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Bounds on high-order derivative moments of a passive scalar are obtained for large
values of the Schmidt number, Sc. The procedure is based on the approach pioneered
by Batchelor for the viscous–convective range. The upper bounds for derivative
moments of order n are shown to grow as Scn/2 for very large Schmidt numbers. The
results are consistent with direct numerical simulations of a passive scalar, with Sc

from 1/4 to 64, mixed by homogeneous isotropic turbulence. Although the analysis
does not provide proper bounds for normalized moments, the combination of analysis
and numerical data suggests that they decay with Sc, at least for odd orders.

1. Introduction
We are interested in understanding the dependence of the statistical properties of a

passive scalar on its Schmidt number, Sc, this being the ratio of kinematic viscosity ν

of the fluid to the diffusivity κ of the scalar. In some cases, the temperature field of the
flow is considered a passive scalar with an equivalently defined Prandtl number, Pr .
Obukhov (1949), Yaglom (1949), Corrsin (1951), Batchelor (1959), Kraichnan (1968),
and others, have considered specific instances in which Sc assumed different values and
limits, but detailed investigations of the Sc-dependence are rare. Experimentally, large
values of Sc are obtained when various dyes are mixed in water, and the requirements
on instrument resolution (e.g. Prasad & Sreenivasan 1990; Dahm, Southerland &
Buch 1991; Saylor & Sreenivasan 1998) are quite severe. For the same reason, three-
dimensional direct numerical simulations (DNS) require fine grid resolutions when Sc

is large (see Bogucki, Domaradzki & Yeung 1997; Antonia & Orlandi 2002; Yeung,
Xu & Sreenivasan 2002; Brethouwer, Hunt & Nieuwstadt 2003).

Of particular interest is the likelihood that the anisotropy of passive scalars driven
by a mean scalar gradient persists at high Reynolds numbers, contrary to the premise
of local isotropy. This can be seen by plotting the normalized derivative moments

Sn(∂θ/∂x) =
〈(∂θ/∂x)n〉

〈(∂θ/∂x)2〉n/2
, (1.1)

where x is the direction of the mean scalar gradient, against the Taylor microscale
Reynolds number, Rλ. Even the skewness, which corresponds to the lowest-order
non-trivial case, does not show a decreasing trend with respect to Rλ for Rλ up
to 104 (see, for example, figure 7 of Sreenivasan & Antonia 1997). Note that local
isotropy (which requires the skewness to vanish) is a prerequisite for the classical
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Figure 1. Normalized scalar derivative moments for n = 3, 4 and 5 (cf. equation (1.1)) as
functions of the Schmidt number Sc. The underlying turbulent flow field had a Taylor–Reynolds
number Rλ = 38. The odd normalized moments decrease with Sc but the fourth moment
changes little. Data are from Yeung et al. (2002).

phenomenology of passive scalars to be valid (Obukhov 1949; Yaglom 1949; Corrsin
1951). It is well-known from measurements (e.g. Gibson, Friehe & McConnell 1977;
Sreenivasan, Antonia & Britz 1979) and DNS (Holzer & Siggia 1994; Pumir 1994;
Celani et al. 2001) that passive scalars develop a ramp–cliff structure when driven
by a mean gradient. These structures are thought to make persistent contributions
to odd moments of derivatives. As Sc increases, the mixing of the scalar proceeds
to increasingly smaller scales beyond the dissipative scale and develops increasingly
steeper gradients. However, it is not obvious that these steeper gradients, being
further removed from the large scale, will retain a directional preference on the
average. This leads us to ask whether, with increasing Sc, there exists a compensation
for the directional anisotropy of the large scales, and a consequent diminution of the
skewness.

This possibility is supported by recent high-Sc DNS of Yeung et al. (2002) on a
5123 grid. The passive scalar was advected by three-dimensional homogeneous and
isotropic turbulence for 1/4 � Sc � 64. The required resolution was achieved by
keeping Rλ at a small value of 38. The passive scalar was driven by a constant mean
gradient G in one direction. Figure 1 shows the normalized derivative moments Sn

of ∂θ/∂x, for orders three, four and five. While the fourth moment hardly changes
with Sc, odd moments do show decreasing trends. It would be of interest to know the
asymptotic behaviour for very large Sc and for moments of all orders, although this
issue can be resolved only for relatively low Reynolds numbers. It was thus thought
that a theoretical analysis, even if incomplete in some respects, might be useful. This
is the goal of this paper.

