two-point corre-
lation of the atmospheric boundary layer and wind tunnel
records approach their asymptotic value of unity from above,

FIG. 2. Best fits of expression(1) to two-point correlators extracted fronm data sets a2, w1, unfiltered h7 and filtered h7(h7f). The inset
figures show the local slopes, compared with the fits given by(1). For comparison, power-law fits with the extracted intermittency exponent
listed in Table I(andm=0.13 for h7f) are shown as dashed straight lines drawn with arbitrary shifts.
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whereas for most of the gaseous helium jet records the curve
first swings a little below unity before approaching the
asymptotic value. The expression(1) is flexible enough to
reproduce even this behavior. The derivation of(1) within
the theory of binary random multiplicative cascade pro-
cesses, which has been presented in Ref.[6], also specifies
the parameter

c =
kP2lkqLqRl
2kqL/R

2 l − 1
s3d

in terms of cascade quantities. Normalized tokPl=1, P rep-
resents the initial energy flux density, which is fed into the
cascade at the initial length scaleLcasc. kqL/R

2 l andkqLqRl are
second-order moments of the bivariate probabilistic cascade
generatorpsqL ,qRd=psqR,qLd, which we assume to be sym-
metric. Again the normalization of the left and right random
multiplicative weights is such thatkqL/Rl=1. Note, that
log2kqL/R

2 l=m is equal to the intermittency exponent. Figure 5
shows various graphs of the two-point correlation(1) with
the expression(3), where parametersm andLcaschave been
kept fixed, butc has been varied in the range 0,c,1.

We observe that for largec the two-point correlation ap-
proaches its asymptotic value from above, whereas for small
c it swings below one before it reaches the asymptotic value
from below. The transition between these two behaviors oc-
curs at c<1/s1+md. This translates tokP2lkqLqRl=s21+m

−1d / s1+md, which is 1.08 form=0.2 and 1.04 form=0.1.
Hence, we are tempted to conclude that for the air data the
fluctuation of the initial energy flux density fed into the
inertial-range cascade at the upper length scale is somewhat
larger than for the helium jet data; this appears to be plau-
sible and is one difference between air and helium data. We
also read this as an indication thatkqLqRl,1, which is ful-
filled if the left and right multiplicative weight are anticorre-
lated to some extent. As has already been discussed in a
different context[20], this anticorrelation is a clear signature
that the three-dimensional turbulent energy cascade con-
serves energy.

IV. CONCLUDING REMARKS

In summary, we state that the picture of the turbulent en-
ergy cascade is robust and again confirmed by the excellent
agreement between the two-point correlation density pre-
dicted by random multiplicative cascade theory and that ex-

FIG. 3. The intermittency exponent,m, extracted from a best fit
of expression(1) to the two-point correlator of the various data
records, as a function of the Taylor-microscale based Reynolds
number. Also shown are some values quoted in the literature. For
some of the helium data, the lines show the shift resulting from the
application of the Wiener filter to remove high-frequency noise.

FIG. 4. The dependence on the Reynolds number of the ratio of
the cascade lengthLcascto the Kolmogorov scaleh. The a-, w- and
h-records are represented by diamonds, circles and triangles, re-
spectively. In the main graph, the straight line indicates a power-law
scaling with exponent 3/4, and the Reynolds number is defined as
R=u8Lcasc/n. The inset shows the same data overRl with the
straight line indicating the expected power-law scaling of 3/2. The
prefactor for the main graph isA=1.3, for the insetA=0.41.

FIG. 5. Two-point correlator(1) for various parameter values
c=0.6,0.7,0.8,1/s1+md ,0.9,1 (from left to right). The other pa-
rameters are fixed toLcasc/h=104 andm=0.20.
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tracted from various experimental records. The cascade
mechanism appears to be universal, although its strength, as
represented by the intermittency exponent, seems to depend
on the Reynolds number except when it is very high. The
discrepancy between the air data on the one hand and the
gaseous helium data on the other remains a puzzle(despite

some possible explanations offered), and is in need of a
fuller explanation.
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