The basis for analysing scalar mixing for high Sc is provided by two classical
approaches. Batchelor (1959) discussed scalar advection in the smooth and slowly
varying velocity field of small-scale turbulence. This work led to the prediction of
a k−1 power law for the scalar spectral density in the viscous–convective range (i.e.
the range between the Kolmogorov scale η = (ν3/ε)1/4, around which viscous effects
become important, and the Batchelor scale ηB = Sc−1/2η, around which the diffusive
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effects of the scalar become important). Kraichnan (1968) showed that the k−1 scaling
obtains even if the spatially smooth velocity field varies rapidly in time. Kraichnan’s
velocity field is uncorrelated in time and has an infinitesimally small viscous time
scale, i.e. the Kolmogorov time scale τη ≡ (ν/ε)1/2 → 0. Thus the model operates
in the limit Sc → 0 (although the Péclet number can be large), and is therefore
unrelated to the present work, whose central concern is the effect of Sc when it
is large. A few comments are, however, in order. In a recent work, E & Vanden-
Eijnden (2001) provide a consistent re-definition of Sc for scalar advection in such
flows. Secondly, using the large deviation theory of Balkovsky & Fouxon (1999), they
generalize Kraichnan’s work within the Lagrangian picture of scalar advection. When
the correlation time of the rates of strain is finite but small compared to an outer scale,
they discuss a general form of the probability density function of the scalar and its
gradients, and conclude that, because the gradient statistics are non-universal, further
progress requires the specification of statistics of the fluctuating strain rates. The
quasi-stationarity of the strain field in the Batchelor model removes this impediment,
and so it is applied here to discuss the Sc-dependence of scalar derivative moments
in the presence of a mean scalar gradient, especially for Sc > 1.

2. Balance equations for derivative moments in smooth velocity fields
The (total) scalar field, Θ(x, t) is composed of a turbulent part, θ(x, t), and a linear

mean part with a constant scalar gradient vector, G,

Θ(x, t) = θ(x, t) + ∇〈Θ〉(x) · x ≡ θ(x, t) − G · x. (2.1)

Such a mean scalar gradient can be externally prescribed, e.g. by selective heating of
wind-tunnel walls or by adjusting the resistance distribution at the wind-tunnel inlet.
The advection–diffusion equation for Θ(x, t) has the form

∂tΘ(x, t) + u(x, t) · ∇Θ(x, t) = κ∇2Θ(x, t). (2.2)

When (2.1) is inserted in (2.2), we obtain, for the turbulent part,

∂tθ(x, t) + u(x, t) · ∇θ(x, t) = κ∇2θ(x, t) + u(x, t) · G. (2.3)

The quantity u · G is a production term which ensures statistical stationarity of
θ(x, t). After taking the partial derivative with respect to the coordinate i, which may
be x, y or z, and multiplying by (∂iθ)n−1, we obtain

1

n
∂t (∂iθ)n +

1

n
(u · ∇) (∂iθ)n + (∂iθ)n−1(∂iu · ∇)θ

= κ(∂iθ)n−1∇2∂iθ + (∂iθ)n−1(∂iu) · G. (2.4)

The relevant physics in the bulk of the flow is associated with small volumes V with
periodic boundaries. Taking the local volume average 〈·〉V , we obtain (no sum over i)

1

n
∂t〈(∂iθ)n〉V + 〈(∂iθ)n−1(∂iu · ∇)θ〉V = −κ〈∇[(∂iθ)n−1] · ∇(∂iθ)〉V

+ 〈(∂iθ)n−1(∂iu) · G〉V . (2.5)

The advective term disappears because of the boundaries chosen and the dissipative
term is transformed by means of Green’s formula.

The velocity field in the viscous–convective range is smooth and determined by its
rate-of-strain tensor, ui(x, t) = σij (t)xj . Following Batchelor, we substitute the tensor
by its principal components, denoted by σx , σy and σz. Incompressibility requires that
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σx + σy + σz = 0, and we can take, without loss of generality, σx > σy > σz, i.e. σx > 0
and σz < 0. The principal axes will be randomly oriented in three-dimensional space,
and their orientation will slowly vary in comparison with τη. This orientation is linked
to the small-scale behaviour of the advecting turbulent flow which, we may assume,
has no preferred direction (because the flow is assumed to be locally isotropic).

We should now specify the time dependence of the strain-rate tensor. Batchelor
argued, on the basis of experiments by Townsend (1951), that |σz|−1 ≈ 2τη. We adopt
the assumption that all three principal components vary on time scales larger than τη,
and treat them as time-independent constants. From this consideration, the geometric
coordinate system is rotated to coincide with the principal axes of the rate-of-strain
tensor; for simplicity, the same notation as in the original coordinates is maintained
hereafter. The velocity field becomes u(x) = σxxex + σyyey + σzzez and the mean
scalar gradient vector, G, that was originally pointing along one axis, now has three
constant components in the new coordinates. Additionally, statistical stationarity is
assumed. The statistical ensemble average, denoted by 〈·〉, is taken as the average
over volume and time. From (2.5), it follows (with σi �= 0 and no sum over i) that

〈(∂iθ)n〉 ∼ − κ

σi

〈∇[(∂iθ)n−1] · ∇(∂iθ)〉 + Gi〈(∂iθ)n−1〉. (2.6)

The resulting approximate balance is local and the volume under consideration should
not be too large (∼ η). The physical idea, similar to that used in the inertial range
of turbulence, is that a steady scalar intensity, sustained at scales larger than η,
sweeps from these larger scales down to the viscous–convective range (the ‘Batchelor
cascade’).

Equation (2.6) allows a further simplification. Successive insertion of (2.6) for
moments of order j − 1 into those of order j and use of homogeneity yields

〈(∂iθ)n〉 ∼ − κ

σi

n−1∑
j=1

G
j−1
i 〈∇[(∂iθ)n−j ] · ∇(∂iθ)〉. (2.7)

Consider now the direction of compression, i.e. the direction of the Batchelor cascade
corresponding to σz < 0. For simplicity, we write |σz| = σ and obtain for second order

〈(∂zθ)2〉
κ〈[∇(∂zθ)]2〉 ∼ 1

σ
= constant. (2.8)

This can be checked by means of DNS. While the results were derived for the direction
of compression in the coordinate system that is aligned with the principal axes, the
DNS data analysis is done for the three original (outer) coordinates. However, the
three outer coordinates combine linearly to the new z-coordinate. Thus, if we can
examine the relation (2.8) for all three coordinates, we might obtain an adequate
sense of its qualitative correctness. The comparisons are shown in figure 2. Both
the numerator and denominator grow with increasing Sc. The inset in figure 2(b)
plots their ratio for all three original coordinates. It can be seen that it is nearly
constant, suggesting that the result (2.8) is plausible. This exercise also suggests that
the denominator, which is the scalar gradient dissipation term, is directly related to
the growth of the second-order derivative moment.

Similarly, the third-order moment follows the relation

〈(∂zθ)3〉 ∼ (κ/σ )[〈∇[(∂zθ)2] · ∇(∂zθ)〉 + Gz〈[∇(∂zθ)]2〉], (2.9)
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Figure 2. (a) Scalar derivative moments of second order, 〈(∂iθ )2〉, plotted against the Schmidt
number, Sc. For comparison, we also plot the scalar dissipation rate, εθ (open circles) which is
nearly constant. The dashed line indicates the power law that can be fitted to the data. (b) The
scalar gradient dissipation rate, κ〈|∇∂iθ |2〉, is plotted as a function of Sc. The inset shows the
ratio (2.8), here denoted by Mx , My , and Mz, for the three coordinate directions. The mean
scalar gradient is in the direction x. Symbols are indicated in the legends.

leading to the following expression for the skewness:

S3(∂zθ) =
〈(∂zθ)3〉

〈(∂zθ)2〉3/2
≈

√
σ

κ

[
〈∇[(∂zθ)2] · ∇(∂zθ)〉

〈[∇(∂zθ)]2〉3/2
+

Gz

〈[∇(∂zθ)]2〉1/2

]
. (2.10)

Further progress is difficult without numerical back-up, but the above relation is of
interest for an independent reason: the question can be raised if, for any finite value
of κ and G, a relic of the large scale remains in the odd moments of the scalar
derivative. The last term does not vanish within our approach although we should
note that the first term remains ‘uncontrolled’ and cancellations might arise.

3. Upper bounds for unnormalized derivative moments
Equation (2.2) can be solved analytically using an ansatz in which the wave vector

is a function of time, Θ(x, t) = Θ(t) sin(k(t) · x). Here, the equation for the total
passive scalar field is solved, this being a homogeneous problem in Θ(x, t). Physically,
we study the deformation of a cubic scalar blob or filament of initial side lengths
li = 2π/ki0 for i = x, y, z. Following Batchelor (1959), we take the initial condition
to be Θ(x, 0) = Θ0 sin(k0 · x).

Before continuing further, we express all quantities in their characteristic units,
k = kη k̃, t = t̃ τη, σ = σ̃ /τη, θ = θrmsθ̃ and κ = ν/Sc. We define kη = η−1 and
θrms = 〈θ2〉1/2. For simplicity, we set Θ0/θrms = 1. The Batchelor wavenumber kB

becomes
√

Sc. The tilde for the dimensionless quantities is omitted in the following.
For k = (kx, ky, kz) and coordinates x = (x, y, z) in the directions of the principal

components of the rate-of-strain tensor, one arrives at the Batchelor solution for the
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total scalar field

Θ(x, t) = exp

[
1

2σxSc

(
k2

x(t) − k2
x0

)
+

1

2σySc

(
k2

y(t) − k2
y0

)
+

1

2σzSc

(
k2

z (t) − k2
z0

)]

× sin(k(t) · x), (3.1)

with time-dependent wave-vector components

kx(t) = kx0e
−σx t , ky(t) = ky0e

−σy t , kz(t) = kz0e
−σzt , (3.2)

where σx > σy > 0 and σz < 0. Consequently, the z-direction will be the direction of
compression, leading to growth of kz(t) while kx(t) and ky(t) decrease exponentially
with time. We now apply Batchelor’s solution to the derivative moments. With (2.1), a
binomial expansion for the nth power of the partial derivative of the turbulent scalar
fluctuations in the ith direction gives

(∂iθ)n = (∂iΘ + Gi)
n =

n∑
m=0

n!

m! (n − m)!
(∂iΘ)m Gn−m

i . (3.3)

For times t ∼ τη the exponential term with respect to the direction of compression,
z in our case, becomes dominant. We can neglect the contribution arising from kx(t)
and ky(t) and obtain, by combining (3.1) and (3.3), the relation

(∂iθ)n ≈
n∑

m=0

n!

m! (n − m)!
km

i (t) exp

(
−mk2

z0e
2σ t

2σSc

)
cosm(k(t) · x)Gn−m

i , (3.4)

where, again, σ = |σz| has been used.
Time averaging is inappropriate here because the gradient solution (3.4) is

exponentially increasing in time in the direction of compression. Nevertheless,
statistical averages can be performed in two different ways. The first, suggested by
Kraichnan (1968), is to integrate over a probability density function that characterizes
the distribution of the principal strain rates. We suggest an alternative in which
the averaging can be performed over an ensemble of initial wave vectors k0 in the
viscous–convective range, characterizing the shape and extent of scalar filaments. The
filaments are expected to possess wavenumbers up to kB . One then has

〈(∂iθ)n〉k0
=

∫
d3k0 (∂iθ)n p(k0), (3.5)

where p(k0) is the probability density of the initial wavevectors k0. The simplest case
for p(k0) is to assume that all wave vectors k0 (positive as well as negative ones!),
whose absolute values lie within the viscous–convective range, are equally likely.
In dimensionless and normalized form, this distribution assumes an equipartition
shape over the viscous–convective range, and is given by p(k0) = 1/[8(

√
Sc − 1)3]∏3

i=1 H(
√

Sc − k0i) H(k0i − 1) where H(x) is the Heaviside function, which is 1 for

x > 0 and 0 for x < 0. We define Ω ≡ [−
√

Sc, −1]3 × [1,
√

Sc]3 as the subspace
of wave vectors in the viscous–convective range. For the nth moment of the scalar
derivative, we then have to solve

〈(∂iθ)n〉k0
=

n∑
m=0

n!

m! (n − m)!

Gn−m
i

8(
√

Sc − 1)3

∫
Ω

d3k0 (∂iΘ)m, (3.6)

which results from combining (3.4) and (3.5) with p(k0). The mean gradient appears
in different powers in the sum. For any non-vanishing mean gradient, the upper
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bound consists of a constant and Sc-independent part. The average is also still a
function of time and local space coordinates. We are interested in maximum values
of the derivative moments, i.e. upper bounds of the integral expression (3.6). The
Batchelor solution still contains the oscillating spatial cosine contribution coming
from the initial ansatz. Performing additionally an average over the blob volume in
(3.5) would lead to zero values for all orders. This is a shortcoming of the simple
shape of the scalar filament. We can use the boundedness of the oscillating part, i.e.
cosm(k · x) � 1, to calculate upper bounds of the scalar derivative moments within
the blob, using Batchelor’s quasi-static straining approximation. In detail, we have

〈(∂iθ)n〉k0
=

n∑
m=0

n!

m! (n − m)!
Gn−m

i e−mσi t

× 1

8(
√

Sc − 1)3

∫
Ω

d3k0 km
i0 exp

(
−mk2

z0e
2σ t

2σSc

)
cosm(k(t) · x)

�
n∑

m=0

n!

m! (n − m)!
|Gi |n−me−mσi t

× 1

(
√

Sc − 1)3

∫ √
Sc

1

d3k0 |ki0|m exp

(
−mk2

z0e
2σ t

2σSc

)
≡ 〈(∂iθ)n〉k0

. (3.7)

We note that for t = σ −1 ln(kη

√
Sc/kz0) the wavenumber exceeds the Batchelor value

and spreads into the viscous–diffusive range, where it is damped. This can be seen
by inserting kB =

√
Sc kη into (3.2). This is roughly the time at which the present

picture becomes internally inconsistent. We also note that, because the bounds for
unnormalized moments have been taken already, we cannot use this result to obtain
bounds for normalized moments.

We should distinguish between two cases: the evolution of the derivative moments
in the directions of compression (z with σz < 0) and expansion (at least x with σx > 0;
the y direction is neutral when σy = 0). For the expansion, we obtain a rapid decrease
of the upper bounds. The filament is expanding exponentially in directions of positive
strain rate, thus reducing the scalar gradients rapidly. The interesting case occurs in
the direction of compression, which we now discuss. The relevant equation is

〈(∂zθ)n〉k0
=

n∑
m=0

n!

m! (n − m)!
|Gz|n−memσt 1√

Sc − 1

∫ √
Sc

1

dkz0 km
z0 exp

(
−mk2

z0e
2σ t

2σSc

)
.

(3.8)
The integral in (3.8) can be written as

Im =
1

2

(
e2σ tm

2σSc

)−(m+1)/2 [
�

(
m + 1

2
,
e2σ tm

2σSc

)
− �

(
m + 1

2
,
e2σ tm

2σ

)]
, (3.9)

where �(z, a) =
∫ ∞

a
e−t t z−1 dt is the incomplete Gamma function with �(z, 0) = �(z)

(Abramowitz & Stegun 1972).
Clearly, the bound depends on both Sc and the magnitude of G. It also remains

time-dependent as does the Batchelor solution for the passive scalar field itself. Again,
the physical picture is that scalar substance sweeps steadily from scales larger than
η into the viscous–convective range where it is advected down to scales of the order
ηB , and dissipated diffusively beyond. For this reason, it can be suggested that the
average over the initial wavenumbers is equivalent to a common time average taken
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Figure 3. Comparison of the upper bounds for the moments 〈(∂zθ )n〉(θrmsη
−1)n with DNS

results at Rλ = 38 and Sc = 8, 16, 32 and 64: (a) the third order, and (b) the fifth. Solid lines
are for t/τη = 1, dashed lines are for t/τη = 3. στη was taken to be 1/2. Slopes of 3/2 and 5/2

are also indicated by straight lines. The mean gradient is G/(θrmsη
−1) = 0.10. The DNS data

correspond to normalized G/(θrmsη
−1) values between 0.02 and 0.05.

in DNS, namely by assuming a kind of ergodicity. The bound will be determined by
the leading term in the sum in (3.8), and is given, for the case Sc → ∞, always by

〈(∂zθ)n〉k0
∼ Scn/2. (3.10)

This conclusion is meaningful only if Sc � 1 and a developed viscous–convective
scaling range exists. For intermediate Sc or for strong gradient forcing we can expect
crossovers in the dominance of one of the n + 1 terms (see equation (3.3)).

In order to compare the upper bound results with DNS, we evaluated the bound
(3.8) as well as the derivative moments numerically. Figure 3 shows the result for two
different times t . We observe that the upper bound slowly decreases with time, but
is roughly consistent with the DNS results. In general, the DNS results, indicated by
the symbols, are smaller than the bound. Because the coordinate system used here is
rotated into the principal axes, and not the one used in the DNS, derivative moments
from the latter are plotted for all three directions. It can be expected that their
linear combination also does not exceed the bound. We see that their growth with
Sc is different from the upper bound. While the x-derivative grows with exponents
of ≈ 0.75 and ≈ 1.4 for the third and the fifth moments, respectively, the y- and
z-derivatives follow a 3/2 power for order 3, and show no scaling for order 5.

The G-dependence of the bounds is presented in figure 4 for four values of G.
Clearly, the bounds level off at larger magnitudes for increasing G in the limit of
Sc → 1. This is followed by a crossover region which ends in an algebraic scaling of
the nth-order moment according to the power n/2. This is due to the first term in the
sum (3.8). For intermediate Sc, the upper bound behaves as in the DNS data.

4. Conclusions
We have investigated the large-Sc behaviour of derivative moments in scalar

turbulence sustained by a mean scalar gradient. The smooth velocity field advecting



Schmidt number dependence of derivative moments 229

102

Sc

〈(
� zθ

)3 〉
/(
θ

rm
s 
η

–1
)3

105

100 101 102

105

3/2

(a)

Sc
100 101 102

(b)

100

G/(θrms/η) = 0.01

103

103

105

5/2

100

103

100

(c) (d )

3/2

5/2

0.10
1.00

100 101 102

〈(
� zθ

)5 〉
/(
θ

rm
s 
η

–1
)5

105

103

100

100 101

〈(
� zθ

)3 〉
/(
θ

rm
s 
η

–1
)3

〈(
� zθ

)5 〉
/(
θ

rm
s 
η

–1
)5

Figure 4. Dependence of the upper bounds of the moments 〈(∂zθ )n〉(θrmsη
−1)n on the mean

scalar gradient G for n = 3 and 5: (a, b) t = 1, (c, d) t = 3. Values of G are measured in units
of θrms/η, as indicated in the legends.

the scalar in the viscous–convective range is assumed to possess quasi-static principal
rates of strain, as in Batchelor’s (1959) model. A relation for the nth-order derivative
moment in terms of the mean gradient, G, and the scalar gradient dissipation is
derived. The result agrees well with DNS results for the second order (see inset
to figure 2b). Batchelor’s model of quasi-static principal rates of strain is used to
calculate upper bounds for scalar derivative moments. The bounds are consistent
with numerical findings for Sc � 1. The mean scalar gradient forcing included in the
model results in crossover regimes for intermediate Sc, depending on their relative
magnitudes. In this range, the growth of the bounds approaches the numerical findings.

Unfortunately, there are a few aspects of the problem that cannot be captured in
the approach. As can be seen in figure 1 there are qualitative differences between
even- and odd-order normalized moments which should cause similar differences
in unnormalized moments. In this connection, we can combine the numerical result
of figure 2, that the second-order moment grows as Sc1.03, with equation (3.10),
which shows that the third-order moment grows as Sc1.5, and conclude that the
skewness decays slowly as Sc−0.045, but this is slow compared to the numerical data
of figure 1. Secondly, the single Fourier mode ansatz for the initial filament is
simplistic and unsuitable for discussing the ramp–cliff structure. Whether the present
quasi-static approach or Kraichnan’s alternative is closer to the physics in the viscous–
convective scaling range can only be answered by means of more detailed numerical
investigations.
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